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Introduction

Many interesting families of polynomials are indexed by permutations, and are
constructed using divided difference operators and their generalizations. The
most classical one is the Schubert polynomials, as introduced in [LS1], and their
doubled version from [Mac]. The former show up naturally in the cohomology
theory of flag varieties, see, e.g., [FP], yields the quantum generalization from
[FGP], and the universal one from [F] (the quantum and universal Schubert
polynomials cannot be constructed using the usual divided difference operators,
and require variants which are not considered in the current paper, but their
double version of the former can be obtained in this way by acting on the second
set of variables—see Appendix J of [FP]). A recent generalization is the twisted
Schubert polynomials from [Li], which is constructed using modified divided
difference operators, in the form considered here.

Another generalized version of the Schubert polynomials consists of the
Grothendieck polynomials, originally defined in [LS2] (see also [La1]). They
can also be constructed using divided difference operators, but their operation
is combined with multiplication by additional polynomials. They too have a
double version, as well as a quantum version (see [LM]) and a universal one
(as in [BKTY]). We also mention the Grothendieck H-polynomials from [LS3],
which admit a similar definition. Note that like the Stanley symmetric functions
(originally defined in [S]) show up as a stable limit of the Schubert polynomials,
there are also stable Grothendieck polynomials (defined in [FK1]), and when
the permutation has only one descent, so that the Schubert polynomial is a
Schur polynomial (and the Stanley symmetric function is a Schur symmetric
function), the stable Grothendieck polynomials admit duals, as considered in
[LP]. Generalizations of the latter are investigated in [Ye].

The Schubert and Grothendieck polynomials associated with a permutation
w, with their doubled versions, are the generating functions, or partition func-
tions with appropriate weights, of many interesting objects. To name a few,
we mention on one side pipe dreams (or RC-graphs, or compatible sequences),
as in [FK3], [BJS], [BB], and [FS] (see also [KM], [Kn], and the appendix of
[Hud]), and on the other hand bumpless pipe dreams—see [LLS], [W], and [Hua].
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The resulting matching between the two objects is far from obvious, and was
completed in the reduced (or Schubert) case in [GH]. There is also a lattice
model interpretation as given in [BS]. The recent preprint [LOTRZ] establishes
a bumpless pipe dream model also for the quantum Grothendieck polynomials.
We also mention a further generalization of both the Grothendieck polynomials
and their H-versions, namely the biaxial double Grothendieck polynomials of
[BFHTW], involving a more complicated modification of the divided difference
operators, which are also shown there to be the partition functions of appropri-
ate colored lattice models (yet another generalization is defined in [GZJ]).

Another family of polynomials, whose indices are compositions but which
are constructed similarly using divided difference operators (with polynomials)
via the permutation yielding the composition from the associated partition, is
the family of key polynomials. They were defined in [D1] and [D2], and they
are constructed using the Demazure atoms from [LS4] (defined by yet another
modification of the divided difference operators), which also related them to
Young tableaux. Many properties of these polynomials are presented in the
thesis [P]. Other related objects are skyline fillings (see [Mas1] and [Mas2]) and
Gelfand–Tsetlin polytopes (as in [KST]). In fact, the key polynomials and the
Demazure atoms are connected as special cases of the non-symmetric Macdonald
polynomials (see [AS] and the papers cited therein).

The same type of generalization that produces the Grothendieck polynomials
from the Schubert polynomials yields, when applied to the key polynomials
and Demazure atoms, the Lascoux polynomials from [La2] and the Lascoux
atoms defined in [Mo] respectively. The divided difference operators in this case
involve quadratic polynomials. They admit, by [BSW], associated colored lattice
models, and [Yu] relates them to set-valued tableaux. A conjecture relating the
Lascoux polynomials to the Grothendieck polynomials was posed in [RY] and
answered soon after in [SY].

All these interesting families of polynomials are based, in their definitions via
the divided difference operators and their modifications, on the braid relations
required for making well-defined indices in terms of permutations. The closely
related question, of operators satisfying the Yang–Baxter equation, more specifi-
cally in the exponential setting, was considered in [FK1], [FK2], and [FK3]. The
paper [Ki] introduces more general divided difference operators, and considers
more general families of operators and polynomials, including those mentioned
above, the ones from [dFZJ], and others. The most general family of operators
there involves five parameters, which must satisfy a quadratic equation in or-
der for a relation similar to the braid relation to hold (see Lemma 4.14 of that
reference).

This motivates the question—which modifications of the divided difference
operators by arbitrary polynomials satisfy the braid relations, in order to be
possibly used for defining families of polynomials with indices that are permu-
tations? This paper answers this question in full. Under a certain condition of
non-degeneracy, the family from [Ki] is almost the only possible choice, though
there are a few smaller families of possible operators.
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We will now explain the notions and results of this paper in more detail. For
a function f of variables including xi and xi+1, the ith transposition operator
si takes f to the function sif obtained by interchanging the values of xi and
xi+1. Recall the divided difference operator ∂i, taking such a function f to
f−sif

xi−xi+1
. While the fact that f = sif at points where xi = xi+1 makes the

expression ∂if for a general smooth function f well-defined at such points by
taking limits and derivatives, in most applications f is a polynomial, and then
this property implies that ∂if is also a polynomial. Moreover, as the quotient
of two expressions that are anti-symmetric with respect to interchanging xi and
xi+1, the dependence of the function ∂if on these two variables is symmetric.

Fix now some n ≥ 3, and consider functions f that depend, among perhaps
some extra parameters, on the variables {xi}

n
i=1. On any such function f we

have an action of every operator ∂i with 1 ≤ i ≤ n− 1. It then well-known, and
straightforward to check (and will also follow from the calculations carried out
in this paper), that the operators {∂i}

n−1
i=1 satisfy the braid relations

∂i∂k = ∂k∂i if |k − i| ≥ 2 and ∂i∂i+1∂i = ∂i+1∂i∂i+1 for 1 ≤ i ≤ n− 2.
(1)

We call the first relations in Equation (1) the quadratic braid relations, and the
second ones the cubic braid relations. Of course, for n = 1 the family is empty
and for n = 2 no relations are imposed, so we assume n ≥ 3 throughout.

For various applications a modification of ∂i is required, usually involving
combining the action on ∂i with multiplication by a polynomial in xi and xi+1.
We gather these operations, recall that f and sif are involved in the definition of
such an operator on a function f , and we define in general a polynomial divided
difference operator to be an operator of the form

πi : f 7→ ∂i
(
P (xi, xi+1)f

)
+Q(xi, xi+1)∂if +R(xi, xi+1)f +S(xi, xi+1)sif. (2)

We allow P , Q, R, and S in Equation (2) to depend on additional parameters
that are not the xi’s (as can the function f on which they operate), but for
fixed i the only dependence of the expression in that equation on xj with j that
equals neither i nor i+ 1 is through f .

The most interesting case is that of the operators which are non-degenerate,
in the sense that the action of πi on f is not just a multiple of f or of sif by
some polynomial (see Remark 9 for the precise definition). As a consequence
of our results, we obtain a motivating characterization for the general family of
operators from [Ki], as follows.

Theorem. Given n ≥ 3, assume that {πi}
n−1
i=1 is a family of non-degenerate

polynomial divided difference operators as in Equation (2), with R = S = 0 for
each i and P and Q being the same polynomial for all i, for which the braid
relations hold. Then there are five constants a, b, c, d, and e such that the first
four are not all zero and satisfy ad− bc = 0, such that for every 1 ≤ i ≤ n− 1
and function f we have

πif = (b − c− e)∂i(xif) + [axixi+1 + (c+ e)xi + cxi+1 + d]∂if.
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(note that our choice of parametrization differs slightly from that of [Ki],
but is more convenient for our analysis).

Recall that the Hecke algebra Hµ,ν with parameters µ and ν, that is as-
sociated with Sn (or the root system An) is generated by elements {ui}

n−1
i=1

that satisfy the braid relations from Equation (1), plus the quadratic relation
u2i = µui+ ν for every i. Such an algebra is called double affine nilCoxeter alge-
bra of type A in [Ki], and generalizes the notions of the nilCoxeter and Demazure
algebras from other references mentioned above. The family of operators from
the last theorem form a Hecke algebra Hb−c,e(e+c−b).

The results in this paper are more general, and for describing them in more
detail we need some notions. First, the form of the operator in Equation (2)
is not unique, and one may wish to normalize it in a more canonical form. We
describe in Proposition 5 three ways to do it, two of whose require a certain
“canonical lift” of a polynomial that is symmetric in xi and xi+1 to an ap-
propriate pre-image under ∂i, which we call ∂i-positive (see Definition 2). This
produces two canonical polynomials associated with each such operator, namely
Q0 from Proposition 5 and T from Equation (3), which for the operators from
the theorem mentioned above are

axixi+1 + (c+ e)xi + (b− e)xi+1 + d and axixi+1 + bxi + cxi+1 + d

(the latter independently of e) respectively. The non-degeneracy assumption is
equivalent to neither Q0 nor T vanishing.

In the most general setting, we do not require that the operators from Equa-
tion (2) are the same for all i. However, under the non-degeneracy assumption,
the braid relations imply that the polynomial T must be the same for all i,
and for Q0 this is almost correct, namely the polynomials Q0 associated with
different indices i in such a family are “the same up to replacing one variable
in a univariate divisor of the polynomial by the other variable” (see Definition
10 for the precise notion). Back to our family of polynomials, T is always a
product of two non-zero linear (or constant) polynomials, one in each variable
(by the equality ad = bc), and Q0 is also such when e = 0 or e = b − c, but is
irreducible and contains both variables otherwise. Hence for a generic value of e
the conditions that all the operators are based on the same polynomials becomes
redundant, but the operators with e-values 0 and b− c are interchangeable, and
they are also interchangeable with the operators taking f to

∂i[(ax
2
i +bxi)f ]+(cxi+1+d)∂if−axif or ∂i[(cxi+1+d)f ]+(ax2i +bxi)∂if−axif.

Note that the interchangeable options show up precisely when the parameter
ν = e(e+ c− b) of the Hecke algebra structure vanishes.

We also determine the families satisfying the braid relations in which some
of the operators may be degenerate (but not 0, for trivial reasons). First we
show that if the T polynomial vanishes for one operator then it does for all of
them, and the families arising in this way are precisely those in which every
π is the transposition operator si multiplied by a polynomial Si, and the Si’s
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are all almost equal (see Proposition 12). When the Q0-ones are allowed to
vanish, the T -polynomials cannot vanish, and the set of indices i for which πi
is non-degenerate is divided into a separated collection of consecutive intervals
and isolated operators. We prove the following result.

Theorem. Assume that n ≥ 4, and that some of the πi’s have vanishing Q0

polynomials. Then all the non-degenerate πi’s are µ Id for some non-zero con-
stant µ, the consecutive intervals are as in the non-degenerate case with a Hecke
algebra Hµ,0 (for some smaller value of n), and the isolated operators are of the
form f 7→ ϕi∂i(ψif) where ∂i(ϕiψi) = µ.

The operators in the latter theorem also generate a Hecke algebra Hµ,0.
The ones with vanishing T -polynomials generate a Hecke algebra only when
πi = rsi for a constant r, and then the Hecke algebra is H0,r2 . We remark that
the hypothesis n ≥ 4 is important in the last theorem, and for n = 3 there are
additional families—see Proposition 25 and Remark 26 (none of which produces
a Hecke algebra though). We conclude with some remarks about commutation
relations between the operators in the families that we found.

The paper is divided into 5 sections. Section 1 defines the notions required
for describing the canonical forms of polynomial divided difference operators,
as well as discusses the quadratic braid relations. Section 2 establishes the
basic equalities associated with the cubic braid relations, and determines the
families with vanishing T -polynomials. Section 3 investigates the families of non-
degenerate polynomial divided difference operators satisfying the braid relations
(thus establishing the first main theorem), and Section 3, and Section 4 presents
the results involving also operators for which the Q0 polynomials might vanish
(yielding the second main theorem). Finally, Section 5 contains the connections
with Hecke algebras and the comments about commutation relations.

I am grateful to B. Brubaker for his encouragement to pursue the investi-
gation of these questions, as well as to P. Alexandersson, A. Weigandt, and D.
Huang for interesting discussions around related topics.

1 Canonical Forms and the Quadratic Relations

We fix a number n ≥ 3 (smaller n’s give trivial results), and we work throughout
with an unspecified field of coefficients (of arbitrary characteristic), over which
all of our polynomials and operators are defined.

One of the elementary but crucial property of the divided difference operator
∂i is the modified Leibniz rule, as follows.

Lemma 1. We have the equality ∂i(fg) = ∂if ·g+sif ·∂ig for any two functions
f and g. In particular, if g is symmetric in xi and xi+1 then multiplication by
g commutes with ∂i, namely ∂i(fg) = ∂if · g.
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Proof. The first equality is obtained by adding and subtracting sif ·g
xi−xi+1

to the

expression fg−sif ·sig
xi−xi+1

defining ∂i(fg) (recall that si(fg) = sif · sig) and using

the definition of ∂if and ∂ig. By noting that the symmetry condition on g
implies that sig = g and hence ∂ig = 0, the second equality follows from the
first one. This proves the lemma.

Lemma 1 implies that given a polynomial divided difference operator, the
expression from Equation (2) describing it is not unique. In order to obtain a
unique presentation, we make the following definition.

Definition 2. A monomial xrix
s
i+1, times a monomial in other variables per-

haps, is ∂i-positive is r > s. A general polynomial in xi and xi+1 (among other
variables) is ∂i-positive if it is a linear combination of ∂i-positive monomials.

The reason for the terminology in Definition 2 is that the ∂i-positive mono-
mials are precisely the monomials in xi and xi+1 to which applying ∂i yields
a non-zero combination of monomials with positive coefficients. Since the ∂i-
positive monomials xri x

s
i+1 combine with the symmetric ones xrix

s
i+1 + xsix

r
i+1

and xrix
r
i+1 to produce a basis for all polynomials, it is clear that every polyno-

mial in xi and xi+1 can be uniquely presented as the sum of a polynomial that
is symmetric in these variables and a ∂i-positive one.

Remark 3. Recall that if a polynomial in xi and xi+1 is symmetric then its
degree in xi and in xi+1 separately is the same. We call this degree the variable
degree of this polynomial. Thus, for a polynomial like xri x

s
i+1 + xsix

r
i+1 with

r > s mentioned above, its homogeneity degree is r + s and its variable degree
is r. It is clear that if such a polynomial is homogeneous of degree m and has
variable degree r then 2r ≥ m.

Now, it is clear from the definition that the kernel of ∂i consists of the
polynomials that are symmetric in xi and xi+1 (as in the proof of Lemma
1), and since both the numerator and denominator in its definition are anti-
symmetric, its image also lands in the symmetric polynomials. These properties
are complemented by the following result.

Lemma 4. The map ∂i is a bijection from the ∂i-positive polynomial in xi and
xi+1 onto those that are symmetric in these variables.

Proof. We saw that the ∂i-positive monomials intersect the symmetric ones
trivially, whence the injectivity of the map. We also know that the image
consists only of symmetric polynomials, so it remains to prove surjectivity onto
these polynomials.

We now note that if a polynomial is homogeneous of degree m + 1 in xi
and xi+1 then the degree of homogeneity of its ∂i-image in these variables is
m. It thus suffice suffices to consider a polynomial ϕ that is symmetric and
homogeneous of degree m in these variables, and find a ∂i-positive pre-image
under ∂i that is homogeneous of degree m+ 1. We then argue by induction on
the variable degree r of ϕ, which was seen to satisfy 2r ≥ m (see Remark 3).
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The variable degree condition implies that ϕ is a non-zero multiple of xrix
d−r
i+1

plus a linear combination of monomials involving powers of xi that are smaller
than r. We can thus write ϕ as a

∑r
s=d−r x

s
ix

d−s
i+1 for the appropriate a 6= 0,

plus a symmetric polynomial that is homogeneous of degree m and has variable
degree smaller than r (in particular the remainder is 0 in case 2r − 1 ≤ m).
Now, the induction hypothesis implies that remainder is the ∂i-image of some
∂i-positive polynomial (which is unique and homogeneous of degreem+1, where
for 0 we just take 0), and as ∂i(x

r+1
i xd−r

i+1 ) equals
∑r

s=d−r x
s
ix

d−s
i+1 , adding the

∂i-positive monomial axr+1
i xd−r

i+1 to that pre-image produces a pre-image of ϕ,
as desired. This proves the lemma.

The uniqueness of the ∂i-positive pre-image of ϕ under ∂i is also visible in the
fact that the multiple of each ∂i-positive monomial xr+1

i xd−r
i+1 in the construction

of that pre-image in the proof of Lemma 4 was determined by ϕ.
A polynomial divided difference operator can have many presentations, with

different polynomials P , Q, R, and S. However, there are three specific forms
of the operator that are canonical, each with its own normalization.

Proposition 5. Let πi be a polynomial divided difference operator as in Equa-
tion (2). Then there is a unique way of writing πi with P = S = 0, another
unique way of writing πi with S = 0 and Q and R that are ∂i-positive as in
Definition 2, and a third unique way in which S = 0 and ∂i-positive P and R.
The polynomial R in the two last presentations is the same.

We denote the polynomials showing up in the first canonical form of πi by
Q0 and R0, those in the second one by P+, Q

+, and R+, and the ones showing
up in the third form by P+, Q+, and R+. Indeed, we get the same R = R+ in
the latter two presentations, and we keep the notation P+ and Q+ to indicate
∂i-positive polynomials, while Q+ and P+ indicate that the other polynomial
in the presentation is ∂i-positive.

Proof. The definition of ∂i implies that sif = f − (xi − xi+1)∂if . Thus we can
replace R by R+S, Q by Q− (xi−xi+1)S, and S by 0 and get a presentation of
the same polynomial divided difference operator. We may thus restrict attention
to presentations in which S = 0.

Recall now from Lemma 1 that we can write ∂i(Pf) as ∂iP · f + siP · ∂if .
Thus, by replacing Q by Q0 := siP + Q, R by R0 := R + ∂iP , and P by 0
we obtain the first asserted form. Now, if πi is given in such a form then by
substituting f = 1 (hence ∂if = 0) we get πi(1) = R0. Moreover, we have
πi(xi) = Q0 +R0xi, which determines Q0 once R0 is known. The canonicity of
this form follows.

Next, write R as R++Rs, with Rs symmetric with respect to interchanging
xi and xi+1, and such that R+ is ∂i-positive (which can be done in a unique

manner). Lemma 4 produces a polynomial R̃ such that ∂iR̃ = Rs. We write

∂i(R̃f) as Rsf + siR̃ · ∂if (Lemma 1), so that replacing P by P + R̃, Q by

Q− siR̃, and R by R+ yields a presentation of the same operator but in which
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R = R+ is ∂i-positive. Moreover, if πi is given in any form with S = 0 then
πi(1) = ∂iP + R, so that R+ is determined as the ∂i-positive part of πi(1).

Knowing that S = 0 and R = R+ is the uniquely determined ∂i-positive
option, we consider the decompositions for P = P+ + Ps and Q = Q+ + Qs

in the same manner, and the second assertion of Lemma 1 implies that the
symmetric parts Ps and Qs can be taken in and out of the action of ∂i. The
second form is thus with this P+ and with Q+ := Q + Ps, and the third one
involves Q+ and P+ := P +Qs. This implies that P+ +Q+ and P+ +Q+ both
equal P +Q = P+ +Q+ + Ps +Qs.

Finally, recalling that πi(1) = ∂iP +R with R = R+, Lemma 4 implies that
P+ is the unique ∂i-positive polynomial whose ∂i-image is the symmetric part
of πi(1). We also have πi(xi) = ∂i(Pxi) +Q + Rxi, from which we extract the
value of Q+ in case R = R+ and P = P+. This also shows that Q+ is the
∂i-positive part of πi(xi) − xiR+, and once P+, Q

+, and Q+ are known, the
value of P+ is given by P+ +Q+−Q+ from above. Hence the second and third
forms of any polynomial divided difference operator are also canonical. This
proves the proposition.

It follows from the constructions in Proposition 5 that Q0(xi, xi+1) and
R0(xi, xi+1) can be given by P (xi+1, xi) +Q(xi, xi+1)− (xi − xi+1)S(xi, xi+1)
and R(xi, xi+1)+S(xi, xi+1)+∂iP (xi, xi+1) respectively, given any presentation
of πi as in Equation (2) (the ones with + require a decomposition, and thus
cannot be written directly using such formulae). These combinations are thus
independent of the presentation. We now introduce a third combination that
will turn out useful later. We define

T (xi, xi+1) := P (xi, xi+1) + (xi − xi+1)R(xi, xi+1) +Q(xi, xi+1), (3)

and prove the following consequence of Proposition 5, or rather of its proof.

Corollary 6. The polynomial T from Equation (3) is independent of the pre-
sentation of πi.

Proof. One way of obtaining this property is by verifying that T remains invari-
ant under the operations in the proof of Proposition 5. A second way one is by
observing that the values of πi(1) and πi(xi) (to which we have to add S and
Sxi+1 respectively in case S 6= 0) imply, after expanding ∂(Pf) as in Lemma
1 and using similar arguments, that T (xi, xi+1) is given by πi(xi) − xi+1πi(1)
(in a similar manner we get Q0 = πi(xi)− xiπi(1) as well). A third way is via

the fact that similar considerations express πif as T (xi,xi+1)f−Q0(xi,xi+1)sif
xi−xi+1

, a

formula that will also be useful below. This proves the corollary.

In fact, in Proposition 5 one could consider the normalization in which R = 0,
and then P = 0 as well. In this normalization the coefficient of ∂if is T from
Equation (3), and R0 shows up again, as the multiplier of sif .

As Proposition 5 reduces the presentation of a general polynomial divided
difference operator by the last term in Equation (2), we can simplify some
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calculations. First we establish the quadratic braid relations from Equation (1)
for our operators, which hold in general.

Proposition 7. Let i and k be indices with |k− i| ≥ 2, and set πi and πk to be
as in Proposition 5, with polynomials that may be different for the two indices.
Then we have πiπk = πkπi.

Proof. The assumption on i and k implies, via the second part of Lemma 1 and
the fact that functions that are independent of xi and xi+1 (or xk and xk+1)
are symmetric with respect to them, that the polynomials showing up in πk
commute with ∂i and vice versa. For simplicity we shall use the normalization
with Q0 and R0 (so that P = S = 0) for both operators, and we shorthand
Qi,0(xi, xi+1), Qk,0(xk, xk+1), Ri,0(xi, xi+1) and Rk,0(xk, xk+1) to Q

0
i , Q

0
k, R

0
i ,

and R0
k respectively. The commutation relations allow us to write

πiπkf = Q0
iQ

0
k∂i∂kf +Q0

iR
0
k∂if +R0

iQ
0
k∂kf +R0

iR
0
kf,

and πkπif is given by the same expression with i and k interchanged. As the
assumption on i and k implies that siskg = sksig for any function g that depends
on xi, xi+1, xk, and xk+1, similar considerations show that ∂i∂kg = ∂k∂ig for
any such g, which yields the equality of our expressions for πiπkf and πkπif as
desired. This proves the proposition.

One could, in fact, prove Proposition 7 without invoking Proposition 5, but
the expressions in the proof would have contained more terms but still lead to
the same result by the same reasoning.

2 The Cubic Braid Relations and Degeneracy

For the cubic braid relations in Equation (1), only the three variables xi, xi+1,
and xi+2 are concerned. To ease notation we replace them by x, y, and z
respectively. To remove more indices, we denote the operator si, interchanging
x and y, by simply s, and write σ for the operator si+1 interchanging y and
z. The cubic braid relation for permutations thus becomes sσs = σsσ in this
notation. We also write π for πi and ̟ for πi+1, and recalling that we allow
different polynomials for them in Equation (2), we denote those of π = πi as
in that equation, and the ones showing up in ̟ = πi+1 by adding tildes. We
shall also write Pxy for P (x, y), Qyz for Q(y, z), and similarly for the other
polynomials, including those of the tildes. Note that sPxy thus equals Pyx,
while σQxz = Qxy, sRyz = Rxz and so on, and pnce again for the polynomials
Q0 and R0 we shall add the superscript 0 (like in the proof of Proposition 7).

The expressions that we must consider for the cubic braid relation are the
following ones.

Lemma 8. Let f be any function of x, y, and z (among possibly other vari-
ables). Then π̟πf equals

[T 2
xyT̃yz(x− z)−T̃xzQ

0
xyQ

0
yx(y − z)]f−Q0

xy[TxyT̃yz(x − z)−TyxT̃xz(y − z)]sf

(x − y)2(x− z)(y − z)
−

9



−
TxyQ̃

0
yz[Txzσf −Q0

xzσsf ]−Q0
xyQ̃

0
xz[Tyzsσf −Q0

yzsσsf ]

(x− y)(x − z)(y − z)
,

while the expression for ̟π̟f is given by

[TxyT̃
2
yz(x− z)−TxzQ̃

0
yzQ̃

0
zy(x− y)]f−Q̃0

yz[TxyT̃yz(x− z)−T̃zyTxz(x− y)]σf

(x − y)(x− z)(y − z)2
−

−
T̃yzQ

0
xy[T̃xzsf − Q̃0

xzsσf ]− Q̃0
yzQ

0
xz[T̃xyσsf − Q̃0

xyσsσf ]

(x− y)(x − z)(y − z)
.

Moreover, the two compositions coincide for every function f if and only if the
polynomials multiplying f , sf , σf , sσf , and σsf are the same on both sides,
and the one of sσsf coincides with that of σsσf .

Proof. Recall from the proof of Corollary 6 that for every function g we have

πg =
Txyg−Q0

xysf

x−y and thus also ̟g =
T̃yzg−Q̃0

yzsf

y−z . This expresses ̟πf as

T̃yz
Txyf −Q0

xysf

(x − y)(y − z)
− Q̃0

yz

Txzσf −Q0
xzσsf

(x− z)(y − z)
,

where in the second term the denominator is symmetric in x and y, so that the
action of π on it yields the second asserted fraction. We divide and multiply the
first term by x− z, yielding a denominator which is multiplied by −1 under the
action of s. Applying the action of π, and gathering the multipliers of f and
sf , then produces the first term in the desired formula.

In a similar manner we get that π̟f equals

Txy
T̃yzf − Q̃0

yzσf

(x− y)(y − z)
−Q0

xy

T̃xzsf − Q̃0
xzsσf

(x− y)(x− z)
,

with the second denominator being σ-invariant so that the ̟-image of that
term is the last required term. Expanding the first fraction by x − z to get a
denominator that is multiplied by −1 under σ, letting ̟ act, and gather the
terms containing f and σf yields the remaining asserted expression.

For the comparison, we recall that σsσ = sσs, so that if the coefficients
coincide as stated then so do the operators. Conversely, take f(x, y) to be
x2NyN for some very large N , so that its images under the combinations of
s and σ are x2NzN , y2NxN , y2NzN , z2NxN , and z2NyN . When N is large
enough, we can recognize the contribution of f to each side as the part in which
the exponent of x is at least 2N and that of y is at least N , and similarly for the
contributions of all the images of f under permutations. Thus comparing both
sides with such a function f implies the equality of the coefficients as desired.
This proves the lemma.
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Remark 9. When we make the comparisons of the coefficients below, we will
have many instances of a common multiplier that is some Q0 or T . These
multipliers can be cancelled out only when they are non-zero. Note, however,
that if Q0 = 0 then our operator π simply multiplies f by R0 (see Equation (2)
and Proposition 2), and when T vanishes, Equation (3) with Q0 and R0 (and
P = 0 yields Q0(x, y) = −(x−y)R0(x, y), and πf reduces to R0 ·sf (see, e.g., the
proof of Corollary 6). We thus call the operator π degenerate if Q0 = 0 or T = 0,
and non-degenerate otherwise. The 0 operator is, of course, degenerate, but we
exclude it from our calculations as it breaks the family {πi}

n−1
i=1 of polynomial

divided difference operators into one or more families that are associated with
smaller permutation groups.

Some of the polynomials that we shall encounter below will be related by
the following property.

Definition 10. Two non-zero polynomials Q and Q̃ in two variables x and y
(among possibly others) are called almost equal if there exist a polynomial Q̂
in two variables, and four univariate polynomials ql, qr, q̃l, and q̃r that satisfy
the product property qlqr = q̃lq̃r, such that Q(x, y) = ql(x)qr(y)Q̂(x, y) and

Q̃(x, y) = q̃l(x)q̃r(y)Q̂(x, y). In case more variables are involved, we say that Q

and Q̃ are almost equal in x and y in case confusion in terms of the variables
involved may arise.

Note that the condition from Definition 10 is equivalent to the existence of
such (non-zero) ql, qr, q̃l, and q̃r (with the product property) such that the

equality q̃l(x)q̃r(y)Q(x, y) = ql(x)qr(y)Q̃(x, y) holds (and almost equality is an
equivalence relation). This is easily verified by using the UFD property of the
ring of polynomials. We also observe that among the irreducible polynomials
in that ring, some may depend both on x and on y, and others may depend
only on one of them (ignoring the ones that depend on neither). We shall call
the first ones pure irreducible polynomials (or irreducible polynomials that are
pure in x and y when there may be confusion as to the variables considered),
and the second ones univariate irreducible polynomials. Finally, we remark
that the decomposition in that definition is not unique, as if Q̂ has univariate
divisors then they can be put into ql and q̃l or qr and q̃r instead. Conversely,
any common divisor of ql and q̃l and any one of qr and q̃r can be canceled out
from them and rather put into Q̂.

We begin with the following observation, which will be useful for both the
degenerate and the non-degenerate cases, as defined in Remark 9.

Lemma 11. Let π and ̟ be non-zero polynomial divided difference operators
as in Lemma 8 for which the cubic braid relation holds, and assume that Q0 and
Q̃0 do not vanish. Then the polynomials T and T̃ coincide, and Q0 and Q̃0 are
almost equal, as in Definition 10.

Proof. We note either that the coefficients of sσf on the two sides of Lemma
8 are Q0

xyQ̃
0
xzTyz and Q0

xyQ̃
0
xzT̃yz, or that those of σsf are Q0

xzQ̃
0
yzT̃xy and

11



Q0
xzQ̃

0
yzT̃xy. Since the Q0-polynomials are the same on both sides and are

assumed not to vanish, the first assertion follows.
For the second one, note that comparing the coefficients of sσsf = σsσf

yields the equality Q0
xyQ̃

0
xzQ

0
yz = Q̃0

xyQ
0
xzQ̃

0
yz, with none of the multipliers

vanishing. Consider now a pure irreducible polynomial H in the variables x and
y (for which we write Hxy for H(x, y) and similarly for its values in other pairs
of variables). By purity, the polynomials Hxy, Hxz, and Hyz are all distinct
irreducible polynomials, and every polynomial that one of them divides must
involve both variables showing up in it. Assume that H divides Q0, and then
Hxz divides Q0

xz and thus it divides the right hand side, hence it divides the
left hand side as well. As it cannot divide Qxy or Qyz (as neither involve both

x and z), it divides Q̃0
xz and thus H divides Q̃0. Similarly if such H divides Q̃0

then it divides Q0, and by canceling out HxyHxzHyz for such H from both sides
and applying the same argument until no pure irreducible polynomial divides
Q0 and Q̃0, we deduce that the parts of Q0 and Q̃0 that are based on produces
of powers of pure irreducible polynomials are the same.

The remaining irreducible polynomials dividing Q0 and Q̃0 are thus uni-
variate (or involve neither x nor y nor z), so that by gathering the product of

the pure irreducible polynomials into a polynomial Q̂ and the univariate ones
as well, we obtain non-zero univariate polynomials ql, qr, q̃l, and q̃r such that
the presentation in Definition 10 holds (the irreducible polynomials that depend
on neither variable can be put arbitrarily into the univariate products). Sub-

stituting these into the equality Q0
xyQ̃

0
xzQ

0
yz = Q̃0

xyQ
0
xzQ̃

0
yz, and noting that

Q̂xyQ̂xzQ̂yz cancels from both sides as do ql(x)q̃l(x) and qr(z)q̃r(z), we obtain
the equality ql(y)qr(y) = q̃l(y)q̃r(y), establishing the product property as well.
This proves the lemma.

It is clear from the proof of Lemma 11 that if T̃ = T and Q0 and Q̃0 are
almost equal, then the coefficients multiplying sσf , σsf , and sσsf = σsσf on
both sides of Lemma 8 are the same.

Using Lemma 11, we can immediately deduce the form involving one type
of degenerate polynomial divided difference operator.

Proposition 12. Let {πi}
n−1
i=1 be a family of non-zero polynomial divided dif-

ference operators that satisfy the cubic braid relations. If the polynomial T
associated with one of these operators vanishes then it does for all of them. In
this case each πif equals Ri · sif for a polynomial Ri, such that Ri and Ri+1

are almost equal in the variables xi and xi+1 for every 1 ≤ i ≤ n− 2.

Note that the polynomials in Equation (2), and thus all those determined in
Proposition 5 and Equation (3), may depend on the variables xi and xi+1, as
well as additional variables that are not any of the xj ’s, but not on any xj for
j 6∈ {i, i+1}. Therefore there is no problem in combining the transitivity of the
equivalence relation from Definition 10 with changing the indices of the vari-
ables, as long as it is done on both sides of the same comparison in a compatible
manner.

12



Proof. Consider π = πi and ̟ = πi+1 as in Lemma 8. If T = 0 then sf , σf ,
sσf , and σsf do not show up at all in the expression for π̟πf , while the one for
̟π̟f contains the term T̃yzQ

0
xy[T̃xzsf − Q̃0

xzsσf ]. Since we have Q0
xy 6= 0 and

either T̃xz 6= 0 or Q̃0
xz 6= 0 by non-vanishing, it follows that T̃ = 0. Conversely,

the vanishing of T̃ implies that ̟π̟f does not involve sf , σf , sσf , and σsf ,
and we argue similarly using the term TxyQ̃

0
yz[Txzσf−Q

0
xzσsf ] from π̟πf . By

applying this argument to every 1 ≤ i ≤ n− 1, the first assertion is established.
Now, we recall from Equation (3), with P = 0, Q = Q0, and R = R0 as in

Proposition 5, that if T = 0 then Q0(xi, xi+1) reduces to (xi+1−xi)R0(xi, xi+1).
Moreover, the non-vanishing of all the operators implies that none of the Q0

polynomials vanishes, and to put the dependence of i back into the notation we
write Qi and Ri for the polynomials Q0 and R0 that are associated with πi,
so that Qi = (xi+1 − xi)Ri. The formula from the proof of Corollary 6 then
expresses πif as Ri · sif , as asserted.

But Lemma 11 implies, via non-vanishing, that Qi and Qi+1 are almost
equal in the variables xi and xi+1 for every 1 ≤ i ≤ n − 2. As the polynomial
xi+1−xi is a pure irreducible polynomial that divides Qi, we can cancel it from

the corresponding Q̂-part in Definition 10, and obtain the same property for the
Ri’s (and as already mentioned, moving the indices of the variables compatibly
does not interfere with this argument). This proves the proposition.

The operators from Proposition 12 are those obtained from Equation (2) by
the substitution P = Q = R = 0, since the proof of Proposition 5 shows that in
this case we have R0 = S and Q0(xi, xi+1) = (xi+1−xi)S(xi, xi+1). Proposition
12 states, in fact, that when a family of non-zero polynomial divided difference
operators satisfying the cubic braid relations involves such an operator, then all
the operators are of this sort, and the different S-polynomials are almost equal.

3 The Non-Degenerate Operators

Since the other degenerate cases eventually lead to more complicated results,
we now turn to the families of non-degenerate polynomial divided difference
operators. Recall from Remark 9 that this means that for every operator πi in
the family, neither the polynomial Q0 from Proposition 5 nor the polynomial T
from Equation (3) vanishes.

We adopt again the notation with x, y, z, s, σ, ∂, δ, π, ̟, etc., where now
we have, by Lemma 11, the same polynomial T for all the operators. We shall
keep using the index notation like Txy for T (x, y), and write the polynomials

associated with π and ̟, as Q0 and Q̃0 respectively (they are almost equal by
Lemma 11). We now deduce from Lemma 8 the following result.

Proposition 13. A necessary condition for the braid relation π̟π = ̟π̟ is,
when neither Q0 nor Q̃0 nor the joint polynomial T vanishes, that the polynomial
T is of the form Txy = axy + bx+ cy + d for constants a, b, c, and d.
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Proof. Note that sf shows up on both expressions in Lemma 8 with the multi-
plier Q0

xy, and for σf we have a multiplier of Q̃0
yz. By removing denominators

in both comparisons, canceling these multipliers (which are non-zero by non-
degeneracy), and moving sides, we get the equalities

Txz[Tyx(y−z)+Tyz(x−y)] = TxyTyz(x−z) = Txz[Tzy(x−y)+Txy(y−z)]. (4)

The equality between the two extremal expressions in Equation (4) reduces,
after canceling Txz (which is also non-zero by non-degeneracy), to the equality
(Txy − Tyx)(y − z) = (Tyz − Tzy)(x − y), which amounts to ∂Txy = δTyz after
dividing both sides by (x − y)(y − z). But as the first expression is symmetric
in x and y and independent of z, and the second one is symmetric in y and z
and independent of x, we deduce that this equality can hold only if both sides
equal a constant, which we denote by µ. It follows, via the proof of Lemma 4,
that Txy = T (x, y) must be of the form µx + V (x, y) where V is a symmetric
polynomial in two variables.

We now claim that the variable degree r of the symmetric polynomial V ,
defined in Remark 3, is at most 1. Indeed, if r > 1 then the degree in y (ignoring
powers of x and z) of Txy, Tyx, Tyz, and Tzy is r, while it is 1 for x−y and y−z
and 0 for Txz. But then the degree in y of the extremal expressions in Equation
(4) is r + 1, while it is 2r > r + 1 for the middle one and this equation cannot
hold. This proves the claim, from which it follows, via the symmetry of V , that
V (x, y) must be of the form axy+ c(x+ y) + d where a, c, and d are constants.
By adding µx and setting b := c+ µ, the desired formula for Txy follows. This
completes the proof of the proposition.

For obtaining the next property, we shall need the following technical result,
for which we recall that ⌈t⌉ is the minimal integer that is not smaller than the
real number t, and ⌊t⌋ is the maximal integer that is not larger than t.

Lemma 14. Let B be a symmetric polynomial in two variables x and y that
is homogeneous of degree m, and let r be its variable degree. Then the only
symmetric polynomials A that are homogeneous of degree m and such that the
variable degree of A(A+B) is less than r+ ⌈m/2⌉ are a = 0 and A = −B, with
vanishing product. In particular, if C is a non-zero symmetric polynomial that
is homogeneous of degree 2r and has variable degree less than r + ⌈m/2⌉ then
the equation A(A+B) + C = 0 has no solution A.

Proof. If we write the homogeneity degree m as 2k + ε with ε ∈ {0, 1}, then
the equality 2r ≥ m implies that r = k + ε + h for some 0 ≤ h ≤ k (since
m− r then equals k − h). It follows that the B is spanned by the polynomials{∑k+ε+j

l=k−j x
lym−l

}h

j=0
(since the variable degree of the jth polynomial here is

k + ε + j), and if the spanning coefficients for B are {βi}
h
i=0 then βh 6= 0 by

the assumption on the variable degree of B. Moreover, when looking for such
a polynomial A, note that if A has variable degree larger than r then so is the
variable degree of A+B, and thus A(A+B) has variable degree that is larger
than 2r hence than r + ⌈m/2⌉. Thus we may restrict attention to polynomials
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A that have variable degree at most r, meaning that we can write A(x, y) as∑h
j=0 αj

∑k+ε+j
l=k−j x

lyr−l with some coefficients {αj}
h
j=0 as well. The coefficients

for A+B are thus {αi + βi}
h
i=0.

Now, the assumption on the variable degree of the product is equivalent, via
the fact that m− ⌈m/2⌉ = ⌊m/2⌋, to the assertion that the product is divisible
by (xy)m+⌊m/2⌋−r+1. Using k and h, this exponent is 2k−h+1. This property
is unaffected by multiplying by x− y, and note that the jth basis polynomial is
∂(xk+ε+j+1yk−j), or equivalently (xy)k−j∂(x2j+ε+1), namely multiplying it by
x− y produces (xy)k−j(x2j+ε+1 − y2j+ε+1). Moreover, the product of two such
polynomials, say the ith and the jth, is

(xy)2k−i−j
(
x2(i+j)+ε+1+y2(i+j)+ε+1−(xy)2min{i,j}+ε+1(x2max{i,j}+y2max{i,j})

)
,

and as in the last terms the total exponent is 2k − |i − j| + ε + 1, which is at
least 2k − h+ 1 when i and j are between 0 and k, we may ignore these terms
in our calculations.

It follows that the divisibility of A(A + B) by (xy)2k−h+1 is equivalent to
the latter monomial dividing the expression

∑h
i=0

∑j
j=0 αj(αi + βi)(xy)

2k−i−j(x2(i+j)+ε+1 + y2(i+j)+ε+1),

where the expression corresponding to i and j depends only on i and j and
is divisible by precisely (xy)2k−i−j and no higher power of xy. It follows that
the total coefficient that expression must vanish whenever i+ j ≥ h (the terms
with i + j > h are divisible by the monomial in question. This implies, with
i+ j = 2h− p, the equality

∑h
i=h−p α2h−p−i(αi + βi) = 0 for every 0 ≤ p ≤ h.

Now, for p = 0 this is αh(αh + βh) = 0, meaning that either αh = 0 or
αh+βh = 0 (but not both, since βh 6= 0 by assumption). We prove, by decreasing
induction on l, that αl = 0 in the first case and αl + βl = 0 in the second one,
where we have established the basis of the induction with l = h. Assume that
l < h and that the assertion holds for every index l < j ≤ h, and consider the
equality with p = h − l. In the first case we have α2h−p−i = αh+l−i = 0 for
every h − l ≤ i < h by the induction hypothesis, and the last summand, with
i = h, is αl times the non-zero expression αh+βh = βh, implying that αl = 0 as
desired. In the second case the induction hypothesis yields αi+βi = 0 for every
l < i ≤ h, with the remaining summand, associated with i = l, being αl + βl
times αh = −βh 6= 0, so that αl + βl as needed. This proves our claim.

But then the first case yields A = 0, and the second one produces A = −B,
which establishes the first assertion. The second one thus follows from the first,
since we then get A(A + B) = 0 and thus A(A + B) + C = C 6= 0 by the
assumption on C. This completes the proof of the lemma.

We can now deduce another property that is required for our relation.

Proposition 15. For T as in Proposition 13, and with R+ and R̃+ that are
∂-positive (or δ-positive), if the cubic braid relation holds then R+

xy must be just

a multiple of x, R̃+
yz has to be a multiple of y, and ∂Pxy and δP̃yz have degree

at most 1.
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Proof. Consider the coefficients multiplying f in Lemma 8, with T̃ = T by
Lemma 11, and recall from the proof of Proposition 13 that the cubic braid
relation implies Equation (4). As this equation expresses T 2

xyTyz(x − z) as
TxyTxz[Tyx(y−z)+Tyz(x−y)] and TxyT

2
yz(x−z) as TxzTyz[Tzy(x−y)+Txy(y−z)],

we can divide again by the common multiplier Txz (by non-degeneracy), cancel
TxyTyz from both sides, and obtain the equality

[TxyTyx −Q0
xyQ

0
yx]

y−z
x−y = [TyzTzy − Q̃0

yzQ̃
0
zy]

x−y
y−z

(in fact, since Q0 and Q̃0 are almost equal, the product Q̃0
yzQ̃

0
zy from above

equals Q0
yzQ

0
zy and one can equally well work with Q alone below).

For applying Proposition 30 below, we first recall from Equation (3) and
Remark 9 that Q0

xy can be written as Txy − (x − y)R0
xy, which means that

Q0
yx = Tyx + (x − y)R0

yx, and similarly for Q̃0
yz and Q̃0

zy. The left hand side
thus becomes (x− y)(y − z) times R0

xyR
0
yx + (R0

xyTyx −R0
yxTxy)/(x− y), with

the second summand being just ∂(R0
xyTyx), and the right hand side is thus the

same multiplier times R̃0
yzR̃

0
zy + δ(R̃0

yzTzy). We cancel this multiplier, and are
again left with an equality between a polynomial that is symmetric in x and
y and independent of z and a polynomial that is symmetric in y and z and
independent of x. Thus, as in the proof of Proposition 13, both polynomials are
equal to the same constant ν.

We thus concentrate on the equality ∂(R0
xyTyx)+R

0
xyR

0
yx = ν and its conse-

quences, and the equality involving R̃0
yz and Tzy will yield similar consequences

in the same manner. We recall from the proof of Proposition 5 that if R = R+

then R0 = R+ + ∂P , and with T as in Proposition 13, we can write Tyx as the
sum of the symmetric expression axy + bx + by + d and (c − b)x. Our second
summand thus expands as R+

xyR
+
yx + ∂Pxy(R

+
xy +R+

yx + ∂Pxy), Lemma 1 shows
that the symmetric part of T multiplies ∂R+, and the constant c− b multiplies
the sum of ∂(xR+) and ∂P (Lemma 1 again, with the symmetric ∂P and with
∂x = 1). Altogether we obtain the equality

(axy+bx+by+d)∂R++R+ ·sR++(c−b)∂(Q+xR+)+∂Q·[(R++sR+)+∂Q] = ν.
(5)

Denote the degree of R+ by m, and recall that if R+ 6= 0 then m ≥ 1 since
R+ is ∂-positive. The ∂-positivity implies that R+ + sR+ is also of degree m
and the degree of ∂R+ is m − 1, and write h for the degree of ∂Q. Then the
degrees of the terms on the left hand side of Equation (5) are m+1, 2m, h, m,
m+h (for ∂Q ·(R++sR+) considered as a single term), and 2h respectively. As
the total combination equals the constant ν by that equation, it follows that h
cannot be larger than m (since then the highest degree part of the term (∂Q)2,
of degree 2h, cannot cancel), and if m > 1, so that 2m > m + 1, the degree
h cannot be smaller than m either (by applying the same consideration to the
highest degree part of R+ · sR+, of degree 2m).

The last paragraph assumed that R+ 6= 0. But when R+ = 0 Equation (5)
only involves the terms (c− b)∂Q, of degree h when non-vanishing, and (∂Q)2,
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of degree 2h, on the left hand side. Thus similar considerations show that if
R+ = 0 then h ≤ 0, meaning that ∂Q is a constant in this case.

It follows that if m > 1 then we must have h = m, and we set B to be the
part of R++sR+ that is homogenous of maximal degree m. If r be the variable
degree of R+ + sR+, then the fact that R+, hence also its m-homogenous part,
is ∂-positive, implies that the degree of this part of R+ in the variable x is also
r, while that of the m-homogenous part sR+ is smaller than ⌈m/2⌉ (for the
exponent of y to always be larger). Therefore if C is the part of the symmetric
polynomial R+ · sR+ that is homogenous of degree 2m then it is the product of
these parts of R+ and sR+, and its degree in x, which is its variable degree, is
smaller than r+⌈m/2⌉. Take now A to be the part of ∂Q that is homogenous of
maximal degree m, and then our degree considerations show that the left hand
side of Equation (5) is A(A +B) + C. But this equation implies the vanishing
of the latter expression and we have C 6= 0 by definition, while Lemma 14
shows that there is no choice for A such that this equality holds under these
assumptions.

We have thus proved that the degreem of R+ is bounded by 1, meaning that
R+

xy is a multiple of x since it is ∂-positive. Moreover, we saw that the degree
of ∂Q is bounded by m when m ≥ 1 and by 0 when R+ = 0, so that it is also

bounded by 1 in general. From the analogue of Equation (5) with R̃+ = R̃+
yz,

Q̃ = Q̃yz, and δQ̃ = δQ̃yz, we obtain that the former is a multiple of y and the
degree of the latter is also bounded by 1. This proves the proposition.

Propositions 13 and 15 put restrictions on the polynomials T , R, and ∂Qxy

that arise from the fact that the cubic braid relation in question implies the
validity of Equations (4) and (5). But we can extract more data out of these
equations. We begin with the former one.

Lemma 16. Let T be as in Proposition 13. The Equation (4) holds if and only
if ad = bc.

Proof. It is straightforward to verify, with the given expression for T , that both
terms in brackets in Equation (4) reduce to (ay2 + by + cy + d)(x − z). We
can thus cancel the multiplier x − z, so that this equation is equivalent to the
equality TxyTyz − (ay2 + by + cy + d)Txz = 0. But by substituting all the T -
polynomials, this difference is just (ad− bc)(x− y)(y− z), and the vanishing of
this polynomial is equivalent to the vanishing of the asserted expression. This
proves the lemma.

The second equation produces the following extra equality.

Lemma 17. Take some constants a, b, c, and d, set R+(x, y) to be αx for
another constant α, let β and e be two additional constants, and let Q be a
polynomial in two variables such that ∂Qxy = β(x + y) + e. Then Equation
(5) holds if and only if either α = β = 0, or α = −a, β = 0, and e = −c, or
α = −a, β = a, and e = b.
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Proof. With our R+ the expressions ∂R+, R+ · sR+, ∂(xR+), and R+ + sR+

are α, α2xy, α(x+ y), and α(x+ y) respectively. Substituting these, as well as
the value of ∂Q, into Equation (5) produces

α(axy + bx+ by + d) + α2xy + [β(x + y) + e+ c− b][(α+ β)(x + y) + e] = ν.

The left hand side is the sum of the quadratic terms β(α + β)(x + y)2 and
α(a + α)xy, the linear term [bα + (α + β)(c − b) + e(α + 2β)](x + y), and the
constant term dα+ e(e+ c− b). Thus the equality holds if and only if the first
three terms, namely their coefficients, vanish.

Now, the vanishing of α(a+ α) implies that either α = 0 or α = −a. When
α = 0, the vanishing of β(α + β) implies that β = 0 as well, and then the
linear term already vanishes regardless of the value of e. Otherwise α = −a,
and from β(α + β) we get either β = 0 or β = a. When β = 0, the remaining
expression to vanish is −a(c+ e), which implies that either a = 0 and we are in
the previous case again, or e = −c. The remaining case is where β = a, yielding
the vanishing of a(e− b), hence either a = 0 which sends us to the previous case
yet again, or we have e = b. This proves the lemma.

Remark 18. Note that the constant ν equals, by the proof of Lemma 17, to
the constant dα + e(e + c − b). In the first case there it is just e(e + c − b),
while in the other two cases it becomes −ad+ bc, which vanishes when Lemma
16 holds. The fact that if α = 0 then β = 0 in Lemma 17 is in correspondence
with the fact that when R+ vanished in the proof of Proposition 15, the degree
of ∂Q was bounded by 0 rather than 1. Of course, Lemma 17 holds equally well
for R̃+(y, z) = α̃y and δQ̃(y, z) = β̃(y + z) + ẽ.

We can now prove our main theorem.

Theorem 19. Let {πi}
n−1
i=1 be a family of polynomial divided difference operators

such that for any 1 ≤ i ≤ n− 1, neither the polynomial Q0 from Proposition 5
nor the polynomial T from Equation (3) vanishes. Then the cubic braid relations
hold between these operators if and only if the family is as in one of the following
two cases.

(1) There exist constants a, b, c, d, not all 0 and such that ad − bc = 0, and
another constant e that equals neither 0 nor b − c, such that the polyno-
mials Proposition 5 are P+(xi, xi+1) = axixi+1 + (b − e)xi + cxi+1 + d,
Q+(xi, xi+1) = exi, and R+(xi, xi+1) = 0, uniformly for all 1 ≤ i ≤ n− 1.

(2) There are a, b, c, and d with the same properties, such that for every i
independently the polynomials P+(xi, xi+1), Q+(xi, xi+1), and R+(xi, xi+1)
are given by

axixi+1 + bxi + cxi+1 + d, 0, 0;
axixi+1 + cxi + cxi+1 + d, (b− c)xi, 0;
ax2i + (b+ c)xi + cxi+1 + d, −cxi, −axi;

cxi+1 + d, ax2i + bxi, −axi.
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Proof. The asserted relation holds if and only if the two expressions from Lemma
8 are equal. We saw that in the non-degenerate case, the conditions from Lemma
11 are equivalent to the coefficients of σsf , sσf , and sσsf = σsσf in both of
them being the same. Moreover, under these conditions, the proof of Proposition
13 shows that the coefficients of sf and σf coincide if and only if Equation (4)
holds. From Lemma 16 we deduce that this is the case precisely when the
polynomial T (x, y) from Equation (3) equals axy+ bx+ cy+ d for constants a,
b, c, and d that satisfy ad = bc. In addition, under these assumptions, it follows
from the proof of Proposition 15 that the coefficients of f on both sides are also
equal precisely when Equation (5) is satisfied, both for Q and R+ and for Q̃

and R̃+.

Next, assume that Q = Q+ is ∂-positive and Q̃ = Q̃+ is δ-positive, and then
the proposition itself, together with the uniqueness in Lemma 4, imply that
R+(x, y) = αx, Q+(x, y) = βx2 + ex, R̃+(y, z) = α̃y, and Q̃+(y, z) = β̃y2 + ẽy

for constants α, β, e, α̃, β̃, ẽ. Recalling from Equation (3) and Proposition
5 (with S = 0) that P+(x, y) = T (x, y) − Q+(x, y) − (x − y)R+(x, y) and
Q0(x, y) = P+(y, x) +Q+(x, y), we deduce that

Q0(x, y) = βx2 + (a+ α)xy − (α + β)y2 + (c+ e)x+ (b − e)y + d,

and similarly for the polynomial that is associated with ̟ we get

Q̃0(y, z) = β̃y2 + (a+ α̃)yz − (α̃+ β̃)y2 + (c+ ẽ)y + (b− ẽ)z + d.

We also recall from Lemma 11 that Q0 and Q̃0 are almost equal, in the sense of
Definition 10.

Now, Lemma 17 determines the cases of values of the constants that satisfy
Equation (5), and we consider first the situation with α = β = 0. Then the
expression forQ0 is either univariate or reducible if and only if ad = (b−e)(c+e),
which is equivalent to e(e + c − b) = 0 since ad = bc by assumption. Thus for
e that equals neither 0 nor b − c, the polynomial Q0 is pure and irreducible,
so that is equals Q̃0 as well and hence α̃ = β̃ = 0 and ẽ = e. Clearly, when
α̃ = β̃ = 0 and ẽ is neither 0 nor b − c we get a pure irreducible Q̃0 and thus
Q0 = Q̃0, α = β = 0, and e = ẽ. As this is the case when π = πi and ̟ = πi+1

for any 1 ≤ i ≤ n−2, we deduce that the polynomials are independent of i, and
this produces, by using the original variables, the first asserted case.

It remains to consider the cases with e = 0 and with e = b− c, as well as the
two other possibilities from Lemma 17. This gives the values axy+ bx+ cy+ d,
axy+cx+by+d, ay2+(b+c)y+d, and ax2+(b+c)x+d for Q0(x, y), and since
ad = bc, they are all almost equal (either they are all the same linear polynomial
in either x or y when a = 0, or they are the product of two non-constant linear
polynomials, each of which can be in either x or y). Similarly, the resulting

values of Q̃0 are the same (in the appropriate variables). Bt returning to the
original variables again, this yields the second asserted case, and since all of our
arguments are invertible, we also proved that both cases do construct families
of non-degenerate polynomial divided difference operators that satisfy the cubic
braid relations. This proves the theorem.
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Remark 20. Theorem 19 expresses the families of polynomial divided difference
operators using the polynomials P+, Q

+, and R+ from Proposition 5. Here
we record the formulae for the polynomials in the other normalizations from
Proposition 5, in the two cases from that theorem.

(1) P+(xi, xi+1) = (b−c−e)xi and Q
+(xi, xi+1) = axixi+1+(c+e)xi+cxi+1+d,

and with them Q0(xi, xi+1) = axixi+1 + (c + e)xi + (b − e)xi+1 + d and
R0(xi, xi+1) = b − c − e, uniformly for all 1 ≤ i ≤ n − 1, where e equals
neither 0 nor b− c.

(2) For each i separately, the values of P+(xi, xi+1), Q
+(xi, xi+1), Q0(xi, xi+1),

and R0(xi, xi+1) are given by

(b − c)xi, axixi+1 + cxi + cxi+1 + d, axixi+1 + cxi + bxi+1 + d, b − c;
0, axixi+1 + bxi + cxi+1 + d, axixi+1 + bxi + cxi+1 + d, 0;

ax2i + bxi, cxi+1 + d, ax2i+1 + (b+ c)xi+1 + d, axi+1 + b;
−cxi, ax2i + (b + c)xi + cxi+1 + d, ax2i + (b + c)xi + d, −axi − c.

These are all obtained, as in the proof of Proposition 5, by decomposing P+

as P+ + Ps with the former ∂-positive and the latter symmetric, and using the
relations Q+ = Q+ + P+ − P+, Q0 = sP+ + Q+ = sP+ + Q+ (since S = 0),
and R0 = R+ + ∂P+ = R+ + ∂P+. In fact, the value of Q0 was already
determined in the proof of Theorem 19, and that of R0 is also obtained, via

Equation (3) as T (xi,xi+1)−Q0(xi,xi+1)
xi−xi+1

, as we recall from Proposition 13 that

T (xi, xi+1) = axixi+1 + bxi + cxi+1 + d.

Remark 21. We have a symmetry in the polynomials from Theorem 19 and
Remark 20, of the following kind. Taking e to b − c − e interchanges the P+

with Q+ polynomials sa well as the P+ with Q+ polynomials, and operates as
s = si on Q0. The special case of the values 0 and b − c is revealed in such a
symmetry involving an interchange of the first two lines of Case (2) in them.
This symmetry is completed by noticing that the same occurs when the last two
lines in Case (2) are interchanged in a similar manner. We also note that in
some situations, some of the four options in Case (2) coincide: When b = c the
first two are the same, and recall that a = 0 then either b = 0 or c = 0 since
ad = bc. Then for a = c = 0 the third line there equals the first and the fourth
one is like the second, while if a = b = 0 then the third one coincides with the
second and the fourth one is the same as the first. Finally, if a = b = c = 0 then
Case (2) contains just one option, which produces the family in which πi = d∂i
for every 1 ≤ i ≤ n− 1, with some non-zero constant d.

4 The Second Degenerate Type

To complete the analysis, it remains to consider the polynomial divided dif-
ference operators involving a vanishing Q0. We stick again to the notation
involving x, y, z, s, σ, ∂, δ, π, ̟, etc., and the first step now is the following
one.
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Lemma 22. Assume that π and ̟, with the polynomials Q0, R0, Q̃0 and R̃0

from Proposition 5, satisfy the cubic braid relation. Then if Q̃0 = 0 then R̃0
yz is

r̃(y) for a non-zero univariate polynomial r, and T̃yz = (y − z)r̃(y). Similarly,
when Q0 = 0 we get Txy = (x − y)R0

xy and R0
xy = r(y), where r is a non-zero

univariate polynomial.

Proof. When Q̃0 = 0, the expression for both π̟πf and ̟π̟f in Lemma
8 involve only f and sf , and we recall that T̃yz = (y − z)R̃0

yz. Thus, when
comparing the coefficients of f on both sides of that lemma, we get the equality

of
T 2
xyR̃

0
yz(y−z)(x−z)−R̃0

xzQ
0
xyQ

0
yx(x−z)(y−z)

x−y and Txy(R̃
0
yz)

2(y−z)(x−z). Canceling

out the multiplier (x− z)(y − z) and multiplying by x− y yields the equality

(R̃0
yz)

2Txy(x − y)− R̃0
yzT

2
xy + R̃0

xzQ
0
xyQ

0
yx = 0. (6)

Recalling that ̟ 6= 0, we deduce that T̃ 6= 0, which implies, by Proposition 12,
that Txy 6= 0 as well.

Now, the only dependence of Equation (6) on z is through the R̃0 polyno-
mials, and let m denote the degree of this polynomial in the second variable.
Then the degree of the first term in z is 2m (since Txy 6= 0), while those of the
other terms is bounded by m. This equality can only hold if m = 0, namely if
R̃0(y, z) = r̃(y) for a univariate polynomial r. This proves the first assertion.

The second assertion is similar, with Txy = (x − y)R0
xy and T̃yz 6= 0 via

Proposition 12, the equality (R0
xy)

2T̃yz(y − z)−R0
xyT̃

2
yz +R0

xzQ̃
0
yzQ̃

0
zy = 0, and

checking the degree of each term in x, so that R0
xy = r(y) for univariate r. This

proves the lemma.

We shall also need the following auxiliary result.

Lemma 23. Assume that r̃ is a univariate polynomial, and that T̂ is a polyno-
mial of two variables such that r̃(x)T̂ (x, y)−x is symmetric in x and y. Then r̃

has degree at most 1. If the polynomial r̃(x)2T̂ (x, y)2− r̃(y)T̂ (x, y)(x−y) is also

symmetric, then either T̂ is a constant and rT̂ is a monic linear polynomial, or
r̃ is a constant and T̂ is any polynomial such that r̃T̂ (x, y) − x is symmetric.
These conditions are also sufficient for these symmetry properties.

Proof. Comparing our first expression with its s-image implies that x−y lies, in
the ring of polynomials in x and y, in the ideal generated by r̃(x) and r̃(y). But
modulo that ideal, the monomials xayb with a and b smaller than the degree
of f are still linearly independent. It follows that if this degree is at least 2,
then x− y cannot vanish modulo this ideal, hence cannot lie in this ideal. This
proves the first assertion.

Assuming now that the degree of r̃ is 1, so we can write r̃(x) as a(x + b)

for some constants b and a 6= 0, and then a(x + b)
(
T̂ (x, y) − 1

a

)
yields the

expression r̃(x)T̂ (x, y)−x−b, which was assumed to be symmetric (subtracting
the constant b does not affect this property). As it is divisible by x+ b, it must

also be divisible by y+b, meaning that T̂ (x, y) can be written as (y+b)U(x, y)+ 1
a
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for some polynomial U . Moreover, the symmetric expression in question then
becomes a(x+ b)(y + b)U(x, y), so that U is also symmetric.

Now, our second expression is divisible by T̂ (x, y) = (y+b)U(x, y)+ 1
a and is

symmetric, so that it is also divisible by T̂ (y, x) = (x+ b)U(x, y)+ 1
a (using the

symmetry of U). If U 6= 0 then this polynomial does not divide T̂ (x, y), so that
it has to divide the other multiplier, which is the scalar a times the expression
a(x + b)2

[
(y + b)U(x, y) + 1

a ] − (y + b)(x − y). If we subtract the multiple

a(y + b)(x+ b)[(x + b)U(x, y) + 1
a ] of T̂ (y, x), then the difference, which equals

(x+b)2−(y+b)(x+b)−(y+b)(x−y) = (x−y)2, is also divisible by T̂ (y, x). But
as neither x−y nor its square are of the form (x+b)U(x, y)+ 1

a , we deduce that U

cannot be non-zero. But then U = 0, T̂ = 1
a , and T̂ r̃(x) is the monic polynomial

x+b, so that r̃(x)T̂ −x is the (symmetric) constant b and r̃(x)2T̂ 2− r̃(y)(x−y)T̂
indeed yields the symmetric expression x2 − xy + y2 + bx+ by + b2.

If r̃ is a constant then r̃ 6= 0 (since −x is not symmetric), and the first

condition expresses the constant multiple r̃T̂ (x, y) of T̂ (x, y) as x + U(x, y) for

some symmetric polynomial U . Then r̃2T̂ (x, y)2 − r̃T̂ (x, y)(x − y) equals the
product (x+U)(y+U), which is symmetric since U is. This completes the proof
of the lemma.

Another auxiliary result that we shall require is the following one.

Lemma 24. Let T and Q0 be two non-zero polynomials in the variables x and y
that are both divisible by x−y, such that the products T ·sT and Q0 ·sQ0 coincide.
Then there exist polynomials ϕ and ψ such that T (x, y) = ϕ(x, y)ψ(x, y) and
Q0(x, y) = ϕ(x, y)ψ(y, x).

Proof. We take ϕ̃ to be the greatest common divisor of T and Q0 (the choice of
the precise scalar multiple will not play a role here) and let ψ̃ be the polynomial
such that T = ϕ̃ψ̃. But then Q0 ·sQ0 = T ·sT expands as ϕ̃ ·sϕ̃ ·ψ̃ ·sψ̃, and since
ϕ̃ divides Q0 and thus sϕ̃ divides sQ0, we get that ψ̃ ·sψ̃ equals (Q0/ϕ̃)·s(Q0/ϕ̃).
But the gcd property of ϕ̃ implies that ψ̃ = T/ϕ̃ is co-prime to Q/ϕ̃, so it must
divide s(Q0/ϕ̃), and therefore sψ̃ divides Q0/ϕ̃.

We can thus write Q0 as εϕ̃·sψ̃, so that sQ = sε̃·sϕ̃·ψ̃, and by comparing the
product of these expansions with the one for Q0 ·sQ0, we deduce that ε ·sε = 1.
This implies that ε is a scalar satisfying ε2 = 1, so that ε ∈ {±1}.

If ε = +1 then we are done by taking ϕ = ϕ̃ and ψ = ψ̃. Otherwise
ε = −1 we recall that x − y divides both T and Q0, so that it divides ϕ̃.
Then ϕ̃(x, y) = (x − y)ϕ(x, y), and by setting ψ(x, y) = (x− y)ψ̃(x, y), we still
get T = ϕψ. By observing that ψ(y, x) = −(x − y)ψ̃(y, x), we deduce that
ϕ · sψ = −ϕ̃ · sψ̃ = Q0, as desired. This proves the lemma.

We obtain at the following result, for which we define ζ to be a scalar satisfy-
ing ζ2−ζ+1 = 0 (namely a primitive 6th root of unity, away from characteristics
2 and 3). Note that the other root of that polynomial, which we denote by ζ,
is given by either 1/ζ of 1− ζ.
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Proposition 25. Take again π and ̟ as above, with the cubic braid relation,
and assume that Q̃0 = 0. Then there are three cases.

(1) πf = ̟f = r(y)f for a univariate polynomial r 6= 0.

(2) ̟f = a(y+b)f and πf =





a(x+ b)[(ζx+ ζy + b)∂f + ζf ]

a(x+ b)[(ζx+ ζy + b)∂f + ζf ]

a(y+b)(ζx+ ζy + b)∂f+a
(
x+ζy+(1+ζ)b

)
f

a(y+b)(ζx+ ζy + b)∂f+a
(
x+ζy+(1+ζ)b

)
f,

for some constants a 6= 0 and b, if ζ exists in our field of definition.

(3) ̟ is a multiple µ Id of the identity operator and there exist two polynomials
ϕ and ψ such that ∂(ϕψ) = µ and πf = ϕ∂(ψf).

We remark that in characteristic 3 we have ζ = ζ = 1/ζ = 1 − ζ = −1,
and the four cases for πf in the second case reduce to the two expressions
a(x+ b)[(b− x− y)∂f − f ] and a(y + b)(b− x− y)∂f + a(x− y)f .

Proof. Lemma 22 expresses T̃yz as (y−z)R̃
0
yz and R̃

0
yz as r̃(y) for some univariate

polynomial r̃ (so that R̃0
xz = r̃(x)), and Equation (6) becomes

r̃(y)2Txy(x− y)− r̃(y)T 2
xy + r̃(x)Q0

xyQ
0
yx = 0. (7)

We now consider the coefficients of sf in Lemma 8, which with our value of

T̃ and R̃0 produce, after canceling (x−z)(y−z)
x−y , the equality

Q0
xy[r̃(y)Txy − r̃(x)Tyx − r̃(y)r̃(x)(x − y)] = 0. (8)

Now, if Q0 = 0 as well then we can also replace Txy by (x− y)r(y), and the last
term in Equation (7) vanishes. Then we can cancel the multiplier (x−y)2, as well
as the non-vanishing product r(y)r̃(y), and this equality reduces to r̃(y) = r(y).
This produces the first case.

We can thus henceforth assume that Q0 6= 0, and so after canceling Q0
xy

from Equation (8), we deduce that r̃(x) divides Txy. We also note that r̃(y)
divides the rightmost term in Equation (7), so that it divides the symmetric
polynomial Q0

xyQ
0
yx (indeed, this is clear when it is constant, and otherwise

none of its irreducible divisors divide r̃(x)), so by symmetry r̃(x) also divides it.
As r̃(x)2 then divides the last two terms in that equation, it must divide Txy as
well (since when it is not a constant, its irreducible divisors will divide neither

r̃(y) nor x − y). We thus write Txy as r̃(x)2T̂xy, and after substituting it into

Equation (8) and canceling Q0
xyr̃(x)r̃(y), we obtain that ∂[r̃(x)T̂xy] = 1. But

this implies, via Lemma 4 and the ∂-positive pre-image x of 1 under ∂, that
r̃(x)T̂xy − x is symmetric. In addition, substituting this expression for Txy into

Equation (7) and dividing by r̃(x)2 r̃(y) shows that r̃(x)2T̂ 2
xy − r̃(y)T̂xy(x− y) is

the symmetric function Q0
xyQ

0
yx/r̃(x)r̃(y).
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But now we are in the setting considered in Lemma 23, meaning that there
are two possible situations. In the first one we have r̃(x) = a(x+b) and T̂ = 1

a for

constants a 6= 0 and b, and T̂ 2r̃(x)2− T̂ r̃(y)(x− y) was seen in the proof of that
lemma to be x2−xy+y2+bx+by+b2. When ζ exists in our field of definition, this
polynomial decomposes as the product of ζx+ζy+b and ζx+ζy+b. Comparing
this expression with the value Q0

xyQ
0
yx/a

2(x+ b)(y+ b) of Q0
xyQ

0
yx/r̃(x)r̃(y) and

recalling that Q0
yx is the s-image of Q0

xy, we deduce that Q
0
xy must be one of the

four polynomials a(x+b)(ζx+ζy+b), a(x+b)(ζx+ζy+b), a(y+b)(ζx+ζy+b), and
a(y+ b)(ζx+ ζy+ b), or their inverses Recalling that Equation (3) (with P = 0)

expressesR0(x, y) as
T (x,y)−Q0(x,y)

x−y , and T (x, y) = T̂ r̃(x)2 = a(x+b)2, we obtain
the asserted four options for πf in the second case with these polynomials, and
the inverses do not give more options as with them the difference T −Q0 is not
divisible by x− y.

In the second one r̃ is a non-zero constant, which we denote by µ (so that

̟ = µ Id), and the symmetry of eT̂xy−x = Txy/µ−x is equivalent to the equality
∂Txy = µ. But then Equation (7) compares Q0

xyQ
0
yx with Txy

(
Txy − µ(x− y)

)
,

and the value of ∂Txy implies that the latter multiplier is just Tyx. We can
then invoke Lemma 24, and write T = ϕψ and Q0 = ϕ · sψ for polynomials

ϕ and ψ. Recalling the formula
Txyf−Q0

xysf

x−y from the proof of Corollary 6 for
πf , substituting these expressions for T and Q0 and recalling the definition of
∂ implies that this is the situation described in the third case. This completes
the proof of the proposition.

Remark 26. Assuming, analogously to Proposition 25, that Q0 = 0 now, we
get the same Case (1) there. When comparing the coefficients of f and σf , we

obtain that if Q̃0 6= 0 then T̃yz = r(z)2T̂ (y, z) with δ[r(z)T̂yz] = 1. Lemma
23 applies, with a very similar proof, for a univariate polynomial r, using the
symmetry of r(z)T̂ (y, z) + z and r(z)2T̂ (y, z)2 − r(y)T̂ (y, z)(y − z) in y and z,

but now we take r(z) = −a(z + b) to get T̂ = + 1
a (with the same expression

y2 − yz + z2 + by+ bz + b2) and when r is a constant the symmetric product is
(U − y)(U − z). In Case (2) we then have

πf = −a(y+b)f and ̟f =





a(z + b)[(ζy + ζz + b)∂f − ζf ]

a(z + b)[(ζy + ζz + b)∂f − ζf ]

a(z + b)(ζy + ζz + b)∂f − a
(
ζy+z + (1+ζ)b

)
f

a(z + b)(ζy + ζz + b)∂f − a
(
ζy+z + (1+ζ)b

)
f

(note the signs), which in characteristic 3 reduce to a(z + b)[(b− y − z)∂f + f ]

and a(z + b)(b − y − z)∂f + a(y − z)f . If r is the constant µ, then δT̃yz = µ,

the product Q̃0
yzQ̃

0
zy equals T̃yzT̃zy, and Case (3) becomes with π = µ Id and

̟f = ϕ̃∂(ψ̃f) for polynomials ϕ̃ and ψ̃ in y and z that satisfy δ(ϕ̃ψ̃) = µ.

Proposition 25 and Remark 26 consider the case of two operators, involving
three variables. In general, however, we will be interested in families of polyno-
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mial divided difference operators involving more variables and more operators.
We then obtain the following consequence.

Corollary 27. Consider, for n ≥ 4, a family {πi}
n−1
i=1 of non-zero polyno-

mial divided difference operators, again with the cubic braid relations. Then
any operator πi for which the associated Q0 polynomial vanishes a non-zero
scalar multiple of Id. Moreover, each of the operators πi−1 and πi+1 is either
of the form f 7→ ϕ∂(ψf) where ϕ and ψ are polynomials whose product satisfies
∂(ϕψ) = µ, or also equals µ Id.

Proof. We first consider 2 ≤ i ≤ n − 2 (which is possible since n ≥ 4). Since
i ≥ 2, we can apply Proposition 25 with π = πi−1 and ̟ = πi. Then we have,
in all three cases, that πif = r̃(xi+1)f for some non-zero univariate polynomial
r̃ (this was seen already in Lemma 22). But with i ≤ n− 2 we can also consider
Remark 26 with π = πi and ̟ = πi+1 (or Lemma 22 again), and obtain that
πif = r(xi−1)f for a non-zero univariate polynomial r̃. But these two can
happen together if and only if both polynomials are the same scalar µ.

Assume now that i = n − 1, and we take ̟ = πn−1 and π = πn−2 in
Proposition 25. Hence ̟f = r(xn−1)f , and we need to show that r is a scalar,
which is automatic in Case (3). In Case (1) we have the same polynomial also
for π = πn−2, with n − 2 ≥ 2, and we already saw that this polynomial must
then be a scalar. We need to show that Case (2) cannot happen, for which
we observe, via the proof of Proposition 25, that the polynomial T associated
with π is a(xn−2 + b)2 with a 6= 0, and the corresponding polynomial Q0 is also
non-zero. When we consider the braid relation between πn−3 and πn−2, note
that if the polynomial Q0 that is associated with πn−3 is non-zero, then Lemma
11 shows that the two operators must produce the same polynomial T , which
was seen to be non-zero. But then Proposition 13 forces T the quadratic form
of T (xn−2, xn−1) to be a multiple of xn−2xn−1, a property that our value of T
does not have.

It remains to consider the situation in Case (2) where πn−3 has a vanishing
polynomial Q0, so that we are in the situation considered in Remark 26 for
π = πn−3 and ̟ = πn−2. But our situation is not the one described in Case (1)
there since the polynomial Q0 associated with πn−2 is non-zero. Case (2) there
would have implies that the polynomial T of πn−2 is of the form c(xn−1 + d)2,
which is impossible since our T is a(xn−2 + b)2. Finally, we saw in the proof of
Proposition 13 and Remark 26 that in Case (3) the product ϕψ is the polynomial
T . But the condition that ∂n−2(ϕψ) is a constant does not hold for our T ,
which means that this last option for Case (2) for ̟ = πn−1 and π = πn−2 in
Proposition 25 is impossible as well, and πn−1 is as desired.

The remaining index i = 1 is dealt with in an analogous manner, by invoking
Remark 26 for π = π1 and ̟ = π2, obtaining the result immediately in Case
(3) and easily in Case (1), and excluding Case (2) by a similar consideration
using the braid relations between π2 and π3 (with Lemma 11 and Proposition
13 in case the polynomial Q0 corresponding to the latter does not vanish, and
the cases in Proposition 25 when it does vanish). This proves the corollary.
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5 Hecke Algebras and Commuting Operators

Recall that given constants µ and ν, the Hecke algebra Hµ,ν (of degree n)
is generated by {ui}

n−1
i=1 satisfying the braid relations as well as the equality

u2i = µui + ν for every 1 ≤ i ≤ n − 1. We wish to show that the polynomial
divided difference operators {πi}

n−1
i=1 from Theorem 19 always generate such an

algebra, and see which of the families involving degenerate polynomial divided
difference operators also produce a algebra of that sort. In fact, when n ≥ 4 this
will be the case for any family, except the one from Proposition 25 in case the
polynomials there are not scalars. We will also determine when two families of
polynomial divided difference operators that satisfy the braid relations generate
commuting algebras.

For this we once again fix the index i, denote the variables xi and xi+1 by
x and y respectively, and write s, ∂, and π for si = sxy, ∂i = ∂xy, and πi
respectively. We work with the first normalization in Proposition 5, in which
πg = Q0(x, y)∂g+R0(x, y)g for every function g of x and y, and we shorten the
coefficients to Q0

xy and R0
xy as above. In addition, let another family {π̂i}

n−1
i=1

of polynomial divided difference operators be given, whose ith element π̂ := π̂i
takes a function g = g(x, y) to Q̂0

xy∂g + R̂0
xyg.

We now carry out the following evaluation.

Lemma 28. For π and π̂ as above and a function f of x and y we have

π(π̂f) =
(
Q0

xy∂Q̂
0
xy +R0

xyQ̂
0
xy +Q0

xyR̂
0
yx

)
∂f +

(
Q0

xy∂R̂
0
xy +R0

xyR̂
0
xy

)
f.

Proof. Using the definition of π and π̂ we obtain that

π(π̂f) = Q0
xy∂

(
Q̂0

xy∂f + R̂0
xyf

)
+R0

xy

(
Q̂0

xy∂f + R̂0
xyf

)
.

We apply Lemma 1 to the first two terms while recalling that ∂f is symmetric,
and when we gather the resulting multipliers of f and of ∂f , we obtain the
asserted expression. This proves the lemma.

In particular, the composition of two polynomial divided difference operators
acting on the same variables is also a polynomial divided difference operator,
whose form in the first normalization from Proposition 5 is immediately read
off of Lemma 28.

For Hecke algebras we deduce from Lemma 28 the following consequence.

Corollary 29. A polynomial divided difference operator π, with polynomials
Q0 6= 0, R0, and T , satisfies the Hecke condition π2 = µπ + ν Id if and only if
the equalities ∂Txy = µ and ∂(R0

xyTyx) +R0
xyR

0
yx = ν hold.

Proof. By taking π̂ = π in Lemma 28, the multiplier of ∂f in π2f becomes
Q0

xy times ∂Q0
xy +R0

xy +R0
yx, and as Txy = Q0

xy + (x− y)R0
xy by Equation (3)

(as in Remark 9), a simple calculation using Lemma 1 shows that the latter
combination is just ∂Txy. Since for π2 and µπ + ν to coincide for every f we
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need the coefficients of ∂f and f in them to be the same (as in, e.g., the last
assertion in Lemma 8), the comparison of those of ∂f and the assumption that
Q0

xy 6= 0 yield the first equality.
From the coefficients of f in π2f − µπf = νf we obtain that ν must equals

the combination Q0
xy∂R

0
xy+R

0
xy(R

0
xy −µ). We express Q0

xy using Txy as above,
recall that (x − y)∂R0

xy = R0
xy − R0

yx, cancel (R
0
xy)

2, write µ as −∂Tyx by the
previous equality, and apply Lemma 1 to get that the expression that equals ν
is the asserted one. Since our argument goes also in the opposite direction, the
other implication is established as well. This proves the corollary.

We can now establish the quadratic relation required for the Hecke property.

Proposition 30. The operators {πi}
n−1
i=1 from Theorem 19 generate a Hecke

algebra Hb−c,ν , where ν equals e(e+ c− b) in Case (1) and 0 in Case (2).

Proof. We need to show that each operator π = πi from that theorem satisfies
π2 = (b − c)π + ν Id for the asserted value of ν. The proof of Proposition 13
shows that the polynomial T satisfies ∂T = b− c as Corollary 29 requires, and
the proof of Proposition 15 establishes the second equality there, where Lemma
17 and Remark 18 establish the value of ν to be the desired one. This proves
the proposition.

One can write the Hecke equation for every π = πi in Proposition 30 as
(π − e Id)

(
π − (b − c − e) Id

)
= 0. When e equals neither 0 nor b − c, this

expresses each such π as an invertible operator, with π−1 = π−(b−c) Id
e(e−b+c) .

It is clear that for µ 6= 0, the Hecke relation π2 = µπ (with ν = 0) is
equivalent to π and µ Id satisfying the cubic braid relation. We can thus deduce
from Corollary 27 the general form of a family of polynomial divided difference
operators that satisfy the braid relations and where at least one of the Q0-
polynomials vanish. Just like Proposition 30 shows that those from Theorem
19 always produce Hecke algebras, we will get that when n ≥ 4, families with
some vanishing Q0’s also do the same.

Let I be a subset of the integers between 1 and n − 1, and take i ∈ I. We
will say that i is isolated if neither i − 1 nor i + 1 lie in I, where for i = 1 and
for i = n− 1, only the neighbor 2 or n− 2 has to be considered. The elements
of I that are not isolated form a disjoint union of separated sets of consecutive
integers, which we will call the intervals of I. In particular, an interval of I is
not an isolated point, and is maximal in the sense that it cannot be extended
to a larger set of consecutive integers that are all contained in I. With this
terminology, we can now obtain the following result.

Theorem 31. For n ≥ 4, let {πi}
n−1
i=1 be a family of non-vanishing polynomial

divided difference operators, in which we let I be the set of indices 1 ≤ i ≤ n− 1
for which πi is not a scalar multiple of Id. Then this family satisfies the braid
relations and contains at least one vanishing Q0-polynomial precisely when the
following conditions hold:
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(1) The complement of I is not empty, and for every i in that complement we
have πi = µ Id for the same non-zero constant µ;

(2) For any isolated element of I we have πif = ϕi∂i(ψif), where ϕi and ψi

are functions of xi and xi+1 that satisfy ∂i(ϕiψi) = µ;

(3) The restriction of {πi}
n−1
i=1 to an interval of I yields a family like in Case (2)

of Theorem 19, in which the parameters a, b, c, and d also satisfy b−c = µ.

Moreover, every such family generates a Hecke algebra of the form Hµ,0.

Proof. The quadratic braid relations are clear via Proposition 7, and we focus on
the cubic ones. It is clear that non-zero two multiples, say µ Id and λ Id, satisfy
the cubic braid relation if and only if λ = µ (indeed, the scalar multiples λµ2

and λ2µ have to be the same). Case (3) in Proposition 25 and Remark 26 shows
that the operators from our Condition (2) satisfy the cubic braid relations with
their neighbors from the complement of I, and Theorem 19 implies the cubic
braid relation among any consecutive operators that lie inside an interval of
I. Moreover, as Condition (1) implies that no interval is the full set, each one
must involve at least one operator at an end of an interval, and this operator
has to satisfy the cubic braid relation with its neighbor µ Id. But Proposition
30 shows that it satisfies the Hecke condition π2

i = µπi, and we saw that this
is equivalent to the desired braid relation. We have thus obtained that every
such family satisfies the braid relations, and using the same equivalence we also
obtain the generation of a Hecke algebra Hµ,0.

Conversely, Corollary 27 shows that since n ≥ 4, all the operators that have
a vanishing Q0-polynomial are in the complement of I, so that this complement
is not empty. We also saw that neighboring operators in the complement of I
are the same scalar multiple of Id. This corollary produces Condition (2) as
well, and the fact that we can extract the value of the scalar from ϕi and ψi

implies that the scalar multiples of Id on both sides of an isolated element of I
are the same. Finally, no T -polynomial can vanish (by Proposition 12), so the
form of the restriction of the family to every interval of I is given by Theorem
19. But Proposition 30 then produces a Hecke condition for such a restriction,
and we saw that this restriction has to satisfy a Hecke condition with ν = 0 for
the cubic braid relation with a neighbor from the complement of I. Thus the
restriction is as in Case (2) of that theorem, and again the value of the scalar
multiples of Id on both sides are determined by the Hecke condition from that
proposition, namely b − c on both sides of the interval. Hence Conditions (3)
and (1) are also established. This proves the theorem.

Note that in Theorem 31, the braid relation between an operator as in Case
(2) of Theorem 19 and µ Id implies that the former operators have to be of the
form f 7→ ϕ∂(ψf), or equivalently f 7→ ϕ · (sψ∂f + ∂ψ · f), for functions ϕ and
ψ. Indeed, the polynomial T is either linear univariate (including a constant)
if a = 0, or the product of two strict linear polynomials, one in each variable,
otherwise. Then the second line in Case (2) of Remark 20 is with ϕ = T
and ψ = 1, the first one is obtained by taking ϕ = 1 and ψ = T , and when
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a 6= 0 (otherwise we covered all options, by Remark 21) in the third line ϕ is the
polynomial in xi+1 and ψ is the one in xi, while in the fourth one we interchange
their roles.

We conclude the discussion about Hecke algebras by considering the remain-
ing cases from Proposition 25 and Remark 26 for n = 3, as well as the families
from Proposition 12. When the operator multiplies any function f by a non-
scalar polynomial, it does not satisfy any Hecke relation, as the only polynomials
r that satisfy r2 = µr + ν are scalars. It follows that for n = 3 the families
of non-vanishing polynomial divided difference operators, with non-vanishing
T -polynomials, that satisfy the braid relation and the Hecke condition are those
from Theorem 19 and from the extension of Theorem 31 to n = 3.

Similarly, the only Hecke relation that an operator π taking f to a polynomial
times sif is one of the form π2 = ν (the argument at the end of the proof of
Lemma 8 explains this). This again happens if and only if the polynomial is
a scalar λ, and then ν = λ2. Hence the operators from Proposition 12 satisfy
the Hecke condition if and only if the polynomials Ri there are scalars (and
then they are the same scalar, by being almost equal). Note that the almost
equality condition implies that for the operators from that proposition we have
π2
i f = Ri(xi, xi+1)Ri(xi+1, xi)f , and the multiplier is the value on xi and xi+1

of the same symmetric polynomial for all i.

For commutativity, we draw from Lemma 28 the following consequence.

Corollary 32. The operators π and π̂ from Lemma 28 commute precisely when
the equalities Q0

xy∂Q̂
0
xy = Q̂0

xy∂Q
0
xy and Q0

xy∂R̂
0
xy = Q̂0

xy∂R
0
xy hold.

Proof. We compare the expression for π(π̂f) from that lemma with that of π̂(πf)

obtained by interchanging Q0
xy with Q̂0

xy and R0
xy with R̂0

xy, and note that the

termR0
xyR̂

0
xyf is the same on both sides. As in Lemma 8, the operators commute

if and only if the coefficients of f and ∂f are the same in both compositions,
and the second assert equality is that of the remaining coefficients of f on the
two sides. Now, when we consider the difference between the coefficients of ∂f ,
the parts involving R0 and R̂0 reduce to the difference between Q0

xy∂R̂
0
xy and

Q̂0
xy∂R

0
xy. Hence, given the second equality, the coefficients of ∂f are the same

if and only if the first equality holds as well. This proves the corollary.

We can now establish the commutativity relations between two polynomial
divided difference operators π = πi and π̂ = π̂i with the same index i, when
both operators are of the type considered in Theorem 19 and Remark 20. Since
we now take one operator in each family, it will be convenient to gather Case
(1) with the first two lines in Case (2) to obtain the extended Case (1) (in which
the value of e is simply unrestricted). Moreover, Remark 21 shows that the
remaining two lines in Case (2) are special cases of the extended Case (1) when
a = 0, so that we refer as the strict Case (2) to the operators obtained by the
last two lines in Case (2) under the assumption that a 6= 0.

Proposition 33. Let π be as in Theorem 19 and Remark 20, and let π̂ be
another such operator, that is based on the coefficients â, b̂, ĉ, and d̂, and also
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ê in the extended Case (1). Assuming that π and π̂ are not scalar multiples of
one another, they commute if and only if their description as in Proposition 5
with Q0, R0, Q̂0, and R̂0 is in one of the following situations.

(1) π and π̂ are operators from the extended Case (1) that are not scalar mul-

tiples of one another, and we have the equalities c− b+2e = ĉ− b̂+2ê = 0.

(2) There are constants a, b, c, d, and e with ad = bc, b 6= c, and b − c 6= 2e
such that πf =

(
axy + (c+ e)x+ (b− e)x+ d

)
∂f + (b − c− e)f and π̂f is

a scalar multiple of
(
axy + (c+ e)x+ (b − e)x+ d

)
∂f − ef .

(3) πf =
(
ax2+(b+c)x+d

)
∂f−(ax+c)f for constants a 6= 0, b 6= c, and d with

ad = bc, and π̂f is a scalar multiple of
(
ax2 + (b+ c)x+ d

)
∂f − (ax+ b)f .

(4) πf =
(
ay2 + (b + c)y + d

)
∂f + (ay + b)f for a, b, c, and d as in Case (3),

and π̂f is a scalar multiple of
(
ay2 + (b+ c)y + d

)
∂f + (ay + c)f .

We have once again adopted the notation x = xi and y = xi+1 as above.

Proof. It is clear from Remarks 20 and 21 and our definition that ∂R0 vanishes
when πi is in the extended Case (1) and equals a non-zero constant in the strict

Case (2), and the same for ∂R̂0 and π̂. Since Q0 and Q̂0 do not vanish in
Theorem 19, the second equality in Corollary 32 implies that ∂R0 6= 0 if and
only if ∂R̂0 6= 0, so that πi and π̂ are either both in the extended Case (1) or
both in the strict Case (2). Consider first the latter case, and since we work
up to scalar multiplication, we may assume that â = a, and then the equality
in question implies that Q̂0 = Q0, from which the first equality in Corollary
32 immediately follows. Thus both are of the same type (either a quadratic

polynomial in xi or one in xi+1), and we also have d̂ = d and b̂ + ĉ = b + c.

But since the equalities ad = bc and âd̂ = b̂ĉ imply that b̂ĉ = bc as well, and
we assume that π and π̂ are not scalar multiples of one another, we must have
b̂ = c, ĉ = b, and b 6= c. This produces the asserted Cases (3) and (4), according

to the type of Q0 and Q̂0.
We thus now assume that πi and π̂ are both as in the extended Case (1),

and we only have to consider the first equality in Corollary 32. Once again both
sides vanish simultaneously, with Q0 and Q̂0 non-zero, and we recall that ∂Q0

and ∂Q̂0 are now scalars. If the scalars are non-zero then Q0 and Q̂0 are again
scalar multiples of one another, and without loss of generality we can once again
assume that they are equal. In this case â = a and d̂ = d once more, and we
have ĉ+ ê = c+ e and b̂− ê = b− e, as well as b̂ĉ = bc as before. Since π and π̂
are not scalar multiples of one another, this is only possible when again b̂ = c
and ĉ = b with b 6= c, and ê = c− b + e. This yields the operators described in
the asserted Case (2).

The remaining situation is where πi and π̂ are in the extended Case (1) and

the scalars ∂Q0 and ∂Q̂0 vanish. Then the operators commute by Corollary 32.
As the scalars in question are c− b+2e and ĉ− b̂+2ê = 0, this is the situation
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considered in the asserted Case (1). As all of our arguments are invertible,
the operators in all cases indeed commute (and are not scalar multiples of one
another). This completes the proof of the proposition.

Note that in the three last cases in Proposition 32, the operators from The-
orem 19 and Remark 20 that commute with π are the multiples of π and those
of π − (b− c) Id (hence just those of π when b = c), and the latter is a multiple
of the inverse of π when π is invertible via Proposition 30. The operators from
the first case in Proposition 32, which thus all commute with one another, are
invertible in this sense when b 6= c (since then e equals neither 0 nor b− c), and
not otherwise. The latter are also precisely the operators in the extended Case
(1) whose Q0-polynomial is symmetric (as was seen in the proof). Note that
in characteristic 2, Case (1) of Proposition 32 occurs for every e and every ê in

the extended Case (1) when b = c and b̂ = ĉ, and for none in case the latter
equalities do not hold.

The operators associated with intervals in Theorem 31 are special cases of
those from Theorem 19 and Remark 20, hence their commutation relation is
already covered in Proposition 32. When considering the more general operators
than can show up for isolated indices, i.e., those from Case (3) of Proposition 25
and Remark 26 (or Corollary 27), the determination of commutation of these
operators with themselves or with those from Theorem 19 and Remark 20 is
more involved. We only remark that in the extended Case (1) of the latter,
since its R0-polynomial is annihilated by ∂, so does the product ∂ϕ∂ψ, so that
either ϕ or ψ is symmetric. But then it divides the non-zero scalar ∂(ϕψ) = µ,
so that the scalar ∂Q0 = b − c − 2e must be non-zero, and the operators are
either the appropriate scalar multiples of f 7→ Q0∂f , or of f 7→ ∂(sQ0 ·f) (with
the scalar multiplier determined by µ). These operators are the translations
π − (b− c− e) Id and π − e Id of π. As for commuting with the operators from
Proposition 12, with vanishing T -polynomials, they can only commute with the
operators from the first case in Proposition 32 (by the symmetry of Q0 and
the vanishing of ∂R0), and they indeed commute if and only if the associated
polynomial Ri from that proposition is symmetric as well.

We conclude by remarking that there are virtually no pairs of families, as
in Theorems 19 or 31, where all the operators in one family commute with all
the others in the second one. while Proposition 32 deals with the operators of
the same index in two families, and Proposition 7 shows that commutativity
is trivial when the indices differ by 2 or more, the condition that operators
with consecutive indices commute is very restrictive. Indeed, comparing the
expressions for π̟f and̟πf in the proof of Lemma 8 shows, via the coefficients
of sσf and σsf , that the equality π̟ = ̟π can hold only if either Q0

xy with

Q̃0
yz vanish. Then, via Corollary 27, we obtain the case where one family only

involved multiples of Id, which trivially commute with all operators.
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