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For both reactions we use an approach similar to that of compound-nucleus reaction theory. For neutron-

induced fission, we describe the compound system generated by absorption of the neutron and the nuclear

system near the scission point as two statistically independent systems governed by random-matrix theory. The

systems are connected either by a barrier penetration factor or by a set of transition states above the barrier. Each

system is coupled to a different set of channels. An analogous model is used for heavy-ion fusion. Assuming

that (seen from the entrance channel) the system on the other side of the barrier is in the regime of strongly

overlapping resonances, we obtain for fixed spin and parity closed-form analytical expressions for the total

probability for fission and for fusion. Parts of these expressions can be calculated reliably within existing

compound-nucleus reaction theory. The remaining parts are the probabilities for passage through or over the

barrier. These may be determined theoretically from the liquid-drop model or experimentally from total fission

or fusion cross sections.

I. INTRODUCTION

The standard approach to neutron-induced nuclear fission is

based on the liquid-drop model originally proposed by Bohr

and Wheeler [1]. The capture of a thermal neutron leads to

excitation energies of the compound nucleus close to or above

the top of the fission barrier. The liquid drop deforms and

eventually fissions. The deformation is described in terms of

one or several collective variables. These must be able to pass

the fission barrier. To that end, all or a good fraction of the ex-

citation energy of the compound nucleus must be transferred

to the collective variables. The barrier is passed via tunnel-

ing or via one or several transition states located on top of the

barrier. On the other side of the fission barrier, the process

is reversed, energy of collective motion is transferred back

to the non-collective nuclear degrees of freedom. As it ap-

proaches the scission point, the nuclear system is again in a

highly excited state as witnessed by neutron emission prior

to fission. Most recently that time-dependent picture of the

fission process was formulated theoretically in terms of the

generator-coordinate method in Ref. [2] where numerous fur-

ther references may be found. Extensive numerical work [3]

shows good agreement with data.

Here we propose a radically different approach. In line with

the standard approach to compound-nucleus reactions, we pro-

pose a statistical model for nuclear fission induced by neu-

trons, and for fusion of two heavy ions. The model makes use

of the physical picture described in the previous paragraph.

For fixed spin J and partity π, we describe both the compound

system generated by absorption of the neutron and the nuclear

system near the scission point as statistically independent sys-

tems governed by random-matrix theory. The two systems are

connected either by a barrier penetration factor or by a set of

transition states above the barrier. Each system is coupled to a

different set of channels. We proceed analogously for heavy-

ion fusion.

We implement that approach using the standard time-
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independent formulation of nuclear reaction theory [4]. At

fixed energy E amd for fixed quantum numbers (J, π), the

elements of the scattering matrix S1a,2b(E) connect incident

channels labeled (1a) with outgoing channels (2b) on the

other side of the fission barrier. For a neutron-induced reac-

tion, channel (1 a) carries the incident neutron and the target

nucleus in its ground state, channels (1 a’, 1 a” . . .) account

for neutrons inelastically scattered on the target nucleus, while

channels (2 b, 2 b’, . . .) carry pairs of scission fragments

in their ground or excited states but also neutrons emitted

from the nuclear system before it reaches the scission point.

For a fusion reaction, channel (2 b) carries the two ions in

their ground states while channels (1 a, 1 a’, . . .) carry a neu-

tron and the remaining nucleus in its ground state or any ex-

cited state or any other reaction products. The two sets of

channels are linked by the Hamiltonian describing the inter-

mediate nuclear system. The Hamiltonian consists of three

parts. For a neutron-induced reaction, part (1) describes the

compound system (system 1) formed by neutron absorption.

Part (2) describes the nuclear system (system 2) near the scis-

sion point. The third part labeled (tr) describes either the tran-

sition through the barrier in terms of a matrix element for tun-

neling or the transition over the barrier in terms of a small

number of transition states. For a fusion reaction, part (2) de-

scribes the nuclear system (system 2) reached by the merger

of the two ions, part (1) describes the compound system (sys-

tem 1) reached after transition through or over the barrier, and

part (tr) the transition through or over the barrier. The model is

obviously confined to situations where system 1 and system 2

can be clearly identified as separate entities, i.e, for excita-

tion energies that are below or slightly above the height of the

fission barrier. Without specific assumptions on the Hamilto-

nian, the elements S1a,2b(E) of the scattering matrix are well

defined but cannot be worked out explicitly.

The situation changes, and an explicit expression for the

probability of the transitions (1a) → (2b) and (2b) → (1a)
can be derived, if it is assumed that the Hamiltonian for

part (1) describing the compound nucleus and the Hamiltonian

for part (2) describing the nuclear system near the scission

point (or the point of merger of the two ions) are statistically

independent members of the GOE, the time-reversal invariant

http://arxiv.org/abs/2404.19355v1
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Gaussian Orthogonal Ensemble of Random Matrices [5]. Use

of the GOE implies that in the vicinity of the actual energy

of the reaction, the local spectral fluctuation properties of the

nuclear system coincide with those of the GOE. That same as-

sumption is actually used for the nuclear Hamiltonian in the

statistical theory of compound-nucleus reactions. For the as-

sumption to hold, the excitation energy in the compound nu-

cleus (system 1) and in the scissioning system (system 2) must

be larger than several MeV. With neutron binding energies in

the region of several MeV that condition is always met for

neutron-induced reactions. We consider heavy-ion induced

fission for energies where the condition is likewise met. Then

the success of the statistical theory of compound-nucleus reac-

tions [6, 7] supports the hypothesis for system 1. It is natural

to extend the hypothesis to system 2, the nuclear system near

the scission point (or point of merger). The compound nu-

cleus created by absorption of the incident neutron (system 1)

and the nuclear system near the scission point (system 2) are

sufficiently different physical systems (characterized by very

different deformation) to justify the assumption that their spec-

tral fluctuations at energy E are statistically independent.

Under these assumptions, the matrix element S1a,2b(E)
turns into a stochastic process that depends upon the statisti-

cally independent random Hamiltonians H1 for system 1 and

H2 for system 2. For the explicit calculation of the average

transition probability P1a,2b(E) = 〈|S1a,2b(E)|2〉 (the angu-

lar brackets denote the average over both H1 andH2) we con-

sider the following cases, distinguished by the excitation ener-

gies of system 1 and system 2. Case (a): The excitation energy

of system 1 is in the regime of isolated compound-nucleus res-

onances (that case corresponds to neutron energies of up to 10
keV or so); case (b): the excitation energy of system 1 is in

the regime of strongly overlapping compound-nucleus reso-

nances (the number of channels strongly coupled to system 1

is large compared to unity); case (α): the excitation energy of

system 2 is in the regime of isolated resonances; case (β): the

excitation energy of system 2 is in the regime of strongly over-

lapping resonances (the number of channels strongly coupled

to system 2 is large compared to unity). Which combination

[(a α) or (a β) or (b α) or (b β)] of these cases is realized de-

pends, of course, on the energy of the reaction and on the bind-

ing energies of the nuclei involved. As shown in Refs. [8, 12]

it is possible to derive a closed-form expression forPab(E) for

three out these four cases with the exception of the case (a α).

In case (b β) the resulting expression is completely explicit.

In cases (a β) and (b α) the expression involves the threefold

integral familiar from the theory of compound-nucleus reac-

tions [9]. Case (a α) can only be treated by numerical simula-

tion.

Scission is frequently preceded by the emission of one or

several neutrons. In that case the index (2b) of the element

S1a,2b(E) of the scattering matrix refers to the channels that

carry the first emitted neutron, and P1a,2b(E) gives only the

probability for that process to happen and does not give any

information on the actual scission process. To the best of our

knowledge it is not possible to address successive multiple par-

ticle emission in the framework of time-independent scatter-

ing theory. It is, thus, not possible to predict in our framework

what happens after the first neutron has been emitted. We turn

that seeming disadvantage into an advantage by arguing that

no matter how many neutrons are emitted prior to scission,

channel (2 b) surely leads to scission eventually. We accord-

ingly interpret Pfission,1a(E) =
∑

b P1a,2b(E) as the total fis-

sion probability for the reaction starting in channel (1a) and

focus attention on that quantity. Correspondingly, we interpret

Pfusion,2b(E) =
∑

a P1a,2b(E) as the total fusion probability

for the reaction starting in channel (2 b).

In summary we calculate the average total fission proba-

bility Pfission,1a(E) and the average total fusion probability

Pfusion,2b(E) for a system of fixed spin J and parity π and

under the proviso that the resonances in system 1 or system 2

or both, strongly overlap. Technically, the average is over the

distribution of the matrix elements of H1 and of H2. Phys-

ically, the average corresponds to an average over a spectral

domain containing a large number of resonances. Multiply-

ing Pfission,1a(E) and Pfusion,2b(E) with appropriate geomet-

rical and kinematical factors and summing over J and π one

obtains the total average reaction cross section for neutron-

induced fission and for heavy-ion fusion, respectively. That

step is standard.

The model we use is a variant of a general statistical ap-

proach to transition-state theory, based upon a suggestion in

Refs. [10, 11] and worked out in Refs. [8, 12]. To make the

paper reasonably self-contained, we define the model in Sec-

tion II. We formulate the statistical assumptions in Section III.

Results derived in Refs. [8, 12]) are collected, applied, and

discussed in the following Sections. The reader who is not in-

terested in technical aspects is advised to skip Sections II and

III.

II. MODEL

We confine ourselves to states of fixed spin and parity. We

use the notation of Ref. [12] throughout. In the time-reversal-

invariant Hamiltonian H , system 1 and system 2 are coupled

either by the matrix element for tunneling through the barrier,

or by a set of k transition states right above the barrier. In

matrix form, the tunneling Hamiltonian for the first case is

H =

(

H1 V
V H2

)

. (1)

The time-reversal invariant Hamiltonian for transition over the

barrier is given by

H =





H1 V1 0
V T
1 Htr V T

2

0 V2 H2



 . (2)

In both Eqs. (1, 2), H1 (H2) denotes the real and symmet-

ric Hamiltonian matrix governing system 1 (system 2, respec-

tively), acting in Hilbert space 1 (in Hilbert space 2, respec-

tively). Both Hilbert spaces have dimension N . In Eq. (1) the

matrix V has rank one and carries the tunneling matrix ele-

ment V . In Eq. (2) the real and symmetric Hamiltonian matrix
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Htr acts in transition space and has dimension k. In what fol-

lows, the matrix indices µ, µ′ denote states in Hilbert space 1

and run from 1 to N . The matrix indices ν, ν′ denote states

in Hilbert space 2. For the model of Eq. (1), ν, ν′ run from

N +1 to 2N . For the model of Eq. (2), these indices run from

N+k+1 to 2N+k. The states in transition space are labeled

m,n. These indices run from N + 1 to N + k.

In its most general form, the rank-one coupling matrix in

Eq. (1) is written as

Vµν = (O1)µNV(O2)(N+1)ν . (3)

Here O1 and O2 are two arbitrary N -dimensional orthogonal

matrices in space 1 (space 2, respectively). The parameter V
measures the strength of the tunneling process. In Eq. (2), the

coupling matrices V1 and V2 are real and have N rows and k
columns each. The upper index T denotes the transpose. In

their most general form, V1 and V2 can be written as [12]

(V1)µm =
∑

m′

(O1)µm′V1,m′(Otr,1)mm′ ,

(V2)νm =
∑

m′

(O2)νm′V2,m′(Otr,2)mm′ . (4)

Here O1 (O2) are N -dimensional orthogonal matrices in

space 1 (in space 2, respectively) while Otr,1 and Otr,2 are

orthogonal matrices of dimension k in transition space. The

2k real parameters V1,m′ and V2,m′ determine the strengths of

the couplings.

The scattering problem mentioned in Section I is defined

by coupling the states in space 1 to open channels labeled

(1a, 1a′, 1a′′, . . .) via real matrix elements W1,aµ, those in

space 2 to open channels labeled (2b, 2b′, 2b′′, . . .) via real

matrix elements W2,bν . The relations

∑

µ

W1,aµW1,a′µ = δaa′v21a ,

∑

ν

W2,bνW2,b′ν = δbb′v
2
2b (5)

rule out direct scattering processes (1a) → (1a′) and (2b) →
(2b′) without intermediary formation of the compound sys-

tems 1 or 2, respectively. The factor v21,a (v22b) measures the

strength of the coupling of system 1 to channel (1a) (of sys-

tem 2 to channel (2b), respectively). To account for multiple

backscattering processes (1a) ↔ system 1 and (2b) ↔ sys-

tem 2, we define the width matrices

(Γ1)µµ′ = 2π
∑

a

W1,aµW1,aµ′ ,

(Γ2)νν′ = 2π
∑

b

W2,bνW2,bν′ . (6)

These matrices are part of the total width matrix Γ. For Eq. (1),

we define

Γ =

(

Γ1 0
0 Γ2

)

, (7)

while for Eq. (2) we use

Γ =





Γ1 0 0
0 0 0
0 0 Γ2



 . (8)

With these definitions, the elements S1a,2b(E) of the scatter-

ing matrix for the reaction (1a) → (2b) at energy E are given

by [4]

S1a,2b(E) = −2iπ
∑

µν

W1,aµD
−1
µν (E)W2,bν . (9)

Here D−1(E) is the propagator matrix with inverse

D(E) = E1−H + (i/2)Γ , (10)

and 1 is the unit matrix in the Hilbert space of the Hamiltonian

H defined in Eqs. (1) or (2).

III. STATISTICAL ASSUMPTIONS

As mentioned in the Introduction, the elements (9) of the

scattering matrix, although well defined, cannot be worked

out analytically without further simplifying assumptions on

the HamiltonianH . We assume that the excitation energies of

system 1 and of system 2 are both sufficiently large to justify a

statistical treatment. We accordingly assume that the matrices

H1 andH2 are statistically independent members of the Gaus-

sian Orthogonal Ensemble (GOE) of random matrices. The el-

ements are zero-centered real Gaussian random variables with

second moments

〈(H1)µ1µ′

1
(H1)µ2µ′

2
〉 =

λ2

N
(δµ1µ2

δµ′

1
µ′

2
+ δµ1µ′

2
δµ′

1
µ2
) ,

〈(H2)ν1ν′

1
(H2)ν2ν′

2
〉 =

λ2

N
(δν1ν2δν′

1
ν′

2
+ δν1ν′

2
δν′

1
ν2) .(11)

The angular brackets denote the ensemble average. The pa-

rameter λ defines the ranges of the two spectra. We eventu-

ally consider the limit N → ∞, keeping λ and k fixed. We

assume that the k eigenvalues Em of Htr are all located near

the centers of the spectra of H1 and H2.

In Refs. [8, 12] it is shown that V in Eq. (3) must be small

in magnitude compared to λ, and that the same must hold for

all m′ of the parameters V1,m′ and V2,m′ in Eqs. (4). These

bounds imply that the coupling matrix V in Eq. (1) and the

coupling matrices V1 and V2 in Eq. (2) connect mostly those

eigenstates of H1 and of H2 to Htr that lie within or close to

the spectrum ofHtr. It is only in that range of energies (which

we assume to be small compared to λ) that the statistics of

eigenvalues and eigenfunctions of H1 and of H2 defined via

Eqs. (11) are actually needed. In other words, we use Eqs. (11)

for a quantification of the local spectral fluctuation properties

of H1 and H2 only, not for a quantitative parametrization of

their overall spectra. That is in line with the use of random-

matrix theory in the statistical theory of nuclear reactions [6].

The average transition probability discussed in Section IV

below is parametrized in terms of transmission coefficients
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T1,a and T2,b. These auxiliary parameters are familiar from

the theory of compound-nucleus reactions [9]. They are de-

fined for two scattering problems obtained by putting V = 0
in Eq. (1) (or, equivalently, by putting V1 = 0 = V2 in Eq. (2)),

i.e., for the case without any coupling of system 1 and sys-

tem 2. The associated matrices for backscattering from chan-

nel (1a) to channel (1a′) and for backscattering from channel

(2b) to channel (2b′) are

(S1)1a,1a′(E) = δaa′ − 2iπ
∑

µµ′

W1,aµD
−1
1 µµ′W1,a′µ′ ,

(S2)2b,2b′(E) = δbb′ − 2iπ
∑

νν′

W2,bνD
−1
2 νν′W2,b′ν′ ,

(12)

where

(D1)µµ′ (E) = Eδµµ′ − (H1)µµ′ + (i/2)(Γ1)µµ′ ,

(D2)νν′ (E) = Eδνν′ − (H2)νν′ + (i/2)(Γ2)νν′ , (13)

and whereH1 andH2 both are members of the GOE and obey

the statistical assumptions (11). The matrix S1(E) (S2(E)) is

equal to the scattering matrix for compound-nucleus scatter-

ing [9] where the compound nucleus is described by the GOE

Hamiltonian H1 (H2, respectively). The transmission coeffi-

cients T1,a and T2,b are defined by

T1,a = 1− |〈(S1)1a,1a(E)〉|2 ,
T2,b = 1− |〈(S2)2b,2b(E)〉|2 . (14)

The angular brackets denote the average over H1 (over H2,

respectively). These coefficients measure the absorption of

flux from the channel to the compound system or, equivalently,

the emission of flux from the compound system to the channel

in question.

The case of strongly overlapping resonances mentioned in

Section I is formally defined for system 1 (for system 2) by

the inequality
∑

a T1,a ≫ 1 (
∑

b T2,b ≫ 1, respectively). If

either of these conditions holds, the results given below are

obtained in terms of an asymptotic expansion in inverse pow-

ers of
∑

a T1,a (
∑

b T2,b, respectively) where only terms of

leading order are kept. For the scattering matrices S1(E) and

S2(E) that approximation gives [13] for a 6= a′ and for b 6= b′

〈|(S1)1a,1a′(E)|2〉 = T1,aT1,a′ ,

〈|(S2)2b,2b′(E)|2〉 = T2,bT2,b′ . (15)

The factors

T1,a′ =
T1,a′

∑

a′′ T1,a′′

, T2,b′ =
T2,b′

∑

a′′ T2,b′′
(16)

give the relative probability for decay of the compound nu-

cleus into channel (1a′) (channel (2b′), respectively).

IV. TOTAL TRANSITION PROBABILITY FOR FISSION

AND FUSION

With S1a,2b(E) given by Eq. (9), the average transition

probability P1a,2b(E) at energy E is given by

P1a,2b(E) =
〈

|S1a,2b(E)|2
〉

. (17)

The average is over the matrix elements ofH1 and ofH2. The

symmetry of S1a,2b(E) implies P1a,2b(E) = P2b,1a(E).
It may be instructive to mention why it is not possible to

perform the average in Eq. (17) analytically without addi-

tional simplifying assumptions. The simpler problem of cal-

culating 〈|S1a,1a′(E)|2〉 in Eq. (15) analytically without re-

sorting to the approximation
∑

a′ T1,a′ ≫ 1 was solved [9]

with the help of the supersymmetry technique. Inspection of

Ref. [9] shows that for two coupled GOE’s, the number of

variables in the supersymmetry approach is so large as to defy

an analytical solution. Therefore, the explicit expressions for

the transition probability through or over a barrier derived in

Refs. [8, 12] are obtained with the help of further simplifying

assumptions.

As mentioned in the Introduction we focus attention here on

cases where at least in one of the two systems the compound

resonances overlap strongly. The technical aspects of that as-

sumption are defined at the end of Section III. Even within

that assumption, the resulting expressions cannot be derived

without use of the supersymmetry technique [8]. Results de-

rived on that basis in Refs. [8, 12] are used in Sections V and

VI.

We recall that the total average probability for neutron-

induced fission and that for heavy-ion fusion are given, re-

spectively, by

Pfission,1a(E) =
∑

b

P1a,2b(E)

Pfusion,2b(E) =
∑

a

P1a,2b(E) . (18)

V. NEUTRON-INDUCED FISSION

Depending on the energy of the incident neutron we distin-

guish the cases where the excitation energy of the compound

system (system 1) is far below, below but close to, or above the

height of the fission barrier. In each of these cases we further

distinguish the case where the resonances in the compound

system (system 1) do not overlap or overlap weakly and the

case where they overlap strongly. In all cases we assume that

the excitation energy of system 2 is in the regime of strongly

overlapping resonances.

A. Excitation energy far below the height of the fission barrier

The tunneling matrix element V is so small in magnitude

that lowest-order perturbation theory in V suffices. We use

Eq. (34) of Ref. [8] and the fact that for strongly overlapping

resonances in system 2 the last factor in that equation is equal

to T2,b defined in Eq. (16). With
∑

b T2,b = 1 the first of

Eqs. (18) gives

Pfission,1a(E) = (V/λ)2 (19)

×
〈∣

∣

√
2πλ

∑

µ

W1,aµ[(E −H1 + (i/2)Γ1)
−1]µN

∣

∣

2〉
.
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Here and in what follows we interpret the dimensionless fac-

tor (V/λ)2 as the energy-dependent probability Ptun(E) for

tunneling through the fission barrier and write

(V/λ)2 = Ptun(E) . (20)

Then

Pfission,1a(E) = Ptun(E) (21)

×
〈∣

∣

√
2πλ

∑

µ

W1,aµ[(E −H1 + (i/2)Γ1)
−1]µN

∣

∣

2〉
.

The factor in angular brackets in Eq. (21) is given in Eq. (A4)

of Ref. [8]. That expression involves the threefold inte-

gral well known from the theory of compound-nucleus reac-

tions [9]. For the case of overlapping resonances in system 1,

that factor is equal to T1,a, and Eq. (21) becomes

Pfission,1a(E) = T1,aPtun(E) . (22)

For first-order perturbation theory to apply, i.e., for Eq. (21)

to hold, Ptun(E) must be less than 0.1 or so because the cor-

rection term is of order 1/(1 + Ptun(E))2, see Eq. (23).

B. Excitation energy close to but below the height of the fission

barrier

If Ptun(E) in Eq. (20) obeys 0.1 ≤ Ptun(E) < 1 an ana-

lytical solution for Pfission,1a(E) is available only if the reso-

nances in the compound system (system 1) strongly overlap.

Then Eqs. (31) and (32) of Ref. [8] give

Pfission,1a(E) = T1,a
Ptun(E)

(1 + Ptun(E))2
. (23)

The term in the denominator accounts for repeated tunneling

back and forth through the barrier.

C. Passage over the barrier via a set of transition states

Again, an analytical expression is available only if the res-

onances in the compound system (system 1) strongly overlap.

Then, Eqs. (25), (30), and (16) of Ref. [12] give

Pfission,1a(E) = T1,aY (24)

where

Y = (1/λ2)
∑

µν

∣

∣

∣

∣

∑

mn

(V1)µm(Gtr)mn(V2)νn

∣

∣

∣

∣

2

(25)

and

Gtr = (E−Htr + iV T
1 V1/λ+ iV T

2 V2/λ)
−1

= (E−Heff)
−1 . (26)

Here E is the product of the energy E of the reaction and of

the unit matrix in transition space. The operator Gtr is the ef-

fective propagator in transition space, andHeff is the effective

Hamiltonian in that space. It consists of the real symmetric

Hamiltonian Htr in Eq. (2) and an imaginary symmetric ma-

trix that is due to the coupling of transition space with space 1

and space 2 via the matrices V1 and V2 in Eq. (2). For a phys-

ical interpretation of Y we introduce the average GOE level

spacing d = 2πλ/N and obtain

Y =
1

N2

∑

µν

∣

∣

∣

∣

2π

d

∑

mn

(V1)µm(Gtr)mn(V2)νn

∣

∣

∣

∣

2

. (27)

The expression within absolute signs is the dimensionless am-

plitude for passing via the transition region from state µ in

system 1 to state ν in system 2, and Y is the average (taken

over states in space 1 and space 2) of the square of that ampli-

tude. In applications, d2 must be replaced by the product d1d2
of the mean level spacings of system 1 and system 2.

The propagator Gtr(E) in Eq. (26) can be written in terms

of the complex eigenvalues El with ℑ(El) < 0 for all l =
1, . . . , k and the complex orthonormal eigenfunctions ψl, l =
1, . . . , k, of Heff . The factor Y in Eq. (25) takes the form [12]

Y =
1

N2

∑

mn

∣

∣

∣

∣

∑

l

ζ1,ml
1

E − El
ζ2,nl

∣

∣

∣

∣

2

. (28)

Except for a factor (2π/d)1/2, the parameters ζ1,ml and ζ2,nl
are projections of the eigenfunctions ψl onto the matrices V1
and V2, respectively. The parameters ζ1,ml and ζ2,nl have di-

mension (energy)1/2. The amplitude within absolute square

signs in Eq. (28) is the sum of k overlapping Breit-Wigner

resonances. A similar but less general result was obtained in

Ref. [14] under restrictive assumptions on the matrices V1 and

V2.

D. Discussion

In deriving expressions (21) to (27) we have used that

P1a,2b(E) in Eq. (17) factorizes, one factor being given by

T2,b. Such factorization is the result of the statistical assump-

tion (11) forH2 and of the inequality
∑

b T2,b ≫ 1. Factoriza-

tion makes it possible to sum over exit channels explicitly and

to obtain closed expressions for Pfission,1a(E). Eqs. (22, 23)

and (24) show that factorization likewise holds with respect

to the entrance-channel dependence of Pfission,1a(E), owing

to the statistical assumption (11) on H1 and the inequality
∑

a T1,a ≫ 1. In all these cases, the orthogonal invariance of

the GOE removes all reference to intermediate states in sys-

tem 2 and system 1 and leaves us for Pfission,1a(E) with a first

factor that depends only upon transmission coefficients, and a

second factor that depends only upon the dynamics of the tran-

sition through or over the barrier. Factorization in Eq. (21) is

the result of first-order perturbation theory and the statistical

assumption (11) on H1 without any additional conditions on

the resonances in system 1.

When written in the form

〈|(S1)1a,1a′(E)|2〉 = T1,aT1,a′ , (29)
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Eq. (15) for the average compound-nucleus reaction probabil-

ity displays a striking similarity to Pfission,1a(E) in Eqs. (22,

23) and (24). The factor T1,a appears in all these expressions

and accounts for compound-nucleus formation. The factor

T1,a′ in Eq. (29) (which accounts for the decay of the com-

pound nucleus) is in Eqs. (22, 23) and (24) replaced by a fac-

tor that is given in terms of Ptun(E) or of Y and accounts for

transmission through or over the barrier. The difference be-

tween Eq. (29) and the fission probability is that in Eq. (29)

the sum in the denominator of T1,a extends over all channels.

In Pfission,1a(E) that same sum does not comprise the fission

channel. With that slight proviso our results show that neutron-

induced fission may be seen as a compound-nucleus reaction

that feeds the fission channel.

For practical applications it is important that the factor

T1,a in Eqs. (22, 23), amd (24) occurs likewise in the

parametrization of the compound-nucleus cross section for

strongly overlapping resonances in Eqs. (15, 16). Calculations

of compound-nucleus reaction cross sections are completely

standard. The factor T1,a is, therefore, known very precisely

and easily available. The factor in the second line of Eq. (19)

involves the threefold integral of compound-nucleus reaction

theory. It can be obtained by a slight modification of the stan-

dard numerical program for that integral. We conclude that the

channel-dependent factors in Eqs. (19, 22, 23) and (24) can

all be calculated reliably within standard compound-nucleus

reaction theory.

In principle, the probability Ptun(E) in Eqs. (21) and (22)

can be computed semiclassically with the help of the WKB

approximation and the use of collective variables. For sponta-

neous fission, that is the standard procedure, see Ref. [16] and

references therein. However, as stated in the Introduction, the

present theory deals with states of fixed spin J and parity π
of the neutron-induced fission reaction and Ptun(E), written

explicitly as Ptun(E; J, π), must, in principle, be determined

separately for each pair of values (J, π). We expect that col-

lective motion and, therefore, Ptun(E; J, π) is fairly indepen-

dent of (J, π). We, thus, expect that Pfission,1a(E) in Eqs. (21,

22) and (23) can be estimated fairly reliably. For the case of

passage over the barrier, the parameters El and ζ1,ml, ζ2,ml

in Eq. (28) are also determined by collective features of the

system. Therefore, we expect that here, too, Y is nearly inde-

pendent of spin and parity of the system. A prediction of value

and energy dependence of Y has to be based upon a theoreti-

cal model for the transition Hamiltonian Htr, i.e., a collective

dynamical model for the transition states and their coupling to

the states in system 1 and system 2. That seems realistic only

for k = 1 and k = 2 because the number of parameters in

Eq. (28) increases strongly with increasing k.

The total cross section σfission(E) for neutron-induced fis-

sion at energy E is obtained by multiplying the fission prob-

ability Pfission,1a(E; J, π) (now written with its full depen-

dence on J and π) with an entrance-channel dependent factor

C1,a(E; J, π) that depends upon geometrical and kinematical

factors, and summing over both values of π and all values of

J participating in the reaction,

σfission(E) =
∑

J,π

C1,a(E; J, π)Pfission,1a(E; J, π) . (30)

We do not write C1,a(E; J, π) in full because that expression

is well known, is lengthy, and only deflects attention from the

essential elements of the theory. The explicit expression may

be found, for instance, in Ref. [15].

For tunneling through the barrier we consider as an example

Eq. (23). For brevity we define

Ptun(E; J, π) =
Ptun(E; J, π)

(1 + Ptun(E; J, π)2
. (31)

Use of Eq. (31) in Eq. (23) and insertion of the latter into

Eq. (30) gives

σfission(E) =
∑

Jπ

C1,a(E; J, π)T1,a(J, π)Ptun(E; J, π) .

(32)

If Ptun(E; J, π) depends upon (J, π) only weakly,

Ptun(E; J, π) ≈ Ptun(E) , (33)

Eq. (32) takes the form

σfission(E) ≈
(

∑

Jπ

C1,a(E; J, π)T1,a(J, π)
)

Ptun(E)

= σcompound(E) Ptun(E) . (34)

The last line defines the total cross section σcompound(E) for

compound-nucleus formation. The value of σcompound(E) is

completely determined by nuclear reaction data and can be cal-

culated reliably. The ratio σfission(E)/σcompound(E) yields

Ptun(E). If the approximation (33) does not apply, the ratio

σfission(E)/σcompound(E) = 〈Ptun(E; J, π)〉 (35)

gives the weighted average of Ptun(E; J, π) taken over the

values of (J, π) that participate in the reaction. Analogous

conclusions hold for the results in Eqs. (21), (23), and (24).

The values of Ptun(E), of 〈Ptun(E; J, π)〉, of Y , and of

〈Y 〉 obtained from data on total fission cross sections may

serve as tests for collective models of barrier penetration. That

is true, in particular, of the energy dependence of Ptun(E)
which relates directly to the shape of the barrier. For small

neutron energies, Ptun(E) should be close to the barrier pene-

tration factor for spontaneous fission in neighboring nuclei.

VI. HEAVY-ION FUSION

As an example we consider the case where the excitation

energies both of system 1 and of system 2 are in the regime of

overlapping resonances. Other cases may be discussed in anal-

ogy to Section V D. We use the second of Eqs. (18). For the

case of barrier penetration, summation of the result in Eq. (32)

of Ref. [8] over channels (1a), the first of Eqs. (31) of Ref. [8],

and Eq. (31) give

Pfusion,2b(E) = T2,bPtun(E) (36)
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while for barrier transition via a set of k transition states

Eq. (25) of Ref. [12] gives

Pfusion,2b(E) = T2,bY . (37)

Here Ptun(E) and Y are defined in Eqs. (20) and (25), respec-

tively.

For practical applications, numerator and denominator of

the factor T2,b in Eqs. (36) and (37) are given for each value

of J and π in terms of the transmission coefficients T2,b′ for

channels (2 b’) containing two heavy ions each in the ground

or in an excited state, see Eqs. (16). These transmission coeffi-

cients can be calculated from the optical model for elastic scat-

tering. The optical-model potential for scattering of two heavy

nuclei seems less well investigated both phenomenologically

and theoretically than that for nucleon-nucleus scattering, see,

for instance, Refs. [17, 18]. Evaluation of the denominator

in T2,b requires, in addition, the average level densities of the

fission products. These are, in general, known as well as that

of the target nucleus in a neutron-induced reaction. We con-

clude that the factor T2,b in Eqs. (36, 37) can perhaps not be

calculated as precisely as T1,a for a neutron-induced fission

reaction but can be predicted at least semiquantitatively from

known nuclear data.

As for the factors that determine penetration through or tran-

sition over the barrier, much of the discussion in Section V D

applies in the present case as well and is not repeated here.

The total average fusion probability in Eqs. (36, 37) is simi-

lar in form to the probability of a compound-nucleus reaction

that starts in channel (2 b) and feeds transmission through or

over the barrier. The probability for that to happen is deter-

mined by the factors Ptun(E) and Y . In full analogy to Sec-

tion V D, these may be determined theoretically with the help

of collective variables.

In analogy to Eq. (30), the total fusion cross section is writ-

ten as

σfusion(E) =
∑

Jπ

C2,b(E; J, π)Pfusion,2b(E; J, π) . (38)

With the help of Eq. (36) that gives

σfusion(E) =
∑

Jπ

C2,b(E; J, π)T2,b(J, π)Ptun(E; J, π) ,(39)

and correspondingly for Eq. (37). Defining the cross section

for merger as

σmerger(E) =
∑

Jπ

C2,b(E; J, π)T2,b(J, π) , (40)

we note that σmerger(E) is available from nuclear data and

conclude that Ptun(E) or 〈Ptun(E; J, π)〉 may be determined

from the ratio of the measured total fusion cross section and

the cross section for merger, and correspondingly for Y and

〈Y 〉.

VII. CONCLUSIONS

For neutron-induced fission, we have modeled both the

compound nucleus generated by absorption of the incident

neutron and the nuclear system near the scission point as two

statistically independent dynamical systems that can be de-

scribed in terms of random-matrix theory. For heavy-ion fu-

sion, we have used the same model for the compound system

reached after merger of the two ions, and for the compound

nucleus at the other side of the barrier. In both cases we

have assumed that, seen from the entrance channel, the sys-

tem on the other side of the barrier is in the regime of strongly

overlapping resonances. That makes it possible to derive, for

fixed quantum numbers (J, π), explicit expressions for the av-

erage probability for neutron-induced fission and for heavy-

ion fusion leading to specific final channels. These expres-

sions factorize. The first factor describes the reaction up to

the point where the system has passed the barrier. The sec-

ond factor describes how the resulting highly excited system

de-excites and/or decays into fragments. Because of our sta-

tistical assumptions these two factors are completely indepen-

dent of each other, in the same sense in which the decay of

the compound nucleus in the regime of strongly overlapping

resonances is indepedent of its mode of formation.

Summation over all final channels yields the total average

probabilities in Eqs. (18) for neutron-induced fission or heavy-

ion fusion. These expressions are independent of what hap-

pens after the system has passed the barrier. The expres-

sions (18) relate the probability for neutron-induced fission

and for heavy-ion fusion to elements of the statistical theory

of nuclear reactions. Parts of these expressions can, therefore,

be calculated accurately within existing compound-nucleus

theory. The parts of the theory that go beyond the standard

statistical theory are the probabilities for penetration through

or passage over the fission barrier. These must be calculated

within a model for collective motion or, alternatively, may be

determined experimentally from total fission or fusion cross

sections. In that way our approach promises direct insight

into the dynamics of barrier penetration and of transmission

over the barrier.

The present theory does not specify what happens after the

system has passed the barrier. In principle, that question must

be addressed separately and independently for every value of

(J, π). It is conceivable, however, that collective dynamics be-

yond the barrier provides a description independent of (J, π).
In that case, the fission (fusion) reaction would be described

by two factors: The total cross section for fission (fusion)

would be multiplied by the probability (given by the collec-

tive dynamics) for the system on the other side of the barrier

to decay into a series of reaction products.
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