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Collisional dynamics of symmetric two-dimensional quantum droplets
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The collisional dynamics of two symmetric droplets with equal intraspecies scattering lengths
and particle number density for each component is studied by solving the corresponding extended
Gross-Pitaevskii equation in two dimensions by including a logarithmic correction term in the usual
contact interaction. We find the merging droplet after collision experiences a quadrupole oscillation
in its shape and the oscillation period is found to be independent of the incidental momentum for
small droplets. With increasing collision momentum the colliding droplets may separate into two,
or even more, and finally into small pieces of droplets. For these dynamical phases, we manage to
present boundaries determined by the remnant particle number in the central area and the damped
oscillation of the quadrupole mode. A stability peak for the existence of droplets emerges at the
critical particle number Nc ≃ 48 for the quasi-Gaussian and flat-top shapes of the droplets.

I. INTRODUCTION

The self-binding property of classical liquids has been
explained by van der Waals theory: the liquid can ex-
ist stably because the long-range attraction and short-
range repulsion reach balance under a certain density
[1]. The Bose-Einstein condensates (BEC) are gener-
ally described by the Gross-Pitaevskii equation (GPE)
in the mean field approximation and in the self-bound
state of a many-body system the mean field term in the
two-component condensates provides such an attractive
force. A repulsive potential with a power-law dependence
on density higher than that of the mean field is required
to balance the attraction. The earlier attempt to reach
this balance was to utilize the Efimov effect to provide
a repulsive force. When the Efimov resonance occurs,
the three-body contribution dominates the energy den-
sity functional, leading to the stabilization of the system
and the formation of the droplet. However, this multi-
body system is shown to be very dissipative due to the
three-body losses [2].
In 1957, Lee, Huang and Yang [3] proposed the next-

order energy correction for the ground state energy of
weakly repelling Bose gas, i.e., the famous LHY cor-
rection, which can provide a repulsive force, E/V =

(gn2/2)(1 + 128
√
na3/15

√
π + . . . ) with a the scatter-

ing length and n the particle number density. Usually,
the ultra-cold atoms in the gas phase are trapped in the
external potential and can easily expand into gas when
the harmonic trap is switched off. Petrov was the first to
propose [4] that diluted weakly interacting Bose mixtures
can form droplets with self-binding properties. This at-
tracted much attention from the cold atom community
and inspired a huge wave of research in quantum droplet
[5–11].
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Experimentally, the quantum droplets were observed
for the first time in the dipolar system [12–17] and the
binary mixture system [18–20]. In both cases, the mech-
anism for the droplets is the same, i.e., the quantum
droplet is stabilized by the precisely tuned attractive
mean-field interactions and the repulsive quantum fluctu-
ations. For the droplet formed by dipole interaction, the
long- and short-range interactions compete at the mean-
field level, and when trapped in a strong cigar-like poten-
tial, multiple droplets are arranged in a lattice pattern
which breaks the rotational symmetry [21, 22]. In the bi-
nary mixture droplets, the residual mean field term as a
combination of interspecies and intraspecies interactions
can stabilize the LHY correction, and the magnetic Fes-
hbach resonance is used to adjust the scattering length
of atoms to achieve the required interaction strength for
the self-binding mixture [18, 19, 23].

Collisions of quantum droplets have been studied in
Bose–Bose mixtures with droplets prepared from sepa-
rate condensates in a double-well potential [24]. The
collision outcome depends on the collision velocity, and
the critical velocity that discriminates between differ-
ent dynamical phases exhibits a different dependence on
the atom number for small and large droplets. Using
a time-dependent density functional theory, a numerical
simulation of the collision of three-dimensional quantum
droplets is carried out, which is consistent with the above
experiment [25] and the dynamics can be roughly divided
into three situations: merging, separation, and evapora-
tion. Compared with the quasi-elastic collision of Gaus-
sian quantum droplets in free space, the slow-moving
Gaussian quantum droplets in the shallow optical lattice
potential have a tendency to merge after collision [26].
The collision of one-dimensional (1D) droplets shows in-
teresting breathing mode with the droplet size periodi-
cally oscillating [27]. The two-dimensional (2D) droplets
are constructed with vorticity embedded into each com-
ponent [8] and the merging of two zero-vorticity droplets
into a single one with strongly oscillating eccentricity is
briefly discussed.
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In this work, we study numerically the collisional be-
haviours in the 2D quantum droplets with equal inter-
action parameters and particle number density for each
component. The quadrupole mode is found in the density
width oscillation in the dynamics of the merged droplets.
We manage to classify the dynamical phases into three
catalogs and provide a criterion to determine the bound-
aries between them.
The article is organized as follows. First, we introduce

the characteristic units and rescale the dynamical equa-
tion into a dimensionless form in Sec. II. In Sec. III,
the numerical scheme for the time-splitting method is in-
troduced briefly. We discuss the quadrupole oscillation
of the merged droplet and the damped oscillation of the
separated droplet in Sec. IV, and the oscillation period of
the merged droplet is further analyzed. Finally, the phase
diagram of the collisional dynamics is given in Sec. V and
we summarize the results in Sec. VI.

II. MODEL

We consider the 2D binary BEC with mutually sym-
metric components, assuming that the scattering length
describing the intraspecies interaction is equal for each
component, a↑↑ = a↓↓ = a, and the particle number den-
sity in the components is also equal, n↑ = n↓ = n. The
corresponding energy density is [5]

E2D =
8π~2n2

m ln2 (a↑↓/a)
[ln(n/n0)− 1], (1)

with n0 the equilibrium density of each component

n0 =
e−2γ−3/2

2π

ln(a↑↓/a)

aa↑↓
, (2)

where γ ≈ 0.5772 is the Euler’s constant. The station-
ary Gross-Pitaevskii equation is obtained by minimizing
the energy functional with a non-uniform energy density
n(x, y) = |ψ(x, y)|2 with respect to independent vari-
ations of the wave function ψ and its complex conju-
gate ψ∗ subject to the conservation of the total particle
number N =

∫

n(x, y)dxdy for a single component. To
treat dynamical problems it is natural to use a time-
dependent generalization of this Schrödinger equation,
with the same non-linear interaction term

i~
∂ψ

∂t
=

[

− ~
2

2m
∇2 +

8π~2

m ln2(a↑↓/a)
|ψ|2 ln( |ψ|2√

en0
)

]

ψ, (3)

which is the basis for our discussion of the dynamics of
the droplet. We define the characteristic units of length
and time

x0 =

√

ln(a↑↓/a)aa↑↓
4e−2γ−1

, (4)

t0 =
mln(a↑↓/a)aa↑↓

4~e−2γ−1
, (5)

which yields an energy unit

E0 =
~
2

mx20
=

~

t0
=

4~2e−2γ−1

mln(a↑↓/a)aa↑↓
, (6)

a wave function normalization factor

ψ0 =

√√
en0 =

√

e−2γ−1 ln(a↑↓/a)

2πaa↑↓
, (7)

and a critical particle number

N0 = ψ2
0x

2
0 =

ln2(a↑↓/a)

8π
. (8)

Thus, by rescaling the time, length, and wave function in
these units t = t′t0, x = x′x0, ψ = ψ′ψ0, one obtains the
dimensionless equation (with the primes omitted) that
describes the dynamics of 2D quantum droplet

i
∂ψ

∂t
=

[

−∇2

2
+ |ψ|2 ln(|ψ|2)

]

ψ. (9)

The spatial profile of the droplet n(x, y) can be obtained
by using the imaginary-time propagation method to solve
Eq. (9) in the framework of the mean-field theory. This
is governed by a single parameter, the dimensionless N ,
which is the number of particles divided by N0. It has
been shown [8] that the critical particle number Nc sep-
arates two different physical regimes: for smaller N , the
density profile is essentially nonuniform quasi-Gaussian
as the quantum pressure is significant, while for larger
N a flat plateau is formed in the center of the droplet
with the pattern similar to a puddle filled by the homo-
geneous liquid. The central density value of the droplet
attains the maximum value nmax ≃ 0.6567 in unit of ψ2

0

at the border Nc ≃ 48 between the quasi-Gaussian and
flat-top shapes, and gradually drops to the equilibrium
value nTF = 1/

√
e estimated in the Thomas-Fermi ap-

proximation. It is worth to note that a similar puddle
phase appears in the 1D droplet [5, 28, 29], however, the
central density value is monotonically increased to its
equilibrium value nmax = 4/9 in the unit of ψ2

0 when N
goes infinity.

III. COLLISION DYNAMICS OF DROPLETS

The dynamics of quantum droplets exhibits the be-
havior similar to another type of self-bound object, the
so-called soliton [30], which can maintain its original
shape without changing while traveling at a constant
speed. Here we consider the pairwise collision between
two droplets moving along the x direction. The GPE
(9) is usually solved by a time splitting method based on
the fast Fourier transformation (FFT) [31]: After a tiny
time step ∆t, the wavefunction of GPE (9) evolves as

ψ(x, y,∆t) = e−iĤ∆tψ(x, y, 0). Thus, the wavefunction
at an arbitrary time t = n∆t can be then written approx-

imately as ψ(x, y, t) = [e−iĤ∆t]nψ(x, y, 0). For each time
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FIG. 1. The density plots of the collisional dynamics of two droplets showing three different phases after the collision: (a)
merging, (b) separation, and (c) evaporation, depending on the relative incident momentum k = 0.2, 0.4, and 1.8, respectively,
from top to bottom panels. Both droplets are initially normalized to a total particle number N1 = N2 = 200 and all three cases
correspond to the in-phase collisions with φ = 0.

step, we use the Strang splitting e−iĤ∆t = e−i(T̂+V̂ )∆t ≈
e−iT̂∆t/2e−iV̂ ∆te−iT̂∆t/2 to split the operator e−iĤ∆t in
terms of the kinetic part T̂ and the potential V̂ . We

then employ the FFT to deal with the operator e−iT̂∆t/2

in the momentum space while the diagonal potential V̂
can evolve directly in the spatial space. We adopt the
initial wave function in the superposition state of two
droplets propagating in opposite directions

ψ(x, y, t = 0) = ψ1(x − a, y)e−ikx/2+iφ

+ ψ2(x + a, y)e+ikx/2, (10)

where ψ1,2 are the stationary shapes of quantum droplets
with normalization particle number N1,2, ±a are their
initial positions in the x direction, k is the initial relative
momentum of the colliding droplets, and φ is the relative
phase. For simplicity, we consider the in-phase dynamics
with φ = 0 of two droplets with equal number of particles
N1 = N2.
In Fig. 1 the collisional dynamics of two colliding

droplets in 2D is presented for some typical values of
relative momentum, for relatively large droplets initially
normalized to a total particle number N1 = N2 = 200.
In each panel, with increasing time from left to right,
the density plots are shown for several moments of the
collision process. Both droplets have the flat-top profile
before the collision [27] due to their unique self-binding
property, which can exist stably in the absence of an
external potential until they meet each other. We see
interference patterns appear when the two droplets meet
and depending on the relative momentum, there exist
three kinds of final states. For the collision with a small
velocity k = 0.2, as shown in Fig. 1(a), they merge
into one droplet which is unevenly distributed and will

still undergo a large amount of deformation as the liquid
does. When the relative velocity is increased to k = 0.4,
the droplets collide and interference occurs in one direc-
tion and then the atoms are separated into two droplets
drifting away slowly in the vertical direction, leaving few
atoms in the collisional center as shown in Fig. 1(b). For
even larger velocity k = 1.8 in Fig. 1(c), we observe a
strong interference pattern in the first stage of the colli-
sion and the droplets are then smashed into very small
pieces without forming stable droplets, corresponding to
the evaporation of liquid. The dynamics is calculated
in a 2D space L × L with dimension L = 100x0 and the
atoms can never reach the boundary in the evolution time
in all panels of Fig. 1. We can see that the density dis-
tribution is always symmetric about x and y-axis during
its evolution, which is guaranteed by the conservation of
momentum.

IV. MERGING PHASE

It is interesting to further study the deformation of the
merged droplet in the case of a slow collision. It is easy
to see that the profile of the merged droplet experiences
quadrupole mode oscillations in the x and y directions.
To characterize the details we define the droplet width
in the x direction as the full width at half maximum
(FWHM) of the probability density on the central line of
y = 0, i.e.,

Px = xL − xR (11)

where xL,R denotes the left and right boundaries of the
droplet. Similarly, the width in the y direction is defined
as the FWHM of the probability density on the central
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FIG. 2. Typical quadrupole mode oscillation of the droplet
in the merging phase and the damped oscillation in the sep-
aration phase. In the merging case (k = 0.2) the droplet
widths Px (blue solid circle) and Py (open red circle) oscillate
periodically with time. In the separation case (k = 0.4) the
oscillation in Px (green solid circle) is quickly damped after
the collision and the small fluctuation never exceeds half of the
maximum value of droplet width Px. Here N1 = N2 = 200.

line of x = 0, i.e.,

Py = yT − yD (12)

where yT,D denotes the top and down boundaries of the
droplet. We plot the shape oscillation in both directions
in Fig. 2 for k = 0.2 andN1 = N2 = 200 and find that the
merged droplet will never arrive at the boundary of our
numerical simulation in the evolution and the quadrupole
oscillation is restricted in a finite regime. The widths in
both x and y directions, Px and Py, oscillate periodically
with time and alternately reach their maximum values
as shown in Fig. 1(a), i.e., Py is small when Px is large,
and vice versa. The oscillation amplitudes of the merging
droplets show a tendency to decay very slowly, as shown
by the red and blue circles in Fig. 2. On the contrary,
the oscillation in the separation phase is quickly damped
after the collision and never exceeds half of the maximum
value of droplet width Px. The small fluctuation repre-
sents the shape oscillation of the remnant atoms in the
origin area, while the two separated, bigger droplets drift
away slowly along the orthogonal y-axis as shown in Fig.
1(b).
The ultracold atom experiments allow one to witness

how many-body effects emerge in the system as one grad-
ually increases the particle number. Hence we further
closely inspect the quadrupole oscillation period for vari-
ous numbers of particles and different incident momenta
in the merging region. We first let the colliding droplets
merge into one and evolve for a long enough time. For
each value of k and N , the oscillation period is extracted
from the quadrupole mode oscillation such as in Fig. 2
through the Fourier analysis. Specifically, the oscillation

0 200 400 600

400

800

1200

FIG. 3. Period of quadrupole oscillation as a function of the
particle number in the merging region for different incident
momenta k = 0.1, 0.15, 0.2, 0.3. For k = 0.3, the colliding
droplets will not merge for N > 150. The calculation is done
in a 2D space with a sufficiently large length L = 100x0 to
assure the accuracy for large N .

of Px for evolution time t = 4000 is decomposed into its
frequency components which is known as the frequency
spectrum. The Fourier transform is represented as

P̃x(ω) =

∫ +∞

0

dt
(

Px(t)− P̄x

)

e−iωt (13)

where P̃x(ω) and Px(t) are the output and input spec-
tra that are functions of frequency and time, respec-
tively. The equilibrium value of the oscillation P̄x aver-
aged over the whole evolution time is subtracted to avoid
the trivial peak at zero frequency. For a regular oscilla-
tion in our case, the frequency spectrum is distributed
around a peak value ωmax. The period corresponding
to the quadrupole oscillation is related to the frequency
peak by T = 2π/ωmax. We show the dependence of the
quadrupole oscillation period as a function of the parti-
cle number in Fig. 3 for different incident momentum k.
We scan the merging region for slow collision and make
sure the colliding droplets merge into a bigger one in or-
der to induce the quadrupole mode oscillation. Generally
speaking, larger droplets have longer oscillation periods.
For small droplets with N < 200, the oscillation period
seems to be independent of the incidental momentum k,
as can be seen from the symbol overlap for N = 100
and 200 extracted from the oscillation of Px. The period
of the medium-size droplets with N = 300 − 500 shows
a tendency to increase with k, however, for even larger
droplets (N > 600) the collision is close to the separa-
tion phase and the oscillation period becomes ill-defined.
The increase of oscillation period with incidental velocity
is easily understood that the atoms in merged droplets
may fly farther for a violent collision in the real time-
of-flight process which surely takes longer time to finish
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FIG. 4. Phase diagram of the in-phase collisional dynamics of
two droplets with equal particle number N1 = N2 = N and
φ = 0. The boundaries between merging, separation, and
evaporation phases are determined by the remnant particle
number in the central area and the damped oscillation of the
quadrupole mode, respectively. A stability peak for the exis-
tence of droplets emerges at the critical value Nc ≃ 48 for the
quasi-Gaussian and flat-top shapes of the droplets.

a period before the self-binding interaction draws them
back.

V. PHASE DIAGRAM

We present in Fig. 4 the phase diagram of the col-
lisional dynamics in terms of two parameters, i.e., the
incidental momentum k and the particle number N in
each droplet (for simplicity we again assume the colli-
sion occurs for two droplets with equal particle num-
ber N1 = N2 = N and the relative phase before the
collision is zero φ = 0). The behaviors of the colli-
sions are classified into three situations: merging, separa-
tion, and evaporation, and the boundaries between them
are determined by the damped oscillation of quadrupole
mode in Px, the remnant particle number in the central
area, as well as the persistence of self-binding profile of
the droplet after the collision. The most obvious differ-
ence between the separation and merging phases is the
quadrupole oscillation of Px,y after the collision: in the
merging case the droplet experiences a quadrupole oscil-
lation in the area around the origin, while in the sepa-
ration case the droplets drift away leaving behind a very
small portion of atoms in the origin such that the droplet
width (here we choose Px) after the collision undergoes a
very quick damping. For a fixed particle number, the crit-
ical momentum of the merging and separation regimes is
determined by the oscillation amplitude of Px not exceed-
ing a critical value, which is set as half of the difference
between the maximum and minimum value of Px after
the collision (see Fig. 2).

On the other hand, the boundary between separa-
tion and evaporation phases is fixed by R, the ratio of
the number of remnant particles in a selected central
area 0.25L× 0.25L in the xy-plane to the total number
of particles. The remnant particle number is obtained
by the integration in the chosen square area, namely
3L/8 ≤ x, y ≤ 5L/8, and R = 20% serves as the cri-
teria of evaporation-separation transition. One can see
from the dynamics that the two separated droplets slowly
move to the up and down borders leaving in the origin a
small portion of atoms, see for instance Fig. 1(b). The
atoms in the central area grow with increasing inciden-
tal momentum showing multiple droplets configuration,
and finally the tiny pieces of the colliding droplets in the
evaporation case are scattered all over the xy-plane, as
shown in Fig. 1(c). When the ratio of atoms in the chosen
square area becomes less than 20%, the droplet dynam-
ics is classified into the evaporation phase. In practice,
the central area integration is performed at the moment
when 0.1% of the total atoms have arrived at the square
boundary of the system. The calculation is done in the
xy plane with a varying length L which is taken as 8Px

for all the calculations. Thus, two phase boundaries may
be determined accurately without the border reflection
after the collision. We take the length of L varing from
32.8x0 for N = 10 to 253.1x0 for N = 500 in Fig. 4.

The phase diagram in Fig. 4 indicates that for slow
collision the droplets prefer to merge into a bigger one
with the quadrupole mode oscillation. When the in-
cidental momentum is increased, the colliding droplets
will separate into two droplets drifting along the vertical
direction. For even larger momentum the collision will
destroy the droplets into pieces scattering in the plane.
The critical values of momentum of merging-separation
(i.e., blue squares) decrease with the number of parti-
cles in the droplets and continue to approach a constant
value. That is to say, for small droplet one needs larger
incidental momentum to separate it into two or smashed
into many pieces. In sharp contrast, the critical momen-
tum of separation-evaporation (i.e., orange circles) ex-
hibits instead a non-monotonic behaviour with respect
to particle number. As N decreases, the critical mo-
mentum increases monotonically first, reaches a maxi-
mum at Nc ≃ 48, and then reduces until almost join-
ing the boundary between the merging and separation
phases for a relatively small particle number. Similar to
the case in one dimension [27], a stability peak is also
found at Nc ≃ 48 for the collisions of the 2D droplets
considered in this work. For even small droplets (i.e.,
N = 10 ∼ 30), the regime of the separation phase is sig-
nificantly squeezed and the system enters directly from
the merging phase into the evaporation phase with in-
creasing k. It should be clarified that the boundary be-
tween separation and evaporation is fixed by the atoms
in the central square area which is chosen artificially and
the percentage of the remnant particles is also subject
to vary. The boundaries and thus the phase diagram
are not physically accurate and will change for alterna-
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tive choice of these two parameters. Whether the col-
liding droplets merge or separate into multiple droplets
depends on whether the surface tension is sufficient to
offset the kinetic energy of the collision pair [14, 32–34]
and the surface tension accounts for the droplet shape
recovery which is independent of the droplet size in one
dimension [27].

VI. CONCLUSIONS

We have studied the collisional dynamics of two sym-
metric quantum droplets in two dimensions by solving
the extended nonlinear Schrödinger equation with the in-
clusion of the LHY term. The dynamics shows three dif-
ferent phases after the collision, i.e. merging, separation,
and evaporation. The phase diagram is obtained in the
parameter space of incidental momentum and the particle
number. In the merging phase, the droplet shape exhibits
typical quadrupole mode oscillation, in the separation
phase the oscillation is damped very quickly, and in the

evaporation phase the remnant number of particles in the
central square area amounts to a considerable ratio. This
allows us to distinguish them easily. The dynamics for
different particle numbers in the droplets, with non-zero
relative phase, and for non-head-on collision may exhibit
more complicated patterns that deserve further studies.
The difference between smaller and larger droplets corre-
sponds to the crossover from a compressible state to an
incompressible state where the dynamics is dominated
by the droplet binding energy and the surface tension
respectively.
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