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Regularity and long-time behavior of global weak solutions to a

coupled Cahn-Hilliard system: the off-critical case
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Abstract

We consider a diffuse interface model that describes the macro- and micro-phase separation processes

of a polymer mixture. The resulting system consists of a Cahn-Hilliard equation and a Cahn-Hilliard-

Oono type equation endowed with the singular Flory-Huggins potential. For the initial boundary

value problem in a bounded smooth domain of Rd (d ∈ {2, 3}) with homogeneous Neumann bound-

ary conditions for the phase functions as well as chemical potentials, we study the regularity and

long-time behavior of global weak solutions in the off-critical case, i.e., the mass is not conserved

during the micro-phase separation of diblock copolymers. By investigating an auxiliary system with

viscous regularizations, we show that every global weak solution regularizes instantaneously for

t > 0. In two dimensions, we obtain the instantaneous strict separation property under a mild growth

condition on the first derivative of potential functions near pure phases ±1, while in three dimensions,

we establish the eventual strict separation property for sufficiently large time. Finally, we prove that

every global weak solution converges to a single equilibrium as t → +∞.

Keywords: Cahn-Hilliard equation, Cahn-Hilliard-Oono equation, Regularization, Strict separation,

Convergence to equilibrium.

MSC 2020: 35A01, 35B40, 35B65, 35K35, 35Q92.

1 Introduction

The Cahn-Hilliard equation provides an efficient tool to study the phase separation process of binary

mixtures [5,22]. It is a representative of the so-called diffuse interface models that describe the evolution

of free interfaces. The diffuse interface approach has the advantages that it avoids the explicit treatment

of free interfaces and can handle complex topological changes in a natural way. In the last decades, the

Cahn-Hilliard equation and its variants have been successfully applied in many of segregation-driven

problems (see [29] and the references cited therein).

In the present work, we analyze the following initial-boundary value problem

∂tu = ∆µ in Ω× (0, T ), (1.1)

µ = −ǫ2u∆u+ ∂uF (u, v) in Ω× (0, T ), (1.2)

∂tv + σ(v − c) = ∆ϕ in Ω× (0, T ), (1.3)

ϕ = −ǫ2v∆v + ∂vF (u, v) in Ω× (0, T ), (1.4)
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∂nu = ∂nv = ∂nµ = ∂nϕ = 0 on ∂Ω× (0, T ), (1.5)

(u, v)|t=0 = (u0, v0) in Ω. (1.6)

Here, Ω ⊂ R
d (d ∈ {2, 3}) is a bounded domain with smooth boundary ∂Ω and T > 0 is the final time.

The vector n = n(x) is the unit outer normal vector on ∂Ω and ∂n denotes the outward normal derivative

on the boundary. The coupled system (1.1)–(1.4) was introduced in [3] to describe the dynamics of a

mixture of a homopolymer and a diblock copolymer (with monomers of type A and B) that undergoes

two distinct but simultaneous phase separation processes. It consists of a Cahn-Hilliard equation and a

Cahn-Hilliard-Oono type equation for the phase functions u and v, respectively. The order parameter

u(x, t) : Ω × [0, T ) → [−1, 1] denotes the relative fraction difference between the copolymer and

the homopolymer, while the order parameter v(x, t) : Ω× [0, T ) → [−1, 1] denotes the relative fraction

difference between AB components of the diblock copolymer itself. The pure phases ±1 of u correspond

to a homopolymer rich domain {u = −1} and a copolymer rich domain {u = 1}. Similarly, the pure

phases ±1 of v correspond to the A-rich domain {v = −1} and the B-rich domain {v = 1}. In the

diffuse interface framework, both functions u, v smoothly transit from −1 to 1 in narrow transition

layers, approximating the sharp interfaces with thickness scales εu, εv > 0, respectively. The functions

µ,ϕ : Ω× [0, T ) → R are associated chemical potentials for the macro-separation (between copolymer

and homopolymer) and micro-phase separation (between AB blocks) processes. They are given by the

variational derivatives of the following free energy functional

Ψ(u, v) =

∫

Ω

[
ǫ2u
2
|∇u|2 + ǫ2v

2
|∇v|2 + F (u, v)

]
dx,

where F is a bivariate potential function. In [3], the authors considered the following specific form:

F (u, v) =
1

4
(u2 − 1)2 +

1

4
(v2 − 1)2 + αuv + βu2v + γuv2.

The first two fourth-order polynomials adopt a double-well structure and have two different minima ±1

corresponding to the pure phases. The real parameters α, β and γ present the influences of coupling

terms in the free energy. They can alter the (u, v)-values of the minima of F (u, v), and subsequently

affect the confined morphologies of the polymer blend. It has been shown in [3] that the system (1.1)–

(1.4) is robust enough to predict many kinds of possible morphologies and offers a guideline of how the

system behaves dynamically when the parameters are varied. Besides, we mention that the system under

consideration is closely related to some diffuse-interface models for binary mixtures with surfactant,

see [10, 11, 27, 39] and the references therein.

Next, let us give some comments on the linear term σ (v − c) in the Cahn-Hilliard-Oono equation

(1.3). The parameter σ is related to the bonding between block A and block B in the copolymer such

that its value is inversely proportional to the square of the total chain length N (see [3,7]). Here we treat

a general case with c ∈ (−1, 1) being a prescribed constant (see [9, 18]). For any given (sufficiently

regular) function g, denote its spatial mean value by g = |Ω|−1
∫
Ω g dx. With this notation, we find that

the solution (u, v) to problem (1.1)–(1.6) formally satisfies the ordinary differential equations

du

dt
= 0 and

dv

dt
+ σ (v − c) = 0, ∀ t ∈ (0, T ),

with initial values u(0) = u0, v(0) = v0. Then we have

u(t) = u0 and v(t) = v0e
−σt + c

(
1− e−σt

)
, ∀ t ∈ [0, T ). (1.7)
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Hence, v will remain constant provided that σ = 0 or v0 = c (when σ 6= 0). This is usually referred

to as the conserved case [18]. On the other hand, the case with v0 6= c is called the off-critical case. In

particular, if σ > 0, then v(t) converges exponentially fast to c as t → +∞ according to (1.7). It is easy

to verify that if c, u0, v0 ∈ (−1 +m, 1−m) for some given constant m ∈ (0, 1), then in both cases the

mean values u, v will stay in (−1 +m, 1−m) on the whole interval of existence for (u, v). In [3], the

authors considered the conserved case with c = v0. Thanks to (1.7), the equation (1.3) reduces to

∂v

∂t
+ σ (v − v) = ∆ϕ.

Thus, the coupled system (1.1)–(1.4) can be viewed as a gradient flow of the following free energy with

a nonlocal term:

Ψ̃(u, v) =

∫

Ω

[
ǫ2u
2
|∇u|2 + ǫ2v

2
|∇v|2 + F (u, v) +

σ

2
|(−∆)−

1

2 (v − v)|2
]
dx, (1.8)

where ∆ is the Laplace operator with homogeneous Neumann boundary condition in our current setting

(cf. (1.5)). Moreover, the system satisfies the energy dissipative law in the conserved case (at least

formally):
d

dt
Ψ̃(u, v) +

∫

Ω

(
|∇µ|2 + |∇ϕ̃|2

)
dx = 0, (1.9)

with ϕ̃ = ϕ+ σ(−∆)−1(v − v). The modified free energy (1.8) is closely related to the Ohta-Kawasaki

functional for diblock copolymers [7, 33, 35]. When σ 6= 0, the Oono’s term σ(v − v) yields possible

long range interactions that can generate a variety of minimizers with fine structure in the micro-phase

separation process, such as layers, onions and multipods (see [3] for details). For mathematical analysis

of the Cahn-Hilliard-Oono equation and its variants, we refer to [8, 14, 18, 23, 28] and the references

therein.

In this study, we are interested in the theoretical analysis of problem (1.1)–(1.6). It is well-known that

as a fourth-order parabolic equation, the Cahn-Hilliard (or Cahn-Hilliard-Oono) equation with a regular

potential (e.g., a polynomial) does not maintain the maximum principle, that is, its solution may not stay

in the physically relevant interval [−1, 1] throughout the evolution, see [29] and the references therein.

On the other hand, the polynomial double-well potentials used in [3] are just convenient approximations

of the Flory-Huggins free energy density for polymers [13, 15]:

SFH(r) =
θ

2
[(1 + r) ln(1 + r) + (1− r) ln(1− r)]− θ0

2
r2, ∀ r ∈ (−1, 1). (1.10)

The two parameters θ, θ0 in (1.10) denote the absolute temperature and the critical temperature for phase

separation, respectively. If 0 < θ < θ0, the potential SFH has a double-well structure with two minima

inside (−1, 1). The singular nature of SFH near the endpoints ±1 (i.e., pure phases) can ensure the

existence of physical solutions with values in [−1, 1] (cf. [2, 18]). Inspired by this, the authors of [9]

analyzed problem (1.1)–(1.6) with the choice

F (u, v) = S (u; θu, θ0,u) + S (v; θv, θ0,v) +W (u, v),

where W (u, v) = αuv + βu2v + γuv2 and

S (r; θr, θ0,r) =
θr
2
[(1 + r) ln (1 + r) + (1− r) ln (1− r)]− θ0,r

2
r2,
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with 0 < θr < θ0,r, r ∈ {u, v}. For both conserved and off-critical cases, they proved that the resulting

initial boundary value problem admits a unique global weak solution (u, v) on [0,+∞) with certain

dissipative estimates in two and three dimensions. Then they focused on analysis of the conserved case

and showed that every weak solution regularizes instantaneously for t > 0. When the spatial dimension

is two, they further established the instantaneous strict separation property for the macro- and micro-

phases, that is, for any t0 > 0, there exist constants ωu, ωv ∈ (0, 1) depending on t0 and the initial data

such that

‖u(t)‖L∞(Ω) ≤ 1− ωu, ‖v(t)‖L∞(Ω) ≤ 1− ωv, ∀ t ≥ t0.

The above regularization properties allowed them to study the long-time behavior of global weak solu-

tions in both two and three dimensions, i.e., the convergence to a single equilibrium as t → +∞.

As pointed out in [9, Section 5], the nonlinear coupling term W (u, v) in the mixing entropy leads to

extra difficulties in the study of regularity properties of global weak solutions (and thus their long-time

behavior). Because of the lack of control on L∞-norms for approximating phase functions, higher-order

estimates of their time derivatives cannot be achieved by exploiting the Galerkin approximation scheme

like in [18], where the single Cahn-Hilliard-Oono equation was analyzed. Inspired by [19], the authors

of [9] derived higher-order time regularity of weak solutions in the conserved case, using the difference

quotients in time. Unfortunately, this argument seems not valid in the off-critical case. Comparing with

the conserved case, one of the main difficulties came from an additional inner product term
(
∂h
t ϕ, ∂

h
t v

)
,

which was due to the possible mass change in the micro-phase separation (see (1.7)). Here, for any

function f : [0, T ] → X, with X being a real Banach space, we denote ∂h
t f = h−1[f(t+ h)− f(t)] for

any h > 0 and t ≥ 0. Due to the difficulty mentioned above, regularity and long-time behavior of global

weak solutions to problem (1.1)–(1.6) were only analyzed in the conserved case, that is, the masses are

conserved and the energy is dissipative (see (1.9)).

Our aim in the present contribution is to study the regularity properties and long-time behavior of

global weak solutions to problem (1.1)–(1.6) in the off-critical case.

Under some general assumption on the nonlinearities, we recover the existence of global weak solu-

tions (see Proposition 2.1) and show that every global weak solution regularizes instantaneously for t > 0

(see Theorem 2.1). Our proof is inspired by [31], that is, we investigate an auxiliary system with viscous

regularization in the chemical potentials µ and ϕ. Given sufficiently regular initial data being strictly

separated from ±1, the coupled viscous Cahn-Hilliard system possesses global strong solutions that are

smooth enough for us to perform higher-order estimates (see Proposition 3.1). In particular, thanks to the

viscous regularizing terms, we can apply the method in [31] to obtain the instantaneous strict separation

property for phase functions u, v in both two and three dimensions. Combining uniform estimates for

the approximate solutions with a compactness argument, we are able to prove the existence of global

weak solutions to the original problem (1.1)–(1.6) and their instantaneous regularization property. In

the two dimensional case, we further establish the instantaneous strict separation of weak solutions (see

Theorem 2.2), by applying a De Giorgi type iteration scheme proposed in the recent work [17]. With

the aid of this approach, we achieve the result under weaker assumptions on the singular potentials than

those in [9]. Next, taking advantage of the viscous regularization for the system and the above mentioned

regularizing effects, we are able to characterize the ω-limit set (see Proposition 5.1) and derive the even-

tual strict property of global weak solutions in both two and three dimensions (see Theorem 2.3). It is

worth mentioning that the validity of this property in the off-critical case was open even for the single

Cahn-Hilliard-Oono equation (see [18]). Finally, we derive an extended Łojasiewicz-Simon inequality

that works in the situation with possible mass change (see Proposition 5.3). This extends the correspond-

ing result in [9, Proposition 7.2] for the conserved case and enables us to establish the convergence to a
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single equilibrium (see Theorem 2.4).

Plan of this paper. In Section 2, we first introduce the functional setting some notations, then we

state the main results of this study. In Section 3 we analyze the viscous regularizing system and derive

uniform estimates that are independent of the approximating parameter. In Section 4, we prove the

existence and regularity of global weak solutions to the original problem. Besides, we establish the

instantaneous strict separation property in the two dimensional case. In Section 5, we study the ω-limit

set and show that every weak solution becomes strictly separated for sufficiently large time. Then we

prove the convergence to an equilibrium as t → +∞ with the aid of the Łojasiewicz-Simon inequality.

In the appendix, we sketch a proof for the well-posedness of an auxiliary problem with regular potentials

and present some useful results on an nonlinear elliptic Neumann problem with singular potential.

2 Main Results

2.1 Preliminaries

We first introduce some notations and conventions. Let X be a (real) Banach space with norm ‖·‖X .

We use X ∗, 〈·, ·〉X ∗ ,X to represent its dual space and the associated duality pairing. For a Hilbert space

H, we denote the associated inner product by (·, ·)H. Throughout this paper, we assume that Ω ⊂ R
d

(d ∈ {2, 3}) is a bounded domain with smooth boundary ∂Ω. For the standard Lebesgue and Sobolev

spaces on Ω, we use the notations Lp(Ω), W k,p(Ω) for any p ∈ [1,+∞] and k ∈ N, equipped with the

corresponding norms ‖ · ‖Lp(Ω), ‖ · ‖W k,p(Ω), respectively. When p = 2, these spaces are Hilbert spaces

and we use the standard convention Hk(Ω) := W k,2(Ω). For simplicity, the norm and inner product of

L2(Ω) will be denoted by ‖ · ‖ and (·, ·), while the pairing between H1(Ω) and H1(Ω)∗ will be denoted

by 〈·, ·〉. Bold letters will be used for vector-valued spaces, for instance, we denote the vector-valued

Lebesgue spaces by L
p(Ω) = Lp(Ω;Rd), p ∈ [1,+∞].

Given a measurable set I of R, we introduce the function space Lp(I;X ) with p ∈ [1,+∞], which

consists of Bochner measurable p-integrable functions (if p ∈ [1,+∞)) or essentially bounded func-

tions (if p = +∞) with values in a given Banach space X . If I = (a, b), we write for simplicity

Lp(a, b;X ). The space Lp
uloc(0,+∞;X ) denotes the uniformly local variant of Lp(0,+∞;X ) consist-

ing of all strongly measurable f : [0,+∞) → X such that

‖f‖Lp
uloc

(0,+∞);X ) := sup
t≥0

‖f‖Lp(t,t+1;X ) < ∞.

If T ∈ (0,+∞), we find Lp
uloc(0, T ;X ) = Lp(0, T ;X ).

The following shorthands will be frequently used

H := L2 (Ω) , V := H1 (Ω) , W :=
{
u ∈ H2(Ω) | ∂nu = 0 on ∂Ω

}
.

As usual, H is identified with its dual. We have the continuous, dense, and compact embeddings:

W →֒ V →֒ H →֒ V ∗.

Besides, the interpolation inequality holds (see [18])

‖f‖2 ≤ ξ ‖∇f‖2 + C (ξ) ‖f‖2V ∗ , ∀f ∈ V,

where ξ ∈ (0, 1) is arbitrary and C (ξ) is a positive constant only depending on ξ and Ω. For every

f ∈ V ∗, we denote by f its generalized mean value over Ω such that f = |Ω|−1〈f, 1〉; if f ∈ L1(Ω), its
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mean value is simply given by f = |Ω|−1
∫
Ω f dx. Then we recall the well-known Poincaré-Wirtinger

inequality: ∥∥f − f
∥∥ ≤ CP‖∇f‖, ∀ f ∈ V,

where the positive constant CP depends only on Ω.

We denote by AN : V → V ∗ the extension of the minus Laplace operator subject to the homogeneous

Neumann boundary condition such that

〈ANf, g〉 =
∫

Ω
∇f · ∇g dx, ∀ f, g ∈ V.

Set the linear subspaces

H0 := {f ∈ H | f = 0}, V0 := V ∩H0, V ∗
0 := {L ∈ V ∗ | 〈L, 1〉 = 0} .

It is easy to verify that the restriction of AN to V0 is an isomorphism between V0 and V ∗
0 . Thus, we can

define the inverse operator N := (AN |V0
)−1 : V ∗

0 → V0. The following identities hold (see [9, 31])

〈ANu,NL〉 = 〈L, u〉 , ∀u ∈ V0, L ∈ V ∗
0 ,

〈L1,NL2〉 = 〈∇ (NL1) ,∇ (NL2)〉 , ∀L1, L2 ∈ V ∗
0 .

Define

‖L‖∗ := ‖∇ (NL)‖ =
√

〈L,NL〉, ∀L ∈ V ∗
0 ,

‖L‖2−1 :=
∥∥L− L

∥∥2
∗
+ |L|2, ∀L ∈ V ∗.

We find that ‖·‖∗ and ‖·‖−1 are equivalent norms on V ∗
0 and V ∗ with respect to the usual dual norms

(see [31]).

In the subsequent analysis, the capital letter C will denote a generic positive constant that depends

on the structural data of the problem. Its meaning may change from line to line and even within the same

chain of computations. Specific dependence will be pointed out if necessary.

2.2 Statement of results

Let us present the assumptions for problem (1.1)–(1.6). We recall that the parameters εu, εv > 0 are

proportional to the thickness of transition layers between different components in the polymer mixture,

and thus are related to the rapidity of variation of u and v in the interfacial region (see [3]). Nevertheless,

their values will not affect the subsequent analysis in this study, since we always work with fixed positive

εu, εv and do not consider the asymptotic behavior as εu, εv → 0 (i.e., the sharp-interface limit). Hence,

without loss of generality, we make the following assumption on parameters of the system:

(H0) εu = εv = 1, σ > 0, c ∈ (−1, 1), 0 < θu < θ0,u, 0 < θv < θ0,v.

In the subsequent analysis, we consider the free energy

Ψ(u, v) =

∫

Ω

[
1

2
|∇u|2 + 1

2
|∇v|2 + F (u, v)

]
dx, (2.1)

with the bivariate potential

F (u, v) = S (u; θu, θ0,u) + S (v; θv, θ0,v) +W (u, v), (2.2)
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where

S (u; θu, θ0,u) = Ŝ(u)(u)−
θ0,u
2

u2, S (v; θv, θ0,v) = Ŝ(v)(v)−
θ0,v
2

v2.

In view of [9, 17], we impose the following structural assumptions on the nonlinear functions Ŝ(j) (j ∈
{u, v}) and W :

(H1) For j ∈ {u, v}, Ŝ(j) ∈ C ([−1, 1]) ∩ C2(−1, 1), and

lim
s→−1+

Ŝ′
(j)(s) = −∞, lim

s→1−
Ŝ′
(j)(s) = +∞,

Ŝ′′
(j)(s) ≥ θj > 0, ∀ s ∈ (−1, 1).

We extend Ŝ(j)(s) = +∞ for all |s| > 1 and without loss of generality, we assume Ŝ(j)(0) =

Ŝ′
(j)(0) = 0.

(H2) There exists some constant ρ > 1/2 such that as δ → 0+, it holds

1

Ŝ′
(j)(1− 2δ)

= O

(
1

| ln δ|ρ
)
,

1

Ŝ′
(j)(−1 + 2δ)

= O

(
1

| ln δ|ρ
)
.

(H3) W ∈ C2(R2;R).

Remark 2.1. The logarithmic potential (cf. (1.10))

Ŝ(j)(s) =
θj
2
[(1 + s) ln(1 + s) + (1− s) ln(1− s)] , ∀ s ∈ (−1, 1), j ∈ {u, v},

fulfills the assumptions (H1)–(H2) with ρ = 1, while the bivariate polynomial W (u, v) = αuv +

βu2v + γuv2 considered in [3, 9] fulfills the assumption (H3). The assumption Ŝ(j)(0) = Ŝ′
(j)(0) = 0

and the convexity also imply Ŝ(j) ≥ 0 on [−1, 1]. The assumption (H2) characterizes the growth of the

first order derivative of singular potentials Ŝ(j) and it only plays a role in the proof for the instantaneous

strict separation property of global weak solutions in two dimensions (see Proposition 2.2). It is worth

mentioning that our assumptions on the nonlinearities are weaker than those in [9], cf. [9, Section 4.1]

and also [9, Assumption A].

Next, we introduce the definition of weak solutions to problem (1.1)–(1.6) (cf. [9, Definition 3.1]).

Definition 2.1. Let Ω ⊂ R
d (d ∈ {2, 3}) be a bounded domain with smooth boundary ∂Ω and T ∈

(0,+∞]. Assume that (H0), (H1) and (H3) are satisfied. For any initial data u0, v0 ∈ V such that

F (u0, v0) ∈ L1 (Ω) and u0, v0 ∈ (−1, 1), the quadruple (u, v, µ, ϕ) is called a weak solution to problem

(1.1)–(1.6) on [0, T ], if the following properties are satisfied:

u, v ∈ L∞(0, T ;V ) ∩ C([0, T ];H) ∩ L2
uloc(0, T ;W ) ∩H1

uloc(0, T ;V
∗),

u, v ∈ L∞(Ω× (0, T )) with |u(x, t)|, |v(x, t)| < 1 a.e. in Ω× (0, T ),

µ, ϕ ∈ L2
uloc(0, T ;V ), Ŝ′

(u)(u), Ŝ
′
(v)(v) ∈ L2

uloc(0,∞;H),

and

〈∂tu, η〉+ (∇µ,∇η) = 0, ∀ η ∈ V, a.e. in (0, T ),
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〈∂tv, η〉 + σ(v − c, η) + (∇ϕ,∇η) = 0, ∀ η ∈ V, a.e. in (0, T ),

µ = −∆u+ ∂uF (u, v), a.e. in Ω× (0, T ),

ϕ = −∆v + ∂vF (u, v), a.e. in Ω× (0, T ),

moreover, ∂nu = ∂nv = 0 almost every on ∂Ω× (0, T ), and (u(0), v(0)) = (u0, v0) almost every in Ω.

Then we have the following result on the existence and uniqueness of a global weak solution:

Proposition 2.1. Let Ω ⊂ R
d (d ∈ {2, 3}) be a bounded domain with smooth boundary ∂Ω. Assume

that (H0), (H1) and (H3) are satisfied.

(1) For any initial data u0, v0 ∈ V such that F (u0, v0) ∈ L1(Ω) and u0, v0 ∈ (−1, 1), problem

(1.1)–(1.6) admits a unique global weak solution (u, v, µ, ϕ) on [0,+∞) in the sense of Definition

2.1. Moreover, the following energy inequality holds

Ψ̂(u(t), v(t)) ≤ Ψ̂(u0, v0)e
−(1+σ)t + C1, ∀ t ≥ 0, (2.3)

1

2

∫ t+1

t

(
‖∇µ(τ)‖2 + ‖∇ϕ(τ)‖2

)
dτ ≤ Ψ̂(u0, v0)e

−(1+σ)t +C2, ∀ t ≥ 0, (2.4)

where

Ψ̂(u, v) = Ψ(u, v) +
1

2

(
‖u− u‖2V ∗

0
+ ‖v − v‖2V ∗

0

)
,

with Ψ(u, v) given by (2.1), C1, C2 are positive constants that only depend on parameters of the

system, Ω and u0, v0.

(2) Given R ≥ 0, T ∈ (0,+∞) and m ∈ (|c|, 1), there exists a positive constant C depending on

m, R, T such that, for any solutions (u1, v1), (u2, v2) on [0, T ] originating from the initial data

(u01, v01), (u02, v02) satisfying Ψ(u0i, v0i) ≤ R and |u0i|, |v0i| ≤ m (i = 1, 2), the continuous

dependence estimate

‖u1(t)− u2(t)‖2V ∗ + ‖v1(t)− v2(t)‖2V ∗ +

∫ T

0

(
‖u1(t)− u2(t)‖2V + ‖v1(t)− v2(t)‖2V

)
dt

≤ C
(
‖u01 − u01‖2V ∗ + ‖v01 − v02‖2V ∗ + |u01 − u02|+ |v01 − v02|

)

(2.5)

holds for every t ∈ [0, T ].

Remark 2.2. In [9, Theorem 3.1], the authors have proved a global well-posedness result similar to

Proposition 2.1 for σ ≥ 0, under some assumptions that were slightly stronger than (H1) and (H3).

In our current setting, we recover the existence result by a different approach. Since the continuous

dependence estimate (2.5) can be obtained by exactly the same argument as in [9, Section 4.4], its proof

will be omitted. Although our focus in this paper is the off-critical case with σ > 0, the results in

Proposition 2.1 can be easily extended to the conserved case as well.

Remark 2.3. Following [16, Remark 3.3], we find that t → ‖u(t)‖L∞(Ω) is measurable and essentially

bounded, and the same conclusion holds for v (cf. [9, Remark 3.2]). Arguing as in [1, 19, 20], we also

obtain u, v ∈ L4
uloc(0,+∞;W ). Furthermore, an application of Lemma 6.1 yields

u, v ∈ L2
uloc(0,+∞;W 2,p(Ω)), Ŝ′

(u)(u), Ŝ
′
(v)(v) ∈ L2

uloc(0,+∞;Lp(Ω)),

where p = 6 if d = 3, or p ∈ [2,+∞) if d = 2.
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Now we are in a position to state our main results.

Theorem 2.1 (Instantaneous regularization). Suppose that the assumptions of Proposition 2.1 are sat-

isfied. Let (u, v, µ, ϕ) be the unique global weak solution obtained therein. Then for any κ > 0, we

have

u, v ∈ L∞(κ,+∞;W 2,p(Ω)), ∂tu, ∂tv ∈ L∞(κ,+∞;V ∗) ∩ L2
uloc(κ,+∞;V ),

µ, ϕ ∈ L∞(κ,+∞;V ) ∩ L2
uloc(κ,+∞;H3(Ω)),

where p = 6 if d = 3, or p ∈ [2,+∞) if d = 2. Thus, the equations (1.1), (1.3) are satisfied almost

everywhere in Ω × [κ,+∞) and the boundary conditions ∂nµ = ∂nϕ = 0 hold almost everywhere on

∂Ω× [κ,+∞). Moreover, it holds

‖u‖L∞(κ,t;W 2,p(Ω)) + ‖v‖L∞(κ,t;W 2,p(Ω)) + ‖µ‖L∞(κ,t;V ) + ‖ϕ‖L∞(κ,t;V )

+

∫ t+1

t

(
‖∂tu(τ)‖2V + ‖∂tv(τ)‖2V + ‖µ(τ)‖2H3(Ω) + ‖ϕ(τ)‖2H3(Ω)

)
dτ ≤ C, ∀ t ≥ κ,

where the positive constant C depends on Ψ(u0, v0), u0, v0, Ω, parameters of the system and κ.

Theorem 2.2 (Instantaneous strict separation in two dimensions). Suppose that the assumptions of

Proposition 2.1 are satisfied. In addition, we assume that d = 2 and (H2) is satisfied. Let (u, v) be

the unique global weak solution to problem (1.1)–(1.6). Then for any κ ∈ (0, 1], there exists δκ ∈ (0, 1)

such that

‖u(t)‖C(Ω) ≤ 1− δκ, ‖v(t)‖C(Ω) ≤ 1− δκ, ∀ t ≥ κ, (2.6)

where the constant δκ depends on Ψ(u0, v0), u0, v0, Ω, parameters of the system and κ.

Theorem 2.3 (Eventual strict separation in two and three dimensions). Suppose that the assumptions of

Proposition 2.1 are satisfied. Let (u, v) be the unique global weak solution to problem (1.1)–(1.6). There

exist δSP ∈ (0, 1) and TSP ≫ 1 such that

‖u(t)‖C(Ω) ≤ 1− δSP, ‖v(t)‖C(Ω) ≤ 1− δSP, ∀ t ≥ TSP. (2.7)

Thanks to the above regularizing properties, we are able to address the long-time behavior of global

weak solutions under the following additional assumption:

(H4) Ŝ(u), Ŝ(v) are real analytic on (−1, 1) and W is real analytic on (−1, 1)2.

Theorem 2.4 (Convergence to equilibrium). Suppose that the assumptions of Proposition 2.1 are satis-

fied. Let (u, v) be the unique global weak solution to problem (1.1)–(1.6). If in addition, (H4) is fulfilled.

Then we have

lim
t→+∞

‖(u(t), v(t)) − (u∞, v∞)‖H2−ǫ(Ω)×H2−ǫ(Ω) = 0,

for any ǫ ∈ (0, 1/2). Here, (u∞, v∞) is a steady state that satisfies





−∆u∞ + ∂uF (u∞, v∞) = ∂uF (u∞, v∞), in Ω,

−∆v∞ + ∂vF (u∞, v∞) + σN (v∞ − v∞) = ∂vF (u∞, v∞), in Ω,

∂nu∞ = ∂nv∞ = 0, on ∂Ω,

with mass constraints u∞ = u0, v∞ = c.

(2.8)

Remark 2.4. By the same argument as in [9] (see also [26]), we can derive an estimate on the conver-

gence rate:

‖(u(t), v(t)) − (u∞, v∞)‖V ∗×V ∗ ≤ C(1 + t)−
θ

1−2θ , ∀t ≥ 0.
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3 Analysis of an Auxiliary System with Viscous Regularization

In this section, we analyze the initial boundary value problem for the following coupled Cahn-

Hilliard system with viscous regularization in chemical potentials (cf. [34]):

∂tu = ∆µ in Ω× (0, T ), (3.1)

µ = α∂tu−∆u+ ∂uF (u, v) in Ω× (0, T ), (3.2)

∂tv + σ(v − c) = ∆ϕ in Ω× (0, T ), (3.3)

ϕ = α∂tv −∆v + ∂vF (u, v) in Ω× (0, T ), (3.4)

∂nu = ∂nv = ∂nµ = ∂nϕ = 0 on ∂Ω× (0, T ), (3.5)

(u, v)|t=0 = (u0, v0), in Ω, (3.6)

where α ∈ (0, 1) stands for the coefficient of viscosity.

Let us summarize the main results.

Proposition 3.1 (Strong solutions). Let Ω ⊂ R
d (d ∈ {2, 3}) be a bounded domain with smooth bound-

ary ∂Ω. Suppose that α ∈ (0, 1), δ0 ∈ (0, 1− |c|) and the assumptions (H0), (H1), (H3) are satisfied.

Define

Wδ0 :=
{
f ∈ W

∣∣ ‖f‖C(Ω) ≤ 1− δ0

}
.

For any initial data u0, v0 ∈ Wδ0 , problem (3.1)–(3.6) admits a unique global strong solution (u, v, µ, ϕ)

on [0,+∞) that satisfies the following properties:

u, v ∈ C([0,+∞);W ) ∩ L2
uloc(0,+∞;H3(Ω)),

∂tu, ∂tv ∈ C([0,+∞);H) ∩ L2
uloc(0,+∞;V ) ∩H1

uloc(0,+∞;V ∗),

µ, ϕ ∈ C([0,+∞);W ) ∩ L2
uloc(0,+∞;H3(Ω)) ∩H1

uloc(0,+∞;V ),

(u, v, µ, ϕ) satisfies the equations (3.1)–(3.4) almost everywhere in Ω × (0,+∞) and (u(0), v(0)) =

(u0, v0) in Ω. Moreover, there exists δ1 ∈ (0, δ0] such that

‖u(t)‖C(Ω) ≤ 1− δ1, ‖v(t)‖C(Ω) ≤ 1− δ1, ∀ t ≥ 0. (3.7)

The constant δ1 depends on Ψ(u0, v0), ‖u0‖H2(Ω), ‖v0‖H2(Ω), ‖∇µ(0)‖, ‖∇ϕ(0)‖, ‖∂tu(0)‖, ‖∂tv(0)‖,

Ω, u0, v0, δ0, and coefficients of the system.

Remark 3.1. In view of the equations (3.1)–(3.4), for any α ∈ (0, 1), the initial values of µ, ϕ, ∂tu, ∂tv

can be determined by

µ(0) = (I− α∆)−1 [−∆u0 + ∂uF (u0, v0)] ∈ W,

ϕ(0) = (I− α∆)−1 [−∆v0 − ασ(v0 − c) + ∂vF (u0, v0)] ∈ W,

∂tu(0) = ∆µ(0) ∈ H,

∂tv(0) = ∆ϕ(0) − σ(v0 − c) ∈ H.

Proposition 3.2 (Weak solutions). Let Ω ⊂ R
d (d ∈ {2, 3}) be a bounded domain with smooth boundary

∂Ω. Suppose that α ∈ (0, 1) and the assumptions (H0), (H1), (H3) are satisfied.

(1) Existence and uniqueness. For any initial data u0, v0 ∈ V such that F (u0, v0) ∈ L1(Ω) and

u0, v0 ∈ (−1, 1), problem (3.1)–(3.6) admits a unique global weak solution (u, v, µ, ϕ) on [0,+∞) that

satisfies the following properties:

u, v ∈ C([0,+∞);V ) ∩ L2
uloc(0,+∞;W ) ∩H1

uloc(0,+∞;V ∗),
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√
α∂tu,

√
α∂tv ∈ L2

uloc(0,+∞;H),

u, v ∈ L∞(Ω× (0,+∞)) with |u(x, t)|, |v(x, t)| < 1 a.e. in Ω× (0,+∞),

µ, ϕ ∈ L2
uloc(0,+∞;V ), Ŝ′

(u)(u), Ŝ
′
(v)(v) ∈ L2

uloc(0,+∞;H),

and

〈∂tu, η〉+ (∇µ,∇η) = 0, ∀ η ∈ V, a.e. in (0,+∞),

〈∂tv, η〉 + σ(v − c, η) + (∇ϕ,∇η) = 0, ∀ η ∈ V, a.e. in (0,+∞),

µ = α∂tu−∆u+ ∂uF (u, v), a.e. in Ω× (0,+∞),

ϕ = α∂tv −∆v + ∂vF (u, v), a.e. in Ω× (0,+∞),

moreover, it holds ∂nu = ∂nv = 0 almost everywhere on ∂Ω × (0,+∞), and (u(0), v(0)) = (u0, v0)

almost everywhere in Ω.

(2) Instantaneous regularity. For any κ ∈ (0, 1], the global weak solution obtained in (1) satisfies

u, v ∈ L∞(κ,+∞;W ) ∩H1
uloc(κ,+∞;V ),

∂tu, ∂tv ∈ L∞(κ,+∞, V ∗),
√
α∂tu,

√
α∂tv ∈ L∞(κ,+∞;H),

µ, ϕ ∈ L∞(κ,+∞;V ), Ŝ′
(u)(u), Ŝ

′
(v)(v) ∈ L∞(κ,+∞;H),

Furthermore, there exists a constant δ2 ∈ (0, 1) depending on Ψ(u0, v0), Ω, u0, v0, coefficients of the

system and κ, such that

‖u(t)‖C(Ω) ≤ 1− δ2, ‖v(t)‖C(Ω) ≤ 1− δ2, ∀ t ≥ κ. (3.8)

3.1 A priori estimates

Following [29, 31], we first provide a formal derivation of some a priori estimates for solutions to

the regularized problem (3.1)–(3.6). To this end, we make the following assumptions:

• For some given m ∈ (0, 1− |c|), we assume u0, v0 ∈ [−1 +m, 1−m].

• We assume that the initial data are sufficiently regular, i.e., u0, v0 ∈ W with

F (u0, v0) ∈ L1(Ω), Ŝ′
(u)(u0), Ŝ

′
(v)(v0) ∈ L2(Ω).

This implies that the initial energy Ψ(u0, v0) is bounded, moreover, |u0(x)| < 1, |v0(x)| < 1

almost everywhere in Ω thanks to (H1).

• We assume that the solution (u, v, µ, ϕ) is sufficiently regular and fulfills

‖u(t)‖L∞(Ω) < 1, ‖v(t)‖L∞(Ω) < 1, ∀ t ≥ 0. (3.9)

Lemma 3.1 (Mass relations). Let the above assumptions be satisfied. The solution (u, v) to problem

(3.1)–(3.6) satisfies

u(t) = u0 and v(t) = v0e
−σt + c

(
1− e−σt

)
, ∀ t ≥ 0. (3.10)

Proof. Integrating (3.1), (3.3) over Ω, using integration by parts and the boundary conditions for µ, ϕ,

we easily arrive at the conclusion.
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Lemma 3.2 (Dissipative estimate). Let the above assumptions be satisfied. Then we have

Ψ̂(u(t), v(t)) ≤ Ψ̂(u0, v0)e
−(1+σ)t + C(1 + σ2), ∀ t ≥ 0, (3.11)

1

2

∫ t+1

t

(
‖∇µ(τ)‖2 + ‖∇ϕ(τ)‖2

)
dτ +

α

2

∫ t+1

t

(
‖∂tu(τ)‖2 + ‖∂tv(τ)‖2

)
dτ

≤ Ψ̂(u0, v0)e
−(1+σ)t + C(1 + σ2), ∀ t ≥ 0, , (3.12)

with

Ψ̂(u, v) = Ψ(u, v) +
1

2

(
‖u− u‖2V ∗

0
+ ‖v − v‖2V ∗

0

)
+

α(1 + σ)

2

(
‖u− u‖2 + ‖v − v‖2

)
. (3.13)

Here, C is a positive constant depending on Ω, m and the parameters of the system, however, it does not

depend on α and σ.

Proof. Like in [9, Section 4.3], testing the equations (3.1), (3.2), (3.3), (3.4) by µ, ∂tu, ϕ, ∂tv, respec-

tively, adding the resultants together, we obtain (cf. also [36, Lemma 4.1] for computations involving

singular terms)

d

dt
Ψ(u, v) + ‖∇ϕ‖2 + ‖∇µ‖2 + α

(
‖∂tu‖2 + ‖∂tv‖2

)
+ σ

∫

Ω
(v − c)ϕdx = 0. (3.14)

It follows from (3.4) and (3.10) that

∫

Ω
(v − c)ϕdx = α

∫

Ω
(v − c)∂tv dx+

1

2
‖∇v‖2 +

∫

Ω
(v − c)∂vF (u, v) dx

=
α

2

d

dt
‖v − v‖2 + α

∫

Ω
∂tv(v − c)dx+

1

2
‖∇v‖2

+

∫

Ω
(v − c)Ŝ′

(v)(v) dx+

∫

Ω
Ŝ(v)(c) dx+

∫

Ω
D1(u, v) dx,

where

D1(u, v) = −Ŝ(v)(c) + (v − c)
[
− θ0,vv + ∂vW (u, v)

]
.

Thanks to the assumption (H1), that is, the convexity of Ŝ(v), we get

∫

Ω
(v − c)Ŝ′

(v)(v) dx+

∫

Ω
Ŝ(v)(c) dx ≥

∫

Ω
Ŝ(v)(v) dx.

As a consequence,

∫

Ω
(v − c)ϕdx ≥ α

2

d

dt
‖v − v‖2 + 1

2
‖∇v‖2 +

∫

Ω
Ŝ(v)(v) dx

+

∫

Ω
D1(u, v) dx+ α

∫

Ω
∂tv(v − c) dx. (3.15)

By a similar argument, we have

∫

Ω
(u− u)µ dx ≥ α

2

d

dt
‖u− u‖2 + 1

2
‖∇u‖2 +

∫

Ω
Ŝ(u)(u) dx+

∫

Ω
D2(u, v) dx, (3.16)

where

D2(u, v) = −Ŝ(u)(u) + (u− u)
[
− θ0,uu+ ∂uW (u, v)

]
.
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Combining the above estimates, we infer from (3.14) that

d

dt

[
Ψ(u, v) +

ασ

2

(
‖u− u‖2 + ‖v − v‖2

)]

+ ‖∇µ‖2 + ‖∇ϕ‖2 + α
(
‖∂tu‖2 + ‖∂tv‖2

)
+ σΨ(u, v)

≤ σ

∫

Ω
D3 (u, v) dx+ σ

∫

Ω
(u− u)µ dx− ασ

∫

Ω
∂tv(v − c) dx, (3.17)

where

D3(u, v) = −D1(u, v) −D2(u, v) −
θ0,u
2

u2 − θ0,v
2

v2 +W (u, v).

The assumption (H3) yields D3 ∈ C1(R2). Hence, it follows from (3.9) that

∣∣∣∣
∫

Ω
D3(u, v) dx

∣∣∣∣ ≤ C,

where the positive constant C only depends on the parameters of the problem (except α, σ). Using the

Poincaré-Wirtinger inequality and Young’s inequality, we deduce from (3.9) that (see [9])

∣∣∣∣
∫

Ω
(u− u)µ dx

∣∣∣∣ =
∣∣∣∣
∫

Ω
(u− u)(µ− µ) dx

∣∣∣∣ ≤ 2 ‖µ− µ‖L1(Ω) ≤
1

2σ
‖∇µ‖2 + Cσ,

where C > 0 only depends on Ω. Besides, (3.10) yields

∣∣∣∣
∫

Ω
∂tv(v − c) dx

∣∣∣∣ ≤ σ|Ω||v − c|2 ≤ 4σ|Ω|.

Collecting the above estimates, we infer from (3.17) and the fact α ∈ (0, 1) that

d

dt

[
Ψ(u, v) +

ασ

2

(
‖u− u‖2 + ‖v − v‖2

)]

+
1

2
‖∇µ‖2 + ‖∇ϕ‖2 + α

(
‖∂tu‖2 + ‖∂tv‖2

)
+ σΨ(u, v)

≤ Cσ(1 + σ), (3.18)

where C > 0 is independent of α. Next, testing (3.1), (3.3) by N (u−u), N (v− v), respectively, adding

the resultants together, we have

1

2

d

dt

(
‖u− u‖2V ∗

0
+ ‖v − v‖2V ∗

0

)
+

∫

Ω
(u− u)µ dx+

∫

Ω
(v − v)ϕdx+ σ ‖v − v‖2V ∗

0
= 0,

Then it follows from (3.16) and similar arguments for (3.15) that

1

2

d

dt

(
‖u− u‖2V ∗

0
+ ‖v − v‖2V ∗

0
+ α‖u− u‖2 + α‖v − v‖2

)

+ σ ‖v − v‖2V ∗

0
+Ψ(u, v) ≤ C. (3.19)

Combining the inequalities (3.18), (3.19) and using (3.9), we find

d

dt
Ψ̂(u, v) + (1 + σ) Ψ̂(u, v) +

1

2

(
‖∇µ‖2 + ‖∇ϕ‖2

)
+ α

(
‖∂tu‖2 + ‖∂tv‖2

)

≤ C(1 + σ2), (3.20)
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where Ψ̂(u, v) is defined as in (3.13). It follows from (3.20) and Gronwall’s lemma that

Ψ̂(u(t), v(t)) ≤ e−(1+σ)tΨ̂(u0, v0) + C(1 + σ2), ∀ t ≥ 0.

This gives (3.11) with C being a positive constant that only depends on Ω, m and parameters of the

system except α and σ. On the other hand, from (H1), (H3) and (3.9), we observe that

Ψ̂(u(t), v(t)) ≥ −1

2
|Ω| (θ0,u + θ0,v)− |Ω| max

(r,s)∈[−1,1]2
|W (r, s)|. (3.21)

Thus, integrating (3.20) on [t, t+ 1], we can conclude the dissipative estimate (3.12).

Lemma 3.3 (Lower-order estimates). Let the above assumptions be satisfied. We have

u, v ∈ L∞(0,+∞;V ) ∩ L2
uloc(0,+∞;W ) ∩H1

uloc(0,+∞;V ∗),
√
α∂tu,

√
α∂tv ∈ L2

uloc(0,+∞;H),

µ, ϕ ∈ L2
uloc(0,+∞;V ),

Ŝ′
(u)(u), Ŝ

′
(v)(v) ∈ L2

uloc(0,+∞;H),

with uniform bounds with respect to α ∈ (0, 1) in the corresponding spaces.

Proof. Thanks to Lemma 3.2 and (3.9), we easily find that

{
u, v ∈ L∞(0,+∞;V ),

√
α∂tu,

√
α∂tv ∈ L2

uloc(0,+∞;H),

∇µ, ∇ϕ ∈ L2
uloc(0,+∞;L2(Ω)),

(3.22)

are uniformly bounded with respect to α ∈ (0, 1) in the corresponding spaces. By comparison in (3.1)

and (3.3), we also get

∂tu, ∂tv ∈ H1
uloc(0,+∞;V ∗).

According to [16, 31], we have the following inequality for Ŝ′
(u):

∥∥∥Ŝ′
(u)(u)

∥∥∥
L1(Ω)

≤ R(u)(|u|)
[
1 +

∫

Ω

(
Ŝ′
(u)(u)− Ŝ′

(u)(u)
)
(u− u) dx

]
,

where R(u)(·) is an increasing function. By comparison in (3.2), we find

∥∥∥Ŝ′
(u)(u)− Ŝ′

(u)(u)
∥∥∥
V ∗

≤ ‖µ − µ‖V ∗ + α‖∂tu‖V ∗ + ‖∆u‖V ∗ + ‖D(u)(u, v)−D(u)(u, v)‖V ∗

≤ C
(
‖∇µ‖+ ‖∇u‖+ ‖D(u)(u, v)‖

)

≤ C (1 + ‖∇µ‖) ,

where

D(u)(u, v) = ∂uW (u, v)− θ0,uu.

Therefore, it holds ∥∥∥Ŝ′
(u)(u)

∥∥∥
L1(Ω)

≤ C (1 + ‖∇µ‖) ,

where C > 0 depends on Ψ(u0, v0), Ω, m, and coefficients of the system except α. In a similar manner,

we obtain the following estimate for Ŝ′
(v)(v):

∥∥∥Ŝ′
(v)(v)

∥∥∥
L1(Ω)

≤ C (1 + ‖∇ϕ‖) .
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The above two estimates yield

|µ| =
∣∣∣∂uF (u, v)

∣∣∣ ≤ C (1 + ‖∇µ‖) , (3.23)

|ϕ| =
∣∣∣∂vF (u, v) + α∂tv

∣∣∣ ≤ C (1 + ‖∇ϕ‖) . (3.24)

Hence, by the Poincaré-Wirtinger inequality, we find

µ, ϕ ∈ L2
uloc(0,+∞;V ). (3.25)

Let us rewrite the equations (3.2), (3.4) as

−∆u+ Ŝ′
(u)(u) = µ− α∂tu+ θ0,uu− ∂uW (u, v),

−∆v + Ŝ′
(v)(u) = ϕ− α∂tv + θ0,vv − ∂vW (u, v).

Keeping (3.22), (3.25) in mind, we can apply Lemma 6.1 to conclude that

u, v ∈ L2
uloc(0,+∞;W ), Ŝ′

(u)(u), Ŝ
′
(v)(v) ∈ L2

uloc(0,+∞;H),

with uniform bounds with respect to α ∈ (0, 1).

Lemma 3.4 (Higher-order estimates). Let the above assumptions be satisfied. For any given κ ∈ (0, 1],

we have

‖∇µ(t)‖2 + ‖∇ϕ(t)‖2 + α
(
‖∂tu(t)‖2 + ‖∂tv(t)‖2

)
+

∫ t+1

t

(
‖∇∂tu(τ)‖2 + ‖∇∂tv(τ)‖2

)
dτ

≤ χ[0,1]

(
1− t

κ

)
Q1 +Q2, ∀ t ≥ 0,

(3.26)

where χ[0,1] denotes the indicator function of [0, 1], the positive constant Q1 depends on Ψ(u0, v0),

‖u0‖H2(Ω), ‖v0‖H2(Ω), ‖∇µ(0)‖, ‖∇ϕ(0)‖, ‖∂tu(0)‖, ‖∂tv(0)‖, Ω, m and coefficients of the system,

while the positive constant Q2 depends on Ψ(u0, v0), Ω, m, κ and coefficients of the system (except α) .

As a consequence, it holds

∂tu, ∂tv ∈ L2
uloc(κ,+∞;V ) ∩ L∞(κ,+∞, V ∗),

√
α∂tu,

√
α∂tv ∈ L∞(κ,+∞;H), µ, ϕ ∈ L∞(κ,+∞;V ),

u, v ∈ L∞(κ,+∞;W ), Ŝ′
(u)(u), Ŝ

′
(v)(u) ∈ L∞(κ,+∞;H),

with uniform bounds with respect to α ∈ (0, 1) in the corresponding spaces.

Proof. Like in [18], testing (3.1), (3.3) with ∂tϕ, ∂tϕ, respectively, we obtain

1

2

d

dt
‖∇µ‖2 +

∫

Ω
∂tu∂tµ dx = 0, (3.27)

1

2

d

dt
‖∇ϕ‖2 +

∫

Ω
∂tv∂tϕdx+ σ

∫

Ω
(v − c)∂tϕdx = 0. (3.28)

Using (3.2), (3.9), (H1), (H3) and integration by parts, we find

∫

Ω
∂tu∂tµ dx =

α

2

d

dt
‖∂tu‖2 + ‖∇∂tu‖2 +

∫

Ω

∂2F

∂u2
(∂tu)

2 dx+

∫

Ω

∂2F

∂u∂v
∂tv∂tudx
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≥ α

2

d

dt
‖∂tu‖2 + ‖∇∂tu‖2 − C

(
‖∂tu‖2 + ‖∂tv‖2

)
, (3.29)

and in a similar manner,

∫

Ω
∂tv∂tϕdx =

α

2

d

dt
‖∂tv‖2 + ‖∇∂tv‖2 +

∫

Ω

∂2F

∂v∂u
∂tu∂tv dx+

∫

Ω

∂2F

∂v2
(∂tv)

2 dx

≥ α

2

d

dt
‖∂tv‖2 + ‖∇∂tv‖2 − C

(
‖∂tu‖2 + ‖∂tv‖2

)
. (3.30)

Besides, it follows from (3.4) that
∫

Ω
(v − c)∂tϕdx =

d

dt

∫

Ω
(v − c)ϕdx−

∫

Ω
ϕ∂tv dx

=
d

dt

(∫

Ω
(v − c)ϕdx− 1

2
‖∇v‖2 −

∫

Ω
Ŝ(v)(v) dx

)

−
∫

Ω
(∂vW (u, v)− θ0,vv) ∂tv dx− α‖∂tv‖2

≥ d

dt

(∫

Ω
(v − c)ϕdx− 1

2
‖∇v‖2 −

∫

Ω
Ŝ(v)(v) dx

)
− 2‖∂tv‖2 − C, (3.31)

where in the last step we use Young’s inequality and the fact α ∈ (0, 1). Substituting (3.29), (3.30) and

(3.31) into the sum of (3.27) and (3.28), by interpolation and Young’s inequality, we obtain

d

dt
H(t) + ‖∇∂tu‖2 + ‖∇∂tv‖2

≤ C
(
‖∂tu‖2 + ‖∂tv‖2

)
+ C

≤ 1

2
‖∇∂tu‖2 + C‖∂tu‖2V ∗ +

1

2
‖∇∂tv‖2 + C‖∂t(v − v)‖2V ∗ + C‖∂tv‖2 + C

≤ 1

2

(
‖∇∂tu‖2 + ‖∇∂tv‖2

)
+ C

(
‖∂tu‖2V ∗ + ‖∂tv‖2V ∗

)
+ C, (3.32)

where

H(t) =
1

2

(
‖∇µ‖2 + ‖∇ϕ‖2 + α‖∂tu‖2 + α‖∂tv‖2

)

+ σ

(∫

Ω
(v − c)ϕdx− 1

2
‖∇v‖2 −

∫

Ω
Ŝ(v)(v) dx

)
, (3.33)

and the constant C > 0 is independent of α.

Recalling (3.15), we infer from (3.9), (3.10) that

∫

Ω
(v − c)ϕdx− 1

2
‖∇v‖2 −

∫

Ω
Ŝ(v)(v) dx

≥ α

2

d

dt
‖v − v‖2 +

∫

Ω
D1(u, v) dx+ α

∫

Ω
∂tv(v − c) dx

≥ − α

4σ
‖∂tv‖2 − C, (3.34)

where C > 0 is independent of α ∈ (0, 1). On the other hand, from (3.9), (3.24) and the Poincaré-

Wirtinger inequality, we find the upper bound

∫

Ω
(v − c)ϕdx− 1

2
‖∇v‖2 −

∫

Ω
Ŝ(v)(v) dx ≤ ‖v − c‖‖ϕ‖ ≤ C (1 + ‖∇ϕ‖) . (3.35)
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According to (3.33), (3.34), (3.35), there exist some constants C1, C2 > 0 independent of α such that

1

4

(
‖∇µ‖2 + ‖∇ϕ‖2 + α‖∂tu‖2 + α‖∂tv‖2

)

≤ H(t) +C1 ≤ ‖∇µ‖2 + ‖∇ϕ‖2 + α‖∂tu‖2 + α‖∂tv‖2 + C2. (3.36)

Now for any given t ∈ (0, 2], integrating (3.32) over [0, t], we get

H(t) +
1

2

∫ t

0

(
‖∇∂tu(τ)‖2 + ‖∇∂tv(τ)‖2

)
dτ

≤ H(0) + C

∫ t

0

(
‖∂tu(τ)‖2V ∗ + ‖∂tv(τ)‖2V ∗

)
dτ + C. (3.37)

Using the lower-order estimates obtained in Lemma 3.3, we infer from (3.36) and (3.37) that

1

4

(
‖∇µ(t)‖2 + ‖∇ϕ(t)‖2 + α‖∂tu(t)‖2 + α‖∂tv(t)‖2

)

+
1

2

∫ t

0

(
‖∇∂tu(τ)‖2 + ‖∇∂tv(τ)‖2

)
dτ ≤ C, ∀ t ∈ [0, 2],

which gives

‖∇µ(t)‖2 + ‖∇ϕ(t)‖2 + α
(
‖∂tu(t)‖2 + ‖∂tv(t)‖2

)
+

∫ t+1

t

(
‖∇∂tu(τ)‖2 + ‖∇∂tv(τ)‖2

)
dτ

≤ C, ∀ t ∈ [0, 1], (3.38)

where C > 0 depends on Ψ(u0, v0), ‖u0‖H2(Ω), ‖v0‖H2(Ω), ‖∇µ(0)‖, ‖∇ϕ(0)‖, ‖∂tu(0)‖, ‖∂tv(0)‖,

Ω, m, σ and also α.

Next, for any given κ ∈ (0, 1], we derive higher-order estimates on the infinite interval [κ,+∞).

Thanks to Lemma 3.3 and (3.36), it holds
∫ t+κ

t
(H(τ) + C1) dτ ≤

∫ t+1

t
(H(τ) + C1) dτ ≤ C, ∀ t ≥ 0,

where C > 0 depends on Ψ(u0, v0), Ω, m, σ, but are independent of α ∈ (0, 1) and κ ∈ (0, 1]. Thus,

we can infer from the above estimate, Lemma 3.3, (3.32) and the uniform Gronwall lemma (see Lemma

1.1, Chap. III of Ref. [38]) that

H(t) + C1 ≤ C

(
1 +

1

κ

)
, ∀ t ≥ κ,

which yields

‖∇µ(t)‖2 + ‖∇ϕ(t)‖2 + α
(
‖∂tu(t)‖2 + ‖∂tv(t)‖2

)
≤ C

(
1 +

1

κ

)
, ∀ t ≥ κ. (3.39)

Furthermore, integrating (3.32) in time, we get

∫ t+1

t

(
‖∇∂tu(τ)‖2 + ‖∇∂tv(τ)‖2

)
dτ ≤ C

(
1 +

1

κ

)
, ∀ t ≥ κ. (3.40)

Combining the estimates (3.38), (3.39) and (3.40), we arrive at the conclusion (3.26). In particular,

it follows from (3.23), (3.24), (3.39) and the Poincaré-Wirtinger inequality that µ,ϕ ∈ L∞(κ,+∞;V )

for any given κ ∈ (0, 1]. By comparison in (3.1) and (3.3), we have ∂tu, ∂tv ∈ L∞(κ,+∞, V ∗).

On the other hand, by Lemma 6.1 (see (6.4)), we obtain u, v ∈ L∞(κ,+∞;W ) and Ŝ′
(u), Ŝ′

(v) ∈
L∞(κ,+∞;H) with uniform bounds with respect to α ∈ (0, 1).
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Lemma 3.5 (Strict separation property). Let the above assumptions be satisfied.

(1) Assume in addition, u0, v0 ∈ Wδ0 for some δ0 ∈ (0,m]. Then we have

‖u(t)‖L∞(Ω) ≤ 1− δ1, ‖v(t)‖L∞(Ω) ≤ 1− δ1, ∀ t ≥ 0, (3.41)

where the constant δ1 ∈ (0, 1) depends on Ψ(u0, v0), ‖u0‖H2(Ω), ‖v0‖H2(Ω), ‖∇µ(0)‖, ‖∇ϕ(0)‖,

‖∂tu(0)‖, ‖∂tv(0)‖, Ω, m, δ0, and coefficients of the system.

(2) For any given κ ∈ (0, 1], there exists δ2 ∈ (0, 1) depending on Ψ(u0, v0), Ω, m, coefficients of

the system and κ, such that

‖u(t)‖L∞(Ω) ≤ 1− δ2, ‖v(t)‖L∞(Ω) ≤ 1− δ2, ∀ t ≥ κ, (3.42)

Remark 3.2. We emphasize that both constants δ1, δ2 in Lemma 3.5 depend on the viscous parameter

α ∈ (0, 1).

Proof. The proof follows the idea in [31], that is, for every α ∈ (0, 1) one is allowed to take advantage

of the comparison principle for second-order parabolic equations. To this end, we note that (3.2) can be

written as

α∂tu−∆u+ Ŝ′
(u)(u) = h(u), (3.43)

with

h(u) = θ0,uu− ∂uW (u, v) + µ.

(1) It follows from Lemma 3.3, Lemma 3.4, (3.9), (3.23), (H1), (H3) and the Sobolev embedding

H2(Ω) →֒ L∞(Ω) that

‖h(u)(t)‖L∞(Ω) ≤ ‖θ0,uu‖L∞(Ω) + ‖∂uW (u, v)‖L∞(Ω) + C‖µ‖H2(Ω)

≤ C + C(|µ|+ ‖∇µ‖+ ‖∂tu‖)
≤ C̃, ∀ t ≥ 0,

where C̃ > 0 depends on Ψ(u0, v0), ‖u0‖H2(Ω), ‖v0‖H2(Ω), ‖∇µ(0)‖, ‖∇ϕ(0)‖, ‖∂tu(0)‖, ‖∂tv(0)‖,

Ω, m, σ, α. Consider the following auxiliary ODE systems for y+ and y−:

α∂ty± + Ŝ′
(u)(y±) = ±C̃, y±(0) = ±‖u0‖L∞(Ω) ∈ (−1, 1).

Since u0 ∈ Wδ0 , we can apply [31, Proposition A.3] to conclude

−1 + δ1,u ≤ y−(t) ≤ 0 ≤ y+(t) ≤ 1− δ1,u, ∀ t ≥ 0,

where δ1,u ∈ (0, δ0] depends on δ0 and C̃ . On the other hand, by the comparison principle for (3.43), we

get

y−(t) ≤ u(x, t) ≤ y+(t), ∀ (x, t) ∈ Ω× [0,+∞).

The above facts yield the strict separation for u on [0,+∞). By a similar argument, we can obtain the

strict separation property for v with distance δ1,v ∈ (0, δ0]. Taking δ1 = min{δ1,u, δ1,v}, we conclude

(3.41).

(2) To prove (3.42), we just note that for any given κ ∈ (0, 1], it holds

‖h(u)(t)‖L∞(Ω) ≤ ‖θ0,uu‖L∞(Ω) + ‖∂uW (u, v)‖L∞(Ω) + C‖µ‖H2(Ω)

≤ C + C(|µ|+ ‖∇µ‖+ ‖∂tu‖)
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≤ C̃κ, ∀ t ≥ κ

2
,

where C̃κ > 0 depends on Ψ(u0, v0), Ω, m, σ, α and κ. Consider the following auxiliary ODE systems

for y+ and y−:

α∂ty± + Ŝ′
(u)(y±) = ±C̃κ, y±(0) = ±

∥∥∥u
(κ
2

)∥∥∥
L∞(Ω)

∈ (−1, 1).

From (3.9) and [31, Corollary A.1], there exists a constant δ2 ∈ (0, 1) depending on κ and C̃κ such that

−1 + δ2 ≤ y−(t) ≤ 0 ≤ y+(t) ≤ 1− δ2, ∀ t ≥ κ.

Using the comparison principle again, we arrive at the conclusion (3.42).

3.2 Well-posedness of the auxiliary problem

First, we present a result on the continuous dependence of weak solutions to problem (3.1)–(3.6)

with respect to the initial data, which also implies the uniqueness of weak solutions. Since the viscous

terms α∂tu, α∂tv do not bring any trouble for the argument as in [9, Section 4.4], we omit the detailed

proof here.

Proposition 3.3 (Continuous dependence). Let d = 2, 3. Given R ≥ 0, T ∈ (0,+∞) and m ∈ (|c|, 1),
there exists a positive constant C depending on m, R, T such that, for any weak solutions (u1, v1),

(u2, v2) to problem (3.1)–(3.6) on [0, T ] originating from the initial data (u01, v01), (u02, v02) satisfying

Ψ(u0i, v0i) ≤ R and |u0i|, |v0i| ≤ m (i = 1, 2), the continuous dependence estimate

‖u1(t)− u2(t)‖2V ∗ + ‖v1(t)− v2(t)‖2V ∗ +

∫ T

0
‖u1(t)− u2(t)‖2V dt+

∫ T

0
‖v1(t)− v2(t)‖2V dt

≤ C
(
‖u01 − u01‖2V ∗ + ‖v01 − v02‖2V ∗ + |u01 − u02|+ |v01 − v02|

)

holds for every t ∈ [0, T ].

Next, we prove Proposition 3.1 on the existence and uniqueness of a global strong solution to problem

(3.1)–(3.6).

Proof of Proposition 3.1. We extend the argument in [31] to the coupled system (3.1)–(3.6).

Step 1. Local well-posedness. For any δ > 0, we consider the following approximate problem





∂tu = ∆µ in Ω× (0, T ),

µ = α∂tu−∆u+ ∂uFδ(u, v) in Ω× (0, T ),

∂tv + σ(v − c) = ∆ϕ in Ω× (0, T ),

ϕ = α∂tv −∆v + ∂vFδ(u, v) in Ω× (0, T ),

∂nu = ∂nv = ∂nµ = ∂nϕ = 0 on ∂Ω× (0, T ),

(u, v)|t=0 = (u0, v0), in Ω.

(3.44)

Here, we introduce a cut-off of the nonlinear function F (see (2.2)) such that

Fδ(u, v) = Sδ (u; θu, θ0,u) + Sδ (v; θv, θ0,v) +Wδ(u, v),
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where

Sδ (s; θr, θ0,r) =

{
S (s; θr, θ0,r) ξδ(s), s ∈ (−1, 1),

0, s ∈ R \ (−1, 1),

for r ∈ {u, v} and

Wδ(u, v) = W (u, v)ξδ(u)ξδ(v).

The smooth cutoff function ξδ : R → R is given by

ξ(s) =
(
χ[−1+ δ

2
,1− δ

2 ]
(·) ∗ η δ

4

(·)
)
(s), ∀ s ∈ R,

where ∗ means the usual convolution and {ηǫ}ǫ>0 is a family of mollifiers on R. It is straightforward to

verify that Fδ(·, ·) and its partial derivatives of order not larger than two are uniformly bounded on any

bounded set in R
2. That is, Fδ(·, ·) ∈ BUC2(R× R). Moreover,

Fδ(u, v) = F (u, v), ∀u, v ∈ [−1 + δ, 1 − δ].

From the assumption that u0, v0 ∈ Wδ0 , we have u0, v0 ∈ [−1+δ0, 1−δ0] and thus can take m = δ0.

Let δ1 ∈ (0, δ0] be the strict separation constant determined by Lemma 3.5. Then we consider problem

(3.44) with the nonlinear term Fδ1/2(u, v), subject to the same initial data (u0, v0). It follows from

Proposition 6.1 (see appendix) that this auxiliary problem admits a unique global strong solution, which

we denote by (u♯, v♯, µ♯, ϕ♯). Since u♯, v♯ ∈ C([0, T ];W ), from the Sobolev embedding H2(Ω) →֒
C(Ω) that holds in two and three dimensions, there exists some positive T∗ > 0 such that

‖u♯(t)‖C(Ω) ≤ 1− 3

4
δ1, ‖v♯(t)‖C(Ω) ≤ 1− 3

4
δ1, ∀ t ∈ [0, T∗]. (3.45)

The strict separation property (3.45) together with the definition of Fδ1/2 yields

∂uFδ1/2(u
♯(t), v♯(t)) = ∂uF (u♯(t), v♯(t)),

∂vFδ1/2(u
♯(t), v♯(t)) = ∂vF (u♯(t), v♯(t)),

for all t ∈ [0, T∗]. As a consequence, (u♯, v♯) is indeed a strong solution to the original problem (3.1)–

(3.6) on [0, T∗]. This gives the existence of a local strong solution (u, v) = (u♯, v♯) to problem (3.1)–(3.6)

(with corresponding chemical potentials (µ,ϕ)). According to Proposition 3.3, this local strong solution

is unique on [0, T∗].

Step 2. Global existence. It is obvious that the local strong solution (u, v) to problem (3.1)–(3.6) can

be (uniquely) extended beyond the finite interval [0, T∗]. Next, we show that (u, v) is indeed global. To

this end, let Tmax be the maximal existence time for (u, v) such that

‖u(t)‖C(Ω) < 1, ‖v(t)‖C(Ω) < 1, ∀ t ∈ [0, Tmax).

Then Tmax > T∗ > 0 thanks to (3.45) and the continuity of (u, v). Assume by contradiction, Tmax <

+∞. We observe that the a priori estimates obtained in Section 3.1 hold for (u, v) on [0, Tmax). In

particular, the uniform strict separation property obtained in Proposition 3.5 yields

‖u(t)‖C(Ω) ≤ 1− δ1, ‖v(t)‖C(Ω) ≤ 1− δ1, ∀ t ∈ [0, Tmax). (3.46)

As a consequence, (u, v) is also a solution to the auxiliary problem (3.44) with the nonlinear term

Fδ1/2(u, v), that is (u♯, v♯) = (u, v) on [0, Tmax). Since (u♯, v♯) is global, by its continuity and (3.46),

we have

‖u♯(Tmax)‖C(Ω) ≤ 1− δ1, ‖v♯(Tmax)‖C(Ω) ≤ 1− δ1.
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Then there exists certain t0 > 0 such that

‖u♯(t)‖C(Ω) ≤ 1− 3

4
δ1, ‖v♯(t)‖C(Ω) ≤ 1− 3

4
δ1, ∀ t ∈ [Tmax, Tmax + t0],

which imply (u, v) = (u♯, v♯) is a strong solution to the original problem (3.1)–(3.6) on [0, Tmax + t0].

This leads to a contradiction with the definition of Tmax.

Hence, we can conclude Tmax = +∞ and moreover, the a priori estimates in Section 3.1 apply.

Thanks to the strict separation property of the solution (u, v) on [0,+∞), it enjoys the same regularity as

(u♯, v♯) (see Definition 6.1). In this way, we establish the existence of a (unique) global strong solution

to problem (3.1)–(3.6) that fulfills the expected regularity properties and (3.7).

We proceed to study the weak solutions of problem (3.1)–(3.6).

Proof of Proposition 3.2. The proof is based on a suitable approximation for the initial data (cf. e.g.,

[21,31]). Suppose that (u0, v0) ∈ V satisfies F (u0, v0) ∈ L1(Ω) and u0, v0 ∈ [−1+m, 1−m] for some

m ∈ (0, 1). According to [21], there exists a sequence {(u0,n, v0,n)}∞n=1 ⊂ (H3(Ω)∩W )×(H3(Ω)∩W )

satisfying

‖u0,n‖L∞(Ω) ≤ 1− 1

n
, ‖v0,n‖L∞(Ω) ≤ 1− 1

n
, ∀n ∈ Z

+,

(u0,n, v0,n) → (u0, v0) in V as n → +∞.

We can extract a subsequence of {(u0,n, v0,n)}∞n=1 (not relabelled for simplicity) such that

(u0,n, v0,n) → (u0, v0) a.e. in Ω as n → +∞

By the Lebesgue dominated convergence theorem, we find

Ψ(u0,n, v0,n) → Ψ(u0, v0) as n → +∞.

Then there exists a sufficiently large integer N such that for all n ≥ N , it holds

‖u0,n‖V ≤ 1 + ‖u0‖V , ‖v0,n‖V ≤ 1 + ‖v0‖V ,
|u0,n|, |v0,n| ≤ 1− m

2
, Ψ(u0,n, v0,n) ≤ 1 + Ψ(u0, v0).

Consider the following approximate problem





∂tun = ∆µn in Ω× (0,+∞),

µn = α∂tun −∆un + ∂uF (un, vn) in Ω× (0,+∞),

∂tvn + σ(vn − c) = ∆ϕn in Ω× (0,+∞),

ϕn = α∂tvn −∆vn + ∂vF (un, vn) in Ω× (0,+∞),

∂nun = ∂nvn = ∂nµn = ∂nϕn = 0 on ∂Ω × (0,+∞),

(un, vn)|t=0 = (u0,n, v0,n) in Ω.

(3.47)

It follows from Proposition 3.1 that, for every n ∈ Z
+, problem (3.47) admits a unique global strong

solution (un, vn) on [0,+∞). Moreover, thanks to the above construction of initial data and Lemma 3.2,

(un, vn, µn, ϕn) are uniformly bounded (w.r.t. n) in the following sense

un, vn ∈ L∞(0,+∞;V ) ∩ L2
uloc(0,+∞;W ) ∩H1

uloc(0,+∞;V ∗),

21



√
α∂tun,

√
α∂tvn ∈ L2

uloc(0,+∞;H),

µn, ϕn ∈ L2
uloc(0,+∞;V ).

Besides, Ŝ′
(u)(un), Ŝ

′
(v)(vn) ∈ L2

uloc(0,∞;H) are uniformly bounded as well. This implies that un, vn ∈
L∞(Ω× (0,+∞)) and |un(x, t)|, |vn(x, t)| < 1 a.e. in Ω× (0,+∞). Then there exists some functions

(u, v, µ, ϕ) with the same regularity properties and a convergent subsequence {(un, vn, µn, ϕn)} such

that as n → +∞,

(un, vn, µn, ϕn) → (u, v, µ, ϕ)

weakly (or weakly-∗) in the corresponding spaces. Hereafter, the related convergence will always be

understood in the sense of a subsequence.

By the Aubin-Lions-Simon lemma [37], for any T > 0, we obtain

un → u, vn → v strongly in C([0, T ];H),

which also implies

un → u, vn → v a.e. in Ω× (0, T ).

As a consequence,

Ŝ′
(u)(un) → Ŝ′

(u)(u), Ŝ′
(v)(vn) → Ŝ′

(v)(v) weakly in L2(0, T ;H),

From (H1), we further infer that u, v ∈ L∞(Ω× (0, T )) with |u(x, t)|, |v(x, t)| < 1 almost everywhere

in Ω× (0, T ). Using (H3), we also find

∂uW (un, vn) → ∂uW (u, v), ∂vW (un, vn) → ∂vW (u, v) weakly in L2(0, T ;H).

Because of the strong convergence of un → u, vn → v in C([0, T ];H), we can verify the initial

condition (u, v)|t=0 = (u0, v0). Hence, it is straightforward to check that the limit (u, v, µ, ϕ) is a global

weak solution to problem (3.1)–(3.6). Uniqueness of the weak solution follows from Proposition 3.3.

Next, we study the regularity of weak solutions. From Lemma 3.4 and the construction of the initial

data {(u0,n, v0,n)}∞n=1, we find that for any κ ∈ (0, 1],

∂tun, ∂tvn ∈ L2
uloc(κ,+∞;V ),

√
α∂tun,

√
α∂tvn ∈ L∞(κ,+∞;H),

µn, ϕn ∈ L∞(κ,+∞;V ), un, vn ∈ L∞(κ,+∞;W ),

Ŝ′
(u)(un), Ŝ

′
(v)(vn) ∈ L∞(κ,+∞;H),

with uniform bounds with respect to n in the corresponding spaces. Then on the interval [κ,+∞),

the convergent subsequence (un, vn, µn, ϕn) considered in (1) will converge (maybe up to a further

subsequence) to some functions (û, v̂, µ̂, ϕ̂) with higher-order regularity properties described above. By

uniqueness of the weak convergence, we have (û(t), v̂(t), µ̂(t), ϕ̂(t)) = (u(t), v(t), µ(t), ϕ(t)) for all

t ≥ κ. Since κ ∈ (0, 1] is arbitrary, we see that every weak solution to problem (3.1)–(3.6) regularizes

instantaneously as long as t > 0. The Aubin-Lions-Simon lemma yields u, v ∈ C([κ,∞);H2−ǫ(Ω))

for any ǫ ∈ (0, 1/2), so that u, v ∈ C([κ,∞);C(Ω)) thanks to the Sobolev embedding theorem for

d ∈ {2, 3}. Then the strict separation property (3.8) is a consequence of Proposition 3.5.
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4 Regularity of Weak Solutions

In this section, we study the original problem (1.1)–(1.6). First, we recover the existence of global

weak solutions by using an approach different from that in [9].

Proof of Proposition 2.1. Consider the regularized problem (3.1)–(3.6) subject to the given initial data

(u0, v0). For every α ∈ (0, 1), thanks to Proposition 3.2, the problem admits a unique global weak

solution, which we denote by (uα, vα, µα, ϕα). Moreover, we have

uα, vα ∈ C([0,+∞);V ) ∩ L2
uloc(0,+∞;W ) ∩H1

uloc(0,+∞;V ∗),
√
α∂tuα,

√
α∂tvα ∈ L2

uloc(0,+∞;H),

µα, ϕα ∈ L2
uloc(0,+∞;V ), Ŝ′

(u)(uα), Ŝ
′
(v)(vα) ∈ L2

uloc(0,+∞;H),

with uniform bounds with respect to α ∈ (0, 1) in the corresponding spaces. In analogy to the proof

of Proposition 3.2, we can find some (u, v, µ, ϕ) with the same regularity properties and a convergent

subsequence (uα, vα, µα, ϕα) (nor relabelled for simplicity) such that

(uα, vα, µα, ϕα) → (u, v, µ, ϕ) as α → 0,

weakly (or weakly-∗) in the corresponding spaces. In particular, for any T > 0, it holds

α∂tuα → 0, α∂tvα → 0 strongly in L2(0, T ;H).

By a standard compactness argument similar to that for Proposition 3.2, we can verify that (u, v, µ, ϕ) is

a global weak solution to problem (1.1)–(1.6) on [0,+∞) with the initial data (u0, v0). The uniqueness

is a direct consequence of the continuous dependence estimate (2.5), which can be proved by exactly the

same argument as in [9, Section 4.4]. Moreover, thanks to the regularity of weak solutions, the dissipative

estimates (2.3), (2.4) can be derived as in Lemma 3.2 with α = 0.

Next, we show the regularizing effect of weak solutions for t > 0.

Proof of Theorem 2.1. Thanks to Lemma 3.4, for any κ ∈ (0, 1], we find that the convergent subse-

quence {(uα, vα, µα, ϕα)} in the proof of Proposition 2.1 satisfies

uα, vα ∈ L∞(κ,+∞;W ), ∂tuα, ∂tvα ∈ L2
uloc(κ,+∞;V ) ∩ L∞(κ,+∞;V ∗),

µα, ϕα ∈ L∞(κ,+∞;V ), Ŝ′
(u)(uα), Ŝ

′
(v)(uα) ∈ L∞(κ,+∞;H),

with uniform bounds with respect to α ∈ (0, 1) in the corresponding spaces. Based on the above facts,

by the same argument as for Proposition 3.2, we can show that the weak solution (u, v, µ, ϕ) fulfills

u, v ∈ L∞(κ,+∞;W ), ∂tu, ∂tv ∈ L2
uloc(κ,+∞;V ) ∩ L∞(κ,+∞;V ∗),

µ, ϕ ∈ L∞(κ,+∞;V ), Ŝ′
(u)(u), Ŝ

′
(v)(u) ∈ L∞(κ,+∞;H),

with bounds in the corresponding spaces depending on Ψ(u0, v0), u0, v0, Ω, parameters of the system

and κ. By comparison in the equations (1.1), (1.3) that hold almost everywhere in Ω× [κ,+∞), we get

µ,ϕ ∈ L2
uloc(κ,+∞;H3(Ω)). Next, let us write the equations (1.2) and (1.4) into the following form:

−∆u+ Ŝ′
(u)(u) = µ+ θ0,uu− ∂uW (u, v), (4.1)

−∆v + Ŝ′
(v)(v) = ϕ+ θ0,vv − ∂vW (u, v). (4.2)
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The two terms in right-hand side of (4.1) and (4.2) are bounded in L∞(κ,+∞;V ). Recalling that

∂nu = ∂nv = 0 almost everywhere on ∂Ω× [κ,+∞), then we can apply Lemma 6.1 to conclude

‖u‖L∞(κ,t;W 2,p(Ω)) + ‖v‖L∞(κ,t;W 2,p(Ω)) + ‖Ŝ′
(u)(u)‖L∞(κ,t;Lp(Ω))

+ ‖Ŝ′
(v)(v)‖L∞(κ,t;Lp(Ω)) ≤ C, ∀ t ≥ κ,

where p = 6 if d = 3, or p ∈ [2,+∞) if d = 2, the positive constant C depends on Ψ(u0, v0), u0, v0, Ω,

parameters of the system and κ, but not on t.

Finally, we prove the instantaneous strict separation property of (u, v) in two dimensions.

Proof of Theorem 2.2. The proof essentially follows the idea in [17]. For any fixed κ ∈ (0, 1], let

us consider the elliptic equation (4.1) in Ω × [κ,+∞) subject to the boundary condition ∂nu = 0 on

∂Ω× [κ,+∞). As in the proof of [17, Theorem 3.3], we introduce the sequence:

kn = 1− δu −
δu
2n

, ∀n ∈ Z
+,

where δu ∈ (0, 1) is a constant to be determined later. Then it holds

1− 2δu < kn < kn+1 < 1− δu, ∀n ≥ 1, kn → 1− δu as n → +∞.

For every n ∈ Z
+, define

An(t) = {x ∈ Ω | u(x, t)− kn ≥ 0} , ∀ t ∈ [κ,+∞),

un(x, t) = (u(x, t)− kn)
+, zn(t) =

∫

An(t)
1 dx.

Recalling that µ ∈ L∞(κ,+∞, V ), below we consider an arbitrary but fixed time t∗ ∈ [κ,+∞) such

that ‖µ(t∗)‖V ≤ ‖µ‖L∞(κ,+∞,V ). Testing the equation (4.1) at t∗ with un(x, t∗) yields

‖∇un‖2 +
∫

Ω
Ŝ′
(u)(u)un dx =

∫

Ω
[θ0,uu− ∂uW (u, v)] un dx+

∫

Ω
µun dx. (4.3)

By Theorem 2.1 and the Aubin-Lions-Simon lemma, we have u, v ∈ C([κ,+∞);H2−ǫ(Ω)) for any

ǫ ∈ (0, 1/2), so that u, v ∈ C([κ,+∞);C(Ω)) thanks to the Sobolev embedding theorem for d ∈ {2, 3}.

Then it holds |u(x, t∗)| ≤ 1 and |v(x, t∗)| ≤ 1 in Ω, which imply

∫

Ω
[θ0,uu− ∂uW (u, v)] un dx ≤

(
max
[−1,1]2

|∂uW (·, ·)|+ θ0,u

)∫

Ω
un dx,

and 0 ≤ un ≤ 2δu. The other terms in (4.3) can be estimated exactly as in [17, Section 3], thus we get

‖∇un‖2 +
(
Ŝ′
(u)(1− 2δu)− max

[−1,1]2
|∂uW (·, ·)| − θ0,u

)∫

Ω
un dx+ θu

∫

Ω
u2n dx

=

∫

Ω
µun dx =

∫

An(t∗)
µun dx

≤ 2δu‖µ(t∗)‖Lp(Ω)z
1− 1

p
n ≤ Cδu‖µ(t∗)‖V

√
pz

1− 1

p
n , ∀ p ∈ [2,+∞). (4.4)

In the last step, we have used the following Gagliardo-Nirenberg-type inequality in two dimensions

(see [4])

‖f‖Lp(Ω) ≤ C
√
p‖f‖

2

p ‖f‖1−
2

p

V , ∀ f ∈ V, p ∈ [2,+∞).
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With the inequality (4.4) and the additional assumption (H2), we can follow the same De Giorgi’s

iteration scheme as in [17, Section 3] to show that there exists some sufficiently small δu ∈ (0, 1), it

holds zn(t∗) → 0 as n → +∞. Observe that zn(t∗) → |{x ∈ Ω : u(x, t∗) ≥ 1 − δu}, we find

‖(u(t∗) − (1 − δu))
+‖L∞(Ω) = 0. In a similar way, one can prove ‖(u(t∗) − (−1 + δ′u))

−‖L∞(Ω) = 0

for some small δ′u ∈ (0, 1). Since t∗ ≥ κ is arbitrary, from the space-time continuity of u, we get

‖u(t)‖C(Ω) ≤ 1− δ̃u, ∀ t ≥ κ, with δ̃u = min
{
δu, δ

′
u

}
.

By the same argument, we can find some sufficiently small δ̃v ∈ (0, 1) such that

‖v(t)‖C(Ω) ≤ 1− δ̃v, ∀ t ≥ κ.

Taking δκ = min{δ̃u, δ̃v}, we arrive at the conclusion (2.6).

5 Long-time behavior

In this section, we study the long-time behavior of global weak solutions to problem (1.1)–(1.6).

5.1 Characterization of the ω-limit set

For any initial data u0, v0 ∈ V with F (u0, v0) ∈ L1(Ω) and u0, v0 ∈ (−1, 1), let (u, v) be the

corresponding global weak solution to problem (1.1)–(1.6) given by Proposition 2.1. First, it follows that

u(t) = u0, v(t)− c = (v0 − c) e−σt, ∀ t ≥ 0. (5.1)

Next, we write problem (1.1)–(1.6) into the following equivalent form

∂tu = ∆µ in Ω× (0, T ), (5.2)

µ = −∆u+ ∂uF (u, v) in Ω× (0, T ), (5.3)

∂tv + σ(v − c) = ∆ϕ̃ in Ω× (0, T ), (5.4)

ϕ̃ = −∆v + ∂vF (u, v) + σN (v − v) in Ω× (0, T ), (5.5)

∂nu = ∂nv = ∂nµ = ∂nϕ̃ = 0 on ∂Ω× (0, T ), (5.6)

(u, v)|t=0 = (u0, v0) in Ω. (5.7)

Through a standard argument and the chain rule (see e.g., [18, Section 3] for the single Cahn-Hilliard-

Oono equation), we can work with the new form (5.2)–(5.6) and show that the weak solution (u, v)

satisfies the following energy equality

d

dt
Ψ̃(u(t), v(t)) + ‖∇µ(t)‖2 + ‖∇ϕ̃(t)‖2 + σ(v(t)− c)

∫

Ω
ϕ(t) dx = 0, (5.8)

almost everywhere in (0,+∞), where the modified free energy is given by (cf. (2.1))

Ψ̃(u, v) := Ψ(u, v) + σ‖v − v‖2V ∗

0
.

By a similar argument for Lemma 3.3 (cf. (3.24)), we find |ϕ| ≤ C(1 + ‖∇ϕ‖). This implies σ(v(t) −
c)
∫
Ω ϕ(t) dx ∈ L1(0, 1). Furthermore, Lemma 3.4 yields ϕ ∈ L∞(1,+∞;V ), then from (5.1) we get

∣∣∣∣σ(v(t)− c)

∫

Ω
ϕ(t) dx

∣∣∣∣ ≤ K1e
−σt, for a.a. t ≥ 1,
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where K1 > 0 depends on Ψ(u0, v0), u0, v0, Ω, and parameters of the system, but not on t. As a

consequence, the energy equality (5.8) implies that the map t → Ψ̃(u(t), v(t)) is absolutely continuous

on [0,+∞). This fact combined with the assumptions (H1), (H3) and the facts u, v ∈ C([0,+∞);H)

yields u, v ∈ C([0,+∞);V ).

Set

E(t) = Ψ̃(u(t), v(t)) +
K1

σ
e−σt, ∀ t ≥ 1.

It follows from (5.8) that

d

dt
E(t) + ‖∇µ(t)‖2 + ‖∇ϕ̃(t)‖2 ≤ 0, for a.a. t ≥ 1. (5.9)

Since Ψ̃(u, v) is bounded from below (cf. (3.21)), we see that E(t) converges as t → +∞, i.e., there

exists some E∞ ∈ R such that

lim
t→+∞

E(t) = E∞. (5.10)

In view of (5.1), we have the convergence of energy as well

lim
t→+∞

Ψ̃(u(t), v(t)) = E∞. (5.11)

Below we study the ω-limit set.

Proposition 5.1. Let the assumptions in Proposition 2.1 be satisfied. For any initial data u0, v0 ∈ V

with F (u0, v0) ∈ L1(Ω) and u0, v0 ∈ (−1, 1), we define the corresponding ω-limit set by

ω(u0, v0) =
{
(u∞, v∞) |u∞, v∞ ∈ H2−ǫ(Ω), u∞ = u0, v∞ = c, there exist {tn} ր +∞

such that u(tn) → u∞, v(tn) → v∞ in H2−ǫ(Ω)
}
,

where ǫ ∈ (0, 1/2). Then ω(u0, v0) is non-empty, bounded in W × W and compact in H2−ǫ(Ω) ×
H2−ǫ(Ω). Moreover, every (u∞, v∞) ∈ ω(u0, v0) is a strong solution to the stationary problem (2.8).

Proof. Since the weak solution (u, v) is uniformly bounded in L∞(1,+∞;W ×W ), we find that the set

ω(u0, v0) is non-empty and compact in H2−ǫ(Ω)×H2−ǫ(Ω) for any ǫ ∈ (0, 1/2). Besides, ω(u0, v0) is

a bounded set in W ×W . Next, we show that ω(u0, v0) consists of steady states satisfying (2.8) by using

the argument in [25]. Let (u∞, v∞) ∈ ω(u0, v0). From (5.1), we have u∞ = u0, v∞ = c. By definition,

there exists an unbounded sequence {tn} such that tn+1 ≥ tn + 1, and

lim
n→+∞

‖(u(tn), v(tn))− (u∞, v∞)‖H2−ǫ(Ω)×H2−ǫ(Ω) = 0,

for some ǫ ∈ (0, 1/2). Without loss of generality, we also assume {(u(tn), v(tn))} weakly converge to

(u∞, v∞) in W ×W . Integrating (5.9) gives

∫ ∞

1

(
‖∇µ(t)‖2 + ‖∇ϕ̃(t)‖2

)
dt ≤ C. (5.12)

By comparison in (5.2), (5.4) and using (5.1), (5.12), we further obtain

∫ ∞

1

(
‖∂tu(t)‖2V ∗ + ‖∂tv(t)‖2V ∗

)
dt ≤ C. (5.13)
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Like in [25], we infer from (5.13) that

∫ 1

0

(
‖∂tu(tn + τ)‖2V ∗ + ‖∂tv(tn + τ)‖2V ∗

)
dτ → 0, as n → +∞,

which implies

‖u(tn + τ1)−u(tn+ τ2)‖V ∗ → 0, ‖v(tn + τ1)− v(tn + τ2)‖V ∗ → 0, uniformly for τ1, τ2 ∈ [0, 1].

By precompactness of the trajectory (u(t), v(t)) in H2−ǫ(Ω)×H2−ǫ(Ω), we have for every τ ∈ [0, 1]

‖u(tn + τ)− u∞‖H2−ǫ(Ω) → 0, ‖v(tn + τ)− v∞‖H2−ǫ(Ω) → 0, as n → +∞,

which also yields the almost everywhere convergence in Ω (up to a subsequence). Recalling the uniform

boundedness of ∂vF (u, v) in L2(tn, tn + 1;H), we get

∂vF (u(tn + τ), v(tn + τ)) → ∂vF (u∞, v∞), weakly in L2(0, 1;H) as n → +∞.

Thus, possibly up to a further subsequence, we deduce from (5.5) that

ϕ̃(tn + τ) = ϕ̃(u(tn + τ), v(tn + τ)) → ϕ̃∞, weakly in L2(0, 1;H) as n → +∞.

where the limit can be identified as

ϕ̃∞ = −∆v∞ + ∂vF (u∞, v∞) + σN (v∞ − c) ∈ H. (5.14)

We note that ϕ̃∞ is independent of time. Thus, for any η ∈ H0, it holds

(ϕ̃∞, η) =

∫ 1

0
(ϕ̃∞, η) dτ = lim

n→+∞

∫ 1

0
(ϕ̃(tn + τ), η) dτ.

It follows from (5.12) and the Poincaré-Wirtinger inequality that

∣∣∣∣
∫ 1

0
(ϕ̃(tn + τ), η) dτ

∣∣∣∣ ≤ C

∫ 1

0
‖∇ϕ̃(tn + τ)‖‖η‖dτ → 0, as n → +∞.

Therefore, (ϕ̃∞, η) = 0 for any η ∈ H0, which implies that ϕ̃∞ is a constant. Integrating (5.14) over Ω

easily gives ϕ̃∞ = ∂vF (u∞, v∞). By a similar argument, we obtain

µ∞ = −∆u∞ + ∂uF (u∞, v∞) with µ∞ = ∂uF (u∞, v∞).

Hence, (u∞, v∞) ∈ W ×W is a strong solution to the stationary problem (2.8).

Given an initial datum (u0, v0) as that in Proposition 5.1, we denote its corresponding set of steady

states by

S(u0, v0) = { (us, vs) ∈ W ×W | (us, vs) a strong solution to (2.8) } .

Proposition 5.1 implies that ω(u0, v0) ⊂ S(u0, v0) and thus S(u0, v0) is non-empty. From (2.8), we see

that S(u0, v0) only relates the initial data via the mean value u0. Moreover, we have
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Proposition 5.2 (Strict separation property of steady states). Let the assumptions of Proposition 5.1 be

satisfied.

(1) For every (us, vs) ∈ S(u0, v0), there exists some constant δs ∈ (0, 1) such that

‖us‖C(Ω) ≤ 1− δs, ‖vs‖C(Ω) ≤ 1− δs.

(2) For all (u∞, v∞) ∈ ω(u0, v0), it holds

‖u∞‖C(Ω) ≤ 1− δ∞, ‖v∞‖C(Ω) ≤ 1− δ∞,

where the constant δ∞ ∈ (0, 1) is independent of (u∞, v∞).

Proof. We apply a dynamic approach inspired by [31] (see its [23] for further application), for possible

alternative proof involving the maximum principle, we refer to [2, Proposition 6.1] for the single Cahn-

Hilliard equation. It is obvious that every steady state (us, vs) ∈ S(u0, v0) can be viewed as (at least) a

global weak solution to the viscous problem (3.1)–(3.5) with some α ∈ (0, 1) and the initial data given

by (us, vs) itself. Then by the uniqueness of solutions and Proposition 3.2, we find there exists some

δs ∈ (0, 1) such that

‖us(t)‖C(Ω) ≤ 1− δs, ‖vs(t)‖C(Ω) ≤ 1− δs, ∀ t ≥ 1.

Since (us, vs) is actually independent of time, this gives our first conclusion. The second conclusion eas-

ily follows from the compactness of ω(u0, v0) in H2−ǫ(Ω)×H2−ǫ(Ω), which is continuously embedded

in C(Ω)× C(Ω) for ǫ ∈ (0, 1/2), cf. [2].

Now we are able to show the eventual strict separation property of weak solutions.

Proof of Theorem 2.3. It follows from relative compactness of the trajectory (u(t), v(t)) and Proposition

5.1 that

lim
t→+∞

dist((u(t), v(t)), ω(u0 , v0)) = 0 in H2−ǫ(Ω)×H2−ǫ(Ω). (5.15)

This combined with Proposition 5.2-(2) yields the conclusion (2.7)

5.2 An extended Łojasiewicz-Simon inequality

The eventual strict separation property Theorem 2.3 plays an essential role in the study of long-time

behavior of global weak solutions (see [9] for the conserved case). Since we are only interested in the

behavior of solutions as t → +∞, Theorem 2.3 implies that the singularities of Ŝ(u), Ŝ(v) and their

derivatives can be avoided by altering these functions outside a certain compact interval [−1 + δ, 1 − δ]

for some δ ∈ (0, δSP), see [1, 2, 29] and the references therein.

Using a similar idea, under the additional assumption (H4) on the analyticity of Ŝ(u), Ŝ(v) and

W (u, v), the authors of [9] proved a suitable Łojasiewicz-Simon type inequality in the conserved case.

Below we present an extended version that works for the off-critical case, i.e., the change of mass is

allowed.

Proposition 5.3 (Łojasiewicz-Simon inequality). Suppose that Ω ⊂ R
d (d ∈ {2, 3}) is a bounded

domain with smooth boundary ∂Ω, and the assumptions (H0), (H1), (H3), (H4) are satisfied. Given

an initial data u0, v0 ∈ V with F (u0, v0) ∈ L1(Ω) and u0, v0 ∈ (−1, 1), then for any (u∞, v∞) ∈
ω(u0, v0), there exist constants θ ∈ (0, 1/2) and C,̟ > 0 such that for u, v ∈ V ∩ L∞(Ω) satisfying
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‖u‖L∞(Ω) ≤ 1 − 3δ∞/4, ‖v‖L∞(Ω) ≤ 1 − 3δ∞/4, ‖u− u∞‖V ≤ ̟, ‖v − v∞‖V ≤ ̟, the following

inequality holds

∣∣Ψ̃(u, v) − Ψ̃(u∞, v∞)
∣∣1−θ ≤ C

(
‖µ− µ‖V ∗

0
+ ‖ϕ̃ − ϕ̃‖V ∗

0
+ (|u− u0|+ |v − c|)1−θ

)
, (5.16)

where µ = −∆u + ∂uF (u, v), ϕ̃ = −∆v + ∂vF (u, v) + σN (v − v) and δ∞ ∈ (0, 1) is the constant

determined in Proposition 5.2-(2).

Proof. Step 1. In view of Proposition 5.2-(2), we define Q = [−1 + δ∞/4, 1 − δ∞/4]2 and

Freg(s1, s2) = F (s1, s2)χQ(s1, s2) +G(s1, s2)(1 − χQ(s1, s2)),

where G(s1, s2) is chosen in such a way to extend F outside Q with C3(R2) regularity and bounded

derivatives up to order three (cf. [9]). Consider the regularized energy functional

Ψ̃reg(u, v) :=

∫

Ω

[
1

2
|∇u|2 + 1

2
|∇v|2 + Freg(u, v)

]
dx+ σ‖v − v‖2V ∗

0
.

It has been shown that Ψ̃reg(u, v) is twice continuously Fréchet differentiable and (u∞, v∞) is its critical

point (see [9, Lemma 7.3, Lemma 7.4]). Recall the first Fréchet derivative

〈
Ψ̃′

reg(u, v), (h, k)
〉
=

∫

Ω

(
∇u · ∇h+∇v · ∇k + ∂uF (u, v)h + ∂vF (u, v)k + σN (v − v)k

)
dx,

for any h, k ∈ V0. Under the additional assumption (H4), the following Łojasiewicz–Simon type in-

equality has been obtained in [9, Proposition 7.2]: there exist θ1 ∈ (0, 1/2) and C1,̟1 > 0 such that

for û, v̂ ∈ V satisfying û = u0, v̂ = c and ‖û− u∞‖V ≤ ̟1, ‖v̂ − v∞‖V ≤ ̟1, it holds

∣∣Ψ̃reg(û, v̂)− Ψ̃reg(u∞, v∞)
∣∣1−θ1 ≤ C1

∥∥Ψ̃′
reg(û, v̂)

∥∥
V ∗

0
×V ∗

0

. (5.17)

From the construction of Ψ̃reg(û, v̂), if we further require that û, v̂ ∈ L∞(Ω) satisfying ‖û‖L∞(Ω) ≤
1− δ∞/2, ‖v̂‖L∞(Ω) ≤ 1− δ∞/2, then in (5.17), we can simply replace Ψ̃reg(û, v̂) by Ψ̃(û, v̂), that is

∣∣Ψ̃(û, v̂)− Ψ̃(u∞, v∞)
∣∣1−θ1 ≤ C1

∥∥Ψ̃′(û, v̂)
∥∥
V ∗

0
×V ∗

0

≤ C1

(
‖µ̂ − µ̂‖V ∗

0
+ ‖ϕ̂− ϕ̂‖V ∗

0

)
, (5.18)

where

µ̂ = −∆û+ ∂uF (û, v̂), ϕ̂ = −∆v̂ + ∂vF (û, v̂) + σN (v̂ − v̂).

Step 2. We shall control the possible mass change by using the perturbation argument in [24] (see

also [6]). For any functions u, v ∈ V ∩ L∞(Ω) satisfying ‖u‖L∞(Ω) ≤ 1 − 3δ∞/4, ‖v‖L∞(Ω) ≤
1− 3δ∞/4 and ‖u− u∞‖V ≤ ̟2, ‖v − v∞‖V ≤ ̟2, let us define

(û, v̂) = (u, v)− (u− u0, v − c) ,

µ = −∆u+ ∂uF (u, v), ϕ̃ = −∆v + ∂vF (u, v) + σN (v − v).

We can choose the constant ̟2 ∈ (0,̟1/2) sufficiently small such that

|u− u0| ≤ min

{
δ∞
4

,
̟1

2
√
Ω

}
, |v − c| ≤ min

{
δ∞
4

,
̟1

2
√
Ω

}
.
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Then it holds ‖û‖L∞(Ω) ≤ 1 − δ∞/2, ‖v̂‖L∞(Ω) ≤ 1 − δ∞/2, ‖û− u∞‖V ≤ ̟1, ‖v̂ − v∞‖V ≤ ̟1.

As a consequence, (û, v̂) satisfies the inequality (5.18). On the other hand, since both (u, v) and (û, v̂)

are strictly separated from ±1, we infer from (H1) and (H3) that

‖(µ− µ)− (µ̂− µ̂)‖V ∗

0
+ ‖(ϕ − ϕ)− (ϕ̂− ϕ̂)‖V ∗

0
≤ C (|u− u0|+ |v − c|)
≤ C (|u− u0|+ |v − c|)1−θ1 , (5.19)

as well as ∣∣Ψ̃(u, v) − Ψ̃(û, v̂)
∣∣1−θ1 ≤ C (|u− u0|+ |v − c|)1−θ1 . (5.20)

Inserting (5.20) and (5.19) into (5.18), we find

∣∣Ψ̃(u, v) − Ψ̃(u∞, v∞)
∣∣1−θ1 ≤

∣∣Ψ̃(û, v̂)− Ψ̃(u∞, v∞)
∣∣1−θ1 +

∣∣Ψ̃(u, v)− Ψ̃(û, v̂)
∣∣1−θ1

≤ C1

(
‖µ̂ − µ̂‖V ∗

0
+ ‖ϕ̂− ϕ̂‖V ∗

0

)
+ C (|u− u0|+ |v − c|)1−θ1

≤ C1

(
‖µ − µ‖V ∗

0
+ ‖ϕ̃− ϕ̃‖V ∗

0

)
+ C2 (|u− u0|+ |v − c|)1−θ1 .

Hence, taking θ = θ1, ̟ = ̟2 and C = max{C1, C2}, we arrive at the conclusion (5.16).

5.3 Convergence to equilibrium

Now we are able to prove the convergence to a single equilibrium by using the well-known Łojasiewicz-

Simon approach.

Proof of Theorem 2.4. With the aid of Proposition 5.3 and the auxiliary energy inequality (5.9), we can

apply an argument similar to that in [9,18] with minor modification. The the convenience of the readers,

we sketch it here.

It follows from (5.11) that

Ψ̃(u∞, v∞) = E∞, ∀ (u∞, v∞) ∈ ω(u0, v0).

Next, thanks to the compactness of ω(u0, v0) in H2−ǫ(Ω)×H2−ǫ(Ω) ⊂ V × V (ǫ ∈ (0, 1/2)), we can

find a finite number of steady states
(
u
(j)
∞ , v

(j)
∞

)
∈ ω(u0, v0) (1 ≤ j ≤ N) such that

ω(u0, v0) ⊂ B =

N⋃

j=1

B
(
(u(j)∞ , v(j)∞ ),̟j

)
,

where ̟j > 0 is the constant corresponding to (u
(j)
∞ , v

(j)
∞ ) in Proposition 5.3 and B

(
(u

(j)
∞ , v

(j)
∞ ),̟j

)

denotes the open ball in V × V , centered at (u
(j)
∞ , v

(j)
∞ ) with radius ̟j . By Proposition 5.2-(2) and

(5.15), there exists a sufficiently large T1 ≥ 1 such that

‖u(t)‖C(Ω) ≤ 1− 3

4
δ∞, ‖v(t)‖C(Ω) ≤ 1− 3

4
δ∞, (u(t), v(t)) ∈ B, ∀ t ≥ T1.

By Proposition 5.3, we can extract uniform constants C > 0, θ ∈ (0, 1/2) such that for all t ≥ T1 the

following inequality holds

∣∣Ψ̃(u(t), v(t)) − E∞

∣∣1−θ ≤ C
(
‖µ(t)− µ(t)‖V ∗

0
+ ‖ϕ̃(t)− ϕ̃(t)‖V ∗

0
+ |v(t)− c|1−θ

)
, (5.21)
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where µ = −∆u + ∂uF (u, v), ϕ̃ = −∆v + ∂vF (u, v) + σN (v − v). Therefore, we infer from (5.1),

(5.9), (5.10) and (5.21) that for any t ≥ T1,

∫ ∞

t

(
‖∇µ(τ)‖2 + ‖∇ϕ̃(τ)‖2

)
dτ

≤ E(t)− E∞ ≤ |Ψ̃(u(t), v(t)) − E∞|+ K1

σ
e−σt

≤ C

(
‖µ(t)− µ(t)‖

1

1−θ

V ∗

0
+ ‖ϕ̃(t)− ϕ̃(t)‖

1

1−θ

V ∗

0
+ |v(t)− c|

)
+

K1

σ
e−σt

≤ C
(
‖∇µ(t)‖ 1

1−θ + ‖∇ϕ̃(t)‖ 1

1−θ + e−σt
)
. (5.22)

Since θ ∈ (0, 1/2), we have

∫ ∞

t
e−2σ(1−θ)τ dτ =

1

2σ(1− θ)
e−2σ(1−θ)t ≤ 1

2σ(1− θ)
e−σt, ∀t ≥ 1.

Set Σ(t) = ‖∇µ(t)‖+ ‖∇ϕ̃(t)‖+ e−σ(1−θ)t, we infer from (5.22) that

∫ ∞

t
Σ(τ)2 dτ ≤ CΣ(t)

1

1−θ , ∀t ≥ T1.

It follows from the above estimate and [12, Lemma 7.1] that Σ ∈ L1(T2,+∞). By comparison in the

evolution equations (5.2), (5.4) and using (5.1) we also have ∂tu, ∂tv ∈ L1(T2,∞;V ∗), which implies

the convergence of (u(t), v(t)) in V ∗×V ∗ to some (u∞, v∞) ∈ ω(u0, v0) as t → +∞. By compactness

of the trajectory, we can conclude

lim
t→+∞

‖(u(t), v(t)) − (u∞, v∞)‖H2−ǫ(Ω)×H2−ǫ(Ω) = 0 for all ǫ ∈
(
0,

1

2

)
.

As a consequence, ω(u0, v0) is a singleton.

6 Appendix

6.1 Well-posedness of the auxiliary problem with regularized potential

In what follows, we analyze the auxiliary problem (3.44). First, we give the definition of strong

solutions.

Definition 6.1. Let d ∈ {2, 3}, T ∈ (0,+∞) and α, δ ∈ (0, 1). For any initial data u0, v0 ∈ W , the

quadruple (u, v, µ, ϕ) is called a strong solution to problem (3.44) on [0, T ], if

u, v ∈ C([0, T ];W ) ∩ L2(0, T ;H3(Ω)),

∂tu, ∂tv ∈ C([0, T ];H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ∗),

µ, ϕ ∈ C([0, T ];W ) ∩ L2(0, T ;H3(Ω)) ∩H1(0, T ;V ),

the equations in (3.44) are satisfied almost everywhere in Ω × (0, T ) and the initial conditions are

satisfied everywhere in Ω.

Then we prove the following result:
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Proposition 6.1. Suppose that Ω ⊂ R
d (d ∈ {2, 3}) is a bounded domain with smooth boundary ∂Ω,

T ∈ (0,+∞), α, δ ∈ (0, 1) and the assumptions (H0), (H1), (H3) are satisfied. Then for any initial

data u0, v0 ∈ W , problem (3.44) admits a unique strong solution (u, v, µ, ϕ) on [0, T ] in the sense of

Definition 6.1.

Proof. Let g, h ∈ L2(0, T ;V ) ∩H1(0, T ;V ∗) be two given functions. We consider the following linear

problem: 



∂tu = ∆µ in Ω× (0, T ),

µ = α∂tu−∆u+ g in Ω× (0, T ),

∂tv + σ(v − c) = ∆ϕ in Ω× (0, T ),

ϕ = α∂tv −∆v + h in Ω× (0, T ),

∂nu = ∂nv = ∂nµ = ∂nϕ = 0 on ∂Ω× (0, T ),

(u, v)|t=0 = (u0, v0) in Ω,

(6.1)

where the initial data satisfy u0, v0 ∈ W . Set

ũ = u− u, ṽ = v − v, g̃ = g − g, h̃ = h− h,

with

u(t) = u0 and v(t) = v0e
−σt + c

(
1− e−σt

)
, ∀ t ∈ [0, T ].

Then problem (6.1) can be written as (cf. [32])





α∂tũ = ∆ũ+ (αI +N )−1ũ− α(αI +N )−1g̃ in Ω× (0, T ),

α∂tṽ = ∆ṽ + (αI +N )−1ṽ − ασ(αI +N )−1ṽ − α(αI +N )−1h̃ in Ω× (0, T ),

∂nũ = ∂nṽ = 0 on ∂Ω× (0, T ),

(ũ, ṽ)|t=0 = (u0 − u0, v0 − v0) in Ω,

(6.2)

in which we find two linear heat equations with compact perturbations. By a standard argument (e.g., the

Faedo-Garlerkin approximation), we can show that problem (6.2) admits a unique strong solution (ũ, ṽ)

satisfying

ũ, ṽ ∈ C([0, T ];W ) ∩ L2(0, T ;H3(Ω)) ∩H1(0, T ;V ) ∩H2(0, T ;V ∗).

Hence, problem (6.1) admits a unique strong solution (u, v, µ, ϕ) with corresponding regularity proper-

ties.

Now for any given functions u∗, v∗ ∈ L2(0, T ;W )∩H1(0, T ;H) satisfying u∗(0) = u0, v∗(0) = v0,

we set

g∗ = ∂uFδ(u∗, v∗), h∗ = ∂vFδ(u∗, v∗).

Since Fδ(·, ·) ∈ BUC2(R×R), it is straightforward to check that g∗, h∗ ∈ L2(0, T ;V )∩H1(0, T ;V ∗),

which also implies g∗, h∗ ∈ C(0, T ;H) thanks to the Aubin-Lions-Simon lemma [37]. As a conse-

quence, the mapping

M : L2(0, T ;W )2 ∩H1(0, T ;H)2 → L2(0, T ;H3)2 ∩H1(0, T ;V )2 s.t. M(u∗, v∗) = (u, v),

is well-defined, where (u, v) is the unique strong solution to problem (6.1) with the external terms

(g∗, h∗). Furthermore, by the standard energy method, we obtain

1

2

d

dt

(
‖∇u‖2 + ‖∇v‖2 + ασ‖v − v‖2

)
+ ‖∇µ‖2 + ‖∇ϕ‖2 + α

2
‖∂tu‖2 +

α

2
‖∂tv‖2 +

σ

2
‖∇v‖2
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≤ 1

2α
‖g∗‖2 +

1

2α
‖h∗‖2 + ασ|Ω|(v − c)2,

and

1

2

d

dt

(
‖∇µ‖2 + ‖∇ϕ‖2 + α‖∂tu‖2 + α‖∂tv‖2 + 2σ

∫

Ω
(v − c)ϕdx− σ‖∇v‖2

)

+ ‖∇∂tu‖2 + ‖∇∂tv‖2

≤ C
(
‖∂tu‖2 + ‖∂tv‖2 + ‖g∗‖2 + ‖h∗‖2

)
,

where

2σ

∣∣∣∣
∫

Ω
(v − c)ϕdx

∣∣∣∣ ≤ σ‖∇v‖2 + ασ‖v − c‖‖∂tv‖+ σ‖v − c‖‖h∗‖.

The above estimates enable us to conclude that M maps bounded set in L2(0, T ;W )2 ∩H1(0, T ;H)2

to bounded set in L2(0, T ;H3)2 ∩H1(0, T ;V )2.

Thanks to the nice property of Fδ, with a refined argument, we can verify the existence of a strong

solution to problem (3.44) on [0, T ] (see Definition 6.1) by using e.g., the Schauder principle. On the

other hand, uniqueness of strong solutions follows from an easy application of the energy method. Since

the argument is standard, we omit the details here.

6.2 Results for a nonlinear elliptic problem

Let us consider the Neumann problem for an elliptic equation with singular nonlinearity:

{
−∆u+ Ŝ′(u) = f in Ω,

∂nu = 0 on ∂Ω.
(6.3)

The following useful result can be found in [20, Appendix] (see also [1, 18]).

Lemma 6.1. Let Ω be a bounded domain in R
d (d ∈ {2, 3}) with smooth boundary ∂Ω. Suppose that

Ŝ satisfies the assumption (H1). For any f ∈ H , problem (6.3) admits a unique solution u ∈ W with

Ŝ′(u) ∈ H such that it satisfies −∆u+ Ŝ′(u) = f almost everywhere in Ω and the boundary condition

∂nu = 0 almost everywhere on ∂Ω. Besides, we have the following estimate

‖u‖H2(Ω) + ‖Ŝ′(u)‖ ≤ C(1 + ‖f‖). (6.4)

If f ∈ Lp(Ω), p ∈ [2,+∞), it holds

‖Ŝ′(u)‖Lp(Ω) ≤ ‖f‖Lp(Ω).

In addition, if f ∈ V , we have

‖∆u‖ ≤ ‖∇u‖ 1

2 ‖∇f‖ 1

2 ,

and

‖u‖W 2,p(Ω) + ‖Ŝ′(u)‖Lp(Ω) ≤ C(1 + ‖f‖V ),

for p = 6 if d = 3, and p ∈ [2,+∞) if d = 2.
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