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FLOW BY GAUSS CURVATURE TO THE ORLICZ MINKOWSKI

PROBLEM FOR q-TORSIONAL RIGIDITY

XIA ZHAO AND PEIBIAO ZHAO

Abstract. The Minkowski problem for torsional rigidity (2-torsional rigidity) was
firstly studied by Colesanti and Fimiani [12] using variational method. Moreover, Hu,
Liu and Ma [20] also studied this problem by method of curvature flow and obtain the
existence of smooth solution. In addition, the Minkowski problem for 2-torsional rigidity
was also extended to Lp version and Orlicz version.

Recently, Hu and Zhang [23] introduced the concept of Orlicz mixed q-torsional rigid-
ity and obtained Orlicz q-torsional measure through the variational method for q > 1.
Specially, they established the functional Orlicz Brunn-Minkowski inequality and the
functional Orlicz Minkowski inequality.

Motivated by the remarkable work by Hu and Zhang in [23], we can propose the Orlicz
Minkowksi problem for q-torsional rigidity, and then confirm the existence of smooth
even solutions to the Orlicz Minkowski problem for q-torsional rigidity with q > 1 by
method of a Gauss curvature flow.

1. Introduction and main results

The classical Minkowski problem argues the existence, uniqueness and regularity of a
convex body whose surface area measure is equal to a pre-given Borel measure on the
sphere Sn−1. If the given measure has a positive continuous density, the Minkowski prob-
lem can be seen as the problem of prescribing the Gauss curvature in differential geometry.
Minkowski problem and its solution can be traced back to the works of Minkowski [32],
other influential works, such as Lewy [26], Nirenberg [33], Pogorelov [34] and Cheng-Yau
[10], etc..

In the past 30 years, the Minkowski problem has played an important role in the
study of convex geometry, and the research of Minkowski problem has promoted the
development of fully nonlinear partial differential equations. The Minkowski problem
has produced some variations of it, among which the Lp(p ∈ R) Minkowski problem is
particularly important because the Lp(p ∈ R) Minkowski problem contains some special
versions. Namely: when p = 1, it is the classical Minkowski problem; when p = 0, this
is the famous log-Minkowski problem [3]; when p = −n, it is the centro-affine Minkowski
problem [40]. The Lp Minkowski problem with p > 1 was first proposed and studied
by Lutwak [30], whose solution plays a key role in establishing the Lp affine Sobolev
inequality [18, 31]. Until 2010, Haberl, Lutwak, Yang and Zhang [17] proposed and
studied the even Orlicz Minkowski problem which is a more generalized Minkowksi type
problem, and its result contains the classical Minkowski problem and the Lp Minkowski
problem.

We know that the different geometric measures correspond to different Minkowski type
problems. Some geometric measures with physical backgrounds have been introduced
into the Brunn-Minkowski theory, naturally, the related Minkowski type problems have
also been gradually studied. For example, prescribing capacitary curvature measures on

Key words and phrases. Gauss curvature flow; q-torsional rigidity; Orlicz Minkowski problem; Monge-
Ampère equation.
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planar convex domains [39]: If given a finite, nonnegative Borel measure µ ∈ S1 has
centroid at the origin and its supp(µ) does not comprise any pair of antipodal points,
then, there is a unique (up to translation) convex, nonempty, open set Ω ⊂ R2 such that
dµq(Ω, ·) = dµ(·), where µq(Ω, ·) is q-capacitary curvature measure of Ω with q ∈ (1, 2].
Inspired by [39], we also study the Minkowski type problem with a physical background
in the present paper, namely, the Orlicz Minkowski problem for q-torsional rigidity.

Firstly, we recall the concept of q-torsional rigidity and its related contents. For conve-
nience, let Kn be the collection of convex bodies in Euclidean space Rn. The set of convex
bodies containing the origin in their interiors in Rn, we write Kn

o . Moreover, we let C2
+

be the class of convex bofies of C2 if its boundary has the positive Gauss curvature.
Firstly, we recall the torsional rigidity (2-torsional rigidity) of convex body Ω in Rn is

described by (see [11])

1

T (Ω)
= inf

{∫
Ω
|∇u|2dX

[
∫
Ω
|u|dX ]2

: u ∈ W 1,2
0 (Ω),

∫

Ω

|u|dX > 0

}
.

It has been provided that, there exists a unique function u such that

Tq(Ω) =

∫

Ω

|∇u|2dX,

where u satisfies the boundary-value problem

{
∆u(X) = −2 in Ω,
u(X) = 0, on ∂Ω.

Here, ∆u is the Laplace operator.
Next, we introduce the q-torsional rigidity [13] with q > 1. Obviously, when q = 2, it

is the 2-torsional rigidity. Let Ω ∈ Kn, the q-torsional rigidity Tq(Ω) is defined by

1

Tq(Ω)
= inf

{∫
Ω
|∇u|qdX

[
∫
Ω
|u|dX ]q

: u ∈ W 1,q
0 (Ω),

∫

Ω

|u|dX > 0

}
. (1.1)

The functional defined in (1.1) admints a minimizer u ∈ W 1,q
0 (Ω), and cu( for some

constant c) is unique positive solution of the following boundary value problem (see [2]
or [19])

{
∆qu = −1 in Ω,
u = 0, on ∂Ω,

(1.2)

where
∆qu = div(|∇u|q−2∇u)

is the q-Laplace operator.
Applying (1.2) with the Gauss-Green formula, we have

∫

Ω

|∇u|qdX =

∫

Ω

udX, (1.3)

from (1.1) and (1.3), it follows

Tq(Ω) =
(
∫
Ω
udX)q∫

Ω
|∇u|qdX

=

(∫

Ω

udX

)q−1

=

(∫

Ω

|∇u|qdX

)q−1

. (1.4)
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With the aid of Pohozaev-type identities of [35], The q-torsional rigidity formula (1.4)
is given by

Tq(Ω)
1

q−1 =
q − 1

q + n(q − 1)

∫

Sn−1

h(Ω, ξ)dµtor
q (Ω, ξ) (1.5)

=
q − 1

q + n(q − 1)

∫

Sn−1

h(Ω, ξ)|∇u|qdS(Ω, ξ),

setting T̃q(Ω) = Tq(Ω)
1

q−1 , the q-torsional measure µtor
q (Ω, η) is defined by

µtor
q (Ω, η) =

∫

g−1(η)

|∇u(X)|qdHn−1(X) =

∫

η

|∇u(g−1(x))|qdS(Ω, x), (1.6)

for any Borel set η ⊆ Sn−1. Here, g : ∂Ω → Sn−1 is Gauss map, and Hn−1 is the
(n− 1)-dimensional Hausdorff measure.

Recently, Hu and Zhang [23] firstly established the functional form of the Orlicz Brunn-
Minkowski theory for the q-torsional rigidity with q > 1 by variational formula in the
smooth category. Combined the Orlicz Minkowski sum with formula (1.5), they intro-
duced the Orlicz mixed q-torsional rigidity of functional form as follows.

Definition 1.1. [23, Definition 3.4] Suppose ϕ ∈ Φ, q > 1, and f, g, a · f +ϕ b · g ∈ E for

a, b ∈ I (not both zero). Define the Orlicz mixed q-torsional rigidity T̃ϕ,q([f ], g) by

T̃ϕ,q([f ], g) =
γϕ′

l(1)

α

dT̃q(f +ϕ t · g)

dt

∣∣∣∣
t=0+

=
γ

α

∫

Sn−1

ϕ

(
g(x)

f(x)

)
f(x)dµtor

q ([f ], x).

Here,

Φ = {ϕ ∈ C2,α(R) : ϕ ∈ Φ : Φ be the class of convex and strictly increasing function},

E = {h ∈ C2,α
+ (Sn−1) : (hij + hδij) is positive definite},

I ⊂ [0,+∞) be a bounded interval and γ

α
= q−1

n(q−1)+q
.

Suppose K,L ∈ Kn
o , q > 1, that are of class C2,α

+ , analogous to definition 1.1, there also
has following definition.

Definition 1.2. [23, Definition 3.8] Suppose ϕ ∈ Φ, q > 1, and K,L, a ·K +ϕ b ·L ∈ Kn
o

that are of class C2,α
+ for a, b ∈ I (not both zero). Then, define the Orlicz mixed q-torsional

rigidity T̃ϕ,q(K,L) by

T̃ϕ,q(K,L) =
γϕ′

l(1)

α

dT̃q(K +ϕ t · L)

dt

∣∣∣∣
t=0+

=
γ

α

∫

Sn−1

ϕ

(
hL(x)

hK(x)

)
hK(x)dµ

tor
q (K, x).

With the help of above variational formula for q-torsional rigidity with respect to
Orlicz sum, we not only get the Orlicz mixed q-torsional rigidity of K,L, but also obtain
Orlicz q-torsional measure µtor

ϕ,q. Thus, we can propose the normalised Orlicz Minkowski

problem for q-torsional rigidity: Let q > 1, µ be a finite Borel measure on Sn−1 and
ϕ : (0,∞) → (0,∞) is a fixed continuous function, under what necessary and sufficient
conditions, does there exist a unique convex body Ω whose support function is h and
positive constant τ so that µ = τµtor

ϕ,q, i.e.

dµ = τϕ(h)dµtor
q (Ω, ·). (1.7)

Combining (1.6), if the given measure µ is absolutely continuous with respect to the
Lebesgue measure and µ has a density function f : Sn−1 → (0,∞) is even and smooth,
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then, solving problem (1.7) can be equivalently viewed as solving the following Monge-
Ampère equation on Sn−1:

τϕ(h)|∇u|q det(∇ijh+ hδij) = f. (1.8)

In (1.7), when q = 2, the Orlicz Minkowksi problem to the 2-torsional rigidity first
developed and proved by Li and Zhu [27]. Moreover, Hu, Liu and Ma [22] combined (1.8)
obtained the existence of smooth solution by Gauss curvature flow for this problem.

In the case of q = 2, let ϕ(s) = s, the Minkowski problem for 2-torsional rigidity was
firstly proposed by Colesanti and Fimiani [12] and smooth solution was obtained in [20]
by Gauss curvature flow. The same case of q, the Minkowksi problem for 2-torsional
rigidity was extended Lp version (ϕ(s) = s1−p) by Chen and Dai [9] who proved the
existence of solutions for any fixed p > 1 and p 6= n + 2, Hu and Liu [21] for 0 < p < 1.

If q > 1 not only q = 2, the Hadamard variational formula for q-torsion rigidity with
applications was provided in [24].

As mentioned above, we find that the Orlicz Minkowski problem is an important and
generalized Minkowski type problem, it includes the classical Minkowksi problem and Lp

Minkowski problem, therefore, it is necessary to study the Orlicz Minkowski problem.
In this paper, we will study the Orlicz Minkowski problem for q-torsional rigidity with
q > 1 and give the existence of even, smooth, uniformly convex solutions for (1.8) by
the method of Gauss curvature flow. The Gauss curvature flow was first introduced and
studied by Firey [15] to model the shape change of worn stones. Since then, various Gauss
curvature flows have been extensively studied, see examples [1, 4, 5, 6, 8, 20, 22, 29] and
the references therein.

Let ∂Ω0 be a smooth, closed, origin symmetric and strictly convex hypersurface in
Rn. We construct and consider the long-time existence and convergence of the following
Gauss curvature flow which is a family of convex hypersurfaces ∂Ωt parameterized by
smooth maps X(·, t) : Sn−1 × (0,∞) → Rn satisfying the initial value problem

{
∂X(x,t)

∂t
= −λ(t)f(ν) (X·ν)

|∇u(X,t)|qϕ(X·ν)
K(x, t)ν +X(x, t),

X(x, 0) = X0(x),
(1.9)

where K(x, t) is the Gauss curvature of hypersurface ∂Ωt, ν = x is the outer unit normal
at X(x, t), X · ν represents standard inner product of X and ν, and λ(t) is defined as
follows

λ(t) =

∫
Sn−1 |∇u(X, t)|

qρndξ
∫
Sn−1

hf

ϕ
dx

,

where ρ and h are the radial function and support function of the convex hypersurface
∂Ωt, respectively.

For the convenience of discussing Gauss curvature flow (1.9) in the following text, we
introduce a functional for any t ≥ 0 as follows:

Γ(Ωt) =

∫

Sn−1

f(x)φ(h(x, t))dx. (1.10)

Here, let’s assume that φ(s) =
∫ s

0
1

ϕ(ζ)
dζ exists for all s > 0 and lims→∞ φ(s) = ∞, where

h(·, t) is the support function of Ωt.
Combining problem (1.8) with flow (1.9), we establish the following result in this article.

Theorem 1.3. Suppose q > 1, ϕ : (0,∞) → (0,∞) is a fixed continuous function, φ
satisfy above assumptions, ∂Ω0 be a smooth, closed, origin symmetric and strictly convex
hypersurface in Rn and f be a positive and even smooth function on Sn−1. Then, the flow
(1.9) has a unique smooth, origin symmetric uniformly convex solution ∂Ωt = X(Sn−1, t)
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for t ∈ (0,∞). When t→ ∞, there is a subsequence of ∂Ωt converges in C
∞ to a smooth,

closed, origin symmetric and strictly convex hypersurface Ω∞ whose support function
satisfies (1.8).

This paper is organized as follows. We collect background materials in Section 2. In
Section 3, we give the scalar form of flow (1.9) by support function and discuss properties
of two important functionals along the flow (1.9). In Section 4, we give the priori estimates
for the solution to the flow (1.9). We obtain the convergence of the flow and complete
the proof of Theorem 1.3 in Section 5.

2. Preliminaries

In this section, we give a brief review of some relevant notions about convex bodies
and recall some basic properties of convex hypersurfaces that readers may refer to [38]
and a book of Schneider [36].

2.1. Convex bodies. Let Rn be the n-dimensional Euclidean space and ∂Ω be a smooth,
closed and strictly convex hypersurface containing the origin in its interior. The support
function of convex body Ω enclosed by ∂Ω is defined by

hΩ(ξ) = h(Ω, ξ) = max{ξ · y : y ∈ Ω}, ∀ξ ∈ Sn−1,

and the radial function of Ω with respect to o (origin) ∈ R is defined by

ρΩ(v) = ρ(Ω, v) = max{c > 0 : cv ∈ Ω}, v ∈ Sn−1.

The volume V ol(Ω) of Ω is defined by

V ol(Ω) =
1

n

∫

Sn−1

ρ(Ω, v)ndv =
1

n

∫

Sn−1

h(Ω, ξ)dS(Ω, ξ). (2.1)

For a compact convex subset Ω ∈ Kn and ξ ∈ Sn−1, the intersection of a supporting
hyperplane with Ω, H(Ω, ξ) at ξ is given by

H(Ω, ξ) = {x ∈ Ω : x · ξ = hΩ(ξ)}.

A boundary point of Ω which only has one supporting hyperplane is called a regular
point, otherwise, it is a singular point. The set of singular points is denoted as σΩ, it is
well known that σΩ has spherical Lebesgue measure 0.

For x ∈ ∂Ω \ σΩ, its Gauss map gΩ : x ∈ ∂Ω \ σΩ → Sn−1 is represented by

gΩ(x) = {ξ ∈ Sn−1 : x · ξ = hΩ(ξ)}.

Correspondingly, for a Borel set η ⊂ Sn−1, its inverse Gauss map is denoted by g−1
Ω ,

g−1
Ω (η) = {x ∈ ∂Ω : gΩ(x) ∈ η}.

Specially, for a convex hypersurface ∂Ω of class C2, then, the support function of Ω can
be stated as

h(Ω, x) = x · g−1(x) = g(X(x)) ·X(x), X(x) ∈ ∂Ω.

Moreover, the gradient of h(Ω, ·) satisfies

∇h(Ω, x) = g−1(x). (2.2)

For the Borel set η ⊂ Sn−1, its surface area measure is defined as

SΩ(η) = Hn(g−1
Ω (η)),

where Hn is n-dimensional Hausdorff measure. Furthermore, for Hn almost all X ∈ ∂Ω,

∇u(X) = −|∇u(X)|g(X) and |∇u| ∈ Lq(∂Ω,Hn).
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2.2. Gauss curvature on Convex hypersurface. Suppose that Ω is parameterized
by the inverse Gauss map X : Sn−1 → Ω, that is X(x) = g−1

Ω (x). Then, the support
function h of Ω can be computed by

h(x) = x ·X(x), x ∈ Sn−1, (2.3)

where x is the outer normal of Ω at X(x). Let {e1, e2, · · · , en−1} be an orthonormal
frame on Sn−1, denote eij by the standard metric on the sphere Sn−1. Differentiating
(2.3), there has

∇ih = ∇ix ·X(x) + x · ∇iX(x),

since ∇iX(x) is tangent to Ω at X(x), thus,

∇ih = ∇ix ·X(x).

By differentiating (2.3) twice, the second fundamental form Aij of Ω can be computed
in terms of the support function,

Aij = ∇ijh+ heij , (2.4)

where ∇ij = ∇i∇j denotes the second order covariant derivative with respect to eij . The
induced metric matrix gij of Ω can be derived by Weingarten’s formula,

eij = ∇ix · ∇jx = AikAljg
kl. (2.5)

The principal radii of curvature are the eigenvalues of the matrix bij = Aikgjk. When
considering a smooth local orthonormal frame on Sn−1, by virtues of (2.4) and (2.5),
there is

bij = Aij = ∇ijh+ hδij . (2.6)

Then, the Gauss curvature K(x) of X(x) ∈ ∂Ω is given by

K(x) = (det(∇ijh+ hδij))
−1. (2.7)

3. Geometric flow and its associated functionals

In this section, we will introduce the geometric flow and its associated functionals for
solving the Orlicz Minkowski problem for q-torsional rigidity with q > 1. For convenience,
the Gauss curvature flow is restated here. Let ∂Ω0 be a smooth, closed and origin
symmetric strictly convex hypersurface in Rn, f be a positive even smooth function on
Sn−1. We consider the following Gauss curvature flow

{
∂X(x,t)

∂t
= −λ(t)f(ν) (X·ν)

|∇u(X,t)|qϕ(X·ν)
K(x, t)ν +X(x, t),

X(x, 0) = X0(x),
(3.1)

where K(x, t) is the Gauss curvature of the hypersurface ∂Ωt at X(·, t), ν = x is the unit
outer normal vector of ∂Ωt at X(·, t), X · ν represents standard inner product of X and
ν, and λ(t) is given by

λ(t) =

∫
Sn−1 |∇u(X, t)|

qρndξ
∫
Sn−1

hf

ϕ
dx

. (3.2)

Taking the scalar product of both sides of the equation and of the initial condition in
(3.1) by ν, by means of the definition of support function (2.3) and (2.2) , we describe
the flow (1.9) (or (3.1)) with the support function as follows

{
∂h(x,t)

∂t
= −λ(t)f(x) h(x,t)

|∇u(∇h,t)|qϕ(h)
K(x, t) + h(x, t),

h(x, 0) = h0(x).
(3.3)
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Next, we investigate the characteristics of two essential geometric functionals with
respect to Eq. (3.3). Firstly, we show the q-torsional rigidity unchanged along the flow
(3.1). In fact, the conclusion can be stated as the following lemma.

Lemma 3.1. For q > 1, the q-torsional rigidity Tq(Ωt) is unchanged with regard to Eq.
(3.3), i.e.

Tq(Ωt) = Tq(Ω0).

Proof. Let h(·, t) and ρ(·, t) be the support function and radial function of Ωt, respectively.
u(X, t) be the solution of (1.2) in Ωt. The proposition 2.5 of [24] tells us that

∂

∂t
Tq(Ωt) =

∂

∂t

[(
q − 1

q + n(q − 1)

∫

Sn−1

h(Ωt, x)|∇u|
qK−1dx

)q−1]

=
(q − 1)2

q + n(q − 1)
T

q−2
q−1
q

∫

Sn−1

∂h(Ωt, x)

∂t
|∇u|qK−1dx.

Thus, from (3.2), (3.3) and ρnKdξ = hdx, we have

∂

∂t
Tq(Ωt) =

(q − 1)2

q + n(q − 1)
T

q−2
q−1
q

∫

Sn−1

(
− λ(t)

fhK

|∇u|qϕ
+ h

)
|∇u|qK−1dx

=
(q − 1)2

q + n(q − 1)
T

q−2
q−1
q

(
−

∫
Sn−1 |∇u|

qρndξ∫
Sn−1 hf/ϕdx

∫

Sn−1

fhK

|∇u|qϕ
|∇u|qK−1dx

+

∫

Sn−1

h|∇u|qK−1dx

)

=
(q − 1)2

q + n(q − 1)
T

q−2
q−1
q

(
−

∫

Sn−1

|∇u|qhK−1dx+

∫

Sn−1

|∇u|qhK−1dx

)

=0.

This ends the proof of Lemma 3.1. �

The next Lemma will show that the functional (1.10) is non-increasing along the flow
(3.1).

Lemma 3.2. The functional (1.10) is non-increasing along the flow (3.1). Namely,
∂
∂t
Γ(Ωt) ≤ 0, the equality holds if and only if Ωt satisfy (1.8).

Proof. By (1.10), (3.2), (3.3), ρnKdξ = hdx and the Hölder inequality, we obtain the
following result,

∂

∂t
Γ(Ωt)

=

∫

Sn−1

f(x)φ′(h(x, t))
∂h

∂t
dx

=

∫

Sn−1

(
− λ(t)

f(x)h

|∇u|qϕ(h)
K + h

)
f(x)

ϕ(h)
dx

=− λ(t)

∫

Sn−1

f 2(x)h

|∇u|qϕ2(h)
Kdx+

∫

Sn−1

hf(x)

ϕ(h)
dx

=−

∫
Sn−1 |∇u|

q h
K
dx

∫
Sn−1

hf

ϕ(h)
dx

∫

Sn−1

f 2(x)h

|∇u|qϕ2(h)
Kdx+

∫

Sn−1

hf(x)

ϕ(h)
dx

=

(∫

Sn−1

hf

ϕ(h)
dx

)−1{
−

[(∫

Sn−1

(
|∇u|

q

2 (
h

K
)
1
2

)2

dx

) 1
2
(∫

Sn−1

(
f(x)h

1
2K

1
2

|∇u|
q

2ϕ(h)

)2

dx

) 1
2
]2
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+

(∫

Sn−1

hf(x)

ϕ(h)
dx

)2}

≤

(∫

Sn−1

hf(x)

ϕ(h)
dx

)−1[
−

(∫

Sn−1

|∇u|
q

2 (
h

K
)
1
2 ×

f(x)h
1
2K

1
2

|∇u|
q

2ϕ(h)
dx

)2

+

(∫

Sn−1

hf(x)

ϕ(h)
dx

)2]
= 0.

By the equality condition of Hölder inequality, we know that the above equality holds
if and only if f = τϕ(h)K−1|∇u|q, i.e.,

τϕ(h)|∇u|q det(∇ijh+ hδij) = f.

Namely, Ωt satisfies (1.8) with
1
τ
= λ(t). �

4. Priori estimates

In this section, we establish the C0, C1 and C2 estimates for the solution to Eq. (3.3).
In the following of this paper, we always assume that ∂Ω0 is a smooth, closed and origin
symmetric strictly convex hypersurface in Rn, h : Sn−1 × [0, T ) → R is a smooth even
solution to Eq. (3.3) with the initial h(·, 0) the support function of ∂Ω0. Here, T is the
maximal time for the existence of smooth even solution to Eq. (3.3).

4.1. C0, C1 estimates. In order to complete the C0 estimate, we firstly need to introduce
the following Lemmas for convex bodies.

Lemma 4.1. [7, Lemma 2.6] Let Ω ∈ Kn
o , h and ρ be respectively support function and

radial function of Ω, and xmax and ξmin be two points such that h(xmax) = maxSn−1 h and
ρ(ξmin) = minSn−1 ρ. Then,

max
Sn−1

h =max
Sn−1

ρ and min
Sn−1

h = min
Sn−1

ρ;

h(x) ≥x · xmaxh(xmax), ∀x ∈ Sn−1;

ρ(ξ)ξ · ξmin ≥ρ(ξmin), ∀ξ ∈ Sn−1.

Lemma 4.2. Let u ∈ W 1,q
loc (Ω) be a local weak solution of

div(|∇u|q−2∇u) = ψ, q > 1; ψ ∈ Lloc
s (Ω),

s > q′n ( 1
q′
+ 1

q
= 1). Then, u ∈ C1+α

loc (Ω). (see [14, Corollary in pp. 830])

Lemma 4.3. Let ∂Ωt be a origin symmetric, smooth convex solution to the flow (3.1) in
Rn, u(X, t) be the solution of (1.2) in Ωt, f and ϕ satisfy assumptions of Theorem 1.3.
Then, there is a positive constant C independent of t such that

1

C
≤ h(x, t) ≤ C, ∀(x, t) ∈ Sn−1 × [0, T ), (4.1)

1

C
≤ ρ(ξ, t) ≤ C, ∀(ξ, t) ∈ Sn−1 × [0, T ). (4.2)

Here, h(x, t) and ρ(ξ, t) are the support function and radial function of Ωt, respectively.

Proof. We only give proof of (4.1), (4.2) can be obtained by Lemma 4.1 and (4.1).
Firstly, we prove the upper bound of (4.1). At fixed time t0 ∈ [0, T ), assume that the

maximum of h(·, t0) is attained at (xt0 , t0) for xt0 ∈ Sn−1. Let

max
Sn−1

h(x, t0) = h(xt0 , t0),
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setting
hmax(t) = sup

t0∈[0,T )

h(xt0 , t0).

According to the second clause of Lemma 4.1, we have

h(x, t0) ≥ hmax(t)xt0 · x, ∀x ∈ Sn−1,

where h and hmax(t) (hmax(t) = maxSn−1 h(·, t)) are on the same hypersurface.
Recall the definition of φ, we know that φ (φ′ > 0) is strictly increasing and f is a

positive even smooth function on Sn−1. Thus, from Lemma 3.2, there is

Γ(Ω0) ≥Γ(Ωt) =

∫

Sn−1

f(x)φ(h(x, t))dx

≥

∫

{x∈Sn−1:xt0 ·x≥
1
2
}

f(x)φ(h(x, t))dx

≥

∫

{x∈Sn−1:xt0 ·x≥
1
2
}

f(x)φ(hmax(t)xt0 · x)dx

≥

∫

{x∈Sn−1:xt0 ·x≥
1
2
}

f(x)φ

(
1

2
hmax(t)

)
dx

≥Cφ

(
1

2
hmax(t)

)
,

which implies that φ(1
2
hmax(t)) has uniformly positive upper bound Γ(Ω0)

C
. Since φ is

strictly increasing and lims→∞ φ(s) = ∞, we can know that h(·, t) also has uniformly
positive upper bound. Here, C is a positive constant depending only on maxSn−1 h(x, 0)
and maxSn−1 f(x).

That is we have obtained the uniform upper bounds of the convex bodies generated
by ∂Ωt = X(Sn−1, t). Before proving the lower bound of (4.1), let’s first explain the
following facts.

Combining Lemma 4.2 with Ωt is convex body, we know that there are positive con-
stants c and C such that

c ≤ |∇u(X(x, t), t)| ≤ C, ∀(x, t) ∈ Sn−1 × [0, T ),

further, according to (2.2), we obtain

c ≤ |∇u(∇h(x, t), t)| ≤ C, ∀(x, t) ∈ Sn−1 × [0, T ). (4.3)

In the same time, by virtue of Schauder’s theory (see example Chapter 6 in [16]), there

is a positive constant C̃, independent of t, satisfying that

|∇ku(∇h(x, t), t)| ≤ C̃, ∀(x, t) ∈ Sn−1 × [0, T ), (4.4)

for all integer k ≥ 2.
To prove the lower bound of h(x, t), we use the method of contradiction to discuss.

Let’s assume that there exists a sequence {tk} ⊂ [0, T ) such that h(x, tk) is not uniformly
bounded away from 0, i.e., minSn−1 h(x, tk) → 0 as k → ∞. Since f , h0 is even and Ωt

is a origin-symmetric convex body, thus, h(x, t) is even. On the other hand, making use
of the upper bound, by Blaschke-Selection theorem [36], there is a sequence in {Ωtk},
for convenience, which is still denoted by {Ωtk}, such that {Ωtk} converges to a origin-

symmetric convex body Ω̃ through the Hausdorff measure as k → ∞, then, we obtain

minSn−1 h(Ω̃, ·) = limk→∞minSn−1 h(Ωtk , ·) = 0. Thus, there exist x̃ such that h(Ω̃, x̃) = 0

and h(Ω̃,−x̃) = 0. This implies that Ω̃ is contained in a lower-dimensional subspace in
Rn. This can lead to ρ(ξ, tk) → 0 as k → ∞ almost everywhere with respect to the
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spherical Lebesgue measure. According to bounded convergence theorem and formula
(2.1), we can derive

V ol(Ω̃) =
1

n

∫

Sn−1

ρ(ξ, tk)
ndv → 0 as k → ∞.

However, (4.3) (1.5), (2.1), (4.3), Lemma 3.1 and the conditions for initial hypersurfaces
show that

0 < c = T̃q(Ω0) = T̃q(Ω̃) = lim
k→∞

T̃q(Ωtk)

= lim
k→∞

q − 1

q + n(q − 1)

∫

Sn−1

h(Ωtk , ξ)|∇u|
qdS(Ωtk , ξ)

≤
Cq(q − 1)

q + n(q − 1)

∫

Sn−1

h(Ω̃, ξ)dS(Ω̃, ξ)

=
Cq(q − 1)

q + n(q − 1)
V ol(Ω̃),

which is a contradiction with q > 1. It follows that h(x, t) has a uniform lower bound.
Therefore, we complete proof of Lemma 4.3. �

Lemma 4.4. Let ∂Ωt be a origin-symmetric, smooth convex solution to the flow (3.1) in
Rn, f and ϕ satisfy assumptions of Theorem 1.3. Then, there is a positive constant C
independent of t such that

|∇h(x, t)| ≤ C, ∀(x, t) ∈ Sn−1 × [0, T ), (4.5)

and

|∇ρ(ξ, t)| ≤ C, ∀(ξ, t) ∈ Sn−1 × [0, T ). (4.6)

Proof. The desired results immediately follows from Lemma 4.3 and the following iden-
tities (see e.g. [28])

h =
ρ2√

ρ2 + |∇ρ|2
, ρ2 = h2 + |∇h|2.

�

Lemma 4.5. Under the same conditions as the Lemma 4.3, there always exists a positive
constant C independent of t, such that

1

C
≤ λ(t) ≤ C, t ∈ [0, T ).

Proof. By the definition of λ(t),

λ(t) =

∫
Sn−1 |∇u|

qρndξ
∫
Sn−1

hf

ϕ
dx

,

the conclusion of this result is directly obtained from the (4.1), (4.2) and (4.3). �

4.2. C2 estimate. In this subsection, we establish the upper and lower bounds of prin-
cipal curvature. This will shows that Eq. (3.3) is uniformly parabolic. The technique
used in this proof was first introduced by Tso [37] to derive the upper bound of the
Gauss curvature. We begin with completing the following results which will be need in
C2 estimate.
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Lemma 4.6. Let Ωt be a convex body of C2
+ in Rn, and u(X(x, t), t) be the solution of

(1.2) with q > 1 in Ωt, then

(i)(∇2u(X(x, t), t)ei) · ej = −K|∇u(X(x, t), t)|cij(x, t);

(ii)(∇2u(X(x, t), t)ei) · x = −K|∇u(X(x, t), t)|jcij(x, t);

(iii)(∇2u(X(x, t), t)x) · x =
1

q − 1

(
K|∇u|Tr(cij(hij + hδij))− |∇u|2−q

)
.

Here, ei and x are orthonormal frame and unite outer normal on Sn−1, · is standard inner
product and cij is the cofactor matrix of (hij+hδij) with

∑
i,j cij(hij+hδij) = (n−1)K−1.

Proof. Similar conclusions have been presented in some References, for example [22], thus,
we will briefly state the proofs combining with our problem.

(i) Assume that h(x, t) is the support function of Ωt for (x, t) ∈ Sn−1 × (0,∞) and

let ι = ∂h
∂t
. Then, X(x, t) = hiei + hx, ∂X(x,t)

∂t
= Ẋ(x, t) = ∂

∂t
(hiei + hx) = ιiei + ιx.

Xi(X, t) = (hij + hδij)ej , let hij + hδij = ωij, then, Xij(x, t) = ωijkek − ωijx, where ωijk

is the corariant derivatives of ωij .
From u(X, t) = 0 on ∂Ωt, we can not difficult to obtain

∇u ·Xi = 0,

and
((∇2u)Xj)Xi +∇uXij = 0.

It follows that

ωikωjl(((∇
2u)el) · ek) + ωij|∇u| = 0. (4.7)

Multiplying both sides of (4.7) by cij , we have

cijωikωjl(((∇
2u)el) · ek) + det(hij + hδij)|∇u| = 0.

Namely,

δjk det(hik + hδik)ωjl(((∇
2u)el) · ek) + det(hij + hδij)|∇u| = 0.

It yields

ωij(((∇
2u)ei) · ej) + |∇u| = 0,

then,

cijωij(((∇
2u)ei) · ej) + cij|∇u| = 0,

i.e.,

K−1(((∇2u)ei) · ej) + cij|∇u| = 0,

thus,

((∇2u)ei) · ej = −cijK|∇u|.

This gives proof of (i).
(ii) Recall that

|∇u(X(x, t), t)| = −∇u(X(x, t), t) · x,

taking the covariant of both sides for above formula, we obtain

|∇u|j = −∇u · ej − (∇2u)Xj · x = −ωij((∇
2u)ei · x). (4.8)

Multiplying both sides of (4.8) by clj and combining

cljωij = δli det(hij + hδij).



12 XIA ZHAO AND PEIBIAO ZHAO

We conclude that

cij |∇u|j = − det(hij + hδij)(∇
2u)ei · x.

Hence,

((∇2u)ei) · x = −Kcij |∇u|j.

This proves (ii).
(iii) From (1.2), we know that

−1 = div(|∇u|q−2∇u) = |∇u|q−2(∆u+
q − 2

|∇u|2
(∇2u∇u) · ∇u),

then,

q − 2

|∇u|2
(∇2u∇u) · ∇u = −∆u − |∇u|2−q,

further,

(q − 2)((∇2u)x) · x

= −∆u− |∇u|2−q

= −Tr(∇2u)− |∇u|2−q

= −
∑

i

((∇2u)ei) · ej − ((∇2u)x) · x− |∇u|2−q

= K|∇u|Tr(cij(hij + hδij))− ((∇2u)x) · x− |∇u|2−q,

hence,

(q − 1)((∇2u)x) · x = K|∇u|Tr(cij(hij + hδij))− |∇u|2−q,

consequently,

((∇2u)x) · x =
1

q − 1

(
K|∇u|Tr(cij(hij + hδij))− |∇u|2−q

)
.

This completes proof of the (iii). �

By Lemma 4.3 and Lemma 4.4, if h is a smooth even solution of Eq. (3.3) on Sn−1 ×
[0, T ) (T is the maximal time for the existence of smooth even solution) and f, ϕ satisfying
assumptions of Theorem 1.3, then, along the flow for [0, T ),∇h+ hx, and h are smooth
functions whose ranges are within some bounded domain Ω[0,T ) and bounded interval
I[0,T ), respectively. Here, Ω[0,T ) and I[0,T ) depend only on the upper and lower bounds of
h on [0, T ).

Lemma 4.7. Let ∂Ωt be a origin-symmetric, smooth convex solution to the flow (3.1) in
Rn, f and ϕ be as Theorem 1.3 and q > 1, there is a positive constant C depending on
‖f‖C0(Sn−1), ‖ϕ‖C1(I[0,T )),

‖ϕ‖C2(I[0,T )), ‖h‖C1(Sn−1×[0,T ) and ‖λ‖C0(Sn−1×[0,T ), where ‖s‖ represent max s and min s,
such that the principal curvatures κi of ∂Ωt, i = 1, · · · , n − 1, are bounded from above
and below, satisfying

1

C
≤ κi(x, t) ≤ C, ∀(x, t) ∈ Sn−1 × [0, T ).

Proof. The proof is divided into two parts: in the first part, we derive an upper bound
for the Gauss curvature K(x, t); in the second part, we give an estimate of bound above
for the principal radii bij = hij + hδij .

Step 1: Prove K ≤ C.
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Firstly, we construct the following auxiliary function,

Θ(x, t) =
λ(t)(ϕ|∇u|q)−1Kf(x)h− h

h− ε0
≡

−ht
h− ε0

,

where

ε0 =
1

2
min

Sn−1×[0,T )
h(x, t) > 0, ht =

∂h

∂t
.

For any fixed t ∈ [0, T ), we assume that Θ(xt0 , t0) = maxSn−1 Θ(x, t). Then at (xt0 , t0),
we have

0 = ∇iΘ =
−hti
h− ε0

+
hthi

(h− ε0)2
, (4.9)

and from (4.9), at (xt0 , t0), we also get

0 ≥ ∇iiΘ =
−htii
h− ε0

+
htihi

(h− ε0)2
+
htihi + hthii
(h− ε0)2

−
hthi(2(h− ε0)hi)

(h− ε0)4

=
−htii
h− ε0

+
2htihi + hthii
(h− ε0)2

−
2hthihi
(h− ε0)3

=
−htii
h− ε0

+
hthii

(h− ε0)2
+

2htihi(h− ε0)− 2hthihi
(h− ε0)3

=
−htii
h− ε0

+
hthii

(h− ε0)2
. (4.10)

From (4.10), we obtain

−htii ≤
−hthii
h− ε0

,

hence,

−htii − htδii ≤
−hthii
h− ε0

− htδii =
−ht
h− ε0

(hii + (h− ε0)δii)

=Θ(hii + hδii − ǫ0δii) = Θ(bii − ε0δii). (4.11)

At (xt0 , t0), we also have

∂

∂t
Θ =

−htt
h− ǫ0

+
h2t

(h− ǫ0)2
(4.12)

=
f

h− ǫ0

[
∂(λ(t)(ϕ|∇u|q)−1h)

∂t
K + λ(t)(ϕ|∇u|q)−1h

∂(det(∇2h+ hI))−1

∂t

]
+Θ+Θ2,

where
∂

∂t
((ϕ|∇u|q)−1h) =− ϕ−2ϕ′∂h

∂t
|∇u|−qh− q|∇u|−(q+1) ∂

∂t
|∇u|ϕ−1h+ (ϕ|∇u|q)−1∂h

∂t
,

and ϕ′ denotes ∂ϕ(s)
∂s

.
According to Lemma 5.3 of [22], it shows that

∂

∂t
|∇u| =− (∇2u)x ·

(
∂hi
∂t

)
ei −

(
∂h

∂t

)
(∇2u)x · x− (|∇u|−1∇u∇2u · x)

(
∂h

∂t

)
− |∇u|

(
∂h

∂t

)

=− (∇2u)x ·

(
−Θi(h− ǫ0)−Θhi

)
ei

+Θ(h− ǫ0)

(
(∇2u)x · x+ |∇u|−1∇u∇2u · x+ |∇u|

)
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≤Θ(xt0 , t0)

(
(∇2u)xhiei + h((∇2u)x · x+ |∇u|−1∇u∇2u · x+ |∇u|)

)
,

then,

∂

∂t
((ϕ|∇u|q)−1h) (4.13)

≤− ϕ−2ϕ′|∇u|−qh(−Θ(xt0 , t0)(h− ǫ0)

− q|∇u|−(q+1)ϕ−1hΘ(xt0 , t0)

(
(∇2u)xhiei + h((∇2u)x · x+ |∇u|−1∇u∇2u · x+ |∇u|)

)

− (ϕ|∇u|q)−1Θ(xt0 , t0)(h− ε0).

Thus, combining (4.3) with Lemma 4.6, and dropping some negative terms in (4.13), we
have

∂

∂t
((ϕ|∇u|q)−1h) ≤ −ϕ−2ϕ′|∇u|−qh× (−Θ(xt0 , t0))(h− ǫ0) ≤ C1Θ(xt0 , t0).

And from (3.2), we know that

∂

∂t
(λ(t)) =

∂

∂t

(∫
Sn−1 |∇u|

qρndξ∫
Sn−1 hf/ϕdx

)

=

∂
∂t

(∫
Sn−1 |∇u|

qρndξ

)

∫
Sn−1 hf/ϕdx

−

∂
∂t

(∫
Sn−1 hf/ϕdx

)(∫
Sn−1 |∇u|

qρndξ

)

(∫
Sn−1 hf/ϕdx

)2 .

By ρ2 = h2 + |∇h|2 and (xt0 , t0) is a maximum of Θ, we get

∂ρ

∂t
= ρ−1(hht +

∑
hkhkt) = ρ−1Θ(ε0h− ρ2) ≤ ρ−1Θ(xt0 , t0)(ε0h− ρ2).

For q > 1, one can obtain form (4.3) and Lemma 4.6

∂

∂t

(∫

Sn−1

|∇u|qρndξ

)

=

∫

Sn−1

(
∂

∂t
|∇u|q

)
ρndξ +

∫

Sn−1

|∇u|q
(
∂

∂t
ρn
)
dξ

=q

∫

Sn−1

|∇u|q−1 ∂

∂t
|∇u|ρndξ + n

∫

Sn−1

|∇u|qρn−1

(
∂ρ

∂t

)
dξ

≤qΘ(xt0 , t0)

(
(∇2u)xhiei + h((∇2u)x · x+ |∇u|−1∇u∇2u · x+ |∇u|)

)∫

Sn−1

|∇u|q−1ρndξ

+ nρ−1Θ(xt0 , t0)(ε0h− ρ2)

∫

Sn−1

|∇u|qρn−1dξ

≤C2Θ(xt0 , t0),

and

−
∂

∂t

(∫

Sn−1

hf/ϕdx

)
=−

∫

Sn−1

∂h
∂t
f

ϕ
+
hfϕ′ ∂h

∂t

ϕ2
dx

=

∫

Sn−1

(
f

ϕ
+
hfϕ′

ϕ2

)
Θ(h− ε0)dx

≤

∫

Sn−1

(
fh

ϕ
+
h2fϕ′

ϕ2

)
dxΘ(xt0 , t0)
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≤C3Θ(xt0 , t0).

Hence,

∂

∂t
(λ(t)) ≤ C4Θ(xt0 , t0).

We use (2.7), (4.11) and recall bij = ∇ijh+ hδij may give

∂(det(∇2h + hI))−1

∂t
=− (det(∇2h+ hI))−2∂(det(∇

2h + hI))

∂bij

∂(∇2h+ hI)

∂t

=− (det(∇2h+ hI))−2∂(det(∇
2h + hI))

∂bij
(htij+htδij )

≤(det(∇2h + hI))−2∂(det(∇
2h + hI))

∂bij
Θ(bij − ε0δij)

≤KΘ((n− 1)− ε0(n− 1)K
1

n−1 ).

Therefore, we have following conclusion with (4.12) at (xt0 , t0),

∂

∂t
Θ ≤

1

h− ε0

(
C5Θ

2 + fλh(ϕ|∇u|q)−1KΘ((n− 1)− ε0(n− 1)K
1

n−1 )

)
+Θ+Θ2.

(4.14)

According to construction of Θ and the previous estimate, we easily obtain

1

C6
K ≤ Θ ≤ C6K.

Then, it is clear that Θ(xt0 , t0) is sufficiently large, (4.14) implies that

∂

∂t
Θ ≤

1

h− ε0

(
C5Θ

2 + fλh(ϕ|∇u|q)−1C6Θ
2((n− 1)− ε0(n− 1)(C6Θ)

1
n−1 )

)
+Θ+Θ2

≤
1

h− ε0
Θ2

(
C5 + [fλh(ϕ|∇u|q)−1C6(n− 1)]− [fλh(ϕ|∇u|q)−1C

n
n−1

6 (n− 1)]ε0Θ
1

n−1 + 2

)

=
[fλh(ϕ|∇u|q)−1C

n
n−1

6 (n− 1)]

h− ε0
Θ2

(
C5 + [fλh(ϕ|∇u|q)−1C6(n− 1)] + 2

[fλh(ϕ|∇u|q)−1C
n

n−1

6 (n− 1)]
− ε0Θ

1
n−1

)

≤C7Θ
2(C8 − ε0Θ

1
n−1 ) < 0,

since C7 and C8 depend on ‖f‖C0(Sn−1), ‖ϕ‖C1(I[0,T )), ‖ϕ‖C2(I[0,T )), ‖h‖C1(Sn−1×[0,T ), ‖λ‖C0(Sn−1×[0,T )

and |∇u|. Consequently, above ODE tells us that

Θ(xt0 , t0) ≤ C,

and for any (x, t),

K(x, t) =
(h− ε0)Θ(x, t) + h

f(x)h(ϕ|∇u|q)−1λ
≤

(h− ε0)Θ(xt0 , t0) + h

f(x)h(ϕ|∇u|q)−1λ
≤ C.

Step 2: Prove κi ≥
1
C
.

We consider the auxiliary function as follows

̥(x, t) = log βmax({bij})− A log h+B|∇h|2,

where A,B are positive constants which will be chosen later, and βmax({bij}) denotes the
maximal eigenvalue of {bij}; for convenience, we write {bij} for {bij}

−1.
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For every fixed t ∈ [0, T ), suppose maxSn−1 ̥(x, t) is attained at point x0 ∈ Sn−1. By
a rotation of coordinates, we may assume

{bij(x0, t)} is diagonal, and βmax({bij}(x0, t)) = b11(x0, t).

Hence, in order to show κi ≥ 1
C
, that is to prove b11 ≤ C. By means of the above

assumption, we transform ̥(x, t) into the following form,

˜̥ (x, t) = log b11 − A log h+B|∇h|2.

Utilizing again the above assumption, for any fixed t ∈ [0, T ), ˜̥(x, t) has a local maximum
at (x0, t), thus, we have at (x0, t),

0 = ∇i ˜̥ =b11∇ib11 − A
hi
h

+ 2B
∑

hkhki (4.15)

=b11(hi11 + h1δi1)−A
hi
h

+ 2Bhihii,

and

0 ≥∇ii ˜̥

=∇ib
11(hi11 + h1δi1) + b11[∇i(hi11 + h1δi1)]−A

(
hii
h

−
h2i
h2

)
+ 2B(

∑
hkhkii + h2ii)

=− (b11)
−2∇ib11(hi11 + h1δi1) + b11(∇iib11)−A

(
hii
h

−
h2i
h2

)
+ 2B(

∑
hkhkii + h2ii)

=b11∇iib11 − (b11)2(∇ib11)
2 − A

(
hii
h

−
h2i
h2

)
+ 2B(

∑
hkhkii + h2ii).

At (x0, t), we also have

∂

∂t
˜̥ =

1

b11

∂b11
∂t

− A
ht
h

+ 2B
∑

hkhkt

=b11
∂

∂t
(h11 + hδ11)− A

ht
h

+ 2B
∑

hkhkt

=b11(h11t + ht)− A
ht
h

+ 2B
∑

hkhkt.

From Eq. (3.3) and (2.7), we know that

log(h− ht) = log(h+ λ(ϕ|∇u|q)−1Khf − h)

= logK + log(λ(ϕ|∇u|q)−1hf)

=− log(det(∇2h+ hI)) + log(λ(ϕ|∇u|q)−1hf). (4.16)

Let

χ(x, t) = log(λ(ϕ|∇u|q)−1hf).

Differentiating (4.16) once and twice, we respectively get

hk − hkt
h− ht

=−
∑

bij∇kbij +∇kχ

=−
∑

bii(hkii + hiδik) +∇kχ,

and

h11 − h11t
h− ht

−
(h1 − h1t)

2

(h− ht)2
=−

(
−

∑
(bii)2(∇ibii)

2 + bii∇iibii

)
+∇11χ

=−
∑

bii∇11bii +
∑

biibjj(∇1bij)
2 +∇11χ.
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By the Ricci identity, we have

∇11bii = ∇iib11 − b11 + bii.

Thus, we can derive
∂
∂t
˜̥

h− ht
=b11

(
h11t + ht
h− ht

)
−A

ht
h(h− ht)

+
2B

∑
hkhkt

h− ht

=b11
(
h11t − h11
h− ht

+
h11 + h− h+ ht

h− ht

)
−A

1

h

ht − h+ h

h− ht
+

2B
∑
hkhkt

h− ht

=b11
(
−

(h1 − h1t)
2

(h− ht)2
+
∑

bii∇11bii −
∑

biibjj(∇1bij)
2 −∇11χ

+
h11 + h− (h− ht)

h− ht

)
−
A

h

(
−(h− ht) + h

h− ht

)
+

2B
∑
hkhkt

h− ht

=b11
(
−

(h1 − h1t)
2

(h− ht)2
+
∑

bii∇11bii −
∑

biibjj(∇1bij)
2 −∇11χ

)

+ b11
(
h11 + h

h− ht
− 1

)
+
A

h
−

A

h− ht
+

2B
∑
hkhkt

h− ht

=b11
(
−

(h1 − h1t)
2

(h− ht)2
+
∑

bii∇11bii −
∑

biibjj(∇1bij)
2 −∇11χ

)
+

1− A

h− ht

− b11 +
A

h
+

2B
∑
hkhkt

h− ht

≤b11
(∑

bii(∇iib11 − b11 + bii)−
∑

biibjj(∇1bij)
2

)
− b11∇11χ+

1− A

h− ht

+
A

h
+

2B
∑
hkhkt

h− ht

≤
∑

bii
[
(b11)2(∇ib11)

2 + A

(
hii
h

−
h2i
h2

)
− 2B(

∑
hkhkii + h2ii)

]

− b11
∑

biibjj(∇1bij)
2 − b11∇11χ+

1− A

h− ht
+
A

h
+

2B
∑
hkhkt

h− ht

≤
∑

bii
[
A

(
hii + h− h

h
−
h2i
h2

)]
+ 2B

∑
hk

(
−
∑

biihkii +
hkt

h− ht

)

− 2B
∑

bii(bii − h)2 − b11∇11χ+
1−A

h− ht
+
A

h

≤
∑

bii
[
A

(
bii
h

− 1

)]
+ 2B

∑
hk

(
hk

h− ht
+ bkkhk −∇kχ

)

− 2B
∑

bii(b2ii − 2biih)− b11∇11χ+
1− A

h− ht
+
A

h

≤− 2B
∑

hk∇kχ− b11∇11χ+ (2B|∇h| −A)
∑

bii − 2B
∑

bii

+ 4B(n− 1)h+
2B|∇h|2 + 1−A

h− ht
+
nA

h
.

Recall

χ(x, t) = log(λ(ϕ|∇u|q)−1hf) = log λ− logϕ− q log |∇u|+ log h+ log f,
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since λ is a constant factor, we have λk = 0. Consequently, we may obtain following form
by χ(x, t) and (4.15),

− 2B
∑

hk∇kχ− b11∇11χ

=− 2B
∑

hk

(
fk
f

+
hk
h

− q
(|∇u|)k
|∇u|

−
ϕ′hk
ϕ

)
− b11∇11χ

=− 2B
∑

hk

(
fk
f

+
hk
h

− q
(|∇u|)k
|∇u|

−
ϕ′hk
ϕ

)

− b11
(
ff11 − f 2

1

f 2
+
hh11 − h21

h2
− q

|∇u|(|∇u|)11 − (|∇u|)21
(|∇u|)2

−
ϕ′′h21 + ϕ′h11

ϕ
+

(ϕ′h1)
2

ϕ2

)

≤C9B + C10b
11 + 2qB

∑
hk

(|∇u|)k
|∇u|

+ b11
h(b11 − h)

h2

+ qb11
|∇u|(|∇u|)11 − (|∇u|)21

(|∇u|)2
+ b11

(
ϕ′′h21 + ϕ′h11

ϕ
+

(ϕ′h1)
2

ϕ2

)
,

where ϕ′′ = ∂2ϕ(s)
∂s2

,

b11
(
ϕ′′h21 + ϕ′h11

ϕ
+

(ϕ′h1)
2

ϕ2

)
= b11

(
ϕ′′h21 + ϕ′(b11 − h)

ϕ
+

(ϕ′h1)
2

ϕ2

)
≤ C11b

11.

Recall that

|∇u(X, t)| = −∇u(X, t) · x,

taking the covariant derivative above equality, we get

(|∇u|)k = −bik((∇
2u)ei · x),

further,

(|∇u|)11 =− bi11((∇
2u)ei · x)− bj1bi1((∇

3u)ejei · x)

+ bi1((∇
2u)x · x)− bi1((∇

2u)ei · e1).

Thus, combing (4.3) with Lemma 4.6, we get

2qB
∑

hk
(|∇u|)k
|∇u|

= 2qB
∑

hk
−bik((∇

2u)ei · x)

|∇u|
≤ C12Bb11.

From (4.15), we obtain

b11bi11 = A
hi
h

+ 2Bhihii = A
hi
h

+ 2Bhi(bii − hδii),

therefore, from (4.3), (4.4) and Lemma 4.6, we get

qb11
|∇u|(|∇u|)11 − (|∇u|)21

(|∇u|)2
≤ C13Bb11.

It follows that
∂
∂t
˜̥

h− ht
≤ C14Bb11 + C15b

11 + (2B|∇h| −A)
∑

bii − 2B
∑

bii + 4B(n− 1)h+
nA

h
< 0,

provided b11 >> 1 and if we choose A >> B. We obtain

˜̥(x0, t) ≤ C,

hence,

̥(x0, t) = ˜̥ (x0, t) ≤ C.
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This tells us the principal radii are bounded from above, or equivalently κi ≥
1
C
. �

5. The convergence of the flow

With the help of priori estimates in the section 4, the long-time existence and asymp-
totic behaviour of the flow (1.9) (or (3.1)) are obtained, we also can complete proof of
Theorem 1.3.

Proof of the Theorem 1.3. Since Eq. (3.3) is parabolic, we can get its short time exis-
tence. Let T be the maximal time such that h(·, t) is a positive, smooth, even and strictly
convex solution to Eq. (3.3) for all t ∈ [0, T ). Lemma 4.3-4.6 enable us to apply Lemma
4.7 to Eq. (3.3), thus, we can deduce a uniformly upper and lower bounds for the biggest
eigenvalue of {(hij + hδij)(x, t)}. This implies

C−1I ≤ (hij + hδij)(x, t) ≤ CI, ∀(x, t) ∈ Sn−1 × [0, T ),

where C > 0 independents on t. This shows that Eq. (3.3) is uniformly parabolic.
Estimates for higher derivatives follows from the standard regularity theory of uniformly
parabolic equations Krylov [25]. Hence, we obtain the long time existence and regularity
of solutions for the flow (1.9) (or (3.1)). Moreover, we obtain

‖h‖
C

l,m
x,t (Sn−1×[0,T )) ≤ Cl,m,

for some Cl,m (l, m are nonnegative integers pairs) independent of t, then T = ∞. Using
parabolic comparison principle, we can attain the uniqueness of the smooth even solution
h(·, t) of Eq. (3.3).

By the monotonicity of Γ in Lemma 3.2, there is a constant C > 0 independent of t,
such that

|Γ(X(·, t))| ≤ C, ∀t ∈ [0,∞). (5.1)

By the Lemma 3.2, we obtain

lim
t→∞

Γ(X(·, t))− Γ(X(·, 0)) = −

∫ ∞

0

∣∣∣∣
d

dt
Γ(X(·, t))

∣∣∣∣dt. (5.2)

From (5.1), the left hand side of (5.2) is bounded below by −2C, therefore, there is a
sequence tj → ∞ such that

d

dt
Γ(X(·, tj)) → 0 as tj → ∞,

using Lemma 3.2, Lemma 4.3 and Lemma 4.4 again, above equation implies h(·, t) con-
verges to a positive, even and uniformly convex function h∞ ∈ C∞(Sn−1) which satisfies
(1.8) with τ given by

1

τ
= lim

tj→∞
λ(tj).

This completes the proof of Theorem 1.3. �
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[9] Z. M. Chen and Q. Y. Dai, The Lp Minkowski problem for torsion. J. Math. Anal. Appl.,

488 (2020), 1-26.
[10] S. Y. Cheng and S. T. Yau, On the regularity of the solution of the n-dimensional Minkowski

problem, Comm. Pure Appl. Math., 29 (1976), 495-516.
[11] A. Colesanti, Brunn-Minkowski inequalities for variational functionals and related prob-

lems, Adv. Math., 194 (2005), 105-140.
[12] A. Colesanti and M. Fimiani, The Minkowski problem for torsional rigidity, Indiana Univ.

Math. J., 59 (2010), 1013-1039.
[13] A. Colesanti, P. Cuoghi and P. Salani, Brunn-Minkowski inequalities for two functionals

involving the p-Laplace operator, Appl. Anal., 85 (2006), 45-66.
[14] E. Dibendetto, C1+α local regularity of weak solutions of degenerate elliptic equations,

Nonlinear Anal., 7 (1983), 827-850.
[15] W. J. Firey, Shapes of worn stones, Mathematika, 21 (1974), 1-11.
[16] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,

Reprint of the 1998 Edition, Classics in Mathematics, Springer, Berlin, 2001.
[17] C. Haberl, E. Lutwak, D. Yang and G. Y. Zhang, The even Orlicz Minkowski problem,

Adv. Math., 224 (2010), 2485-2510.
[18] C. Haberl and F. E. Schuster, Asymmetric affine Lp Sobolev inequalities, J. Funct. Anal.,

257 (2009), 641-658.
[19] H. X. Hu and S. Q. Zhou, Brunn-Minkowski inequality for variational functional involving

the p-Laplacian operator, Acta. Math. Sci. Ser. B Engl. Ed., 29 (2009), 1143-1154.
[20] J. R. Hu, A Gauss curvature flow approach to the torsional Minkowski problem, J. Differ-

ential Equations, 385, (2024), 254-279.
[21] J. R. Hu and J. Q. Liu, On the Lp torsional Minkowski problem for 0 < p < 1, Adv. Appl.

Math., 128, (2021), 1-22.
[22] J. R. Hu, J. Q. Liu and D. Ma, A Gauss curvature flow to the Orlicz-Minkowski problem

for torsional rigidity, J. Geom. Anal., 32 (2022), 1-28.
[23] J. R. Hu and P. Zhang, The functional Orlicz-Brunn-Minkowski inequality for q-torsional

rigidity, Mathematika, (2023), DOI: 10.1112/mtk.12213.
[24] Y. Huang, C. Z. Song and L. Xu, Hadamard variational formulas for p-torsion and p-

eigenvalue with applications, Geom. Dedicata, 197 (2018), 61-76.
[25] N. V. Krylov, Nonlinear elliptic and parabolic equations of the second order, Dordrecht,

Holland: D. Reidel Publishing Company, 1987.
[26] H. Lewy, On differential geometry in the large. I. Minkowski’s problem, Trans. Amer. Math.

Soc., 43 (1938), 258-270.
[27] N. Li and B. C. Zhu, The Orlicz-Minkowski problem for torsional rigidity, J. Differential

Equations, 269 (2020), 8549-8572.
[28] Q. R. Li, W. M. Sheng and X. J. Wang, Flow by Gauss curvature to the Aleksandrov and

dual Minkowski problems, J. Eur. Math. Soc., 22 (2019), 893-923.
[29] Y. N. Liu and J. Lu, A flow method for the dual Orlicz-Monkowski problem, Trans. Amer.

Math. Soc., 373 (2020), 5833-5853.
[30] E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski prob-

lem, J. Differential Geom., 38 (1993), 131-150.



THE ORLICZ MINKOWSKI PROBLEM FOR q-TORSIONAL RIGIDITY 21

[31] E. Lutwak, D. Yang and G. Y. Zhang, Sharp affine Lp Sobolev inequalities, J. Differential
Geom., 62 (2002), 17-38.

[32] H. Minkowski, Volumen und Oberfläche. Math. Ann., 57 (1903), 447-495.
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