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Abstract

Let k be a field finitely generated over its prime subfield. We prove that
the quotient of the Brauer group of a product of varieties over k by the
Brauer groups of factors has finite exponent. The bulk of the proof concerns
p-primary torsion in characteristic p. Our approach gives a more direct proof
of the boundedness of the p-primary torsion of the Brauer group of an abelian
variety, as recently proved by D’Addezio. We show that the transcendental
Brauer group of a Kummer surface over k has finite exponent, but can be
infinite when k is an infinite field of positive characteristic. This answers a
question of Zarhin and the author.

Introduction

Let k be a field of characteristic exponent p. Thus p = 1 if char(k) = 0, otherwise
p = char(k). Let k̄ be an algebraic closure of k, let ks be the separable closure of
k in k̄, and let Γ = Gal(ks/k). For an abelian group A and a prime number ℓ we
denote by A{ℓ} the ℓ-primary torsion subgroup of A. We write A(p′) for the direct
sum of A{ℓ} over all primes ℓ 6= p.

Assume that k is finitely generated over its prime subfield. Relation between
the Tate conjecture for divisors for a smooth and projective variety X over k and
finiteness properties of the Brauer group of X is well known, at least for torsion
coprime to p. Indeed, the validity of the Tate conjecture for X at a prime ℓ 6= p is
equivalent to the finiteness of Br(Xks)

Γ{ℓ}, and is also equivalent to the finiteness of
the image of the natural map Br(X){ℓ} → Br(Xks){ℓ}, see [CTS21, Thm. 16.1.1].
In particular, this holds for abelian varieties and K3 surfaces. Moreover, in these
two cases Br(Xks)

Γ(p′) is finite [SZ08, SZ15, Ito18], see also [CTS21, Ch. 16]. In
[SZ08, Questions 1, 2] the authors asked whether Br(Xks)

Γ{p}, or at least the image
of Br(X){p} in Br(Xks){p}, is finite when X is an abelian variety or a K3 surface
and p > 1. In a recent paper, D’Addezio observed that for the self-product of a
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supersingular elliptic curve this image is infinite when k is infinite [D’Ad, Cor. 5.4].
On the positive side, he proved that Br(Xks)

Γ{p} has finite exponent when X is
an abelian variety, see [D’Ad, Thm. 1.1]. (As pointed out in [D’Ad, Cor. 6.7], this
may fail if ks is replaced by k̄.) One can hope that this result should be true in
more generality, for example for K3 surfaces. For p 6= 2, we note that D’Addezio’s
examples descend to the associated Kummer surfaces. Thus the questions raised in
[SZ08] have negative answers for K3 surfaces over infinite finitely generated fields of
characteristic at least 3.

The main result of this note is the following

Theorem A Let X and Y be smooth, projective, geometrically integral varieties
over a finitely generated field k. Then the cokernel of the natural map

Br(X)⊕ Br(Y )→ Br(X ×k Y )

has finite exponent.

For the prime-to-p torsion this easily follows from [SZ14, Thm. B] which says1

that the cokernel of Br(X)(p′)⊕Br(Y )(p′)→ Br(X ×k Y )(p
′) is finite when X ×k Y

has a k-point or H3(k, (ks)×) = 0. In this paper we deal with the p-primary torsion.
Our proof is inspired by [D’Ad] and crucially uses the crystalline Tate conjecture
proved by de Jong [dJ98, Thm. 2.6]. As a consequence we obtain a more transparent
proof of [D’Ad, Thm. 1.1]. Combined with the previous results of Zarhin and the
author, it gives that Br(Xks)

Γ is a direct sum of a finite group and a p-group of finite
exponent, when X is an abelian variety over a finitely generated field k, see Theorem
3.2. Using similar ideas, we also give a simplified proof of the flat version of the
Tate conjecture for divisors on abelian varieties [D’Ad, Thm. 5.1], see Theorem 3.4.

The prime-to-p torsion part of the next result was obtained in [SZ14, Thm. 3.1].

Theorem B Let X and Y be smooth, projective, geometrically integral varieties
over a finitely generated field k of characteristic exponent p. Then the cokernel of
the natural map Br(Xks)

Γ ⊕ Br(Yks)
Γ → Br(Xks ×ks Yks)

Γ is a direct sum of a finite
group and a p-group of finite exponent.

In particular, Theorem B implies that if X is a surface dominated by a product
of curves, then Br(Xks)

Γ is a direct sum of a finite group and a p-group of finite
exponent. This holds, for example, for the smooth surfaces in P3

k given by the
equation f(x0, x1) = g(x2, x3), see Corollary 2.4.

Our approach is based on the systematic use of pointed varieties, i.e. varieties over
k with a distinguished k-point. In Section 1 we obtain a version of the Künneth
formula for the second flat cohomology group of the product of pointed varieties, see
Theorem 1.3 and Corollary 1.4. Similarly to the ℓ-adic case, the embedding of the
‘primitive’ part of cohomology can be interpreted in terms of pairing with classes of

1In loc. cit. one assumes that char(k) = 0, but the proof goes through for the prime-to-p torsion
when char(k) = p > 0.
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certain natural torsors. In Section 2 we first prove Theorem A for pointed varieties
(Theorem 2.1) from which we obtain the general case, see Theorem 2.2. We then
deduce Theorem B, see Corollary 2.3. Applications to abelian varieties can be found
in Section 3 and applications to Kummer surfaces in Section 4. The appendix by
Alexander Petrov contains a structure theorem for the Brauer group of a smooth
and proper variety over an algebraically closed field of positive characteristic p: this
group is a direct sum of finitely many copies of Qp/Zp and an abelian p-group of
finite exponent, see Theorem A.1.

The work on this paper started when the author visited Capital Normal Univer-
sity in Beijing and continued during visits of Chennai Mathematical Institute and
EPF Lausanne. He is grateful to Yang Cao, Marco D’Addezio, Jean-Pierre Serre,
Domenico Valloni, Yuan Yang, and Yuri Zarhin for stimulating discussions, and to
Alexander Petrov who very kindly provided the appendix to this paper.

1 Cohomology of the product

Let k be a field. Let F be a contravariant functor from the category of schemes over
k to the category of abelian groups. We shall refer to a pair (X, x0), where X is a
k-scheme and x0 ∈ X(k), as a pointed k-scheme. For a pointed k-scheme (X, x0) we
define

F (X)e := Ker[x∗0 : F (X)→ F (k)].

Then we have F (X) ∼= F (k)⊕ F (X)e. For k-schemes X and Y we have an obvious
commutative diagram

Y

πY

��

X ×k Y
pXoo

pY

��
Spec(k) X

πXoo

When (X, x0) and (Y, y0) are pointed k-schemes, the k-points x0 and y0 give rise to
sections to the four morphisms in this diagram. Thus F (k), F (X), F (Y ) are direct
summands of F (X ×k Y ) such that F (X) ∩ F (Y ) = F (k). Therefore, F (X)e and
F (Y )e are direct summands of F (X×k Y )e such that F (X)e∩F (Y )e = 0. It follows
that F (X)e ⊕ F (Y )e is a direct summand of F (X ×k Y )e. Define

F (X ×k Y )prim := Ker[F (X ×k Y )e → F (X)e ⊕ F (Y )e],

where the map F (X ×k Y )e → F (X)e is the specialisation at y0 and the map
F (X ×k Y )e → F (Y )e is the specialisation at x0. This gives rise to a direct sum
decomposition of abelian groups

F (X ×k Y )e ∼= F (X)e ⊕ F (Y )e ⊕ F (X ×k Y )prim, (1)

which is functorial with respect to morphisms of pointed k-schemes.
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For a field extension K/k we define the functor F (XK)
k := Im[F (X)→ F (XK)].

The group Br(Xks)
k is called the transcendental Brauer group.

Recall that by a theorem of Grothendieck, the Picard scheme PicX/k exists when
X is proper over k, see the references in [CTS21, Thm. 2.5.7]. The Picard variety of a
smooth, projective, geometrically integral variety X is the abelian variety Pic0X/k,red,

where Pic0X/k is the connected component of 0. The Albanese variety A is defined

as the dual abelian variety of the Picard variety of X so that Pic0X/k,red
∼= A∨.

From now on we assume that X is a projective variety over a field k, and that p
is a prime number that may or may not be equal to the characteristic of k, unless
explicitly stated otherwise. Throughout the paper we consider fppf-cohomology, so
we drop fppf from notation. We also write Hi(X) := Hi(Xfppf , µpn).

Let SX be the finite commutative group k-scheme whose Cartier dual S∨
X is the

subgroup k-scheme PicX/k[p
n] := Ker[PicX/k

pn

−→ PicX/k].

Proposition 1.1 Let X and Y be pointed projective, geometrically reduced and ge-
ometrically connected varieties over a field k. Then there is a natural isomorphism

H2(X ×k Y, µpn)prim ∼= H1(X,S∨
Y )e.

Proof. For a proper, geometrically reduced and geometrically connected k-variety
πY : Y → Spec(k) the natural map OSpec(k) → πY ∗OY is an isomorphism. This
implies that every k-morphism from Y to an affine k-scheme must be constant. In
particular, the sheaf πY ∗µpn,Y on Spec(k)fppf is µpn. The Kummer sequence

1→ µpn → Gm,k
pn

−→ Gm,k → 1

is an exact sequence of sheaves on Spec(k)fppf . Using that the natural morphism
Gm,k → πY ∗Gm,Y is an isomorphism, we see that the group k-scheme S∨

X repre-
sents the sheaf R1πX∗µpn on Spec(k)fppf . By a theorem of Bragg and Olsson [BO,
Cor. 1.4], since Y is projective, there is an affine group k-scheme Gn of finite type
that represents the sheaf R2πY ∗µpn on Spec(k)fppf .

Consider the spectral sequence attached to pY : X ×k Y → X :

Ep,q
2 = Hp(X,RqpY ∗µpn)⇒ Hp+q(X ×k Y ).

Since (id, y0) is a section of pY , the canonical map

Hi(X) ∼= Hi(X, pY ∗µpn)→ Hi(X ×k Y )

is split injective for any i ≥ 0. This implies that the differentials of any page of this
spectral sequence with target Hi(X) are zero for any i ≥ 0. It follows that we have
an exact sequence

0→ H1(X,S∨
Y )→ H2(X ×k Y )/H2(X)→ H0(X,Gn)→ H2(X,S∨

Y ).
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When X = Spec(k) there is a compatible exact sequence giving rise to the commu-
tative diagram

0 // H1(X,S∨
Y )

// H2(X ×k Y )e/H
2(X)e // H0(X,Gn) // H2(X,S∨

Y )

0 // H1(k, S∨
Y )

//
?�

OO

H2(Y )e //
?�

OO

H0(k,Gn)

∼=

OO

// H2(k, S∨
Y )

?�

OO

All vertical maps are split injective, with splittings defined by the base point x0 ∈
X(k). The map H0(k,Gn) → H0(X,Gn) is an isomorphism since X is proper,
geometrically reduced and geometrically connected, and Gn is affine. By diagram
chase we obtain a natural isomorphism

H2(X ×k Y )e/
(
H2(X)e ⊕ H2(Y )e

)
∼= H1(X,S∨

Y )e.

This proves the proposition. �

The following statement can be compared to [HS13, Prop. 1.1].

Proposition 1.2 Let X be a pointed projective, geometrically reduced and geomet-
rically connected variety over a field k. For any finite commutative group k-scheme
G we have a functorial isomorphism

τ : H1(X,G)e
∼
−→ Homk(G

∨,PicX/k).

Proof. We adapt the method of proof of [CTSa87, Thm. 1.5.1].

There is the following spectral sequence for the fppf topology:

Extpk(A,R
qπX∗B)⇒ Extp+q

X (π∗
XA,B),

where A is a sheaf on Spec(k)fppf and B is a sheaf on Xfppf . This is a particular case
of the spectral sequence of composed functors, namely Γ(X,−) and Homk(A,−),
using that π∗

X is a left adjoint to πX∗, and that πX∗ sends injective sheaves on Xfppf

to injective sheaves on Spec(k)fppf . The last property is a consequence of the fact
that π∗

X is exact, see [Mil80, Remark III.1.20] which refers to [Mil80, Prop. II.2.6].
See also [CTS21, §2.1.3] for a summary.

Since π∗
X(G

∨) = G∨X , we have the spectral sequence

Extpk(G
∨, RqπX∗Gm,X)⇒ Extp+q

X (G∨X ,Gm,X).

Since X is proper, geometrically reduced and geometrically connected, the natural
morphism Gm,k → πX∗Gm,X is an isomorphism. Thus the exact sequence of terms
of low degree of our spectral sequence can be written as follows:

0→ Ext1k(G
∨,Gm,k)→ Ext1X(G

∨
X ,Gm,X)→ Homk(G

∨,PicX/k)
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→ Ext2k(G
∨,Gm,k)→ Ext2X(G

∨
X ,Gm,X).

Using x0 ∈ X(k) we obtain that the second and fifth arrows here are split injective.

To calculate the terms of this sequence we consider the local-to-global spectral
sequence of Ext-groups, see SGA 4, Exp. V, (6.1.3):

Hp(X, ExtqX(G
∨
X ,Gm,k))⇒ Extp+q

X (G∨X ,Gm,X).

By SGA 7, Exp. VIII, Prop. 3.3.1, we have Ext1X(G
∨
X ,Gm,k) = 0, from which we

obtain
Ext1k(G

∨,Gm,k) ∼= H1(k,G), Ext1X(G
∨
X ,Gm,k) ∼= H1(X,G).

Specialising at the base point x0 we deduce the required isomorphism τ . �

It follows that if pnG = 0, then τ is an isomorphism H1(X,G)e
∼
−→ Homk(G

∨, S∨
X).

Let SX ⊗ SY be the fppf sheaf of abelian groups on Spec(k) given by the tensor
product of sheaves associated to the commutative group k-schemes SX and SY .

Theorem 1.3 Let X and Y be pointed projective, geometrically reduced and geo-
metrically connected varieties over a field k. Then there is an isomorphism

Homk(SX ⊗ SY , µpn) ∼= Homk(SX , S
∨
Y )

∼
−→ H2(X ×k Y, µpn)prim. (2)

Proof. This follows from Proposition 1.1 and the natural isomorphisms

H1(X,S∨
Y )e
∼= Homk(SY , S

∨
X)
∼= Homk(SX , S

∨
Y )
∼= Homk(SX ⊗ SY , µpn).

The first isomorphism is τ of Proposition 1.2 for G = S∨
Y . The second isomorphism

is due to Cartier duality. The third isomorphism is obtained by applying the functor
of sections to the canonical isomorphism

Hom(A,Hom(B,C)) ∼= Hom(A⊗B,C)

in the category of fppf sheaves of abelian groups on Spec(k), and noticing that
Hom(SY , µpn) ∼= S∨

Y since SY is finite. �

Let us define Hi(X,Zp(1)) as lim←−
Hi(X, µpn) as n→∞.

Corollary 1.4 Let X and Y be pointed smooth, projective, geometrically integral
varieties over a field k of characteristic p > 0. Then there is an isomorphism

H2(X ×k Y,Zp(1))prim ∼= Homk(A[p
∞], B∨[p∞]), (3)

where A[p∞] is the p-divisible group of the Albanese variety A of X, and B∨[p∞] is
the p-divisible group of the Picard variety B∨ of Y .
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Proof. We have an exact sequence of group k-schemes

0→ Pic0X/k → PicX/k → NSX/k → 0,

which is the definition of NSX/k, cf. [CTS21, §5.1]. The k-scheme NSX/k is étale, see
SGA 3, IVA, Prop. 5.5.1. The group NSX/k(k

s) = NSX/k(k̄) = NS (Xk̄) is finitely
generated by a theorem of Néron and Severi. Thus the cokernel of the map of
group k-schemes Pic0X/k[p

n] → PicX/k[p
n] is finite. Next, by Grothendieck [FGA6,

§3], the Picard variety A∨ = Pic0X/k,red is a group subscheme of Pic0X/k with finite
cokernel, see [CTS21, §5.1.1]. We conclude that there is an exact sequence of finite
commutative group k-schemes

0→ A∨[pn]→ S∨
X → FX → 0,

where FX is finite. From the dual of this exact sequence and a similar sequence for
Y we obtain the following exact sequence of abelian groups:

0→ Homk(A[p
n], B∨[pn])→ Homk(SX , S

∨
Y )→ Homk(SX , FY )⊕ Homk(F

∨
X , SY ),

where homomorphisms are taken in the category of finite commutative k-groups.
We note that the last term in this sequence is annihilated by the maximum of the
orders of FX and FY . This gives an isomorphism

lim←−Homk(A[p
n], B∨[pn]) ∼= lim←−Homk(SX , S

∨
Y ).

Thus passing to the projective limit in (2) we obtain (3). �

We finish this section by interpreting the isomorphism (2) of Theorem 1.3 in terms
of certain canonical torsors on X and Y .

For any n ≥ 1 define a universal pn-torsor2 TX,pn → X as an fppf X-torsor with
structure group SX and trivial fibre at x0 such that the map τ from Proposition 1.2
sends the class [TX,pn] ∈ H1(X,SX)e to the natural injective map

S∨
X = PicX/k[p

n] →֒ PicX/k.

It is clear that TX,pn is unique up to isomorphism.

The isomorphism (2) in Theorem 1.3 can be made explicit in terms of TX,pn and
TY,pn, as follows. The cup-product pairing

H1(X × Y, SX)× H1(X × Y, SY )→ H2(X × Y, SX ⊗ SY )

gives rise to the pairing

H1(X,SX)× H1(Y, SY )→ H2(X × Y, SX ⊗ SY ).

2This notion was introduced by Yang Cao in [Cao20] (for the étale topology and for varieties
without a distinguished rational point), inspired by universal torsors of Colliot-Thélène and Sansuc
[CTSa87] and by calculations in [SZ14].
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Let us denote by

[TX,pn ]⊠ [TX,pn] ∈ H2(X × Y, SX ⊗ SY )prim

the value of the last pairing on the classes [TX,pn ] and [TY,pn]. Define

ε : Homk(SX ⊗ SY , µpn)→ H2(X ×k Y, µpn)prim

as the map sending a homomorphism ψ : SX ⊗ SY → µpn of sheaves on Spec(k)fppf
to ψ∗

(
[TX,pn]⊠ [TX,pn]

)
.

Proposition 1.5 Let X and Y be pointed projective, geometrically reduced and ge-
ometrically connected varieties over a field k. The isomorphism (2) is given by the
map ε.

Proof. The second proof of [CTS21, Thm. 5.7.7 (ii)] on pp. 161–162 works in our
situation. We reproduce this argument for the convenience of the reader.

For a finite commutative group k-scheme G such that pnG = 0 we have a commu-
tative diagram of pairings:

H1(X,G∨)e × H1(Y,G)e → H2(X ×k Y, µpn)

|| ↓ ||

H1(X,G∨)e × Ext1Y (G
∨, µpn) → H2(X ×k Y, µpn)

|| || ↑

H1(X,G∨)e × Ext1k(G
∨, τ≤1RπY ∗µpn) → H2(X, τ≤1RpY ∗µpn)

|| ↓ ↓

H1(X,G∨)e × Homk(G
∨, S∨

Y ) → H1(X,S∨
Y )

The vertical map H1(Y,G)→ Ext1Y (G
∨, µpn) comes from the local-to-global spectral

sequence (SGA 4, Exp. V, (6.1.3))

Hp(Y, ExtqY (G
∨, µpn))⇒ Extp+q

Y (G∨, µpn).

The first two pairings are compatible by [Mil80, Prop. V.1.20]. The two lower
pairings are natural, and the compatibility of the rest of the diagram is clear. The
composition of maps in the second column is the isomorphism τ .

Since Y is a pointed proper, geometrically reduced and geometrically connected
variety over k, the object τ≤1RpY ∗µpn of the bounded derived category of sheaves
on Xfppf is the direct sum of µpn in degree 0 and S∨

Y in degree 1. Thus H1(X,S∨
Y )

is a direct summand of H2(X, τ≤1RpY ∗µpn). Taking G = SY , the previous diagram
gives rise to a commutative diagram of pairings

H1(X,S∨
Y )e × H1(Y, SY )e → H2(X ×k Y, µpn)prim

|| τ ↓ ↑

H1(X,S∨
Y )e × Homk(S

∨
Y , S

∨
Y ) → H1(X,S∨

Y )e

8



where both vertical arrows are isomorphisms of Propositions 1.1 and 1.2.

Let ψ ∈ Homk(SX⊗SY , µpn). Let ϕ be the corresponding element in Hom(SX , S
∨
Y ),

and let ϕ∨ ∈ Hom(SY , S
∨
X) be its dual. By construction, the isomorphism (2) sends

ψ to the image of τ−1(ϕ∨) ∈ H1(X,S∨
Y )e in H2(X×k Y, µpn)prim. On the other hand,

ε(ψ) is the value of the top pairing of the last diagram on ϕ∗[TX,pn ] ∈ H1
ét(X,S

∨
Y )e and

[TY,pn] ∈ H1
ét(Y, SY )e. Since τ([TY,pn]) = id ∈ Hom(S∨

Y , S
∨
Y ), the commutativity of the

diagram shows that ε(ψ) ∈ H2
ét(X×kY,Z/n)prim comes from ϕ∗[TX,pn] ∈ H1

ét(X,S
∨
Y ).

Since τ(ϕ∗[TX,pn]) is the precomposition of τ([TX ]) = id ∈ Homk(S
∨
X , S

∨
X) with

ϕ∨ : SY → S∨
X , we have τ(ϕ∗[TX,pn ]) = ϕ∨. Thus (2) coincides with ε. �

2 Brauer group of the product

For an abelian group A the p-adic Tate module Tp(A) is defined as the projective
limit lim←−A[p

n] when n → ∞. It is easy to see that Tp(Qp/Zp) ∼= Zp and that
Tp(M) = 0 if the abelian group M has finite exponent.

Theorem 2.1 Let X and Y be pointed smooth, projective, geometrically integral
varieties over a finitely generated field k of characteristic p > 0. Then we have the
following statements.

(i) The first Chern class gives an isomorphism

Homk(A,B
∨)⊗ Zp

∼
−→ H2(X ×k Y,Zp(1))prim.

(ii) We have Tp(Br(X ×k Y )prim) = 0.

(iii) The abelian group Br(X ×k Y ){p}prim has finite exponent.

Proof. By a theorem of Chow (see [Con06, Thm. 3.19]), the natural map

Homks(Aks, B
∨
ks)→ Homk̄(Ak̄, B

∨

k̄ )

is an isomorphism. Hence we have natural isomorphisms:

Homk(A,B
∨)

∼
−→ Homks(Aks, B

∨
ks)

Γ ∼
−→ Homk̄(Ak̄, B

∨

k̄ )
Γ.

For a pointed projective, geometrically integral variety (X, x0) the natural map
Pic(X)→ Pic(Xks)

Γ is an isomorphism [CTS21, Remark 5.4.3 (1)]. Thus we obtain
from [CTS21, Prop. 5.7.3] an isomorphism of abelian groups

Pic(X ×k Y )prim ∼= Homk(A,B
∨).

Thus the primitive part of the Kummer exact sequence can be written as

0→ Homk(A,B
∨)/pn

c1−→ H2(X ×k Y, µpn)prim → Br(X ×k Y )[p
n]prim → 0.

9



The arrow marked c1 is given by the first Chern class. Since Homk(A,B
∨) is a

finitely generated free abelian group, passing to the limit in n and using Corollary
1.4 we obtain an exact sequence

0→ Homk(A,B
∨)⊗Zp

c1−→ Homk(A[p
∞], B∨[p∞])→ Tp(Br(X×k Y )prim)→ 0. (4)

De Jong’s theorem (the crystalline Tate conjecture) [dJ98, Thm. 2.6] says that
the natural action of morphisms of abelian varieties on torsion points induces an
isomorphism

Homk(A,B
∨)⊗ Zp

∼
−→ Homk(A[p

∞], B∨[p∞]).

This implies that the source and the target of the map c1 are finitely generated
Zp-modules of the same rank. Since Tp(Br(X ×k Y )prim) is torsion-free, the map c1
must be an isomorphism, so Tp(Br(X ×k Y )prim) = 0. This proves (i) and (ii).

Let us prove (iii). For a finite extension k′/k a standard restriction-corestriction
argument [CTS21, Prop. 3.8.4] shows that the kernel of the natural map

Br(X ×k Y )prim → Br(Xk′ ×k′ Yk′)prim

is annihilated by [k′ : k]. Thus it is enough to prove (iii) after replacing k by a finite
field extension. In particular, we can assume that we have an isomorphism

Homk(A,B
∨)

∼
−→ Homk̄(Ak̄, B

∨

k̄ ).

Consider the commutative diagram with exact rows

0 // Homk̄(Ak̄, B
∨

k̄
)/pn // H2(Xk̄ ×k̄ Yk̄, µpn)prim // Br(Xk̄ ×k̄ Yk̄)[p

n]prim // 0

0 // Homk(A,B
∨)/pn //

∼=

OO

H2(X ×k Y, µpn)prim //

OO

Br(X ×k Y )[p
n]prim //

OO

0

Comparing isomorphisms (2) for k and k̄, we see that the middle vertical map is
injective. Now the snake lemma gives the injectivity of the right-hand map, hence
Br(X ×k Y ){p}prim is a subgroup of Br(Xk̄ ×k̄ Yk̄){p}prim. By Theorem A.1 of
the appendix, the group Br(Xk̄ ×k̄ Yk̄){p} is the direct sum of an abelian p-group
of finite exponent and finitely many copies of Qp/Zp, hence the same is true for
Br(X ×k Y ){p}prim. Thus (ii) implies (iii). �

Theorem 2.2 Let X and Y be smooth, projective, geometrically integral varieties
over a finitely generated field k. Then the cokernel of the natural map

Br(X)⊕ Br(Y )→ Br(X ×k Y )

has finite exponent.

10



Proof. Since X and Y are smooth, there is a finite separable field extension k ⊂ k′

such that X(k′) 6= ∅ and Y (k′) 6= ∅. Moreover, we can assume that k′/k is Galois
with Galois group G. There is an obvious commutative diagram

Br(Xk′)
G ⊕ Br(Yk′)

G // Br(Xk′ ×k′ Yk′)
G

Br(X)⊕ Br(Y ) //

OO

Br(X ×k Y )

OO

The kernels and cokernels of both vertical maps are annihilated by the order of
G, see [CTS21, Prop. 3.8.4, Thm. 3.8.5]. By the commutativity of the diagram, it
remains to show that the cokernel of the top horizontal map has finite exponent.

Since X(k′) 6= ∅ and Y (k′) 6= ∅, the direct sum decomposition of abelian groups
(1) shows that we have an exact sequence of G-modules

0→ Br(k′)→ Br(Xk′)⊕ Br(Yk′)→ Br(Xk′ ×k′ Yk′)→ Br(Xk′ ×k′ Yk′)prim → 0.

Let B be the image of the middle arrow in this sequence. By Theorem 2.1 (for the
p-primary part) and [SZ14, Thm. B] (for the prime-to-p part), there is a positive
integerm that annihilates Br(Xk′×k′Yk′)prim. Thus the exact sequence of G-modules

0→ B → Br(Xk′ ×k′ Yk′)→ Br(Xk′ ×k′ Yk′)prim → 0

shows that mBr(Xk′ ×k′ Yk′)
G comes from BG. Next, the exact sequence of G-

modules
0→ Br(k′)→ Br(Xk′)⊕ Br(Yk′)→ B → 0

gives rise to the exact sequence of cohomology groups

Br(Xk′)
G ⊕ Br(Yk′)

G → BG → H1(G,Br(k′)).

The last group is annihilated by the order of G. This finishes the proof. �

Corollary 2.3 Let X and Y be smooth, projective, geometrically integral varieties
over a finitely generated field k of characteristic exponent p. Then the cokernel of
each of the following natural maps is a direct sum of a finite group and a p-group of
finite exponent:

(i) Br(Xks)
Γ ⊕ Br(Yks)

Γ → Br(Xks ×ks Yks)
Γ;

(ii) Br(Xks)
k ⊕ Br(Yks)

k → Br(Xks ×ks Yks)
k;

(iii) Br(Xk̄)
k ⊕ Br(Yk̄)

k → Br(Xk̄ ×k̄ Yk̄)
k.

Proof. (i) For every positive integer n coprime to p the group Br(Xks)[n] is finite,
see, e.g., [CTS21, Cor. 5.2.8]. Thus it remains to bound the exponent of the cokernel
of the map in (i). We have a commutative diagram

Br(Xks)
Γ ⊕ Br(Yks)

Γ // Br(Xks ×ks Yks)
Γ

Br(X)⊕ Br(Y ) //

OO

Br(X ×k Y )

OO

11



By [CTS21, Thm. 5.4.12], the cokernel of right-hand vertical map has finite expo-
nent. By Theorem 2.2 the cokernel of the lower horizontal map has finite exponent.
Now (i) follows from the commutativity of the diagram.

(ii) As in (i), it is enough to prove that the cokernel has finite exponent. This
immediately follows from Theorem 2.2. The same proof gives (iii). �

Corollary 2.4 Let X be a smooth, projective, geometrically integral surface over a
finitely generated field k of characteristic exponent p. If X is dominated by a product
of curves, then Br(Xks)

Γ is a direct sum of a finite abelian group and a p-group of
finite exponent.

Proof. Using resolution of singularities (available in dimension 2 by a theorem of
Abhyankar), and the triviality of the Brauer groups of curves over algebraically
closed fields, we can follow the proof of [CTS21, Thm. 16.3.3], see also [GS22, §2.1],
to obtain that Br(Xks)(p

′)Γ is finite and Br(Xks){p}
Γ has finite exponent. �

In higher dimension, the same statement holds conditionally on resolution of sin-
gularities in characteristic p.

Corollary 2.4 can be applied to the surface X ⊂ P3
k given by f(x0, x1) = g(x2, x3),

where f and g are homogeneous polynomials of the same degree d ≥ 1 without mul-
tiple roots. In this case the group Br1(X)/Br0(X) is finite, see [CTS21, Cor. 16.3.4],
[GS22, §2.1]. Thus, when k is finitely generated, the group

(
Br(X)/Br0(X)

)
(p′) is

finite and the group
(
Br(X)/Br0(X)

)
{p} has finite exponent.

3 Abelian varieties

The following lemma may be well-known to the experts; we give a proof because we
could not find it in the literature.

Lemma 3.1 Let A be an abelian variety over an algebraically closed field k. Let p be
a prime, possibly equal to char(k). For any integer m the endomorphism [m] : A→ A
acts on H2

fppf(A, µpn) as m
2 for any n ≥ 1.

Proof. In the case p 6= char(k) we can replace fppf cohomology by étale coho-
mology. Since [m] acts on H1

ét(A, µpn) ∼= A∨(k)[pn] as m, it acts on H2
ét(A, µpn) ∼=

∧2H1
ét(A, µpn)(−1) as m

2.

Now let p = char(k). Considering the map [pn] : O×
A → O

×
A in the fppf and étale

topologies gives rise to a canonical isomorphism [Ill79, (II.5.1.4)]

Hi
fppf(A, µpn) ∼= Hi−1

ét (A,O×
A/O

×pn

A ).

There is a map of étale sheaves of abelian groups d log : O×
A/O

×pn

A → WnΩ
1
X , see

[Ill79, Prop. I.3.23.2]. By [Ill79, Thm. II.1.4, (II.1.3.3)] for each i ≥ 0 we have a
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canonical isomorphism Hi
cris(A/Wn) ∼= Hi

ét(A,WnΩ
•
A). We claim that the resulting

map
d log : H1

ét(A,O
×
A/O

×pn

A )→ H2
cris(A/Wn)

is injective. We sketch the proof referring to [YY] for details.

The case n = 1 is stated in [Ill79, Remarque II.5.17 (a)]. It is a consequence of
the following two facts:

(1) the map H0(A,Z1
X)→ H0(A,Ω1

X) is surjective, where Z
1
A := Ker[d : Ω1

A → Ω2
A];

(2) the map H1(A,Z1
A) → H2

dR(A/k) induced by the natural morphism of com-
plexes Z1

A[−1]→ Ω•
A is injective.

Property (1) is true for any commutative group scheme A. Indeed, for invariant
vector fields X and Y and an invariant differential ω we have

dω(X, Y ) = X
(
ω(Y )

)
− Y

(
ω(X)

)
+ ω([X, Y ]) = 0,

because ω(Y ) and ω(X) are in k, and the Lie algebra of A is abelian.

The map in (2) factors as H1(A,Z1
A) → H2(A,Ω≥1

A ) → H2(A,Ω•
A) = H2

dR(A/k).
The second arrow is injective because for abelian varieties the Hodge-de Rham spec-
tral sequence degenerates at the first page, by a theorem of Oda [Oda69, Prop. 5.1].
The injectivity of the first map can be easily checked using Čech cohomology.

The case of n ≥ 2 follows by induction in n from the following commutative
diagram with exact rows:

0 // H2
fppf(A, µpm) //

d log

��

H2
fppf(A, µpm+n) //

d log

��

H2
fppf(A, µpn)

d log

��
0 // H2

cris(A/Wm) // H2
cris(A/Wm+n) // H2

cris(A/Wn)

The zero in the top row is due to the natural isomorphism H1
fppf(A, µpn) ∼= A∨(k)[pn]

and the surjectivity of multiplication by pm on A∨(k). The zero in the bottom
row follows from the isomorphisms Hi

cris(A/Wn) ∼= Hi
cris(A/W )/pn which are conse-

quences of the fact that the groups Hi
cris(A/W ) are torsion-free W -modules.

A canonical isomorphism Hi
cris(X/W ) ∼= ∧iH1

cris(X/W ) shows that [m] acts on
Hi

cris(X/W ) as mi. Thus the proposition follows from the claim. �

We can use Theorem 2.1 to give a shorter proof of a result of D’Addezio [D’Ad,
Thm. 5.2].

Theorem 3.2 Let A be an abelian variety over a finitely generated field k of char-
acteristic exponent p. Then Br(Ak̄)

k is a direct sum of a finite group and a p-group
of finite exponent.

Proof. Let m : A ×k A → A be the group law of A. Define δ : Br(A) → Br(A × A)
as m∗ − π∗

1 − π∗
2. It is immediate to check that δ(Br(A)e) ⊂ Br(A × A)prim. By

[OSVZ22, Lemma 2.1, Prop. 2.2] we have an exact sequence

0→ Br(A)e ∩ BrA(A)→ Br(A)e
δ
−→ Br(A× A)prim, (5)
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where BrA(A) is the invariant Brauer group of A. The group Br(A × A)prim has
finite exponent by Theorem 2.2. The image of BrA(A) in Br(Ak̄) is contained in
BrA(Ak̄), but BrA(Ak̄) has exponent 2. Indeed, on the one hand, by Lemma 3.1
and the Kummer exact sequence, [−1]∗ acts on Br(Ak̄) trivially. On the other hand,
[−1]∗ acts on BrA(Ak̄) as −1, see [OSVZ22, Prop. 2.2]. We conclude from (5) that
Br(Ak̄)

k has finite exponent. It remains to use the finiteness of Br(Ak̄)[n] where n
is coprime to p, see [CTS21, Cor. 5.2.8]. �

Remark 3.3 Since the Picard scheme of an abelian variety is smooth, the natural
map Br(Aks)→ Br(Ak̄) is injective [CTS21, Thm. 5.2.5 (ii)], [D’Ad, Cor. 3.4], thus
Br(Aks)

k ∼= Br(Ak̄)
k. By [CTS21, Thm. 5.4.12] we conclude from Theorem 3.2 that

Br(Aks)
Γ is a direct sum of a finite group and a p-group of finite exponent.

Using similar ideas, we can give a simplified proof of the flat version of the Tate
conjecture for divisors proved by D’Addezio in [D’Ad, Thm. 5.1].

Theorem 3.4 Let A be an abelian variety over a finitely generated field k of char-
acteristic p > 0. The image of H2(A,Zp(1)) in H2(Ak̄,Zp(1))

Γ is contained in the
image of the first Chern class map c1 : NS (Ak̄)

Γ ⊗ Zp → H2(Ak̄,Zp(1))
Γ. After

replacing k with a finite separable extension, the two images become equal.

Proof. We continue to write δ = m∗ − π∗
1 − π

∗
2 . We have a commutative diagram

H2(A,Zp(1))e //

δ
��

H2(Ak̄,Zp(1))
Γ

δ
��

NS (Ak̄)
Γ ⊗ Zp

c1oo

δ∼=
��

H2(A×k A,Zp(1))
sym
prim

//

11

H2(Ak̄ ×k̄ Ak̄,Zp(1))
sym,Γ
prim NS (Ak̄ ×k̄ Ak̄)

sym,Γ
prim ⊗ Zp

c1oo

where the superscript ‘sym’ stands for the elements fixed by the permutation of
factors in A ×k A and Ak̄ ×k̄ Ak̄. To prove the first statement it is enough to
construct the dotted line such that the resulting diagram is still commutative.

Theorem 2.1 (i) gives an isomorphism

Homk(A,A
∨)⊗ Zp

∼
−→ Pic(A×k A)prim ⊗ Zp

∼
−→ H2(A×k A,Zp(1))prim. (6)

Here the first arrow sends f ∈ Homk(A,A
∨) to (id, f)∗P, where P is the Poincaré

line bundle on A ×k A
∨. The second arrow is the first Chern class c1. If f = f∨,

then the image of f lands in the symmetric subgroup of H2(A×k A,Zp(1))prim. The
same construction over k̄ gives an isomorphism of Γ-modules

Hom(Ak̄, A
∨

k̄ )⊗ Zp
∼
−→ NS (Ak̄ ×k̄ Ak̄)prim ⊗ Zp

∼= Pic(Ak̄ ×k̄ Ak̄)prim ⊗ Zp,

which is clearly compatible with the first map of (6) and which gives this map after
restricting to the Γ-invariant subgroups. We finally note that the isomorphism of
Γ-modules Hom(Ak̄, A

∨

k̄
)sym ∼= NS (Ak̄ ×k̄ Ak̄)

sym
prim identifies the map of Γ-modules

δ : NS (Ak̄)→ NS (Ak̄ ×k̄ Ak̄)
sym
prim
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with the isomorphism NS (Ak̄)
∼
−→ Hom(Ak̄, A

∨

k̄
)sym sending L to ϕL. (This fol-

lows from (id, ϕL)
∗P = m∗L ⊗ π∗

1L
−1 ⊗ π∗

2L
−1, see [Mum74, Ch. 8], cf. [OSVZ22,

Prop. 6.1].) Putting all of this together gives rise to a dotted line in the diagram,
which is the identity map on Homk(A,A

∨)sym ⊗ Zp once the source and the target
are identified with this group. The resulting diagram commutes.

Since NS (Ak̄) is finitely generated, replacing k by a finite separable extension we
can ensure that the map Pic(A) → NS (Ak̄)

Γ is surjective. Then the image of the
first Chern class map c1 : NS (Ak̄)

Γ⊗Zp → H2(Ak̄,Zp(1))
Γ is contained in the image

of H2(A,Zp(1))→ H2(Ak̄,Zp(1))
Γ. The second statement follows. �

4 Kummer surfaces

Recall that the Picard scheme of a K3 surface is smooth, hence the natural map
Br(Xks) → Br(Xk̄) is injective [CTS21, Thm. 5.2.5 (ii)], [D’Ad, Cor. 3.4]. This
implies Br(Xks)

k ∼= Br(Xk̄)
k.

Proposition 4.1 Let k be a field of characteristic exponent p 6= 2. Let A be an
abelian surface and let X = Kum(A) be the associated Kummer surface. Then there
is a natural isomorphism of Γ-modules Br(Xk̄)

∼
−→ Br(Ak̄).

Proof. For all primes ℓ 6= p (including ℓ = 2) the proof of [SZ12, Prop. 1.3] shows that
Br(Xk̄){ℓ} → Br(Ak̄){ℓ} is an isomorphism. In fact, for any ℓ 6= 2 (including ℓ = p
if p > 1) the map Br(Xk̄){ℓ} → Br(Ak̄){ℓ} is injective with image Br(Ak̄){ℓ}

[−1]∗

by [CTS21, Thm. 3.8.5]. In view of the Kummer sequence, it suffices to show that
[−1] acts on H2

fppf(Ak̄, µℓn) trivially. This was proved in Lemma 3.1. �

Corollary 4.2 Let k be a field of characteristic exponent p 6= 2. Let A be an abelian
surface and let X = Kum(Y ) be the associated Kummer surface. For all odd primes
ℓ (including ℓ = p if p > 1) there are natural isomorphisms of abelian groups

Br(Xk̄){ℓ}
k ∼
−→ Br(Ak̄){ℓ}

k.

Proof. This is proved in [SZ12, Thm. 2.4]. Let us give this proof for the convenience
of the reader. By Proposition 4.1, the map is injective, so it remains to prove that
it is surjective. For any odd ℓ we have a direct sum decomposition

Br(A){ℓ} = Br(A){ℓ}+ ⊕ Br(A){ℓ}−,

where Br(A){ℓ}+ = Br(A){ℓ}[−1]∗ is the [−1]∗-invariant subgroup and Br(A){ℓ}−

is the [−1]∗-antiinvariant subgroup. By the proof of Proposition 4.1, the action of
[−1] on Br(Ak̄) is trivial, thus any element of Br(Ak̄){ℓ}

k lifts to an element of
Br(A){ℓ}+. The last group is the image of Br(X){ℓ} by [CTS21, Thm. 3.8.5]. �
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Corollary 4.3 Let k be a finitely generated field of characteristic exponent p 6= 2.
Let A be an abelian surface and let X = Kum(A) be the associated Kummer surface.
Then each of the groups Br(Xks)

Γ and Br(Xks)
k ∼= Br(Xk̄)

k is a direct sum of a finite
group and and a p-group of finite exponent.

Proof. For any K3 surface X over k, the finiteness of Br(Xks)(p
′)Γ and Br(Xks)(p

′)k

was proved in [SZ08, Thm. 1.2] when p = 1 and in [SZ15, Thm. 1.3] for p > 2.
For p > 2 the statements for the p-primary torsion follow from Theorem 3.2 and
Corollary 4.2. �

Example 1. The group Br(Aks)[p]
k may well be infinite. Let us reproduce here the

example in [D’Ad, Cor. 5.4]. Let E be a supersingular elliptic curve over an infinite
finitely generated field k of characteristic p > 0, and let A = E ×k E. The group
scheme E[p] is an extension of αp by αp, hence there is an injective map of abelian
groups Endk(αp) → Endk(E[p]) which sends an endomorphism φ : αp → αp to the
composition

E[p]→ αp
φ
−→ αp → E[p].

By Theorem 1.3 we have H2(A, µp)prim ∼= Endk(E[p]), hence

Br(A)[p]prim ∼= Endk(E[p])/
(
Endk(E)/p

)
.

Since Endk(αp) ∼= k, we have an injective homomorphism k → Endk(E[p]), hence
compatible homomorphisms k → Br(A)[p] and k̄ → Br(Ak̄)[p]. Since Endk̄(E)/p is
finite, we have infinitely many elements of Br(A)[p] surviving in Br(Ak̄)[p]. Now let
p 6= 2. Then we can consider the Kummer surface X = Kum(A) over k. Corollary
4.2 implies that Br(Xks)[p]

k ∼= Br(Xk̄)[p]
k is infinite. This gives an example of a K3

surface with an infinite transcendental Brauer group, answering [SZ08, Questions 1,
2] in the negative.

Example 2. D’Addezio also gives an example to show that in the case of finite char-
acteristic, the group Br(Ak̄)

Γ does not always have finite exponent [D’Ad, Cor. 6.7].
Take A = E×k E, where E is an elliptic curve over k whose j-invariant is transcen-
dental over Fp. Then E is ordinary and we have Endk̄(E) ∼= Z. Then Tp(Br(Ak̄))
contains the quotient of End(Ek̄[p

∞]) by End(Ek̄) ⊗ Zp
∼= Zp. Taking Galois in-

variants we obtain that Tp(Br(Ak̄))
Γ contains the quotient of End(Ek̄[p

∞])Γ by Zp,
so it is enough to show that the rank of the Zp-module End(Ek̄[p

∞])Γ is at least
2. Since E is ordinary, the p-divisible group E[p∞] has at least two slopes. By the
Dieudonné–Manin classification, this implies that E[p∞] is isogenous to the direct
sum of two non-zero p-divisible groups, hence the rank of End(Ek̄[p

∞])Γ is at least
2. As before, if p 6= 2, then for X = Kum(A) we obtain from Proposition 4.1 that
Br(Xk̄)

Γ does not have finite exponent.

A Appendix, by Alexander Petrov

Let k be an algebraically closed field of characteristic p > 0.
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Theorem A.1 Let X be a smooth proper variety X over k. Then Br(X){p} ∼=
(Qp/Zp)

⊕r ⊕B for some r ≥ 0, where the group B is annihilated by a power of p.

Consider the complex of weight 1 syntomic cohomology of X :

RΓ(X,Zp(1)) := R lim
←−

(
RΓfppf(X, µpn)

)
(7)

Here R lim
←−

is the derived inverse limit [Stacks, 08TC] of the system of objects
RΓfppf(X, µpn) ∈ D(Zp) of the derived category of Zp-modules. In fact, each
individual cohomology group Hi(X,Zp(1)) := Hi(RΓ(X,Zp(1))) is isomorphic to
lim
←−

Hi
fppf(X, µpn) by the proof of [Ill79, Thm. II.5.5]. This fact, however, is not used

in the proof below.

In general, syntomic cohomology modules Hi(X,Zp(1)) are not finitely generated
over Zp (cf. the example of a supersingular K3 surface in [Ill79, II.7.2]), but they
satisfy a weaker finiteness property that we will use to deduce Theorem A.1:

Lemma A.2 ([IR83]) For each i ≥ 0, the Zp-module Hi(X,Zp(1)) has the form
Z⊕r
p ⊕ T for some r ≥ 0, where T a Zp-module annihilated by a power of p.

Proof. This follows from [IR83, Thm. IV.3.3 (b)]. Below is a deduction of the lemma
from the more basic properties of de Rham–Witt forms, established in [Ill79].

By [Ill79, Thm. II.5.5], the syntomic cohomology groups fit into the long exact
sequence 3

. . .→ Hi−1
Zar (X,WΩ1

X)
1−F
−−→ Hi−1

Zar (X,WΩ1
X)→ Hi(X,Zp(1))→

→ Hi
Zar(X,WΩ1

X)
1−F
−−→ Hi

Zar(X,WΩ1
X)→ . . . (8)

whereWΩ1
X is the sheaf of de Rham–Witt differential forms, and F : WΩ1

X → WΩ1
X

is its semi-linear Frobenius endomorphism [Ill79, I.2.E]. While Hi
Zar(X,WΩ1

X) is not
always finitely generated as a W (k)-module, it is isomorphic to a direct sum of a
finitely generated free W (k)-module and a module annihilated by a power of p, by
[Ill79, Thm. II.2.13].

If M is a finitely generated free W (k)-module equipped with a Frobenius-linear
endomorphism F : M → M , then 1 − F : M → M is surjective by [Ill79, Lemme
II.5.3] (this is the only place where we use that k is algebraically closed rather than
just perfect). The kernel MF=1 := Ker[1− F :M →M ] is a finitely generated free
Zp-module because the natural mapMF=1⊗Zp

W (k)→M is an injection, as follows
for example from the Dieudonné–Manin classification.

3[Ill79] defines Hi(X,Zp(1)) as the inverse limit of cohomology groups Hi
fppf(X,µpn), and then

checks that this inverse system satisfies the Mitag–Leffler condition to obtain (8). With our
definition of Hi(X,Zp(1)) as the cohomology modules of the derived inverse limit of complexes
RΓfppf(X,µpn), the long exact sequence follows directly from the short exact sequence of pro-
sheaves in [Ill79, Cor. I.3.29].
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More generally, if M̃ is aW (k)-module isomorphic to a direct sum of a finitely gen-
erated free module and a module annihilated by a power of p, then for a Frobenius-
linear endomorphism F : M̃ → M̃ the cokernel of 1 − F is annihilated by a power
of p, and its kernel is a direct sum of a finitely generated free Zp-module and a
Zp-module annihilated by a power of p.

Therefore the sequence (8) implies that Hi(X,Zp(1)) fits into a short exact se-
quence

0→ T ′ → Hi(X,Zp(1))→ T ⊕ Z⊕r
p → 0 (9)

where both T and T ′ are annihilated by powers of p, which implies that Hi(X,Zp(1))
has the desired form. �

Proof of Theorem A.1 For each n, we have a distinguished triangle

RΓ(X,Zp(1))
pn

−→ RΓ(X,Zp(1))→ RΓfppf(X, µpn) (10)

obtained from the distinguished triangles

RΓfppf(X, µpm)
pn

−→ RΓfppf(X, µpn+m) −→ RΓfppf(X, µpn) (11)

by passing to the inverse limit over all m. For all i, n the triangle (10) induces the
short exact sequences

0→ Hi(X,Zp(1))/p
n → Hi(X, µpn)→ Hi+1(X,Zp(1))[p

n]→ 0. (12)

For each i, passing to the direct limit along the maps induced by µpn →֒ µpn+1 we
get the short exact sequence

0→ Hi(X,Zp(1))⊗Zp
Qp/Zp → lim

−→
Hi(X, µpn)→ Hi+1(X,Zp(1)){p} → 0 (13)

By Lemma A.2 the first term Hi(X,Zp(1))⊗Zp
Qp/Zp has the form (Qp/Zp)

⊕r, and
the third term Hi+1(X,Zp(1)){p} is annihilated by a power of p, which implies that
lim
−→

Hi(X, µpn) has the form (Qp/Zp)
⊕r ⊕ T with T of finite exponent.

On the other hand, for all n we have short exact sequences

0→ Pic(X)/pn → H2(X, µpn)→ Br(X)[pn]→ 0 (14)

which induce, after passing to the direct limit, a surjection lim
−→

H2(X, µpn)→ Br(X){p}.
Therefore Br(X){p} is itself a direct sum of finitely many copies of Qp/Zp and a
group annihilated by a power of p. �
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