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Abstract

Platform trials are multi-arm designs that simultaneously evaluate multiple treat-
ments for a single disease within the same overall trial structure. Unlike traditional
randomized controlled trials, they allow treatment arms to enter and exit the trial
at distinct times while maintaining a control arm throughout. This control arm
comprises both concurrent controls, where participants are randomized concurrently
to either the treatment or control arm, and non-concurrent controls, who enter the
trial when the treatment arm under study is unavailable. While flexible, platform
trials introduce a unique challenge with the use of non-concurrent controls, raising
questions about how to efficiently utilize their data to estimate treatment effects.
Specifically, what estimands should be used to evaluate the causal effect of a treat-
ment versus control? Under what assumptions can these estimands be identified and
estimated? Do we achieve any efficiency gains? In this paper, we use structural causal
models and counterfactuals to clarify estimands and formalize their identification in
the presence of non-concurrent controls in platform trials. We also provide outcome
regression, inverse probability weighting, and doubly robust estimators for their esti-
mation. We discuss efficiency gains, demonstrate their performance in a simulation
study, and apply them to the ACTT platform trial, resulting in a 20% improvement
in precision.
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1 Introduction

Platform trials are multi-arm designs that simultaneously evaluate multiple treatments

for a single disease within the same overall trial structure (Woodcock & LaVange 2017,

Berry et al. 2015, Park et al. 2022). Unlike traditional randomized controlled trials, they

allow treatment arms to enter and exit the trial at distinct times while maintaining a

control arm throughout. These trials have been instrumental in assessing the efficacy

of treatments across various therapeutic areas (Barker et al. 2009, Foltynie et al. 2023,

Wells et al. 2012, among others) and gained traction during the COVID-19 pandemic

(Hayward et al. 2021, Angus et al. 2020, Kalil et al. 2021, among others). For instance, the

Adaptive COVID-19 Treatment Trial (ACTT) (Kalil et al. 2021) was a platform trial that

investigated treatments for hospitalized adult patients with COVID-19 pneumonia. ACTT

comprised of multiple stages, as depicted in Figure 1. In the initial stage (ACTT-1), the

efficacy of remdesivir alone versus placebo was evaluated. Subsequently, in the second stage

(ACTT-2), placebo was discontinued, and a new treatment, remdesivir plus baricitinib,

was introduced while concurrently randomizing participants to remdesivir alone. Here, the

remdesivir alone arm served as a shared arm between the ACTT-1 and ACTT-2 stages.

The remdesivir alone arm is termed non-concurrent for remdesivir plus baricitinib during

ACTT-1 and concurrent during ACTT-2. In this paper, we adhere to the terminology

used in current literature (Bofill Roig et al. 2023, Lee & Wason 2020) and designate the

shared arm as control, irrespective of whether it is a placebo arm or an active control

or an experimental treatment. Thus, we consistently use the terms concurrent and non-

concurrent controls regardless of the nature of the shared arm.

The central question revolves around the effective utilization of non-concurrent controls

to estimate treatment effects in platform trials. Specifically, what estimands should be used
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Figure 1: Adaptive COVID-19 Treatment Trial (ACTT) schema. Example of concurrent and
non-concurrent arm

to evaluate the causal effect of a treatment versus a shared control? Under what assumptions

these estimands can be identified and estimated? Do we achieve any efficiency gains?

Addressing these questions requires careful consideration of how the timing of entry into

the platform trial may introduce bias into the study results, which is referred to as “time

drift”, “temporal drift” or “time trend”. Various methods have been proposed to control

for it, including test-then-pool approaches (Viele et al. 2014), frequentist and Bayesian

regression models (Lee & Wason 2020, Sridhara et al. 2022, Bofill Roig et al. 2023, Saville

et al. 2022), propensity-score-based methods (Yuan et al. 2019, Chen et al. 2020), and other

approaches (Han et al. 2017, Collignon et al. 2020, Ibrahim & Chen 2000, Neuenschwander

et al. 2009, Banbeta et al. 2019, Gravestock et al. 2017, Bennett et al. 2021, Hobbs et al.

2011, Normington et al. 2020, Schmidli et al. 2020, Hupf et al. 2021, Jiang et al. 2023).

While these methods provide a statistical way to incorporate non-concurrent controls

and control for the “temporal drift” bias, they lack a formal framework for characteriz-

ing causal effects and their identifying conditions. Consequently, interpreting the effect

estimates from these procedures and making recommendations regarding clinical choices

become challenging. These concerns are underscored in recent reviews (Collignon et al.
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2022) and are discussed in the FDA estimand framework (FDA 2021) and the International

Council for Harmonisation (ICH) E9(R1) guidance (International Council for Harmonisa-

tion 2017).

In this paper, we propose the use of causal inference tools, such as structural causal

models (Pearl 1995) and counterfactuals, to clarify estimands and to formalize their iden-

tification and estimation in the presence of non-concurrent controls in platform trials. To

our knowledge this is the first attempt to formalize platform trials using causal inference

tools. We therefore contribute to the literature of platform trials by: 1. postulating a

general structural causal model that clearly describes the role of entry time and the use of

non-concurrent controls in platform trials; 2. defining causal estimands and providing non-

parametric identification results; 3. discussing efficiency considerations; and 4. developing

estimators with desirable properties.

2 Notation and setup

For each of i ∈ {1, . . . , n} study participants, let Ei denote the (random) entry time of a

unit into the study, let Wi denote a set of baseline variables, let Ai denote the randomized

treatment taking values in {0, . . . , K}, where 0 denotes the control arm and k = 1, . . . , K

denotes the treatments of interest. Let Vk,i denote an indicator of whether treatment k was

part of the assigned treatments at time Ei, and define Vi = (V1,i, . . . , VK,i). Let Yi denote

a binary or numerical outcome measured at a fixed time after entry Ei. The observed

data is D = (Z1, . . . , Zn), where Zi represents the data for the experimental unit i, i.e.,

Zi = (Ei,Wi, Vi, Ai, Yi) ∼ P. We define V0 = V1 = · · · = Vj = 1 with probability one so

that at least j treatments plus control are available at the start of the trial. We also assume

the data are ordered in time of study entry in the sense that E1 ≤ E2 ≤ · · · ≤ En. Note
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that P(Ai = k | Vi,k = 0) = 0 by design.

2.1 A structural causal model and associated DAG

To encapsulate the role of entry time and non-concurrent controls in platform trials, we

pose the structural causal model and directed acyclic graph (DAG) (Pearl 1995) represented

in Figure 2, and its interpretation in terms of a non-parametric structural equation model

in eq. (1) respectively.

E

W

A

Vk

Y

Figure 2: DAG associated to the struc-
tural equation model in equation (1).

Ei = fE(UE,i),

Wi = fW (Ei, UW,i),

Vk,i = fVk(Ei, UVk), (1)

Ai = fA(Vk,i,Wi, UA,i),

Yi = fY (Ai,Wi, Ei, UY,i).

We now discuss some important features of Model (1). Model (1) allows all variables to be

dependent, directly or through other variables, on entry time Ei, and therefore appropri-

ately models temporal drifts. It also allows the treatment assignment Ai to depend on the

participant’s covariates Wi, thus allowing study designs such as stratified randomization

(Broglio 2018). Model (1) also imposes some exclusion restrictions. First, the treatment

assignment Ai is not allowed to depend on the entry time Ei other than through treatment

availability Vk,i. In other words, a participant entering the study at time Ei can only be

assigned to available treatments at that time, but the randomization probability of a treat-

ment that is available for assignment does not vary in time. Second, the outcome for unit

i, Yi, is not allowed to depend on the availability of treatments Vk,i, other than through

the treatment actually given to unit i, but it is allowed to directly depends on unit’s i

entry time. Third, the availability of treatments Vk,i does not depend on covariates Wi,
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which is a sensible assumption since the treatments under evaluation do not often depend

on trial data. Finally, in this paper we assume that Vk is a deterministic function of E. In

Model (1), the functions fE, fW , and fY are completely unknown, thus making the model

non-parametric, while the treatment assignment function, fA, and treatment availability

function, fVk , are known by design. In addition, the random variables UE,i, UW,i, and UY,i

are unmeasured factors that impact the entry time, covariates, and outcomes, respectively.

The random variables UA,i control the randomization probabilities and are known by de-

sign. The random variables UVk represent all factors that determine the availability of

treatments for subjects in the trial.

Under this model and its associated DAG, in the following section, we define the causal

estimands of interest and introduced their identification assumptions, aligning with the

estimand framework advocated by the FDA (FDA 2021).

3 Causal estimands and identification

In this paper, we focus on continuous endpoints measured at fixed time-points post-

randomization. Therefore, the causal estimands of interest are average treatment effects.

Additionally, we consider an intention-to-treat (ITT) analysis. Our results can be easily

extended to binary endpoints. We define the causal estimands of interest in terms of coun-

terfactual variables (Pearl 2010), Yi(k) = fY (k, Vk,i,Wi, Ei, UY,i) that would have been ob-

served in a hypothetical world where treatment Ai = k had been given, i.e., P(Ai = k) = 1.

We first define these estimands and then discuss their non-parametric identification.

Definition 1 (Conditional and marginal average treatment effect of treatment arm k
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compared to control).

CATE(k, w, e) = E[Y (k)− Y (0) | W = w,E = e]

ATE(k) = E[CATE(k,W,E)].

Definition 2 (Conditional and marginal average treatment effect of treatment arm k

compared to control among concurrent population).

cCATE(k, w, e) = E[Y (k)− Y (0) | W = w,E = e, Vk = 1]

cATE(k) = E[cCATE(k,W,E) | Vk = 1].

ATE(k) is the standard ITT-average treatment effect of treatment arm k considered in

many clinical trials. This estimand considers the whole trial population comprised of all

units enrolled throughout the duration of the trial. Conversely, cATE(k) is the ITT-average

treatment effect among only concurrent units, Vk = 1. CATE(k, w, e) and cCATE(k, w, e)

are their conditional versions, conditioning on baseline variables W and entry time E. We

now provide assumptions to identify these causal effects.

3.1 Non-parametric identification

Non-parametric identification allows us to express the causal target quantity of interest

in terms of the distribution of the observed data without relying on assumptions on the

functional form of the distributions (Pearl 1995). In order to discuss non-parametric iden-

tification of the above causal effects, we introduce the following assumptions:
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A1 (weak A-ignorability).

E[Y (k)|W = w,E = e, Vk = v] = E[Y (k)|A = k,W = w,E = e, Vk = v].

A2 (weak V-ignorability).

E[Y (k)|W = w,E = e] = E[Y (k)|W = w,E = e, Vk = v].

A3 (Consistency.).

P(Y (k)|A = k,W = w,E = e, Vk = v) = P(Y |A = k,W = w,E = e, Vk = v)

A4 (Positivity of treatment assignment mechanism among concurrent participants.). As-

sume

P(A = k | W = w, Vk = 1) > 0 for all w ,

A5 (Positivity of treatment assignment mechanism among all controls.). Assume

P(A = 0 | W = w,E = e) > 0 for all w and e,

A6 (Conditional exchangeability of outcome mechanism among controls). Assume

E(Y | A = 0,W = w,E = e, Vk = 1) = E(Y | A = 0,W = w,E = e, Vk = 0) =

E(Y | A = 0,W = w,E = e).

A7 (Conditional exchangeability of outcome mechanism among the treated). Assume

E(Y | A = k,W = w,E = e, Vk = 1) = E(Y | A = k,W = w,E = e, Vk = 0) =

E(Y | A = k,W = w,E = e).

Assumptions A6 and A7 state that the outcome distribution among controls and treated

are exchangeable between patients for whom treatment k is available and those for whom
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it is not, respectively; given patients’ baseline variables and entry time. Note that A6 and

A7 are similar in nature in that they assume exchangeability of the outcome mechanism

for treatment and control arms. However, there is a fundamental difference between these

assumptions that makes identification based on A6 more reliable than identification based

on A7. A6 is a testable assumption that can be empirically checked. On the other hand,

A7 requires assuming that the conditional outcome expectation observed in patients who

could hypothetically be randomized to treatment k can be used to extrapolate to those who

could not. In other words, A7 is an extrapolation assumption, since it assumes that the

expected outcome under treatment A = k in times E = e and baseline variables W = w

of no treatment availability Vk = 0 can be extrapolated from a model fit on times E = e

and baseline variables W = w where the treatment was available. Assumption A4 states

that once a treatment arm is available in the trial all covariate profiles w, e have a positive

probability of receiving such treatment. Under these assumptions, we now provide an

identification theorem.

Theorem 1 (Identification of average treatment effects in platform adaptive trials under

Model (1)). Assume Model (1) and assumptions A1-A4. Then we have:

1. The parameter cCATE(k, w, e) is non-parametrically identified as

E(Y | A = k,W = w,E = e, Vk = 1)− E(Y | A = 0,W = w,E = e, Vk = 1), (2)

2. Under A1-A6, cCATE(k, w, e) is identified as

E(Y | A = k,W = w,E = e, Vk = 1)− E(Y | A = 0,W = w,E = e). (3)

3. Under A1-A7, CATE(k, w, e) is identified as (3).
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Furthermore, cATE(k) and ATE(k) are identified by taking the average of the above expres-

sions for cCATE(k) and CATE(k) over the distribution of (W,E) conditional on Vk = 1,

and over the marginal distribution of (W,E), respectively.

Equivalent expressions based on weighting are provided in the appendix. A comparison

between expressions (2) and (3) reveals the motivation to use non-concurrent controls: they

can be useful in estimating the outcome expectation for the controls, therefore reducing

the variance of the estimator.

4 Relation to analytical approaches common in the

literature

The current body of research concerning non-concurrent controls (Bofill Roig et al. 2023)

focuses on estimating various estimands.

Regression models are often used to obtained ATE(k). This usually involves estimating

E(Y | A = k,E = e) using a regression model, regressing the outcome on the treatment

and entry time. Inferences are then made using the regression coefficient related to the

treatment, whether within the frequentist (Lee &Wason 2020, Bofill Roig, Krotka, Burman,

Glimm, Gold & Hees 2022) or Bayesian framework (Saville et al. 2022, Bofill Roig, König,

Meyer & Posch 2022, Ibrahim & Chen 2000). Many approaches have been developed to

construct priors (Neuenschwander et al. 2009, Bennett et al. 2021, among others). As

showed above, ATE(k) can be identified under Model (1), and assumptions A1-A7. We

caution that this analysis can be risky as it relies on an extrapolation assumption, an

assumption that is untestable and therefore undesirable in a randomized study.

Matching techniques have been proposed to estimate the average treatment effect among
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the treated, E[Y (k)−Y (0)|A = k]. The idea is to balance covariatesW between concurrent

and non-concurrent controls by using for instance a matching algorithm based on the

propensity score (Yuan et al. 2019).

Bayesian methods have been proposed to include non-concurrent controls to estimate

cATE(k). The idea is to learn a prior of the parameter of interest using non-concurrent

controls only. Then, this prior is combined with the concurrent control data via Bayes’

theorem. Meta-analytic priors (Schmidli et al. 2014) or elastic priors (Jiang et al. 2023)

have been proposed. In addition, these methods assume an exchangeability assumption for

the control parameters, which is related to A6. These methods, however, do not allow for

the use of baseline covariates W .

In this paper, we propose estimators based on outcome regression (OR) and inverse-

probability-weighting (IPW), and doubly robust estimators.

5 Estimation of cATE(k) and ATE(k)

To build intuition, we start by introducing outcome regression (OR) and inverse probability

weighting (IPW) estimators for cATE and ATE. Since OR and IPW estimators are not

robust to model misspecification, we then propose doubly robust (DR) estimators. To

simplify notation, the following sections assume there are only two treatment arms k = 1

and k = 0. Furthermore, we assume that Vk = 1{E > t} for some time t such that

treatment A = 1 is only available for patients who entered the trial after time t.
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5.1 Estimators based on parametric outcome regression

Based on the identification results presented in Theorem 1, eq. (2), we firstly propose to

model the conditional mean E(Y | A = a,W = w,E = e, Vk = 1), where a = {0, 1} as

E(Y | A = a,W = w,E = e, Vk = 1) = µoc(a, w, e, 1; βa),

where (oc) stands for only-concurrent. Based on the identification results presented in

Theorem 1, eq. (3) , we also propose to model the conditional mean E(Y | A = 0,W =

w,E = e), as

E(Y | A = 0,W = w,E = e) = µall(0, w, e;αa).

We then obtain an estimate of βa and αa by using maximum likelihood estimation, i.e.,

ordinary least squares, only among the concurrent controls Vk = 1 for µoc(a, w, e, 1; βa) and

among all concurrent and non-concurrent controls when using µall(0, w, e;αa), i.e., among

A = 0 only. Let β̂a and α̂a denote consistent estimators of βa and αa. We then propose

ˆcATEoc
OR =

∑n
i=1 1{Vk,i = 1}µoc(1, wi, ei, 1; β̂1)∑n

i=1 1{Vk,i = 1}

−
∑n

i=1 1{Vk,i = 1}µoc(0, wi, ei, 1; β̂0)∑n
i=1 1{Vk,i = 1}

,

as an outcome regression estimator for cATE(k). Under Theorem 1, eq. (3), we propose the

alternative outcome regression estimator for cATE(k),

ˆcATEall
OR =

∑n
i=1 1{Vk,i = 1}µoc(1, wi, ei, 1; β̂1)∑n

i=1 1{Vk,i = 1}

−
∑n

i=1 1{Vk,i = 1}µall(0, wi, ei; α̂0)∑n
i=1 1{Vk,i = 1}

.
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Finally, under Theorem 1 eq. (3), we propose the following outcome regression estimator

for ATE(k),

ˆATEOR =

∑n
i=1 µoc(1, wi, ei, 1; β̂1)

n
−
∑n

i=1 µall(0, wi, ei; α̂0)

n
,

where µoc(1, wi, ei, 1; β̂1) is learned among only concurrent and marginalized over the whole

trial population by extrapolation.

Large sample properties. We derived the asymptotic properties of ˆcATEoc
OR, ˆcATEall

OR,

and ˆATEOR using the approach of M-estimation (Boos & Stefanski 2013, Chapter 7). Under

regularity conditions (Boos & Stefanski 2013, Section 7.2), ˆcATEoc
OR, ˆcATEall

OR, and ˆATEOR

are consistent and asymptotically Normal, with asymptotic variance derived in the ap-

pendix.

5.2 Estimators based on parametric inverse probability weight-

ing

Identification results for ATE(k) presented in the appendix show that to estimate ATE(k),

we should extrapolate P(A = 0 | W,E) which equals 1 when Vk = 0. This is a problem

as it creates a condition known as separation, where the data points from the control class

(A = 0) are perfectly separated from a non-existent treatment class (A = 1) (Mansournia

et al. 2018). This would lead the estimated coefficients approaching positive or negative

infinity, making them unreliable and uninterpretable, in addition to numerical errors and

difficulties in fitting the model. As a consequence, we propose an estimator based on inverse

probability weighting solely for cATE(k). Specifically, we propose to model the conditional

probability of treatment assignment given W and E among only Vk = 1 by using a logistic
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regression model,

E(1{A = 1} | W = w,E = e, Vk = 1) = πoc(w, e, 1; η) =
exp(ηTx)

1 + exp(ηTx)
,

where x = (w, e, 1). We obtain an estimate of η by using maximum likelihood estimation,

only among the concurrent controls Vk = 1. We then propose,

ˆcATEoc
IPW =

∑n
i=1 γ

1
i 1{Vk,i = 1}Yi∑n
i=1 γ

1
i

−
∑n

i=1 γ
0
i 1{Vk,i = 1}Yi∑n
i=1 γ

0
i

,

where γ0i = 1{Ai = 0}/(1− π̂oc), γ1i = 1{Ai = 1}/π̂oc, and π̂oc = πoc(w, e, 1; η̂) for clarity.

Large sample properties. We derived the asymptotic properties of ˆcATEoc
IPW using the

approach of M-estimation (Boos & Stefanski 2013, Chapter 7). Under regularity conditions

(Boos & Stefanski 2013, Section 7.2), ˆcATEoc
IPW, is consistent and asymptotically Normal,

with asymptotic variance derived in the appendix.

5.3 Doubly robust estimators

Doubly robust (DR) estimators for average treatment effects provide consistent estimates

by combining outcome regression and IPW. Consequently, they suffer of the same separa-

tion problem described above for IPW. We then provide DR estimators for cATE(k) only.

To do so, we follow standard practice of constructing DR estimators based on efficient

influence functions (EIF)s (Bickel et al. 1993, Fisher & Kennedy 2021, Hines et al. 2022,

Kennedy 2022). Influence functions are a core component of classical statistical theory.

They aid in constructing estimators with desirable properties such as double robustness,

asymptotic normality, and fast rates of convergence. Additionally, they enable the incor-
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poration of machine learning algorithms while preserving valid statistical inferences and

providing insights into statistical efficiency, i.e., the best performance for estimating an

estimand. We provide efficiency considerations of the proposed estimators in section 6.

The next theorem provide these EIFs,

Theorem 2. The efficient influence function, φ(Z, cATE(k)), for cATE(k) in the non-

parametric model is equal to

1{Vk = 1}
P(Vk = 1)

[
2A− 1

P(A | W,E, Vk = 1)
{Y − E(Y | A,W,E, Vk = 1)}

+ E(Y | A = 1,W,E, Vk = 1)− E(Y | A = 0,W,E, Vk = 1)− cATE(k).

]
(4)

The efficient influence function, φ(Z, cATE(k)), for cATE(k) in the non-parametric model

that assumes (A6) is equal to

1{Vk = 1}
P(Vk = 1)

[
A

P(A | Vk = 1,W,E)
{Y − E(Y | A,W,E, Vk = 1)}

]
−

1− A
P(A | W,E)

P(Vk = 1 | E,W )

P(Vk = 1)
{Y − E(Y | A,E,W )}+

1{Vk = 1}
P(Vk = 1)

[
E(Y | A = 1,W,E, Vk = 1)− E(Y | A = 0,W,E)− cATE(k)

]
(5)

These influence functions suggest the following estimators,

ˆcATEoc
DR =

1∑n
i=1 1{Vk,i = 1}

n∑
i=1

[
1{Vk,i = 1}(2ai − 1)

πoc(wi, ei, 1)
{Yi − µoc(ai, wi, ei, 1)}

+ µoc(1, wi, ei, 1)− µoc(0, wi, ei, 1) ]

ˆcATEall
DR =

1∑n
i=1 1{Vk,i = 1}

n∑
i=1

[
1{Vk,i = 1}1{Ai = 1}

πoc(wi, ei, 1)
{Yi − µoc(1, wi, ei, 1)}
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+
1{Ai = 0}

1− πall(wi, ei)
ν(wi, ei)∑n

i=1 1{Vk,i = 1}
{Yi − µall(0, wi, ei)}

+
1∑n

i=1 1{Vk,i = 1}

n∑
i=1

[µoc(1, wi, ei, 1)− µall(0, wi, ei)] .

where, πoc(wi, ei, 1), µoc(1, wi, ei, 1), µall(0, wi, ei), and πall(wi, ei), can be estimated by using

parametric and machine learning methods. In this paper, we propose to use the linear

regression models µoc(0, wi, ei, 1; β0), and µall(0, wi, ei;α0) introduced in the previous section

as outcome models, and the logistic regression models πall(w, e; η) and ν(w, e; ξ) introduced

before for P[A = 1 | W = w,E = e] and P[Vk = 1 | W = w,E = e], respectively. Note that

by design, P[Vk = 1 | W = w,E = e] = 1 when Vk = 0. We then set πall(w, e; eta) = 1 for

all Vk = 0.

Large sample properties. In this paper we assumed that Vk is a deterministic function

of E, and therefore P(Vk = 1 | E,W ) = 1{E > t}. As discussed in the next session,

under this assumption, the two EIFs (4) and (5) are the same. In addition, the first

influence function in Theorem 2 boils down to the standard influence function for the

average treatment effect in the the Vk = 1 population. Therefore, it inherits the standard

analysis of the one-step estimator for average treatment effects as discussed in (Kennedy

et al. 2021, Section 4.1). In summary, it can be shown that estimators of the form of ˆcATEoc
DR

are root-n consistent, asymptotically normal with asymptotically valid 95% confidence

intervals given by the closed-form expression ˆcATEoc
DR ± 1.96

√
v̂ar{φ(Z, cATE(k))}/n, and

efficient in the local asymptotic minimax sense.

Double robustness. Similarly, since the two estimators boils down to the standard DR

estimator for the average treatment effect in the Vk = 1 population, they also inherit the

same double robust property. This means that if either the outcome regression model
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(µoc(0, wi, ei, 1; β0), µall(0, wi, ei;α0)) or the treatment assignment model (πoc(wi, ei, 1; η),

πall(w, e; η)) is correctly specified (in a parametric sense), then the DR estimator is con-

sistent, see section 4.2 of Kennedy (2022) for details. We provide some empirical result of

this property in our simulations in section 7.

6 Efficiency considerations

Estimators based on outcome regression. As shown in the appendix, the influence

function of the conditional expectation under control, φ(Zi, µ̂0), depends on two compo-

nents: the influence function of µ0 itself and that of the regression coefficients. Here,

µ0 = E[Y (0)] or µ0 = E[Y (0)|Vk = 1] depending on the estimand under study. Therefore,

a more precise estimation of the regression coefficients (the variance of the estimated re-

gression coefficient is inversely proportional to the sample size), translate to a more precise

estimation of µ0 and consequently of ˆcATEall
OR compared to ˆcATEoc

OR.

Estimators based on inverse probability weighting. As previously discussed in

section 5.2, the separation problem (Mansournia et al. 2018) limits the construction of

IPW estimators for cATE(k) among only concurrent. Consequently, there is no efficiency

gains when using such estimators when Vk is deterministic.

Doubly robust estimators. As previously discussed, Vk is a deterministic function of

E leading to P(Vk = 1 | E,W ) = 1{E > t}, and therefore the two EIFs presented in

section 5.3 are the same. In this case, efficiency gains come solely from better fitting of

the regression E(Y | A = 0,W,E, Vk = 1), which under assumption (A6) is equal to

E(Y | A = 0,W,E, Vk = 1) = E(Y | A = 0,W,E) (because Vk = 1{E > t}). In this

case it becomes purely about getting this regression right, and these efficiency gains do not
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show up in the first order analysis of the estimator. We show some empirical results in our

simulations in section 7.

7 Simulations

In this section we evaluate the performance of the proposed estimators with respect to, bias

squared, variance, mean square error, and coverage of the 95% confidence interval, across

levels of the percentage of concurrent controls, and model misspecification when estimating

cATE(k). Note that, since ATE(k) requires stringent assumptions that only hold under the

correct outcome model, in this section we focus only on cATE(k). In addition, current

methods described in section 4 for cATE(k) estimation do not allow controlling for baseline

covariates. We therefore do not compare our proposed estimators with those methods.

7.1 Setup

Aims To evaluate the performance and gains in efficiency of our proposed estimators

across levels of (1) percentage of concurrent controls (90% to 10%) and (2) model mis-

specification (correct outcome and treatment; correct outcome; correct treatment; both

misspecified). In addition, we also evaluated any gains in efficiency comparing the esti-

mated variance of the outcome regression (Section 5.1) and doubly robust (Section 5.3)

estimators that only use concurrent data compared with those that use all data.

Data-generating mechanisms We considered generating data from Model (1). Specif-

ically, we considered a sample size of n = 1, 000 and for each subject i = 1, . . . , n, we

simulated the following data:

Step 1. the entry time E ∼ Norm(0, 1) and a baseline covariate W = −κ1 + 0.8E +
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Norm(0, 1), where κ1 = n−1∑n
i=1 0.8E;

Step 2. an indicator whether treatment k was available at time E, Vk as a determin-

istic function of E being less than a threshold describing the level of the percentage

of concurrent controls;

Step 3. a binary treatmentA ∼ Bernoulli(π(W )), where π(W ) = (1 + exp (−(κ2 − 0.8W )))−1

and κ2 = n−1∑n
i=1 0.8W when Vk = 1 and A = 0, otherwise (participants for which

treatment only placebo is available);

Step 4. two counterfactual outcomes, Y (0) = 0.8W+0.5E+Norm(0, 1), and Y (k) =

Y (0)+∆, with ∆ = 0.8, and the observed outcome Y = AY (1)+ (1−A)Y (0). Since

we consider a homogeneous treatment effect, ∆ = cATE(k) = ATE(k) = 0.8 .

Estimands The estimand of interest is cATE(k).

Methods For each dataset across levels of percentage of concurrent controls, and mis-

specification we used the methods summarized in Table 1.

Performance metrics Bias squared, variance, mean square error (MSE), and coverage

of the 95% confidence interval. In addition, we also considered the ratio of the estimated

variances.

Scenarios We considered levels of percentage of concurrent controls between 10% and

90% by 10%. Misspecified models were set to only include an intercept–not controlling for

any covariate or entry time.
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Table 1: Methods used in the estimation of cATE and ATE.

Acronym
Method cATE(k) ATE(k)

Outcome regression using only concurrent data, ( ˆcATEoc
OR, Section 5.1) OR-oc -

Outcome regression using all data, ( ˆcATEall
OR, ˆATEOR, Section 5.1) OR-ac OR-ad

Weighting using only concurrent data ( ˆcATEoc
IPW, Section 5.2) IPW -

Doubly robust using only concurrent data ( ˆcATEoc
DR, Section 5.3) DR-oc -

Doubly robust using all data ( ˆcATEall
DR, Section 5.3) DR-ac -

7.2 Results

7.2.1 Bias, variance, MSE, and coverage

Figure 3 and Figures 5-7 in the appendix, show bias squared, variance, MSE and coverage

of the 95% confidence intervals in estimating cATE across percentage of concurrent controls

and across misspecification scenarios. When both the outcome and the treatment models

are correct (Figure 3), bias squared is negligible across levels of concurrent controls for

all methods. Variance is shown to increase with decreasing levels of concurrent controls

across all methods, with OR-ac being smaller than OR-oc, suggesting a gain in efficiency

(more on this in the next section). Similar behavior can be seen for the MSE. Finally,

all methods achieved desirable coverage levels. When the outcome model is misspecified

(Figure 5 in the appendix), both outcome models show a large bias while mantaining a

relatively small variance. MSE is consequently dominated by bias. DR estimators and the

IPW estimator maintained negligible levels of bias and relatively small variance. Similarly,

when only the outcome model is correctly specified, DR methods and OR estimators show

desirable results while IPW show high bias (Figure 6 in the appendix). Finally, when all

models are misspecified, bias becomes large for all methods with low coverage (Figure 7 in

the appendix).
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Figure 3: Bias squared, variance, MSE and coverage of the 95% confidence interval of DR-
ac, DR-oc, IPW, OR-ac and OR-ac under correct models. Note that, DR-ac and DR-oc
overlap in terms of bias squared, sampling variability and MSE.
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Figure 4: Ratio of standard errors DR-oc/DR-ac and OR-oc/OR-ac across model misspec-
ifications. A ratio greater than 1 means efficiency gains.

7.2.2 Efficiency gains

Figure 4 shows the ratio of the estimated standard errors of DR-oc over DC-ac and OR-

oc over OR-ac across levels of concurrent controls and misspecification. As discussed in

Section 6, estimators based on outcome regression that use all controls seem to have a gain

in efficiency, while DR estimators did not. These results are similar across all scenarios.

Summary of results. Methods based on outcome regression improve efficiency when

using non-concurrent controls. However, they introduce bias when misspecified. In con-

trast, doubly robust estimators provide consistent estimates with relatively small variance

when either the treatment or outcome model is correctly specified.
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8 Practical considerations

What estimand should we target? Given the more stringent and untestable assump-

tions needed to identify ATE(k), we suggest targeting cATE(k). Note that ATE(k) and

cATE(k) will coincide under the assumption of homogeneous treatment effect. While this

is true in theory, we would expect it not to hold in practical settings, leading to different

results as showed in our case study in the next section.

Are we actually increasing precision while retaining unbiasedness? In this paper,

we argue that targeting cATE(k) requires fewer stringent untestable assumptions compare

to estimating ATE(k). Additionally, the simple difference in means between treatment

arms within the concurrent (Vk = 1) population (or controlling for stratified randomiza-

tion if needed) can be used as a benchmark for the “true” sample cATE(k) – we refer to

this estimator as naive. In other words, point estimates from multiple methods can be

benchmarked against those obtained by using the naive estimator. Ideally, our estimators

should be close to the naive estimate while increasing precision. To do so during data

analysis, we suggest computing two quantities: 1) the difference between the estimated

cATE(k) with the proposed estimators against that obtained by using the naive estimator;

and 2) the ratio between the estimated standard errors of the proposed estimators against

that obtained by using the naive estimator. Since the two estimators use the same data,

they might be correlated. We, therefore, suggest computing the covariance between the

two estimators using computational methods such as bootstrap. Wald hypothesis tests and

95% confidence intervals can then be computed. We show this in our case study in section

9 (Table 3).
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Should we leverage prognostic baseline variables for additional precision? Re-

cent literature suggests that incorporating baseline prognostic variables can improve the

precision of estimates (Colantuoni & Rosenblum 2015). We propose following this ap-

proach by appropriately controlling for these variables in the analysis. This may explain

the increased precision observed with DR-oc and OR-oc estimators compared to the naive

estimator in our case study (presented in the next section), despite being computed within

the concurrent population only.

Sample size calculation for a prospective trial with non-concurrent controls.

Our theoretical and methodological results suggest an efficiency gain when including non-

concurrent control with estimators based on regression models. While these results are

promising, we suggest to conduct standard sample size calculation as if the non-concurrent

control data will not be available. At the analysis stage, precision can then be improved by

using non-concurrent control data as previously described with the caveat that the outcome

model must be correctly specified.

Multiple comparisons. Our proposed methods enable the use of standard type I error

control procedures, such as Bonferroni or Benjamini-Hochberg corrections, due to the va-

lidity of 95% confidence intervals, test statistics, and p-values (demonstrated in previous

sections). This allows for straightforward application of these corrections in platform trials

with, for instance, pre-planned interim analyses, and multiple primary endpoints.

9 The Adaptive COVID-19 Treatment Platform Trial

In this section, we apply our proposed estimators using data from the Adaptive COVID-19

Treatment Trial (ACTT) (Kalil et al. 2021). This was a platform trial that investigated
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treatments for hospitalized adult patients with COVID-19 pneumonia. The trial com-

prised multiple stages, as illustrated in Figure 1. The initial phase, ACTT-1, involved the

assessment of the effectiveness of remdesivir alone compared to placebo. Subsequently, in

the second stage (ACTT-2), the placebo was phased out, and a novel treatment, com-

bining remdesivir with baricitinib, was introduced. Simultaneously, participants were

randomized to receive either remdesivir alone or the combination therapy of remdesivir

and baricitinib. Data were accessed using the NIAID Clinical Trials Data Repository

(https://data.niaid.nih.gov/). We have a Data User Agreement in place for its use.

Study population. We considered the combined participants of ACCT-1 and ACTT-2

as our study population. The final study population was comprised of 1,379 participants,

541 from ACTT-1 and 1,033 from ACTT-2. We considered the time to recovery in days

as our enpoint of interest. We considered two arms: remdevisir alone (which also acts

as a shared control) and remdevisir plus baricitinib. We consider the following baseline

covariates: age, sex assigned at birth (female, male), race (White, Black, Asian, Other:

American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiple),

ethnicity (Hispanic or Latino, Not Hispanic or Latino), BMI, geographic region of study

site (Asia, Europe, North America), disease severity stratum (mild, severe), and having

any of these comorbidities: duration of symptoms, hypertension, coronary artery disease,

congestive heart disease, chronic oxygen requirement, chronic respiratory disease, chronic

liver disease, chronic kidney disease, diabetes type I, diabetes type II, obesity, cancer,

immune deficiency, and asthma, in addition to the entry time which we normalized to be

between 0 and 1.
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Models setup. We computed OR-oc, OR-ac, OR-ad, IPW, DR-oc and DR-ac (Table

1) by using linear and logistic regression models. We computed the naive estimator by

taking the average difference in the endpoint between the two arms among only concurrent

participants. Variances were obtained by using the sandwich estimator (for naive, OR-oc,

OR-ac, OR-ad, IPW) and by taking the variance of the efficient influence function (for

DR-oc and DR-ac). Wald 95% confidence intervals and Wald tests were constructed.

Results. Table 2 shows the point estimate for cATE and ATE, standard errors, 95%

confidence intervals and p-values. The naive estimate of cATE, resulted in a value of -1.33

with a standard error of 0.58. This suggest that baricitinib plus remdesivir was superior to

remdesivir alone in reducing recovery time as in the original trial (Kalil et al. 2021). OR-

oc, IPW, DR-oc and DR-ac improved precision while maintaining a similar point estimate.

OR-ac improved precision the most (around 28% improvement compared with the naive

estimator), however, it resulted in a different point estimate, -0.75 which led to a non

significant result. This suggest that the outcome model used to obtain OR-ac might be

misspecified. In contrast, doubly robust estimators improved precision while maintaining a

similar point estimate as the naive estimator. We believe the improved precision observed

in OR-oc, IPW, and DR-oc compared to the naive estimator stems from appropriately

adjusting for baseline variables, as discussed in Colantuoni & Rosenblum (2015), and in

our previous section.

Using OR-ad, a non significant point estimate of 0.45 was obtained for ATE, suggesting

that either the outcome model is misspecified or that the effect is heterogeneous across con-

current and non-concurrent participants. Note that a conditional analysis using a standard

linear regression model regressing the outcome in the full population on treatment arms,

entry time and baseline covariates as suggested, for instance by Lee & Wason (2020), led

26



Table 2: Estimated cATE(k) and ATE(k) using the ACTT data.

Method ˆcATE ˆATE se 95% ci p-value Ratio
OR-oc -1.29 - 0.47 (-2.21;-0.37) <0.01 1.22
OR-ac -0.75 - 0.45 (-1.63;0.13) 0.10 1.28
IPW -1.28 - 0.47 (-2.20;-0.36) <0.01 1.22
DR-oc -1.30 - 0.47 (-2.22;-0.38) <0.01 1.22
DR-ac -1.30 - 0.47 (-2.22;-0.38) <0.01 1.21
naive -1.33 - 0.58 (-2.47;-0.19) 0.02 1.00
OR-ad - 0.45 0.35 (1.15;-0.24) 0.19 -

Table 3: Estimated difference and ratio of standard errors between estimated cATE(k) using
OR-oc, OR-ac, IPW, DR-oc and DR-ac and naive, standard errors (se), 95% confidence
intervals (CI), and p-values in the ACTT data.

Method Difference se CI p-value Ratio se CI p-value
OR-oc 0.03 0.36 (-0.67;0.74) 0.92 1.22 0.03 (1.16;1.28) <0.01
OR-ac 0.58 0.37 (-0.15;1.31) 0.12 1.28 0.03 (1.22;1.33) <0.01
IPW 0.05 0.36 (-0.65;0.75) 0.89 1.22 0.03 (1.17;1.27) <0.01
DR-oc 0.03 0.35 (-0.66;0.72) 0.94 1.22 0.03 (1.16;1.28) <0.01
DR-ac 0.03 0.32 (-0.59;0.65) 0.93 1.21 0.02 (1.16;1.26) <0.01

a non significant point estimate of -0.46 (standard error equal to 0.52). We consequently

caution the use of ATE(k) as the estimand of interest in platform trials.

Table 3 shows the difference in cATE(k) estimates and ratio of estimated standard errors

between OR-oc, OR-ac, IPW, DR-oc, DR-ac and the naive estimator. Standard errors,

confidence intervals and p-values where constructed as discussed in our practical guidelines.

In summary, the difference between estimates was not significant across methods and all

methods showed an improved efficiency (last column - confidence intervals not containing

1). While the p-value for the difference between OR-ac and naive was not statistically

significant, we still cautiously suggest to not use results based on OR-ac.
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10 Conclusion

In this paper, we introduced identification results and estimation techniques to identify

and estimate causal effects in the presence of non-concurrent control in platform trials. We

argue that identifying and estimating ATE(k) relies on an extrapolation assumption that

is both untestable and often too stringent, particularly in the context of platform trials,

where multiple, potentially novel treatments or interventions are being evaluated and the

outcome mechanism is poorly understood. Therefore, we advocate focusing primarily on

cATE(k), where assumptions can be tested and results can be benchmarked against stan-

dard procedures, such as the naive estimator in the concurrent population – known to be

unbiased in well-conducted randomized trials. By focusing on cATE(k) rather than ATE(k),

we also open the door to leveraging non-parametric models based on machine and deep

learning techniques for learning outcome and treatment assignment mechanisms under the

proposed doubly robust estimators (Kennedy 2022, Dı́az 2020, Hirshberg & Wager 2021).

In fact, while these methods can capture complex data relationships, potentially mitigat-

ing model misspecification, they may not be suitable for extrapolation. Furthermore, our

proposed doubly robust estimator accommodates Bayesian techniques while retaining valid

frequentist properties, as demonstrated in (Shin & Antonelli 2023, Antonelli et al. 2022).

In this paper, we assumed Vk be a deterministic function of E. However, our results hold

even when considering a non-deterministic function. In this scenario, we would expect

the two EIFs in equations (4) and (5) to differ. Consequently, efficiency gains could be

observed by using a doubly robust estimator using all controls (DR-ac) compared to only

concurrent controls (DR-oc). Assumption A6 is a testable assumption, allowing for the

construction of tests to verify its validity. This aligns with the test-then-pool literature

(Viele et al. 2014, among others). In this paper, we focused on continuous endpoints.
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Estimators can be constructed for binary, count and time-to-event endpoints under the

non-parametric causal model introduced in eq. (1). Finally, in this paper, we demonstrate

results assuming a structural equation model where treatment assignment may depend on

baseline covariates; however, similar identification and estimation results can be obtained

without baseline covariates.
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Schmidli, H., Häring, D. A., Thomas, M., Cassidy, A., Weber, S. & Bretz, F. (2020),

‘Beyond randomized clinical trials: Use of external controls’, Clin Pharmacol Ther. 107.

URL: https://doi.org/10.1002/cpt.1723

Shin, H. & Antonelli, J. (2023), ‘Improved inference for doubly robust estimators of het-

erogeneous treatment effects’, Biometrics 79(4), 3140–3152.

Sridhara, R., Marchenko, O., Jiang, Q., Pazdur, R., Posch, M., Berry, S., Theoret, M.,

Shen, Y. L., Gwise, T., Hess, L. et al. (2022), ‘Use of nonconcurrent common control

in master protocols in oncology trials: report of an american statistical association bio-

pharmaceutical section open forum discussion’, Statistics in Biopharmaceutical Research

14(3), 353–357.

Viele, K., Berry, S., Neuenschwander, B., Amzal, B., Chen, F. & Enas, N. (2014), ‘Use of

historical control data for assessing treatment effects in clinical trials’, Pharm Stat. 13.

URL: https://doi.org/10.1002/pst.1589

Wells, A., Fisher, P., Myers, S., Wheatley, J., Patel, T. & Brewin, C. R. (2012), ‘Metacog-

nitive therapy in treatment-resistant depression: A platform trial’, Behaviour research

and therapy 50(6), 367–373.

Woodcock, J. & LaVange, L. M. (2017), ‘Master protocols to study multiple therapies,

multiple diseases, or both’, New England Journal of Medicine 377(1), 62–70.

Yuan, J., Liu, J., Zhu, R., Lu, Y. & Palm, U. (2019), ‘Design of randomized controlled

confirmatory trials using historical control data to augment sample size for concurrent

controls’, J Biopharm Stat. 29.

URL: https://doi.org/10.1080/10543406.2018.1559853

35



SUPPLEMENTARY MATERIAL

Identification and estimation of causal effects using

non-concurrent controls in platform trials

Michele Santacatterina, Federico Macchiavelli Giron, Xinyi Zhang, and Iván Dı́az

Division of Biostatistics, Department of Population Health,

New York University School of Medicine,

New York, NY, 10016

Additional simulation results: Bias squared, variance, MSE and coverage of the 95%

confidence interval of DR-ac, DR-oc, IPW, OR-ac and OR-ac, across multiple sce-

narios.

Proofs and M-estimation details: Theorem 1, 2 and M-estimation details for estima-

tors based on outcome regression and parametric weighting.

1



Additional simulation results

In this section, we provide additional results based on our simulations.
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Figure 5: Bias squared, variance, MSE and coverage of the 95% confidence interval of
DR-ac, DR-oc, IPW, OR-ac and OR-ac under misspecified outcome model and correct
treatment assignment model. Note that, DR-ac and DR-oc overlap in terms of bias squared
and MSE.
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Figure 6: Bias squared, variance, MSE and coverage of the 95% confidence interval of
DR-ac, DR-oc, IPW, OR-ac and OR-ac under correct outcome model and misspecified
treatment assignment model.
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Misspecified models
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Figure 7: Bias squared, variance, MSE and coverage of the 95% confidence interval of
DR-ac, DR-oc, IPW, OR-ac and OR-ac under misspecified models. Note that, since we
are using simple means as misspecified models, DR-ac, DR-oc, and IPW overlap in terms
of Bias squared and MSE.
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Proofs and M-estimation details

Proof of Theorem 1

E

W

A

Vk

Y (k)

Figure 8: DAG associated to the struc-
tural equation model in equation (6).

Ei = fE(UE,i),

Wi = fW (Ei, UW,i),

Vk,i = fVk(Ei, UV ), (6)

Ai = fA(Vi,Wi, UA,i),

Yi(k) = fY (k)(k,Wi, Ei, UY,i).

Since we are interested in the effect of A on Y , and in using non-concurrent controls, Vk = 0,

we study paths from A to Y (k) and from V to Y (k) and then apply d-separation. We start

by studying paths from A to Y (k).

A← Vk ← E → Y (k) {Vk}; {E}; {Vk, E}

A← Vk ← E → W → Y (k) {Vk}; {E}; {W}; {Vk, E}; {Vk,W}; {E,W}; {Vk,W,E}

A← W → Y (k) {W}

A← W ← E → Y (k) {W}; {E}; {W,E}

By applying d-separation, the set {Vk,W,E} conditionally block the path from A to Y (k).

This leads to the following assumptions:

A1 (weak A-ignorability).

E[Y (k)|Vk = v,W = w,E = e] = E[Y (k)|A = k, Vk = v,W = w,E = e].
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We now study paths between Vk to Y (k).

Vk ← E → Y (k) {E};

Vk → A← W → Y (k) {}; {W}

Vk → A← W → E ← Y (k) {}; {W}; {E}; {W,E}

By applying d-separation, the set {W,E} conditionally block the path from Vk to Y (k).

This leads to the following assumptions:

A2 (weak V-ignorability).

E[Y (k)|W = w,E = e] = E[Y (k)|Vk = v,W = w,E = e].

We also assume consistency and positivity,

A3 (Consistency.).

P(Y (k)|A = k, Vk = v,W = w,E = e) = P(Y |A = k, Vk = v,W = w,E = e)

A4 (Positivity of treatment assignment mechanism among concurrent participants.). As-

sume

P(A = k | Vk = 1,W = w) > 0 for all w,

A5 (Positivity of treatment assignment mechanism among all controls.). Assume

P(A = 0 | W = w,E = e) > 0 for all w and e,

6



A6 (Conditional exchangeability of outcome mechanism among controls). Assume

E(Y | A = 0, Vk = 1,W = w,E = e) = E(Y | A = 0, Vk = 0,W = w,E = e) =

E(Y | A = 0,W = w,E = e).

A7 (Conditional exchangeability of outcome mechanism among the treated). Assume

E(Y | A = k, Vk = 1,W = w,E = e) = E(Y | A = k, Vk = 0,W = w,E = e) =

E(Y | A = k,W = w,E = e),

Identification of concurrent ATE

Recall that

Definition 3 (Conditional and marginal average treatment effect of treatment arm k

compared to control among concurrent population).

cCATE(k, w, e) = E[Y (k)− Y (0) | Vk = 1,W = w,E = e]

cATE(k) = E[cCATE(k,W,E) | Vk = 1].

Identification based on the G-formula.

Proof We start by showing it for treatment k. We refer to W = w,E = e as W,E for

clarity and (IE) as iterated expectation (we keep the conditioning on E even if it is not

needed for assumption A4).

E(Y (k) | Vk = 1)

= E(E(Y (k)|Vk = 1,W,E) | Vk = 1) by (IE)

= E(E(Y (k)|A = k, Vk = 1,W,E) | Vk = 1) by (A1)

= E(E(Y |A = k, Vk = 1,W,E) | Vk = 1) by (A3,A4)

7



=
1

P(Vk = 1)
E(1[Vk = 1]E(Y |A = k, Vk = 1,W,E))

We now show the proof under treatment 0.

E(Y (0) | Vk = 1)

= E(E(Y (0)|Vk = 1,W,E) | Vk = 1) by (IE)

= E(E(Y (0)|A = 0, Vk = 1,W,E) | Vk = 1) by (A1)

= E(E(Y |A = 0, Vk = 1,W,E) | Vk = 1) by (A3)

= E(E(Y |A = 0,W,E) | Vk = 1) by (A5,A6)

=
1

P(Vk = 1)
E(1[Vk = 1]E(Y |A = 0,W,E))

Consequently, under (A1),(A3), and (A4), cCATE(k, w, e) is non-parametrically identified

as

E(Y | A = k, Vk = 1,W,E)− E(Y | A = 0, Vk = 1,W,E). (7)

In addition, under (A1),(A3),(A5) and (A6) cCATE(k, w, e) is identified as

E(Y | A = k, Vk = 1,W,E)− E(Y | A = 0,W,E). (8)
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Identification based on weighting.

Proof We start by showing it for treatment k. We refer to W = w,E = e as W,E for

clarity, and (IE) as iterated expectation (we keep the conditioning on E even if it is not

needed for assumption A4).

E(Y (k) | Vk = 1)

= E(E(Y (k)|Vk = 1,W,E) | Vk = 1) by (IE)

= E(E(Y (k)|A = k, Vk = 1,W,E) | Vk = 1) by (A1)

= E(E(Y |A = k, Vk = 1,W,E) | Vk = 1) by (A3)

= E

(
E

(
1[A = k, Vk = 1]Y

P(A = k|Vk = 1,W,E)
|W,E

)
| Vk = 1

)
by (A4)

=
1

P(Vk = 1)
E

(
1[Vk = 1]E

(
1[A = k, Vk = 1]Y

P(A = k|Vk = 1,W,E)
|W,E

))
=

1

P(Vk = 1)
E

(
E

(
1[A = k, Vk = 1]Y

P(A = k|Vk = 1,W,E)
|W,E

))
=

1

P(Vk = 1)
E

(
E

(
1[A = k]Y P(Vk = 1|W,E)
P(A = k|Vk = 1,W,E)

|W,E
))

=
1

P(Vk = 1)
E

(
1[A = k]Y P(Vk = 1|W,E)
P(A = k|Vk = 1,W,E)

)

Note that if Vk is deterministic, then P(Vk = 1|W,E) = 1[E > t] = 1[Vk = 1] and therefore

1

P(Vk = 1)
E

(
1[A = k]Y P(Vk = 1|W,E)
P(A = k|Vk = 1,W,E)

)
=

1

P(Vk = 1)
E

(
1[A = k]Y 1[Vk = 1]

P(A = k|Vk = 1,W,E)

)
.

We now show the proof under treatment 0.
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E(Y (0) | Vk = 1)

= E(E(Y (0)|Vk = 1,W,E) | Vk = 1) by (IE)

= E(E(Y (0)|A = 0, Vk = 1,W,E) | Vk = 1) by (A1)

= E(E(Y |A = 0, Vk = 1,W,E) | Vk = 1) by (A3)

= E(E(Y |A = 0,W,E) | Vk = 1) by (A6)

= E

(
E

(
1[A = 0]Y

P(A = 0|W,E)
|W,E

)
| Vk = 1

)
by (A5)

=
1

P(Vk = 1)
E

(
1[Vk = 1]E

(
1[A = 0]Y

P(A = 0|W,E)
|W,E

))
=

1

P(Vk = 1)
E

(
E(1[Vk = 1]|W,E)E

(
1[A = 0]Y

P(A = 0|W,E)
|W,E

))
by (IE)

=
1

P(Vk = 1)
E

(
E

(
1[A = 0]Y 1[Vk = 1]

P(A = 0|W,E)
|W,E

))
by (A2,A3)

=
1

P(Vk = 1)
E

(
E

(
1[A = 0]Y E(1[Vk = 1]|W,E)

P(A = 0|W,E)
|W,E

))
by (IE)

=
1

P(Vk = 1)
E

(
E

(
1[A = 0]Y P(Vk = 1|W,E)

P(A = 0|W,E)
|W,E

))
=

1

P(Vk = 1)
E

(
1[A = 0]Y P(Vk = 1|W,E)

P(A = 0|W,E)

)

Note that if Vk is deterministic, then P(Vk = 1|W,E) = 1[E > t] = 1[Vk = 1] and therefore

1

P(Vk = 1)
E

(
1[A = 0]Y P(Vk = 1|W,E)

P(A = 0|W,E)

)
=

1

P(Vk = 1)
E

(
1[A = 0]Y 1[Vk = 1]

P(A = 0|W,E)

)
.
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Identification of ATE

Recall that

Definition 4 (Conditional and marginal average treatment effect of treatment arm k

compared to control).

CATE(k, e, w) = E[Y (k)− Y (0) | W = w,E = e]

ATE(k) = E[CATE(k,W,E)].

10.0.1 Identification based on the G-formula.

Proof We show the proof for treatment 0. We refer to W = w,E = e as W,E for clarity.

E(Y (0)) = E(E(Y (0)|W,E)) by (IE)

= E(E(Y (0)|A = k,W,E)) by (A1)

= E(E(Y |A = 0,W,E)) by (A3,A6)

The proof for treatment k can be shown by following the steps for identifying E(Y (k) |

Vk = 1) in section 10 and then assuming (A7) to be able to marginalize to concurrent and

non-concurrent controls combined. Consequently, under (A1), (A2), (A3),(A6), and (A7),

CATE(k, w, e) is identified as

E(Y | A = k,W,E, Vk = 1)− E(Y | A = 0,W,E). (9)

11



M-estimation details

We here provide detail on the M-estimation approach for obtaining asymptotic variances

for outcome regression and weighted estimators. Recall that Zi represent the data for the

experimental unit i, i.e., Zi = (Ei,Wi, Vk,i, Ai, Yi) ∼ P and consider Xi = (Ei,Wi).

Outcome regression

ˆcATEoc
OR . This estimator consider only concurrent controls. Let’s define ˆcATEoc

OR =

µk−µ0 where µk and µ0 are the mean outcomes under treatment k and control in the only

concurrent control population. We started by considering controls, θ0 = (β0, µ0) and the

following estimating equations

n∑
i=1

h(Zi, θ0) =
n∑
i=1

h1(Zi, β0)
h2(Zi, µ0)

 = 0

where h1(Zi, β0) = X⊤
i Vi(1 − Ai)(Yi −Xiβ0) and h2(Xi, µ0) = Vi(Ziβ0 − µ0) are the score

functions for the model of the conditional mean and the the marginal mean under control,

respectively. We consider the following Jacobian matrix of the estimating equations,

G(θ̂0) = −
1

n

n∑
i=1

∂h(Zi, θ0)

∂θ⊤0

∣∣∣∣
θ0=θ̂0

=
1

n

n∑
i=1

G11 0

G21 G22



=
1

n

n∑
i=1

X⊤
i Vi(1− Ai)Xi 0

−ViXi Vi
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We then constructed the following influence functions

φ(Zi, β̂0) = G
−1
11 h1(Zi, β̂0)

φ(Zi, µ̂0) = G
−1
22

(
h2(Zi, µ0) + (−G21)φ(Zi, β̂0)

)
,

where β̂0 where obtained by ordinary least squares. We conducted a similar analysis for

θk = (βk, µk). Finally, we obtained the variance of ˆcATEoc
OR as,

V̂ ( ˆcATEoc
OR) =

1

n

(
1

n

n∑
i=1

φ(Zi, ˆcATEoc
OR)φ(Zi, ˆcATEoc

OR)
⊤

)
,

where φ(Zi, ˆcATEoc
OR) = φ(Zi, µ̂k)− φ(Zi, µ̂0).

ˆcATEall
OR . This estimator consider both concurrent and non concurrent controls when

estimating E(Y | A = 0,W = w,E = e). Hence, the analysis for ˆcATEall
OR looks the same as

that for ˆcATEoc
OR only changing the estimating equation for E(Y | A = 0,W = w,E = e),

i.e., h1(Zi, β0) = Z⊤
i (1−Ai)(Yi−Ziβ0), while the conditional mean of the outcome among

the treated remains computed within only concurrent, i.e., E(Y | A = k, Vk = 1,W =

w,E = e). Specifically, we started by considering controls, θ0 = (α0, µ0) and the following

estimating equations

n∑
i=1

h(Zi, θ0) =
n∑
i=1

h1(Zi, α0)

h2(Zi, µ0)

 = 0

where h1(Zi, α0) = X⊤
i (1 − Ai)(Yi − Xiα0) and h2(Zi, µ0) = Vi(Xiα0 − µ0) are the score

functions for the model of the conditional mean and the the marginal mean under control,
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respectively. While for the treated units we considered, θk = (βk, µk) and the following

estimating equations

n∑
i=1

h(Zi, θk) =
n∑
i=1

h1(Zi, βk)
h2(Zi, µk)

 = 0

where h1(Zi, βk) = X⊤
i ViAi(Yi −Xiβk) and h2(Zi, µk) = Vi(Xiβk − µk). Derivation of the

Jacobian matrix of the estimating equations is similar to the above.

ˆATEOR . We considered for controls, θ0 = (α0, µ0) and the following estimating equations

n∑
i=1

h(Zi, θ0) =
n∑
i=1

h1(Zi, α0)

h2(Zi, µ0)

 = 0

where h1(Zi, α0) = X⊤
i (1 − Ai)(Yi − Xiα0) and h2(Zi, µ0) = (Xiα0 − µ0) are the score

functions for the model of the conditional mean and the the marginal mean under control,

respectively. While for the treated units we considered, θk = (αk, µk) and the following

estimating equations

n∑
i=1

h(Zi, θk) =
n∑
i=1

h1(Zi, αk)
h2(Zi, µk)

 = 0

where h1(Zi, αk) = Z⊤
i ViAi(Yi − Xiαk) and h2(Zi, µk) = (Xiαk − µk). Derivation of the

Jacobian matrix of the estimating equations is similar to the above.
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Parametric inverse probability weighting

ˆcATEoc
IPW . This estimator consider only concurrent controls. Let’s define ˆcATEoc

IPW =

µk − µ0. We started by considering controls, θ = (η, µ0, µ1) and the following estimating

equations

n∑
i=1

h(Zi, θ) =
n∑
i=1


h1(Zi, η)

h2(Zi, µ0)

h3(Zi, µ1)

 = 0

where h1(Zi, η) = X⊤
i Vi(Ai − π) and h2(Zi, µ0) = Vi(γ

0
i Yi − µ0), h3(Zi, µ1) = Vi(γ

1
i Yi − µ1)

are the score functions for the model of the conditional probability and the marginal mean

under control and treatment, respectively, and where γ0i = 1{Ai = 0}/(1 − πi), γ
k
i =

1{Ai = k}/(πi), and πi =
exp(X

⊤
i η)

1+exp(X
⊤
i η)

. We consider the following Jacobian matrix of the

estimating equations,

G(θ̂0) = −
1

n

n∑
i=1

∂h(Zi, θ0)

∂θ⊤0

∣∣∣∣
θ=θ̂

=
1

n

n∑
i=1


G11 0 0

G21 G22 0

G31 0 G33



=
1

n

n∑
i=1


X⊤
i Vi

exp(X
⊤
i η)

1+exp(X
⊤
i η)

2Xi 0 0

(1− Ai)ViXiYi exp(X
⊤
i η) Vi 0

AiViXiYi exp(−X⊤
i η) 0 Vi


We then constructed the following influence functions
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φ(Zi, η̂) = G
−1
11 h1(Zi, η̂),

φ(Zi, µ̂0) = G
−1
22

(
h2(Zi, µ0) + (−G21)φ(Zi, η̂)

)
,

φ(Zi, µ̂k) = G
−1
33

(
h3(Zi, µk) + (−G31)φ(Zi, η̂)

)

where η̂ where obtained by ordinary least squares. Finally, we obtained the variance of

ˆcATEoc
IPW as,

V̂ ( ˆcATEoc
IPW) =

1

n

(
1

n

n∑
i=1

φ(Zi, ˆcATEoc
IPW)φ(Zi, ˆcATEoc

IPW)⊤
)
,

where φ(Zi, ˆcATEoc
IPW) = φ(Zi, µ̂k)− φ(Zi, µ̂0).

Proof of Theorem 2

We start by introducing some notation. We introduce an operator IF : ψ → L2(P), where

P is a probability distribution assumed to lie in some nonparametric model P , that maps

functionals ψ : P → R to their influence function φ(z) ∈ L2(P) and where z is our observed

data. Recall the following building blocks:

(bb1) the influence function of µ(x) = E[Y |X = x] is IF(µ(x)) = 1[X=x]
P(X=x)

(Y − E[Y |X = x])

(bb2) the influence function of p(x) = P(X = x) is IF(p(x)) = (1[X = x]− p(x))

(bb3) IF(ψ1ψ2) = IF(ψ1)ψ2 + ψ1IF(ψ2) (product rule)

(bb4) IF(f(ψ)) = ψ′IF(ψ) (chain rule)

(bb5) P(A,B,C) = P(A|B,C)P(B,C) = P(A|B,C)P(B|C)P(C)
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(bb6)
∑

x 1[A = k,X = x] = 1[A = k].

Finally, recall that the parameter of interest (under the aforementioned identification as-

sumption) is

cATE(k) = E[E[Y |A = k,W − w,E = e, Vk = 1]− E[Y |A = 0,W − w,E = e, Vk = 1] | Vk = 1].

while in the nonparametric model that assumes (A6) is

cATE(k) = E[E[Y |A = k,W − w,E = e, Vk = 1]− E[Y |A = 0,W − w,E = e] | Vk = 1].

Theorem 2, eq. (5). We define (X = x) = (W = w,E = e) and pretend that the data

is discrete. Recall that under discrete data

E[E[Y |A = 1, X = x, Vk = 1] | Vk = 1] =
E[1[Vk = 1]E[Y |A = 1, X = x, Vk = 1]]

P (Vk = 1)

=

∑
x 1[Vk = 1]E[Y |A = 1, X = x, Vk = 1]P (X = x)

P (Vk = 1)

=

∑
x 1[Vk = 1]µoc(1, x, 1)p(x)

P (Vk = 1)

=
ψ1
num

ψden
= ψ1.

We now analyze the influence function of ψ1
num,

φ(Z, ψ1
num) ≡ IF{ψ1

num}

= IF{
∑
x

1[Vk = 1]µoc(1, x, 1)p(x)}

= 1[Vk = 1]
∑
x

[IF{µoc(1, x, 1)}p(x) + µ(1, x, 1)IF{p(x)}] by (bb3)
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= 1[Vk = 1]
∑
x

[(
1[A = 1, X = x, Vk = 1]

p(1, x, 1)
{Y − µoc(1, x, 1)}

)
p(x)

+ µoc(1, x, 1) (1[X = x]− p(x)) ] by (bb1,bb2)

= 1[Vk = 1]
∑
x

[(
1[A = 1, X = x, Vk = 1]

P(A = 1 | X = x, Vk = 1)P(Vk = 1|X = x)
{Y − µoc(1, x, 1)}

)
+ µoc(1, x, 1)1[X = x]− µoc(1, x, 1)p(x) ] by (bb5)

= 1[Vk = 1]

[(
1[A = 1]

P(A = 1 | X = x, Vk = 1)
{Y − µoc(1, x, 1)}

)
+ µoc(1, x, 1)

]
− ψ1

num by (bb6)

where in the last equality we also used the fact that P(Vk = 1|X = x) = 1 under 1[Vk = 1],

and ψ1
num =

∑
x 1[Vk = 1]µoc(1, x, 1)p(x). Analogously we can compute the influence

function of ψ0
num,

φ(Z, ψ0
num) ≡ IF{ψ0

num}

= IF{
∑
x

1[Vk = 1]µoc(0, x, 1)p(x)}

= 1[Vk = 1]

[(
1[A = 0]

P(A = 0 | X = x, Vk = 1)
{Y − µoc(0, x, 1)}

)
+ µoc(0, x, 1)

]
− ψ0

num

We no compute the influence function of ψden,

φ(Z, ψden) ≡ IF{ψden} = 1[Vk = 1]− ψden
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We no consider the influence function of ψ
1
num

ψden
= ψ1,

φ(Z, ψ1) ≡ IF{ψ1} = IF{ψ1
num}

ψden
− ψ1

num

ψden

IF{ψden}
ψden

=
1

ψden

[
IF{ψ1

num} −
ψ1
num

ψden
IF{ψden}

]
=

1

P(Vk = 1)

[(
1[Vk = 1]

[(
1[A = 1]

P(A = 1 | X = x, Vk = 1)
{Y − µoc(1, x, 1)}

)
+ µoc(1, x, 1)

]
− ψ1

num

)
− ψ1

num

ψden
(1[Vk = 1]− ψden)

]
=

1

P(Vk = 1)

[(
1[Vk = 1]

[(
1[A = 1]

P(A = 1 | X = x, Vk = 1)
{Y − µoc(1, x, 1)}

)
+ µoc(1, x, 1)

]
− ψ1

num

)
− ψ1

num

ψden
1[Vk = 1] +

ψ1
num

ψden
ψden

]
=
1[Vk = 1]

P(Vk = 1)

[
1[A = 1]

P(A = 1 | X = x, Vk = 1)
{Y − µoc(1, x, 1)}+ µoc(1, x, 1)− ψ1

]

We can now combine ψ
1
num−ψ0

num

ψden
= cATE(k) to obtain

φ(Z, cATE(k)) ≡ IF{cATE(k)} = 1{Vk = 1}
P(Vk = 1)

[
2A− 1

P(A | W,E, Vk = 1)
{Y − E(Y | A,W,E, Vk = 1)}

+ E(Y | A = 1,W,E, Vk = 1)− E(Y | A = 0,W,E, Vk = 1)− cATE(k).

]

Theorem 2, eq. (6). Under assumption (A6), we now target (among controls),

E[E[Y |A = 0, X = x] | Vk = 1] =
E[1[Vk = 1]E[Y |A = 0, X = x]]

P (Vk = 1)

=
E[E[1[Vk = 1] | X = x]E[Y |A = 0, X = x]]

P (Vk = 1)

=

∑
x P(Vk = 1 | X = x)E[Y |A = 0, X = x]P (X = x)

P (Vk = 1)

=

∑
x ν(wi, ei)µall(1, x)p(x)

P (Vk = 1)
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=
ψ0
num

ψden
= ψ0.

The influence function of ψ0
num is

φ(Z, ψ0
num) ≡ IF{ψ0

num}

=
∑
x

[
1[X = x]

P(X = x)
(1[Vk = 1]− ν(x))µall(0, x)p(x)

+ ν(x)

(
1[A = 0, X = x]

P(A = 0 | X = x)P(X = x)
{Y − µall(0, x)}

)
p(x)

+ ν(x)µall(0, x)(1[X = x]− p(x))
]

=
∑
x

[
1[X = x]1[Vk = 1]

P(X = x)
µall(0, x)p(x)−

1[X = x]

P(X = x)
ν(x)µall(0, x)p(x)

+ ν(x)

(
1[A = 0, X = x]

P(A = 0 | X = x)P(X = x)
{Y − µall(0, x)}

)
p(x)

+ 1[X = x]ν(x)µall(0, x)− ν(x)µall(0, x)p(x))
]

= 1[Vk = 1]µall(0, x) + ν(x)

(
1[A = 0]

P(A = 0 | X = x)
{Y − µall(0, x)}

)
− ψ0

num

As shown before, we can then compute the influence function of ψ
0
num

ψden
, and finally of cATE(k)

under assumption (A6), leading to,

φ(Z, cATE(k)) ≡ IF{cATE(k)} = 1{Vk = 1}
P(Vk = 1)

[
A

P(A | Vk = 1,W,E)
{Y − E(Y | A,W,E, Vk = 1)}

]
− 1− A

P(A | W,E)
P(Vk = 1 | E,W )

P(Vk = 1)
{Y − E(Y | A,E,W )}

+
1{Vk = 1}
P(Vk = 1)

[
E(Y | A = 1,W,E, Vk = 1)− E(Y | A = 0,W,E)− cATE(k)

]
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