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Abstract— Star trackers are one of the most accurate celestial
sensors used for absolute attitude determination. The devices detect
stars in captured images and accurately compute their projected
centroids on an imaging focal plane with subpixel precision.
Traditional algorithms for star detection and centroiding often
rely on threshold adjustments for star pixel detection and pixel
brightness weighting for centroid computation. However, challenges
like high sensor noise and stray light can compromise algorithm per-
formance. This article introduces a Convolutional Neural Network
(CNN)-based approach for star detection and centroiding, tailored
to address the issues posed by noisy star tracker images in the
presence of stray light and other artifacts. Trained using simulated
star images overlayed with real sensor noise and stray light, the
CNN produces both a binary segmentation map distinguishing star
pixels from the background and a distance map indicating each
pixel’s proximity to the nearest star centroid. Leveraging this dis-
tance information alongside pixel coordinates transforms centroid
calculations into a set of trilateration problems solvable via the least
squares method. Our method employs efficient UNet variants for
the underlying CNN architectures, and the variants’ performances
are evaluated. Comprehensive testing has been undertaken with
synthetic image evaluations, hardware-in-the-loop assessments, and
night sky tests. The tests consistently demonstrated that our method
outperforms several existing algorithms in centroiding accuracy and
exhibits superior resilience to high sensor noise and stray light
interference. An additional benefit of our algorithms is that they
can be executed in real-time on low-power edge AI processors.
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I. INTRODUCTION

With the availability of compact star tracker tech-
nology, space missions demanding precise attitude de-
termination are increasingly leveraging these devices on
cost-effective CubeSat platforms. Laser communication
CubeSats in Low Earth Orbit (LEO), when equipped with
a star tracker, can achieve precise pointing capabilities
towards ground stations, facilitating downlink rates of up
to 200 Gbps [1]. For deep space CubeSat missions, star
trackers can also play a crucial role in high-gain antenna
pointing [2]. Star trackers can be used in conjunction with
other sensors to accurately determine the orbits of other
orbiting objects, enhancing space situational awareness
[3].

Many CubeSat star trackers use commercial off-the-
shelf (COTS) components, trading cost for performance.
Star trackers equipped with low-cost imaging sensors
[4] suffer from lower sensitivity resulting in noisier star
images. Conventional star centroiding algorithms [5][6]
struggle with high sensor noise, leading to compromised
centroid computation accuracy that is pivotal for optimal
star tracker performance. Noise can also introduce false
positive star detections affecting attitude determination.

Stray light from bright body or optical path dust
reflections can also result in false positives. Given that
the intensity of stray light often surpasses the background
brightness level, conventional threshold-based star detec-
tion algorithms [5][7][8][9] are unable to discriminate
false detections, undermining subsequent star identifica-
tion processes. To counteract stray light, large baffles
are frequently placed in front of the sensor optics [10],
potentially encroaching on the limited payload space
available in CubeSats. Even with a baffle, star trackers
remain susceptible to blinding when directly exposed to
bright bodies in their field of view [11].

In this article, we tackle these deficiencies using Con-
volutional Neural Networks (CNNs). CNNs have demon-
strated remarkable image processing capabilities relevant
to star trackers across a diverse set of applications,
including precision agriculture, where CNNs excel in
precisely locating and counting crops from aerial images
[12]. For low-light imaging scenarios, CNNs effectively
denoise and enhance short-exposure images characterized
by low photon counts and diminished signal-to-noise
(SNR) [13]. Recent advancements in star tracker research
have leveraged CNNs for star image segmentation, show-
casing robust performance against high sensor noise and
stray light [14][15]. Image segmentation facilitates star
pixel detection, but a subsequent denoising step is still
required to achieve high SNR star images for accurate
centroiding. Adopting two distinct CNNs, one for star
detection and another for denoising, imposes significant
computational overhead, making it impractical for edge
computing hardware deployment. To overcome these lim-
itations, this article advocates for the end-to-end training
of a singular CNN capable of simultaneously handling
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star detection and centroiding, resulting in a streamlined
and computationally efficient architecture.

The main contributions of this article are:

1) Introducing an end-to-end training approach for
a singular CNN, designed to concurrently han-
dle star detection and centroiding. This method
surpasses the centroiding accuracy and detection
robustness achieved by several existing techniques.

2) Generating synthetic star images, augmented with
real sensor noise and stray light, for training
purposes. This approach significantly reduces the
reliance on manual labeling efforts.

3) Conducting a comprehensive performance evalua-
tion of various CNN models and identifying the
most suitable CNN architectures for real-time star
tracker image processing.

This article is structured as follows: In Section II,
we introduce traditional star detection and centroiding
algorithms, as well as existing CNN models relevant
to this work. Section III presents the workflow of the
proposed star detection and centroiding method, the data
generation process, and the CNN implementation details.
Section IV explains the experiment setups and discusses
the experiment results from synthetic dataset testing,
hardware-in-the-loop testing, and night sky testing. Fi-
nally, we conclude this article and point out the future
works in Section V.

II. Related Works

Existing star detection algorithms can be broadly
classified into two categories: global threshold methods,
and local threshold methods. Global threshold methods
determine a single pixel intensity threshold to distinguish
star pixels (foreground) from the background. Liebe’s
global adaptive threshold method [5] computes the mean
and the standard deviation of each star image, where
the standard deviation is scaled and added to the mean
to derive the global threshold. While Liebe’s method
offers a straightforward and effective detection approach,
manual tuning of the scaling factor is often required to
achieve optimal performance. Another approach, using
the weighted iterative threshold method (WITM) [7],
computes a global threshold for each star image through
iterative adjustments of two weight coefficients until
the threshold difference between successive iterations
falls below a predefined value. Although WITM can
autonomously derive an optimal threshold and exhibits
reduced sensitivity to initialization, its iterative nature
considerably impacts computation speed. On the other
hand, local threshold methods assign individual thresholds
to each pixel, necessitating each pixel to surpass its desig-
nated threshold to be classified as a star pixel. The detec-
tion routine of the ST-16 star tracker [8] employs a 1×29
window centered on each pixel and utilizes the window’s
average, augmented by a predetermined constant, as the
local threshold. Meanwhile, the method proposed by Sun

et al. [9] employs a sequential application of a Gaussian
filter, followed by erosion, dilation, and an average filter
on each star image to compute a background estimate.
For a pixel to qualify as a star pixel, its intensity must
exceed the computed background estimate plus a constant.
Although this method demonstrates robustness against
uneven background illumination, it requires considerable
computations due to the sequential application of multiple
filters.

Threshold-based detection methods often fail to dis-
tinguish faint stars from background noise or discriminate
between stars and other bright non-stellar objects. To
enhance the robustness of star detection, several ap-
proaches have leveraged heuristic criteria [8] and local
gradient information [16]. In the ST-16 detection routine
[8], a cluster of pixels surpassing their respective local
thresholds is identified. The algorithm then quantifies
the number of connected bright pixels within the cluster
using 4-connectivity. Subsequently, both the count of
contiguous bright pixels and their cumulative intensity are
used to eliminate isolated hot pixels. Jiang et al. [16]
suggested that gradient information from lunar images
could be examined and used to manually tune gradient
thresholds to differentiate stars from lunar interference.
Despite their merits, these aforementioned techniques
exhibit sensitivity to variations in environmental condi-
tions and sensor characteristics, necessitating frequent pa-
rameter recalibrations. In contrast, our method addresses
this limitation by incorporating training images spanning
a range of exposure durations and noise levels. This
design allows the neural network to adapt dynamically to
varying imaging conditions without the need for recurrent
recalibrations.

Existing star-centroiding algorithms utilize the inten-
sity distribution of star pixels to compute star centroids
with subpixel accuracy. The center of gravity method
stands out as a common approach due to its simplicity
and computational efficiency [5]. This method derives
star centroids by averaging the coordinates of a cluster
of star pixels, each weighted by its brightness. However,
the center of gravity method yields only an approximate
centroid position and proves susceptible to background
noise. In pursuit of enhanced accuracy and robustness,
Delabie et al. introduced the Gaussian grid algorithm [6].
This approach employs a Gaussian distribution function
to model the detected star pixels within a designated
window, subsequently deriving the centroid as the center
of this distribution. The Gaussian grid algorithm surpasses
the center of gravity method in terms of accuracy and
robustness while maintaining computational efficiency.
However, the Gaussian grid algorithm can fail when
confronted with strongly non-Gaussian distributions of
star pixels, such as in the presence of stray light or sensor
motion. In contrast, our method is trained for both star
detection and centroiding. This integrated approach en-
sures robust centroiding performance across varying noise
levels, thereby enhancing overall accuracy and robustness.
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Fig. 1. Flowchart of our star detection and centroiding method. Noisy star images with stray light are fed into a UNet-based CNN. The neural
network outputs both a binary segmentation map of star pixels versus background and a distance map of each pixel to the nearest star centroid.
Using the distance information and the pixel coordinates, star centroiding now becomes a trilateration problem and can be directly solved using

a least squares solution.

The UNet, originally designed for medical image
segmentation, incorporates skip connections to retain fine
details from the input image [17]. These skip connections
merge feature maps containing high spatial frequency
details from early convolutional layers with those con-
taining high-level semantic information. While UNet has
demonstrated impressive performance in star image seg-
mentation with a notably low false positive rate [14][15],
its original architecture, comprising approximately 31
million parameters, demands significant computational
resources and executes in seconds on a standard per-
sonal computer. This computational intensity poses a
challenge for real-time star tracker processing on a low-
power processor. To address this limitation, various efforts
have been undertaken to enhance UNet’s computational
efficiency and reduce its model size. MobileUNet [18]
integrates inverted residual blocks from MobileNetV2
to replace the VGG-16 blocks in conventional U-Net,
resulting in marked computational efficiency and a re-
duction in model size. ELUNet [19] introduces deep
skip connections that effectively reduces channel numbers
without sacrificing performance. Finally, SqueezeUNet
[20] employs fire modules to decrease the number of
channels, offsetting this reduction with an inception stage
comprising two parallel convolutions. In this article, we
undertake an exhaustive analysis of these UNet variants to
determine the most suitable architectures for star tracker
applications.

III. PROPOSED METHOD

Fig. 1 illustrates the flowchart detailing our CNN-
based method for star detection and centroiding. The neu-
ral network receives input star images that may contain
stray light and varying noise levels. Leveraging a UNet-
based CNN, our method produces both a binary segmen-
tation map and a distance map. Within the segmentation
map, a “one” indicates a star pixel has been detected,
while a “zero” signifies a background pixel. Concurrently,
the distance map assigns each pixel a value corresponding
to its distance from the nearest star centroid. These two
maps are combined using element-wise multiplication. In
the resultant map, pixels with values below a specified
threshold, dth, suggest potential star centroid locations,
prompting the centering of a window at each correspond-
ing pixel. Within each window, every pixel i is identified
by its coordinates (ui, vi) and stores its distance di to
the star centroid (uc, vc). This transforms star centroiding
into a trilateration problem, determining a position based
on distances from at least three known points, that can
be resolved using a least squares solution. The following
sections will delve into the generation of training data,
the procedure for star detection and centroiding, and the
specifics of our CNN implementation.

A. Training Data Generation

To generate training images for the neural network,
the initial step involves acquiring synthetic noiseless star
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images. The Hipparcos catalog [21] is used to provide the
position and magnitude information of stars. Considering
the camera parameters and the actual orientation of a star
tracker, determining actual centroids and identifications
of stars within the image plane is straightforward. Subse-
quent efforts accurately capture the distribution patterns
and magnitudes of real stars.

The Hipparcos catalog provides the Johnson V mag-
nitude in the Johnson UBV photometric system. The V
band filter is centered at λ0 = 0.55µm with a full width at
half maximum (FWHM) bandwidth of ∆λ0 = 0.089µm,
and has the zero magnitude spectral flux density e0 =
3.92×10−8 W·m−2 ·µm−1 [22]. Therefore, we can obtain
the average spectral flux density of a star over the V band
in photons·s−1 ·m−2 ·µm−1 when its magnitude mV from
the Hipparcos catalog is given

ēV =
e0λ0

h · c
· 10−(

mV
2.5 ) = 1.085356× 1011 · 10−(

mV
2.5 ) (1)

where h is the Planck constant and c is the speed of
light. For a star with a magnitude mV , the average photon
arrival rate received by an image sensor over the V band
is [23]

n̄ = ēV ·AP · ϵ̄ · Ē ·∆λ0 (2)

where AP is the area of the image sensor aperture given
in m2, ϵ̄ is the average optical efficiency factor over V
band, Ē is an average correction factor for extinction due
to the airmass over the V band. For on-orbit star tracker
processing, Ē = 1. Also recall that ∆λ0 = 0.089µm for
the V band.

The image of a star is subject to optical aberrations
and spreads over several pixels, which is modeled by a
point spread function (PSF). The Gaussian distribution
serves as a favorable approximation to the PSF of an ideal
lens. It is expressed in both the width and height directions
across the image plane, as described in [6]

gwidth(u) =
1√

2πσpsf,u
exp

[
− (u− uc)

2

2σ2
psf,u

]
(3)

gheight(v) =
1√

2πσpsf,v
exp

[
− (v − vc)

2

2σ2
psf,v

]
(4)

where the coordinates of the real star centroid are uc, vc.
σpsf,u and σpsf,v are the PSF width in width and height
direction in pixels. We choose σpsf,u = σpsf,v = σpsf in
our simulation. In our experiments, we established that
uniformly sampling σpsf from [0.5, 1] produces star images
with realistic distribution patterns, as illustrated in Fig. 2.
The PSF of a real star captured by a camera set to focus
at infinity typically falls within this range. We also found
that training the neural network with a variety of σpsf
values can improve its capacity to process stars distorted
by lenses or motion, which may deviate from the Gaussian
PSF.

Using the Gaussian PSF, the average rate of arrival of
photons received by a pixel with coordinate (ui, vi) can

Real Star Simulated, 𝝈𝑷𝑺𝑭=0.5

Simulated, 𝝈𝑷𝑺𝑭=1 Simulated, 𝝈𝑷𝑺𝑭=2

Fig. 2. Our experiments find that uniformly sampling σpsf from
[0.5, 1] produces simulated star images with realistic distribution

patterns.

be computed as

n̄pixel = n̄

∫ ui+0.5

ui−0.5

gu(u) du

∫ vi+0.5

vi−0.5

gv(v) dv

where each pixel has a non-dimensional width of 1.
The arrival of photons is a stochastic process x(t)

made up of Poisson impulses [22]. The probability of
a pixel obtaining p photons during a exposure time T
(In our data generator, we uniformly sample T from
[0.1s, 1s]) is given by

P

[∫
T

x(t) dt = p

]
=

(n̄pixelT )
p e−n̄pixelT

p!
(5)

Sampling from this Poisson distribution will give us the
total number of photons N received by the pixel (ui, vi)
within the exposure time.

Finally, the pixel bit counts V(ui,vi) can be calculated
[6]

V(ui,vi) = floor

(
N ·QE · 2

Nbits − 1

FWC

)
· FWC

2Nbits − 1
(6)

where floor() outputs the greatest integer less than or
equal to the input value, QE is the quantum efficiency of
the image sensor, FWC is the full well capacity of the im-
age sensor in electrons, and Nbits is the resolution of the
ADC. A window with half width = floor

(
3σpsf + 0.5

)
centered at the centroid pixel is used to simulate the
defocused star image. V(ui,vi) is calculated for every pixel
within the window.

The pristine simulated star images are subsequently
merged with noisy frames containing stray light captured
by actual cameras, as illustrated in Fig. 3. Current star de-
tection studies typically apply Gaussian noise to simulated
star images [14][15]. Monakhova et al. [24] demonstrated
that simplistic Gaussian or Poisson-Gaussian noise mod-
els fail to adequately represent the frequently encountered
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Fig. 3. The noiseless simulated star images are merged with noisy
frames containing stray light captured by actual cameras to create

training inputs to CNN. Additionally, two sets of training labels are
generated: training labels 1, consisting of binary segmentation maps,

and training labels 2, comprising distance maps.

non-Gaussian, non-linear, and sensor-specific noise inher-
ent in low-light images. Inspired by their observations, we
acquire noisy dark frames from three distinct cameras by
covering their lenses with lens caps. For each camera,
we captured 100 frames at exposure times of 100 ms,
300 ms, 500 ms, 700 ms, and 900 ms, respectively. An
additional set of 1000 frames is acquired by situating a
camera within a darkroom environment and illuminating
it with a flashlight from 12 distinct angles to simulate
the presence of stray light. During the training image
generation process, a noisy frame is randomly selected
from this pool of 2500 captured frames to be fused with
a noiseless star image. Random flips are applied to the
noisy frame to facilitate data augmentation.

As shown in Fig. 3, two distinct label types are
produced for each training image: binary segmentation
maps and distance maps. A binary segmentation map,
mirroring the resolution of the training image, assigns
each pixel a value of either “one” or “zero.” Pixels with
a value of “one” denote star signals, while those with a
value of “zero” represent background areas. Additionally,
distance maps, sharing the same resolution as the training
image, are segmented into Voronoi cells. Each Voronoi
cell Vk represents a cluster of pixels within the image I
that are nearest to a star k with a centroid coordinate Ck.
Mathematically, a Voronoi cell is defined as:

Vk = {q ∈ I | ∥q − Ck∥ ≤ ∥q − Cj∥, ∀j} (7)

Here, each pixel q within a Voronoi cell Vk stores the
distance ∥q − Ck∥ from its center to the centroid of
the corresponding star. During training, a CNN is tasked
with generating both segmentation and distance maps that
accurately correspond to the labels, given a star image as
input. This comprehensive training regimen enables the
CNN to effectively learn the tasks of star detection and
centroiding simultaneously.

B. Star Detection and Centroiding Procedure

Our star detection and centroiding procedure from
image input to centroid output is described in algorithm
1. Given a captured star image Iin as the input, neural

Algorithm 1
1: procedure DETECT AND CENTOID(Iin)
2: S,D = f(Iin)
3: Iout = S ⊗D
4: while q ∈ Iout with d < dth exists do
5: Find a coarse centroid pixel with d < dth
6: Put a 5× 5 window around the pixel
7: for qi within the window do
8: Obtain (ui, vi) and di
9: remove qi from Iout

10: end for
11: Obtain A and B using Eq. 9
12: (uc, vc) = DGELSY(A,B)
13: store (uc, vc) into a list
14: end while
15: return the list of centroids
16: end procedure

network f(Iin) outputs both a segmentation map S and
a distance map D. To filter out the background, we
perform an element-wise multiplication for both maps
Iout = S ⊗ D. To first find coarse centroid positions,
we find every pixel q ∈ Iout that has a distance d value
smaller than a threshold dth. A pixel q with smaller d
indicates it is closer to the corresponding star centroid. In
our experiments, we found that our method is not sensitive
to the selection of dth and dth = 0.5

√
2 gives good results.

A 5× 5 window is put around a coarse centroid pixel to
obtain the coordinate (ui, vi) and the distance value di of
every pixel qi within.

To find the coordinate (uc, vc) of the corresponding
star centroid, we first obtain the following equation

(u1 − uc)
2 + (v1 − vc)

2

(u2 − uc)
2 + (v2 − vc)

2

...
(un − uc)

2 + (vn − vc)
2

 =


d21
d22
...
d2n

 (8)

We want to solve for the centroid coordinate using
distances from a list of known coordinates, which is
essentially a trilateration problem. Eq. 8 can be rewritten
in the form of Ax = B

2(un − u1) 2(vn − v1)
2(un − u2) 2(vn − v2)

...
2(un − un−1) 2(vn − vn−1)


[
uc

vc

]
=


d21 − d2n − u2

1 − v21 + u2
n + v2n

d22 − d2n − u2
2 − v22 + u2

n + v2n
...

d2n−1 − d2n − u2
n−1 − v2n−1 + u2

n + v2n

 (9)

We can obtain the centroid coordinates (uc, vc) by passing
matrices A and B into an off-the-shelf least-squares
solver. We use the DGELSY solver based on complete
orthogonal factorization from the LAPACK library for its
fast computation speed and numerical stability [25]. After
a region of pixels has been processed and its star centroid
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TABLE I
CNN Models

Model Input Dim Encoder Dim Out Dim
UNet 1 64-128-256-512-1024 2

MobileUNet 1 16-24-32-96-1280 2
ELUNet 1 8-16-32-64-128 2

SqueezeUNet 1 64-128-256-512-1024 2

has been obtained, we remove all of these pixels from Iout
to avoid repetitive computations. The process described
above repeats until no pixel q ∈ Iout with d < dth exists.

C. CNN Implementation Details

We implemented and compared four UNet-based CNN
models, as detailed in Table I: the vanilla UNet [17],
MobileUNet [18], ELUNet [19], and SqueezeUNet [20].
Each CNN model is designed with an input dimension of
one for monochrome star images and an output dimension
of two for segmentation and distance maps. The term
”Encoder Dim” refers to the output channel dimension of
the encoder blocks, with the dimensions of the decoder
blocks adjusted accordingly. For instance, in the vanilla
U-Net model with encoder dimensions of 64-128-256-
512-1024, the decoder blocks have output dimensions of
512-256-128-2. The original ELUNet employs bilinear
interpolation for upsampling. However, our chosen edge
AI processor does not support high-resolution bilinear
upsampling operations. Consequently, we substituted all
bilinear upsampling layers with transposed convolution
layers in our implementations. All CNN models were
developed using PyTorch, and we based our implementa-
tions on existing public repositories of these models.

We employed binary cross-entropy loss, denoted as
LS , for training the segmentation map and mean squared
error loss, denoted as LD, for the distance map. The total
loss function is formulated as a weighted sum of these
two individual loss terms

LS =

−mean

(
N∑
i

Si ⊗ log Ŝi + (1− Si)⊗ log
(
1− Ŝi

))
(10)

LD = mean

(
N∑
i

(
Ŝi ⊗ D̂i − Si ⊗Di

)2)
(11)

Ltotal = αLS + βLD (12)

Here, the mean() function computes the average value of
an array, N represents the batch size, Si is the actual bi-
nary segmentation map, Ŝi is the estimated segmentation
map with values ranging between zero and one, Di is the
actual distance map, and D̂i is the estimated distance map.
Notation ⊗ denotes element-wise multiplication. For our
training procedure, we set α = 1 and β = 2.5 to balance
the magnitude of the two loss terms.

Our dataset consists of 2,500 images for training and
an additional 500 images for evaluation. CNN models

undergo training for 100 epochs with a batch size set
to 10 to leverage batch normalization layers effectively.
We employ the Adam optimizer with a weight decay of
5×10−4 and an initial learning rate of 1×10−3. The learn-
ing rate is decreased by a factor of two every 20 epochs
to facilitate better convergence. All training processes
are conducted on Google Colab using a single NVIDIA
V100 GPU. Our codes are available at the project website
https://hongruizhao.github.io/CNNStarDetectCentroid/.

IV. Experiments

A. Synthetic Data Test

We begin our experimental evaluation by benchmark-
ing our method against established algorithms using 500
synthetic test images. To further assess the robustness
of our approach, an additional set of 500 synthetic test
images, contaminated by stray light, was employed. Our
evaluation encompasses various CNN models, includ-
ing the vanilla UNet [17], SqueezeUNet [20], ELUNet
[19], and MobileUNet [18]. For comparative analysis,
we considered several existing star detection methods:
Liebe’s global threshold method [5], the Weighted Itera-
tive Threshold Method (WITM) [7], the ST-16 star tracker
detection routine [8], and Sun et al.’s local threshold
method [9]. We also compared our method’s centroiding
performance to that of the center of gravity [5] and
Gaussian grid algorithms [6]. The details of the CNN
models and traditional methods are discussed in Section
II.

We employed precision, recall, and the F1 score as
metrics to assess the detection performance. Precision
measures the algorithm’s capability to exclude false detec-
tions, while recall quantifies its ability to identify all stars.
The F1 score offers a balanced evaluation by combining
both precision and recall. The mathematical expressions
for these metrics are defined as

Precision =
TP

TP + FP
× 100 (13)

Recall =
TP

TP + FN
× 100 (14)

F1 = 2× Precision×Recall

Precision+Recall
(15)

In these formulas, “TP” denotes true positives, represent-
ing stars correctly identified by the star tracker. “FP”
indicates false positives, and “FN” signifies false nega-
tives, which are stars not detected by the star tracker.
To evaluate centroiding accuracy, we employ the root-
mean-square error (RMSE) between the actual centroid
coordinates and the estimated coordinates. Additionally,
we document the computational time, the total number of
multiply-accumulate operations (MACs) in giga, and the
number of model parameters in millions for each CNN
model. All CNN models are executed on an NVIDIA
RTX2060M GPU. It is worth noting that the proposed
least squares centroiding process runs efficiently, requir-
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ing only 4.49 milliseconds on an AMD Ryzen 7 4800H
CPU.

Evaluation results are presented in Tables II, III,
IV, and V. Across both detection and centroiding as-
sessments, all CNN models consistently outperformed
traditional methods. We also found that the introduction
of stray light had minimal impact on the CNN models’
performance. We exclusively showcase the stray light
performance of our proposed method, as existing detec-
tion methods struggle with these contaminated images.
Remarkably, despite having a considerably smaller model
size and fewer computations, ELUNet achieves perfor-
mance comparable to UNet. While MobileUNet exhibits
slightly lower performance than other CNN models in
both detection and centroiding, it distinguishes itself as
the fastest method among the tested models. On the other
hand, despite its computational intensity, SqueezeUNet
does not surpass ELUNet in performance. Consequently,
due to their computational efficiency coupled with high
performance, we exclusively focused on MobileUNet and
ELUNet for the subsequent tests.

TABLE II
Detection Evaluation with Synthetic Images

Method Precision Recall F1
UNet 99.6 97.5 98.6

SqueezeUNet 99.6 97.5 98.5
ELUNet 99.7 97.5 98.6

MobileUnet 99.3 96.0 97.6
Liebe’s 91.8 89.6 90.7
WITM 91.1 62.2 73.9
ST16 93.4 83.6 88.2

Sun et al.’s 81.1 93.9 87.0

TABLE III
Centroiding Evaluation with Synthetic Images

Method Centroid RMSE (pixels)
UNet 0.1298

SqueezeUNet 0.1382
ELUNet 0.1363

MobileUnet 0.1695
Center of Gravity 0.6966

Gaussian Grid 0.1922

TABLE IV
Evaluation with Straylight Synthetic Images

Method F1 Centroid RMSE (pixels)
UNet 97.3 0.1312

SqueezeUNet 96.7 0.1394
ELUNet 97.3 0.1348

MobileUnet 96.6 0.1567

B. Hardware Inference Time Test

We continued evaluating our method using an Edge
AI processor. Generally, space applications require hard-
ware with low power consumption to accommodate a

TABLE V
CNN Model Size and Computation Time

Model Time (s) MACs (G) Params (M)
UNet 0.113 256.25 31.04

SqueezeUNet 0.067 70.06 2.64
ELUNet 0.028 22.50 0.8

MobileUnet 0.020 7.71 4.4

constrained power budget. The attitude update rate of a
star tracker, in particular, necessitates hardware to possess
at high processing speed to facilitate rapid inferences by
the AI model. A few viable options on the market are
identified by G. Furano et al. [28]: Intel Myriad X, Google
Coral Edge TPU, and Nvidia Jetson Nano. Ultimately, we
selected the Google Coral Edge TPU for its low power
consumption of 2 Watts, relatively high processing speed
of 4 TOPS, and its readily available documentation and
well-supported community.

To execute MobileUNet and ELUNet on the Edge
TPU and measure the inference time, the model must
first undergo quantization. This process transforms the
high-bit representations of weights and activations in
the original model into low-bit representations, thereby
reducing the model’s inference time and enabling efficient
execution on edge AI hardware. TinyNN [29] is employed
to perform quantization on the model. Then, the model is
compiled using the EdgeTPU compiler [30], resulting in
an Edge TPU model. However, because the Edge TPU has
limitations in terms of the model operations it supports
[30], we substitute the resize bilinear operation in our
model with the supported transpose convolution operation
prior to compilation. The model is then ready to be loaded
onto the Edge TPU for inference time measurement.

The Edge TPU is interfaced with a Raspberry Pi 4B
over a USB 3.0 connection, and a sample test image file
is loaded onto the device. Given that the model must
initially be loaded into the Edge TPU’s memory, the
first inference operation requires a longer duration to
complete. To ensure the consistency of data collection,
a set of twenty inferences is executed prior to any
inference time measurements. Subsequently, a series of
100 inferences is performed on the sample test image
and the time for each inference is measured. The mean
and standard deviation of all the inference times are then
computed. This procedure is replicated for both ELUNet
and MobileUNet, and the results are consolidated in Table
VI.

TABLE VI
Edge TPU Inference Results

Model Mean (ms) σ (ms) Int8 File Size (MB)
ELUNet 808.3532 83.3374 15.5

MobileUNet 265.5293 21.2383 6.7

MobileUNet performs exceptionally with a frequency
of 3.77 Hz. ELUNet’s mean inference time is under 1000
milliseconds with a frequency of 1.237 Hz. However, the
performance of ELUNet is noticeably worse. This lower
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performance in terms of inference time can be ascribed
to ELUNet having to perform an increased number of
computations on higher-resolution feature maps, a con-
sequence of its deep skip connections, despite it having
fewer model parameters.

C. Static Hardware-in-the-loop Test

To gather data on the performance of our mod-
els, we constructed a starfield simulator. Creating our
own starfield simulator enables us to easily control the
conditions of the test and conduct them at any time.
Specifically, our simulator system consists of a screen,
a collimating lens, and a testing camera. The screen is
a 5” diagonal 1920x1080 resolution IPS monitor and the
achromatic collimation lens has a focal length of 350mm,
a distance that lets the monitor fit nicely in the field of
view of our camera. These components are mounted on
optical posts, which slide along an optical rail to align
and adjust their positions. The camera specifications are
detailed in Table VII. An image of the simulator setup is
shown in Fig. 4.

Fig. 4. Starfield simulator allowed us to evaluate our method with
real camera images.

TABLE VII
Camera Specifications

Sensor CMOS Monochrome Global Shutter
Resolution 640x480

Focal Length 16mm
Full Field of View 13.8x10.3 Degrees

F/ratio 1.2

The simulator functions by displaying a set of stars on
the screen from the Hipparcos Catalog, only showing stars
brighter than visual magnitude 6. The camera views this
visual field through the collimating lens, which is placed
to focus the starfield to infinity. The images captured by
the camera are then fed into the star tracking algorithms
for our tests. A cover lined with light-absorbing fabric
is placed over the setup to ensure minimal light leak-
age into the simulator. With this setup, there are some
limitations. Since our screen has a limited spatial and
luminance resolution, the positions and magnitude of stars
are displayed with limited accuracy. The star vectors, on
average, will have 12.9 arcseconds of angular distance
error. The small dot pitch of our chosen monitor helps
minimize this error. Based on lux measurements of the

TABLE VIII
Static Detection Results

Cold Hot
Model Precision Recall F1 Precision Recall F1
ELUnet 100 99.4 99.7 100 99.4 99.7

MobileUnet 100 96.8 98.4 99.3 97.4 98.4
Liebe’s 94.9 47.5 63.3 100 43.2 60.4
WITM 100 61.4 76.1 89.2 84.1 86.6
ST16 100 37.3 54.4 100 24.1 38.8

Sun et al.’s 100 43.0 60.2 98.9 59.2 74.1

screen, we also estimate that the displayed stars have an
apparent magnitude of 2.35.

With the simulator setup complete, we were able to
run tests to compare our neural network and conventional
baseline models. The first series involved a static starfield
to measure performance, with our detection metrics being
the precision, recall, and F1 scores defined in (13).
To maintain consistency between tests, the simulator is
calibrated by aligning the camera image center with the
center of the monitor, establishing a fixed optical path.
In addition, a fan is placed near the camera to provide
cooling when desired, controlling the amount of thermal
noise present in the camera images. Ten celestial fields
of view were selected to provide test images for the
algorithms. The camera integration time was fixed at 150
ms for all tests, and distortion correction was imple-
mented using calculated OpenCV distortion coefficients.
The parameters for each traditional method were kept the
same for all tests; these were set to values with the best
detection results for a real night sky image with 150 ms
integration time. The results for the static detection are
shown in Table VIII.

For both hot (noisy) and cold camera operating
conditions, the neural networks performed comparably
with near-perfect detection scores. Between the baseline
methods, there is a notable difference between hot and
cold operating conditions, with WITM and Sun et al.’s
methods improving in F1 score while the Liebe and ST16
methods had lower scores. We note that the traditional
method performances are significantly worse here than
when we tested them using synthetic data. We hypothesize
that the parameters used for each method may not be
fully optimized for these circumstances. However, this
illustrates the robustness of our neural network models
and how they do not need continuous recalibration to
achieve good detection performance, surpassing all tested
traditional methods in precision, recall, and F1 scores.

Regarding the centroiding tests, we compared our
neural networks to both the Center of Gravity and Gaus-
sian Grid methods each paired with the WITM detection
method, since it displayed the highest detection scores
among the baseline methods. Since our static tests showed
that our neural networks are not impacted by thermal
noise and that the WITM model exhibited the highest de-
tection performance in a hot camera operating condition,
we tested centroiding accuracy with no cooling on the
camera. To measure centroiding accuracy, we compared
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TABLE IX
Static Centroiding Results

Model Avg. Error (arcsec) σ (arcsec)
ELUnet 56 50.8

MobileUnet 57.9 53.6
WITM

+ Gaussian Grid
58.2 49.2

WITM
+ Center of Gravity

71.2 61.1

the difference in the angular separations of stars computed
by each algorithm versus their true values displayed on
the simulator screen. An average of 300 star pairs were
compared for all algorithms. The static centroiding results
are shown in Table IX.

Due to the limited-resolution error and any potential
distortion calibration errors, the centroiding results may
not represent the true capability of the algorithms. In
addition, some stars near the far edge of the screen
appear stretched due to optical distortion, which makes
centroiding inaccurate for those stars. To counter this,
we removed outlier stars that had average angular errors
of greater than 200 arcseconds. Overall, since they were
all tested in the same system and with the same cali-
bration, the consistency enables comparison between the
algorithms. Specifically, the neural networks are shown
to have significantly improved centroiding accuracy to the
Center of Mass method, while remaining competitive with
the Gaussian Grid method.

Finally, we also tested performance when stray light
is purposefully added to deteriorate the image quality.
This was done by placing a flashlight inside the simulator,
resulting in light flares in the captured images. The results
for detection and centroiding accuracy are shown in Table
X. Only our neural network models are tabulated for stray
light results, as all other conventional models failed to
identify any stars and were plagued with false positives
when exposed to the same lighting conditions.

TABLE X
Stray Light Performance

Model Precision Recall F1 Avg Error σ

ELUnet 94.4 96.8 95.6 60.5 51.9
MobileUnet 87.9 97.4 92.4 61.2 50.3

Even with stray light contamination, our proposed
neural network methods display only slightly worse detec-
tion metrics while all other traditional models displayed a
multitude of false positives. While the precision scores of
the models are slightly less due to the appearance of some
false positives, the neural network models are still able to
consistently and correctly identify true stars in heavily
contaminated images, as evidenced by their precision,
recall, and F1 scores. Our models also retained their high
accuracy under these conditions, averaging only about 4
arcseconds worse than the non-contaminated static tests.

D. Dynamic Hardware-in-the-loop Test

The second series of testing involved a rotating
starfield to evaluate detection performance. The simulator
is calibrated in the same manner as the static tests. Since
the results of the static tests demonstrated the quality of
performance with varying levels of thermal noise, the
dynamic tests were only conducted at one temperature.
Ten fields of view (the same as the static tests) were
chosen for the starfields. For each starfield, three separate
rates of rotation were used to dictate the manner in which
the displayed starfield moved across the monitor. Each
method (ELUnet, MobileUnet, WITM, and Sun et al.’s)
was tested with a rotating starfield a total of thirty times.
Fig. 5 demonstrates the star image quality depending on
rotation rate. A random time was chosen to capture the
stills used for analysis. By comparing the number of stars
detected in the captured images to the simulated images
and applying the metrics in Eq. 13, we were able to come
up with an F1 score that measures the accuracy of each
method in detecting stars.

(a) (b) (c)

Fig. 5. Images depicting star pixels with zero rotation (a), ω=[0.5, 0,
0] (b), and ω=[1, 0, 0] (c) show that higher rotation rates produce

more elongated star pixels in the starfield images.

The results for dynamic detection for ω=[0.5, 0, 0],
ω=[0, 0, 6], and ω=[1, 0, 0] are shown in Table XI.
For all three rotation rates, our proposed two neural
network methods perform the best with F1 scores above
98. The WITM method achieved slightly lower scores
due to having more false positives. Nonetheless, it still
performed significantly better than Sun et al.’s method,
which struggled notably in distinguishing between true
stars and false positives.

The second phase of dynamic testing involved com-
puting centroid accuracy by comparing the actual star
angular distances from the star catalog with the angular
distances computed by the algorithms. This evaluation
was conducted across three different starfields, each fea-
turing three distinct rates of rotation. This resulted in nine
test images for each method (MobileUnet, ELUnet, and
WITM Gaussian), each containing multiple stars. Similar
to the static centroiding tests, stars with an average angu-
lar error of greater than 200 arcseconds were considered
outliers and removed. The results for all three rates of
rotation are presented in Table XII. In all cases, the neural
networks had a lower error than the WITM Gaussian
method. Despite not being trained on dynamic images,
the proposed method demonstrates robustness for star
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TABLE XI
Dynamic Detection Results

ω=[0.5, 0, 0] ω=[0, 0, 6] ω=[1, 0, 0]
Model Precision Recall F1 Precision Recall F1 Precision Recall F1
ELUnet 100 100 100 100 100 100 99.3 100 99.9

MobileUnet 100 99.3 99.65 100 100 100 100 100 100
WITM 99.2 80.1 88.6 99.2 84.6 91.3 98.6 91.3 94.8

Sun et. al’s 98.4 41.2 58.1 100 38 55.1 100 50.3 67.0

TABLE XII
Dynamic Centroiding Results

ω=[0.5, 0, 0] ω=[0, 0, 6] ω=[1, 0, 0]
Model Error(arcsec) σ (arcsec) Error (arcsec) σ (arcsec) Error (arcsec) σ(arcsec)
ELUnet 69.59 61.02 72.17 61.73 59.3 46.6

MobileUnet 62.56 52.52 69.03 62.53 69.1 52.5
WITM + Gaussian Grid 69.82 53.69 74.75 61.62 82.72 56.37

images with motion blur, consistently producing accurate
centroids.

E. Night Sky Testing

While hardware-in-the-loop tests offer control over
temperature and rotation rates, our current hardware setup
has limitations. It can only provide a coarse estimation
of accuracy performance and lacks the capability to
simulate faint stars. To achieve a more comprehensive
evaluation, we performed night sky testing at Middle Fork
River Forest Preserve, IL, U.S. The camera, detailed in
Table VII, was mounted on a tripod and aimed near
the zenith with its exposure time set to 500 ms. To
align with standard practices [5], the inertial-to-body
attitude outputs were converted to 3-2-1 Euler angles
representing right ascension, declination, and roll. The
right ascension would be expected to change linearly at
Earth’s sidereal rate, while the declination and roll remain
constant. The cross-boresight and around-boresight accu-
racy of a star tracker can be modeled as the standard
deviations of the declination and roll. For star identi-
fication, we employed the geometric voting algorithm
[26], and the singular value decomposition method [27]
was utilized for attitude determination. Recorded videos
of the test results can be found at our project website
https://hongruizhao.github.io/CNNStarDetectCentroid/.

We recorded two 10-minute videos to evaluate the
detection and accuracy of our method. Results are pre-
sented in Table XIII. Among conventional methods, Sun
et al.’s local threshold approach demonstrated the best de-
tection performance and served as our comparison bench-
mark. Overall, both CNN models outperformed traditional
approaches, with ELUNet showing a slight edge over
MobileUNet. As illustrated in Fig. 6, while our method
and the conventional baseline exhibit similar detection
performance, our method achieved a significantly higher
star identification rate due to its superior centroiding
accuracy.

To assess the impact of stray light, we first recorded
a 5-minute video under standard conditions, immediately

TABLE XIII
Night Sky Test

Cross-Boresight
(arcsecond 1-σ)

Around Boresight
(arcsecond 1-σ)

Model Test 1 Test 2 Test 1 Test 2
ELUnet 12.92 13.79 76.95 151.90

MobileUnet 12.93 15.44 81.49 146.88
Sun et al.’s

+ Center of Gravity
21.26 22.99 251.72 290.84

Sun et al.’s
+ Gaussian Grid

19.84 19.34 221.09 253.34

0 200 400 600

10.0

12.5

15.0

Av
g 

C
en

tr
oi

ds

ELUNet
MobileUNet

Sun et al.+CoG
Sun et al.+GaussianGrid

0 200 400 600
0

5

10

Av
g 

ID
s

0 200 400 600
Image Number

0.00

0.25

0.50

0.75

Av
g 

ID
 R

at
e

Fig. 6. Detection and identification performance in the first night
sky test. With a similar number of star centroids detected, the

proposed method has higher star identification rates compared to the
conventional methods.

10 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2024

https://hongruizhao.github.io/CNNStarDetectCentroid/


TABLE XIV
Night Sky Test, Stray light

Cross-Boresight
(arcsecond 1-σ)

Around Boresight
(arcsecond 1-σ)

Model w/o
Straylight Straylight w/o

Straylight Straylight

ELUnet 8.07 20.25 85.85 191.73
MobileUnet 8.07 23.09 85.85 216.96

(a) (b)

Fig. 7. Despite (a) the presence of the moon within the field-of-view
or (b) severe lens flare, the proposed method leads to accurate star

detection and identification.

followed by a subsequent 5-minute video with stray light
introduced via a flashlight. The results are presented in
Table XIV. While both models are affected by stray light,
their accuracy remains comparable to typical commercial
CubeSat star trackers. Under normal conditions, ELUNet
and MobileUNet perform identically. However, when
exposed to stray light, ELUNet demonstrated greater
robustness. Fig. 7 showcases visual examples of ELUNet
prcoessing results of images affected by stray light and
those with the moon in the field-of-view. Detected stars
are highlighted with green circles, while identified stars
display their information at the top. Even when confronted
with significant lens flare or the moon’s interference, our
method reliably rejected false detections and precisely
computed star centroids, leading to successful star iden-
tification.

V. Conclusion

In this article, we introduced a CNN-based method
for real-time star detection and centroiding in star tracker
processing. We generated training images by blending
synthetic “clean” star images with authentic sensor noise
and stray light. The CNN model yields a binary seg-
mentation map for star detection and a distance map for
centroiding. By incorporating distance data with pixel
coordinates, centroid calculation was reformulated as a
trilateration problem, which is solved using the least
squares method. The chosen CNN models operates with
under 300 ms latency on a low-power Google Coral
TPU. We conducted synthetic image tests, hardware-in-
the-loop tests, and night sky tests to thoroughly assess
our method against existing approaches. Our method
not only surpassed existing methods in detection and
centroiding performance but also exhibited remarkable
robustness across varying thermal, rotation, and stray light
conditions. Moving forward, our research will progress to

constructing a prototype star tracker to further validate our
method in an actual flight-qualified setup. Additionally, a
potential enhancement could involve training the CNN to
process star trails resulting from higher rotation rates.
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