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Abstract

Starting from the effective Hamiltonian arising from the tight binding model, we study the
behaviour of low-lying excitations for bilayer graphene placed in periodic external magnetic
fields by using irreducible second order supersymmetry transformations. The coupled system
of equations describing these excitations is reduced to a pair of periodic Schrödinger Hamilto-
nians intertwined by a second order differential operator. The direct implementation of more
general second-order supersymmetry transformations allows to create nonsingular Schrödinger
potentials with periodicity defects and bound states embedded in the forbidden bands, which
turn out to be associated to quasiperiodic magnetic superlattices.
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1 Introduction

The correspondence between band structure of graphene and the topological features of electronic states had
played a major role in modern physics since its discovery in 2004 [1]. Due to its honeycomb lattice structure,
small local changes lead to gauge potentials, associated with the phase of the electronic wavefunction in each
of the two independent sublattices [2]. In particular, the local in-plane deformations generated by strain can
be described by a vector potential, which is equivalent to a pseudomagnetic field applied to graphene. The
band structure of graphene can be fundamentally changed in different ways, one of which is the stacking of
two layers in order to form bilayer graphene [3]. Bilayer graphene presents some advantages over monolayer
graphene, since the larger possibilities for tuning experimentally its physical properties [4, 5]. In bilayer
graphene there are four atoms per unit cell, with inequivalent sites A1, B1 and A2, B2 in the first and
second graphene layers, respectively [6]. The atomic orientation among the two layers might further vary,
as bilayer graphene has a weak van der Waals interlayer bonding due to lattice deformation, which largely
affects the interlayer electron motion [7]. Bilayer graphene can display a parabolic dispersion relation at
the K points, making electrons behave differently as compared with the single-layer case. Bilayer graphene
offers as well the possibility of applying a bias voltage W between the two layers, allowing to tune the band
structure [8]. In particular, the inequivalence of the two graphene layers gives rise to a Mexican-hat-like
structure featuring a band gap [3]. Let us stress that a tunable gap is important for possible electronic
devices.

Different stackings can occur in bilayer graphene. Due to its large stability in bulk graphite, the most
studied is the AB Bernal stacking, in which the two graphene layers are arranged in such a way that the A1
sublattice is exactly on top of the B2 sublattice. On the other hand, in the simple hexagonal or AA stacking,
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both sublattices of the first layer, A1 and B1, are located directly on top of the two sublattices A2 and B2 of
the second layer. Although graphene with direct or AA stacking has not been observed in natural graphite,
it has been produced by folding graphite layers at the edges of a cleaved sample with a scanning tunnelling
microscope tip. A third simple bilayer structure arises when the two layers are stacked with a specific
twisting angle (θ), called twisted bilayer graphene (TBG). In this structure the moiré patterns with a higher
periodicity emerge. The emergence of these patterns features remarkable optical and electronic properties
[9, 10, 11, 12, 13]. The electronic structure of TBG shows a linear band dispersion near the Dirac points,
rather than the massive quadratic dispersion of the AB-stacked bilayer graphene, suggesting a relatively
weak interlayer interaction. In strong magnetic fields, however, it is predicted that the spectrum exhibits
a fractal structure, called Hofstadter’s butterfly, in which a series of energy gaps appear in a self-similar
fashion [14].

Due to its Dirac-like low lying excitations, graphene displays a number of unusual transport properties,
which results in the pseudospin 1/2 of the low-lying modes, their linear dispersion relation, and the vanishing
density of states at the Dirac points. In contrast, the interlayer interaction in bilayer graphene with regular
AB stacking changes the linear dispersion of monolayer graphene into a quadratic one, where an electron
behaves as a massive particle [15]. In order to describe the situation when magnetic (or pseudomagnetic)
fields are applied to monolayer graphene, the first-order supersymmetric quantum mechanics (SUSY QM)
is the simplest solution approach [16, 17, 18, 19, 21, 20, 22, 23, 24] (see also [25, 26, 27, 28, 29, 30, 31]).
On the other hand, the second-order SUSY QM has proved useful to study the charge carriers behaviour of
bilayer graphene in external magnetic fields [32, 33]. In addition, the equivalence between Maxwell’s and
Dirac equation has been used to understand the electromagnetic spin and orbital angular momentum, and
examine the relationship between interface states and topology [34, 35, 36, 37].

Recently, the first order SUSY QM has been used to study the electronic behaviour in superlattices, i.e,
when monolayer graphene is placed in periodic magnetic fields [38]. The arising of two opposite Darboux
displacement breaks the periodicity in the superlattice, but it can be shown that asymptotically the period-
icity is recovered. Moreover, the use of such displacements turns out to be fundamental for understanding
the phenomenon related to defects in superlattices.

In the present work we aim to study the behaviour of low-lying excitations of bilayer graphene placed
in a periodic magnetic field, and its physical implications, by using second order supersymmetric quantum
mechanics. We will explore as well more general second-order supersymmetry transformations producing
periodicity defects, which will be associated naturally to quasiperiodic magnetic superlatticces for bilayer
graphene. In order to do that, the second section is devoted to some general considerations about the
tight-binding model for bilayer graphene, its physical assumptions and the two coupled equations we will
arrive for our system. Then, in section 3 a brief overview of the second order SUSY QM will be given,
as well as the construction of the intertwining operators when a periodic potential is present. The way to
implement the method for generating quasiperiodic partner potentials and the corresponding superpotential
will be also discussed. In section 4 we will generate the quasiperiodic magnetic superlattices associated to
a physically meaningful quantum problem. Finally, in section 5 we will present our conclusions and the
perspectives of this work.

2 Tight-binding model for bilayer graphene

As it was already mentioned, among all possible configurations that bilayer graphene may adopt (AA, AB
or twisted bilayer), the AB configuration or Bernal stacking is the most stable one, and it is easily produced
in labs. In this configuration, half of the carbon atoms of the top layer are aligned vertically with half of
the atoms of the lower layer, while the other carbon atoms of the top layer are located above the centres
of the lower-layer hexagons. This means that one layer is rotated with respect to the other by an angle of
π/3, and from now on we will address this configuration only.
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The effective Hamiltonian around a Dirac point for bilayer graphene is

H =
1

2m∗

(
0 (px − ipy)

2

(px + ipy)
2 0

)
, (1)

where m∗ = γ1/2v
2
F ≈ 0.054me is the electron effective mass, me is the electron free mass, vF is the Fermi

velocity, px = −iℏ ∂
∂x and py = −iℏ ∂

∂y . We use the minimal coupling rule to incorporate the vector potential,

i.e., pi → pi +
e

c
Ai. In the Landau gauge the vector potential can be chosen as A⃗ = A(x)êy, implying that

B⃗ = B(x)êz thus the magnetic field amplitude takes the form B(x) = A′(x). The eigenvalue equation when
an external magnetic field is applied is given by:

HΨ(x, y) =
1

2m∗

(
0 Π2

(Π+)
2

0

)
Ψ(x) = EΨ(x), (2)

with Π = px − ipy − i ecA(x). Taking into account the translation invariance along y direction we propose

Ψ(x, y) = eiky
(
ψ(2)(x)

ψ(0)(x)

)
. (3)

By sticking to the approach introduced in [32, 33], the following system of equations is obtained:

L−
2 ψ

(0)(x) =

(
d2

dx2
+ η(x)

d

dx
+ γ(x)

)
ψ(0)(x) = −Ẽψ(2)(x), (4)

L+
2 ψ

(2)(x) =

(
d2

dx2
− η(x)

d

dx
+ γ(x)− η

′
(x)

)
ψ(2)(x) = −Ẽψ(0)(x), (5)

where Ẽ and η(x) are given by

Ẽ =
2m∗E

ℏ2
, η(x) = 2

(
k +

e

cℏ
A(x)

)
. (6)

Thus, the magnetic field amplitude B(x) takes the form

B(x) =
cℏ
2e
η′(x). (7)

Since we want to study the case when a periodic magnetic field is applied, η(x) and γ(x) in equations (4) and
(5) are supposed to be complex valued piecewise continuous periodic functions, both with the same period.
Note that an iterative first order SUSY treatment could be used, such that the second order differential
intertwining operators (4) and (5) will be factorized as a product of two in general different first order
intertwining operators. These assumptions require to modify the effective Hamiltonian by an additional
term, that could be physically interpreted as the result of a trigonal warping effect or a varying external
potential. This is expressed mathematically as follows

H =
1

2m∗

(
0 Π2

(Π+)
2

0

)
− ℏ2

2m∗ f(x)σx, (8)

where

f(x) =
η′(x)

4η2(x)
− η′′(x)

2η(x)
− (ϵ1 − ϵ2)

2

4η2(x)
. (9)

The coupled system of equations (4) and (5) can be decoupled as follows:

L+
2 L

−
2 ψ

(0)(x) = Ẽ2ψ(0)(x), (10)

L−
2 L

+
2 ψ

(2)(x) = Ẽ2ψ(2)(x). (11)
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We have chosen the index notation slightly different from [32, 33], for reasons that will be evident below.
As can be seen, in order to study the effect of periodic magnetic fields in bilayer graphene, the second order
supersymmetric quantum mechanics can be used, as when studying the charge carriers behaviour of bilayer
graphene in non-periodic external magnetic fields. Before doing that, however, a brief overview of the second
order supersymmetric quantum mechanics will be given in the following section.

3 Second order supersymmetric quantum mechanics

Let us assume that v1(x) and v2(x) are two solutions of the stationary Schrödinger equation for the Hamil-
tonian H0 associated to the factorization energies ϵ1 and ϵ2, respectively, i.e., H0vi = ϵivi, i = 1, 2, where

H0 = − d2

dx2
+ V0(x). (12)

We will suppose that an intertwining relation involving the two Hamiltonians H0, H2 and the operator L−
2

of equation (4) is fulfilled, namely,

H2L
−
2 = L−

2 H0, (13)

where

H2 = − d2

dx2
+ V2(x). (14)

We will assume as well that both Hamiltonians (12) and (14) have discrete spectra. The so-called SUSY
partner potentials V0(x) and V2(x) can be expressed in terms of the functions η(x) and γ(x) characterizing
the interwining operator L−

2 . After some work, the following expressions are obtained:

γ(x) = −η
′′
(x)

2η(x)
+

(
η
′
(x)

2η(x)

)2

+
η
′
(x)

2
+
η2(x)

4
−
(
ϵ1 − ϵ2
2η(x)

)2

, (15)

where η(x) is given by

η(x) = − d

dx
lnW (v1(x), v2(x)) =

(ϵ1 − ϵ2)v1(x)v2(x)

W (v1(x), v2(x))
, (16)

with W (v1(x), v2(x)) ≡ W12(x) being the Wronskian of v1(x) and v2(x). The partner potentials V0(x) and
V2(x) turn out to be expressed as:

V0(x) =
η
′′
(x)

2η(x)
−

(
η
′
(x)

2η(x)

)2

− η
′
(x) +

η2(x)

4
+

(
ϵ1 − ϵ2
2η(x)

)2

+
ϵ1 + ϵ2

2
, (17)

V2(x) =
η
′′
(x)

2η(x)
−

(
η
′
(x)

2η(x)

)2

+ η
′
(x) +

η2(x)

4
+

(
ϵ1 − ϵ2
2η(x)

)2

+
ϵ1 + ϵ2

2
. (18)

Notice that the new potential V2(x) can be simply expressed as:

V2(x) = V0(x) + 2η
′
(x) = V0(x)− 2

d2

dx2
(lnW12(x)) . (19)

It will be free of singularities wheneverW12(x) is nodeless. The eigenfunctions ofH0 andH2, {ψ(0)
i (x), ψ

(2)
i (x), i =

0, 1, . . . }, are connected by the operators L−
2 , L

+
2 as follows:

L−
2 ψ

(0)
i =

W (v1, v2, ψ
(0)
i (x))

W12(x)
∝ ψ

(2)
i (x). (20)
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From equation (20) it is clear that L−
2 v1(x) = L−

2 v2(x) = 0. Moreover, the kernel of L+
2 supplies two formal

eigenfunctions of H2 associated to ϵ1 and ϵ2:

v
(2)
1 (x) ∝ v2(x)

W12(x)
, v

(2)
2 (x) ∝ v1(x)

W12(x)
. (21)

Depending on whether they can be normalized or not, such factorization energies can be either included
or not in the spectrum of H2. Therefore, the Hamiltonians H0 and H2 are isospectral, with the possible
exception of ϵ1 and ϵ2, which could be in Sp(H2). From now on we will assume that V0(x) is a given initial
periodic potential of period T , V0(x + T ) = V0(x). In this case there is no need to consider the range of
the variable x as the whole real line, but just a given period. According to the Bloch-Floquet theory, the
physical wavefunctions ψ(x) are quasi-periodic:

ψ(x+ T ) = eikTψ(x), (22)

where k ∈ R is called quasi-momentum or momentum of the crystal, and it defines a self-adjoint boundary
value problem.

3.1 Lamé equation: some remarks

In order to study the effect of periodic potentials on bilayer graphene we start with the Lamé potential

V0(x) = n(n+ 1)m sn2(x|m). (23)

The stationary Schrödinger equation for the Hamiltonian (12) with the periodic potential given by expression
(23) is the Jacobi version of the Lamé equation, where sn(x|m) is the Jacobi elliptic function in Glaisher
notation with modular parameter m. When m ∈ (0, 1) the function sn2(x|m) has real period 2K = 2K(m)
and an imaginary period 2iK ′ = 2iK(1 − m), with K(m) being the first complete elliptic integral. In
addition, if x is restricted to the real axis and m and n are real, the Lamé equation becomes a real domain
Schrödinger equation with a periodic potential, i.e., a Hill’s equation.

The potential (23) has bounded physical solutions (22) with an energy spectrum consisting of exactly
n+ 1 allowed bands separated to each other by n+ 1 forbidden bands [39, 40]. The band edges arise when
kT = 0, π, ..., i.e., for

ψ(x+ T ) = eikTψ(x) = ξψ(x), (24)

with ξ = ±1 being a Floquet multiplier. Due to the fact that the H0 in Eq. (12) with the V0(x) given by
expression (23) is a Lamé operator of Hill type, we know from the oscillation theorem that there exists a
sequence of real numbers (in general infinite)

E0 < E1 ≤ E1′ < E2 ≤ · · · < Ej ≤ Ej′ < . . . , j = 1, 2, ... (25)

where the band edge energies Ej and Ej′ correspond to 2K-periodic solutions for j even and 2K-antiperiodic
solutions for j odd. The physical energies lie in allowed bands, which are intervals delimited by energies
corresponding to the two values of ξ, i.e., to periodic and anti-periodic Bloch solutions. These allowed bands
form a sequence, where E0 is the first periodic eigenvalue if we come from −∞, followed by alternating pairs
of anti-periodic and periodic eigenvalues (each pair may be coincident). The allowed energy bands are
[E0, E1], [E1′ , E2], ..., [Ej′ , Ej+1], ...; consistently, the forbidden energy bands (energy gaps) are (E1, E1′),
(E2, E2′), ..., (Ej , Ej′), ... The band edge energies are usually called the discrete spectrum of the periodic

potential. The corresponding eigenfunctions {ψ(0)
0 , ψ

(0)
1 , ψ

(0)
1′ , ψ

(0)
2 , ψ

(0)
2′ , . . . } have periods T , 2T , 2T , T , T ,

. . . , and their respective number of nodes in a period T is 0, 1, 1, 2, 2, . . . .
Many algebraic forms can be obtained from expression (23); nevertheless, for studying the properties

of the Lamé equation it is important to take a form appropriate for the purposes at hand. For practical
applications the Jacobian form, leading to the theta-functions, is the most suitable one. On the other
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hand, for studying the properties of the solutions it is better to use the second algebraic form, although in
some problems the analysis is simpler using the Weierstrass form [50]. Let us stress that the Jacobi elliptic
and Weierstrass functions have been widely used in the description of physical phenomena [41, 42, 43, 44].
Recently, this interest has been renewed since they have been employed in direct methods for solving
nonlinear differential equations [45, 46, 47, 48].

Let us express the Lamé equation in terms of the Weierstrass function ℘ = ℘(u; g2, g3), which is a
canonical elliptic function with a double pole at u = 0 satisfying

(℘′)2 = 4(℘− e1)(℘− e2)(℘− e3). (26)

For ellipticity, the roots {eγ}3γ=1 must be different, which is equivalent to ask that the modular discriminant

∆ = g32 − 27g23 should be non-zero. Either of g2, g3 ∈ C may be equal to zero, but not both of them. The
relation between the Jacobi and Weierstrass elliptic functions is well known. Choose, first {eγ}3γ=1 in the
way:

(e1, e2, e3) = A2

(
2−m

3
,
2m− 1

3
,−m+ 1

3

)
, (27)

where A ∈ C/{0} is any proportionality constant. Then,

g2 = A4 4(m
2 −m+ 1)

3
, g3 = A6 4(m− 2)(2m− 1)(m+ 1)

27
, (28)

and the dimensionless (A-independent) Klein invariant J = g32/∆ is given by

J =
4

27

(m2 −m+ 1)3

m2(1−m)2
. (29)

Two sorts of elliptic function are related with ℘ as follows:

sn2(Az|m) =
e1 − e2
℘(z)− e3

, ns2(Az|m) =
℘(z)− e3
e1 − e3

, (30)

thus the periods of ℘, denoted 2ω, 2ω′, will be related to those of sn2 by

2ω =
2K

A
, 2ω′ =

2iK ′

A
. (31)

The case when 2K, 2K ′ are real, or equivalently ω ∈ R, ω′ ∈ iR, corresponds to the case when g2, g3 ∈ R
and ∆ > 0. Choosing now for simplicity A = 1, so that e1− e3 = A2 = 1, we can rewrite the Lamé equation
with the aid of (30) in its Weierstrass form:{

d2

du2
− [n(n+ 1)℘(u; g2, g3) +B]

}
ψ = 0, (32)

where u = x + iK ′. Note that the translation of (23) by iK ′ replaces msn2 by ns2. Moreover, B =
−E(e1 − e3)− n(n+ 1)e3, i.e.,

B = −E +
1

3
n(n+ 1)(m+ 1), (33)

is a transformed energy parameter.
Because for n = 1 the hyperbolic limit yields a bound state at E = 0, and scattering states above E = 1,

for the periodic case we would expect to see at least an energy band with one edge at E = 0. Therefore,
another band edge energies ought to be below E = 1. The band edge eigenstates found explicitly are
dn(x,m), cn(x,m) and sn(x,m), with an allowed band energy going from E = 0 to E = 1−m, then a band
gap, and finally an infinite band energy starting from E = 1. In order to find the remaining states, a formal
solution of the eigenvalue problem for the Hamiltonian H0 is necessary. This problem can be expressed as

ψ′′(x) = (2m sn(x,m)2 −m− E)ψ(x), (34)
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or, alternatively,
d2ψ

du2
− [2℘(u; g2, g3) +B]ψ = 0, (35)

which is a special case of the Lamé differential equation, whose solution is shown in [49, 50, 51]. In the
considered case (n = 1) the solution is given by the following independent functions

ψ(x, k) =
σ(x+ k)

σ(x)σ(k)
exp(−ζ(k)x), (36)

where k ∈ C and σ(x) and ζ(x) are the Weierstrass σ and ζ functions. Such solutions have the Floquet
property

ψ(x+ 2ω, k) = exp(2ηk − 2σ(k)ω)ψ(x, k), (37)

with η = ζ(ω). In terms of Jacobi elliptic functions the potential (23) for n = 1 shifted by the energy −m,
has the following band edge eigenvalues and eigenfunctions:

E0 = 0, ψ
(0)
0 (x) = dn(x), (38)

E1 = 1−m, ψ
(0)
1 (x) = cn(x), (39)

E1′ = 1, ψ
(0)
1′ (x) = sn(x). (40)

4 Bilayer graphene in periodic magnetic fields

For a periodic potential V0(x) every finite energy gap is limited by two eigenfunctions ψ
(0)
j (x) and ψ

(0)
j′ (x),

j = 1, 2, ..., which have the same number of nodes (j). This suggests to take both eigenfunctions to implement
a second-order SUSY transformation because we will obtain a physically acceptable partner Hamiltonian
H2 with a non-singular, periodic potential V2(x). Due to the periodicity T of the intertwining operator

L−
2 any eigenfunction ψ

(0)
i of the discrete spectrum of H0 will be transformed by the action of L−

2 into an

eigenfunction ψ
(2)
i (x) of the discrete spectrum of H2. Thus, H0 and H2 are isospectral Hamiltonians sharing

the same band structure [60].

If we replace now the band edge solutions ψ
(0)
1 and ψ

(0)
1′ in equations (16-18) it turns out that the two

SUSY partner potentials differ just by a displacement in the argument i.e., V2(x) = V0(x + K(m)). The
form of the potentials is formally different, but in fact there is no any new physical information due to

V0(x) = 2m sn2(x, k)−m, (41)

V2(x) = 2m sn2(x+K(m), k)−m. (42)

This happens since it is known that the self-isospectrality condition is fulfilled if ψ
(0)
j (x)ψ

(0)
j (x + T/2) ∝

ψ
(0)
j′ (x)ψ

(0)
j′ (x + T/2) [60, 61]. In our case, choosing the band edge eigenfunctions ψ

(0)
1 and ψ

(0)
1′ given in

equations (39) and (40) we will have

cn(x,m)cn(x+ T/2,m) ∝ sn(x,m)sn(x+ T/2,m), (43)

which is the condition for V2(x) to be physically equivalent (self-isospectral) to V0(x). Thus, there is no
new potential obtained for n = 1 if band edge eigenfunctions are used. However, for the Lamé potential
(23) with n = 2, 3, ..., the self-isospectrality condition is not longer fulfilled, and thus new potentials could
be obtained [52, 53, 54].

Let us point out that the general Darboux-Crum transformations have been applied to the single gap
periodic Lamé potential to generate an arbitrary countable set of bound states in its two forbidden bands,
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the infinite lowest and the finite intermediate one. As a consequence, nonperiodic single gap potentials
arise, which contain two essentially different types of soliton deffects in the periodic background [56, 57].
As it was already shown, these defects appear in a natural way in carbon-based crystals such as monolayer
graphene [38] and, as we will see below, for bilayer graphene. In order to do that, we need to use as seed
solutions linear combinations of the two generalized Bloch functions belonging to the same spectral gap in
order to obtain the new potential. In this way, the second-order transformation will produce a quasi-periodic
magnetic superlattice supporting two bound states.

Let us start from the Lamé magnetic superlattice; the seed solutions we will consider are vj = u1(x, ϵj)+
ηju2(x, ϵj), j = 1, 2 with ϵ2 < ϵ1 < 0, which fulfill the Lamé equation. The two Bloch functions uj take the
form

u1(x, ϵj)=
σ(x0 + ω′)σ(x+ δj + ω′)

σ(x+ ω′)σ(x0 + δj + ω′)
e−ζ(δj)(x−x0), u2(x, ϵj)=

σ(x0 + ω′)σ(x− δj + ω′)

σ(x+ ω′)σ(x0 − δj + ω′)
eζ(δj)(x−x0), (44)

where j = 1, 2, x0 is a fixed point in [0, T = 2K], ω = K and ω = iK ′ are the real and imaginary half-periods
of the Jacobi elliptic functions, σ and ζ are the nonelliptic Weierstrass functions, while the factorization
energy ϵj and the displacement δj are related by

ϵj =
2

3
(m+ 1)− ℘(δj)−m. (45)

A short hand notation for u(x, ϵj) in the Wronskians will be employed

W (v1, v2) =W (δ1, δ2) + η1W (−δ1, δ2)− η2W (δ1,−δ2)− η1η2W (−δ1,−δ2), (46)

with

W (δ1, δ2) =
σ2(x0 + ω′)σ(δ2 − δ1)

σ(δ1)σ(δ2)σ(x0 + δ1 + ω′)σ(x0 + δ2 + ω′)

σ(x+ δ1 + δ2 + ω′)

σ(x+ ω′)
e−[ζ(δ1)+ζ(δ2)](x−x0), (47)

where we have used the symmetry of the quasi-periodic elliptic sigma and zeta functions σ(−x; g2, g3) =
−σ(x; g2, g3) and ζ(−x; g2, g3) = −ζ(x; g2, g3), respectively. In order to obtain the explicit expression for
the magnetic field generated by supersymmetry we replace the expressions (46-47) in (16).

In particular, for the limit case η1 → 0 and η2 → 0 the Wronskian (46) becomes (47), which is consistent
with [61]. In the general case, the explicit expression for the magnetic field with impurities is obtained by
replacing Eq. (44) in (7):

B(x; ϵ1, ϵ2) ∝ dn2(x|m)− dn2(x+ δ1 + δ2|m) + η1η2(dn
2(x− δ1 − δ2|m)− dn2(x|m))

+ η1(dn
2(x|m)− dn2(x− δ1 + δ2|m)) + η2(dn

2(x|m)− dn2(x+ δ1 − δ2|m)), (48)

with asymptotic behaviour given by (x→ ±∞)

B(x→ ∞; ϵ1, ϵ2) → η1η2(dn
2(x− δ1 − δ2|m)− dn2(x|m)), (49)

B(x→ −∞; ϵ1, ϵ2) → dn2(x|m)− dn2(x+ δ1 + δ2|m). (50)

As it was expected, the expressions for the magnetic field with two added impurities are similar to the
ones obtained for the case of a single displacement with an added impurity [38]. It is straightforward to find
the expressions for the added bound states in the forbidden band (E1, E1′) for bilayer graphene, which arise
from equation (21) using linear combinations v1 and v2 of the Bloch functions (see a plot in Fig. 1a). Let
us stress that, the implementation of the second order supersymmetry transformation for bilayer graphene
is mandatory, unlike what happens for monolayer graphene in which an additional SUSY transformation
could be applied to go deeper in the study of impurity effects, but it is not strictly required.

8



(a) (b)

Figure 1: (a) Bound states created at the energy α1 = 0.9 and at α2 = 0.8 (b) for m = 0.5.

Figure 2: Quasiperiodic magnetic superlattice generated by applying a second order SUSY transfor-
mation to bilayer graphene.

The magnetic field amplitude (48) is depicted in Figure 2. From such explicit expression, and the
corresponding asymptotic behaviours (49) and (50) for x ±∞, we can see that the magnetic field recovers
its periodicity asymptotically. Throughout this work we have restricted ourselves to study the effect of the
Lamé periodic potentials in bilayer graphene; nevertheless, the basic ideas of this work could be applied to
more general potentials, e.g., to the associated Lamé potentials [54, 58, 59]. We are confident that the basic
idea of introducing defects in the periodic magnetic superlattice for bilayer graphene by adding bound states
in the forbidden bands, can be well understood through one of the simplest periodic potentials at hand.

5 Conclusions

Starting from the tight binding model for the low-lying excitations of bilayer graphene, we have determined
the energy band structure of bilayer graphene when a periodic magnetic field is applied. In this approach,
which generalizes previous works about monolayer graphene, we have employed second order SUSY trans-
formations to deal with the topological features of electronic states in bilayer graphene. The bound states
created by the transformations are often related to impurities or van Hove singularities. Alike to the case of
monolayer graphene, the implementation of the most general Darboux transformation breaks the periodicity
of the originally periodic magnetic field, due to the introduction of such bound states. However, afar from
these introduced defects in graphene the solutions turn out to be periodic, behaving as it was expected. It
is worth to note that the number of experimental studies about electronic transitions have increased in the
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last years, with its optimization being a major concern. About this point, the present study mimics the
effect of gold island-enhanced multiplex quantum dots, in which the quantum dots act as a bridge between
the gold islands. On the other hand, the present analysis reinforces the role of the second order supersym-
metric quantum mechanics for studying electronic properties of bilayer graphene. Throughout this work we
restricted ourselves to the simplest case of the Lamé potentials; nevertheless, we might choose, between a
long list of candidates, another examples to illustrate the effects of the Darboux transformations for bilayer
graphene.
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México) under grant FORDECYT-PRONACES/61533/2020. OPT acknowledges
CONAHCyT by a postdoctoral fellowship.

Data Availability Statement Data sharing not applicable to this article as no datasets were generated
or analyzed during the current study.

References

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and
A. A. Firsov. Electric field effect in atomically thin carbon films. Science 306 (5696).
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and its application in optics. Nat. Commun. 11, 813 (2020).

[36] Michael Tomka, Mikhail Pletyukhov and Vladimir Gritsev. Supersymmetry in quantum optics and in
spin-orbit coupled systems. Sci. Rep. 5, 13097 (2015).

[37] Galaktionov, Artem V. Supersymmetric Hamiltonian solutions simulated by Andreev bound states.
Physical Review B 101, 134501 (2020).

[38] Miguel Castillo-Celeita, Alonso Contreras-Astorga and David J. Fernández C. Design of quasiperiodic
magnetic superlattices and domain walls supporting bound states. Eur. Phys. J. Plus 138, 820 (2023).

[39] William A. Haese-Hill, Martin A. Hallnäs and Alexander P. Veselov. On the spectra of real and complex
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de f́ısica nuclear y fenónemos no lineales (1 ed.) Ciudad de México: McGraw-Hill/UAEMéx.
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