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Abstract

Starting from billiard partitions which arose recently in the description of periodic trajectories of
ellipsoidal billiards in d-dimensional Euclidean space, we introduce a new type of separable integer
partition classes, called type B. We study the numbers of basis partitions with d parts and relate
them to the Fibonacci sequence and its natural generalizations. Remarkably, the generating series
of basis partitions can be related to the quiver generating series of symmetric quivers corresponding
to the framed unknot via knots-quivers correspondence, and to the count of Schröder paths.
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1 Introduction

The billiard partitions arose recently [DR2019] in the description of periodic trajectories of ellipsoidal
billiards in d-dimensional Euclidean and pseudo-Euclidean spaces. Such partitions uniquely codify the
sets of caustics, up to their types, which generate periodic trajectories. The billiard partitions were
then studied in [ADR2023] from a more combinatorial point of view. Developing these ideas from
[DR2019] and [ADR2023] further and applying them back to the theory of partitions, in [And2022] a
notion of separable integer partitions class (SIP) was defined.

In this paper we introduce a new type of separable integer partitions classes, called type B, which
are motivated by the count of basis billiard partitions with d parts. We study the numbers of such
partitions and relate them to the Fibonacci sequence and its natural generalizations.

Remarkably, the generating series of basis partitions can be related to the quiver generating series
of symmetric quivers corresponding to the framed unknot via knots-quivers correspondence, and to
the count of Schröder paths. Quiver generating series and corresponding motivic Donaldson-Thomas
invariants appear in [KS2011]. In the case of a symmetric quiver Q, the motivic Donaldson-Thomas
invariants can be interpreted as the intersection Betti numbers of the moduli space of all semisimple
representations of Q [MR2019], or as the Chow-Betti numbers of the moduli space of all simple
representations of Q [FR2018]. Donaldson-Thomas invariants can also be combinatorially constructed
in terms of Hilbert schemes [Rei2012]. In addition, for symmetric quivers it turns out that the motivic
Donaldson-Thomas invariants are non-negative integers [Efi2012].

Furthermore, the so-called knots-quivers correspondence was postulated in [KRSS2019], stating
that for every knot there exists a symmetric quiver such that the generating series of symmetrically
colored HOMFLY-PT polynomials of a knot equals, up to variable specializations, the quiver gen-
erating series of the corresponding quiver. This deep property has applications in the enumerative
combinatorics, including Fuss-Catalan numbers, and counting of Schröder paths [PSS2018], as well as
combinatorial construction of invariants counting BPS states for a given knot [KS2016]. Knots-quivers
correspondence has also been interpreted in terms of counts of holomorphic curves [EKL2020].

In Section 2 we review the basics of billiard partition. In Section 3.1 we recall the definition of
the separable integer partitions class, and in Section 3.2 we introduce separable integer partitions
classes of type B. After stripping off technical details, in Section 4 we show a surprising result that the
generating series of basal billiard partitions matches the quiver generating series of a certain two-node
quiver, which in turn is directly related to the count of Schröder paths, and to the framed unknot.

2 Billiard Partitions

As we mentioned above, billiard partitions uniquely codify the sets of caustics, up to their types,
which generate periodic trajectories. The period of a periodic trajectory is the largest part while the
winding numbers are the remaining summands of the corresponding partition. The number of parts
is equal d, which is the dimension of the ambient space. It was proven in [DR2019], that a partition
m0 > m1 > · · · > md−1> 0(= md), with md−1 even and not two consecutive mi,mi+1 being both odd,
uniquely determines the set of caustics of a given type, which generate periodic trajectories of period
m0 and winding numbers mi. We will refer to such partitions as the Euclidean billiard partitions.

In order to take into account the types of caustics as well, the weighted partitions were introduced,
to count the number of possibilities for types of the caustics compatible with the given partition. The
following weight function φ(n, d, π) for a given Euclidean billiard partition π of length d with the
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largest part equal n was defined in [ADR2023]:

φ(2m,d, π) = 2d−1−2s; (2.1)

φ(2m+ 1, d, π) = 2d−2s, (2.2)

where s is the total number of odd parts in π.
A formal definition of Euclidean billiard partitions, introduced in [DR2019] and [ADR2023], is

given in Definition 2.3 and first examples below in Example 2.4. Closed forms for the generating
functions of such partitions were provided in [ADR2023], see also Theorem 2.10 below.

Example 2.1 Let d = 2. Then φ(2m+ 1, 2, π) = 1 and φ(2m, 2, π) = 2.

Example 2.2 Let d = 3. For n = 4, the only possible partition is π = (4, 3, 2) and we have φ(4, 3, π) =
1.

For n = 5, again there is only one partition π = (5, 4, 2), for which φ(5, 3, π) = 2.
For n = 6, the partitions are:

π1 = (6, 5, 4), π2 = (6, 5, 2), π3 = (6, 4, 2), π4 = (6, 3, 2),

and we have:
φ(6, 3, π1) = φ(6, 3, π2) = φ(6, 3, π4) = 1, φ(6, 3, π3) = 4.

For n = 7, the partitions are:

π1 = (7, 6, 4), π2 = (7, 6, 2), π3 = (7, 4, 2),

with
φ(7, 3, π1) = φ(7, 3, π2) = φ(7, 3, π3) = 2.

We will remind a formal definition of Euclidean billiard partitions.

Definition 2.3 ([DR2019], [ADR2023]) Let D denote the set of all integer partitions into distinct
parts where

(E1) the smallest part is even;

(E2) adjacent parts are never both odd.

We will call elements of D the Euclidean billiard partitions.

Let pD (n) denote the number of partitions of n that are in D .

1 +
∑

n≥1

pD (n)q
n = 1 + q2 + q4 + q5 + 2q6 + q7 + 2q8 + 3q9 + 3q10

+ 4q11 + 4q12 + 6q13 + 5q14 + 9q15 + . . . .

The Euclidean billiard partitions for n = 15 are given in the following example.

Example 2.4 Thus, pD(15) = 9, and the nine partitions of 15 are 13 + 2, 11 + 4, 10 + 3 + 2, 9 + 6,
9 + 4 + 2, 8 + 5 + 2, 7 + 6 + 2, 6 + 5 + 4, 6 + 4 + 3 + 2.
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Additionally, we shall also need to consider weighting the partitions in D as follows. Suppose π ∈ D

and that π has d parts with largest part n and s odd parts. The weight φ(n, d, π) is given by (2.1)
and (2.2).

Let pD (m,n) denote the number of partitions of n in D with weight m. Then:

1 +
∑

n≥1

pD (m,n)xmqn = 1 + q2 + q4 + q5 + (1 + x)q6 + q7 + (1 + x)q8 + 3q9

+ (1 + 2x)q10 + (3 + x)q11 + (1 + 2x+ x2)q12

+ (5 + x)q13 + (2 + 3x+ x2)q14 + (6 + 3x)q15 + . . . .

Referring back to Example 2.4, we see that three partitions of 15 have weight 1, namely 2 + 4 + 9,
2 + 6 + 7, and 2 + 3 + 4 + 6 while the remaining six have weight 0. Thus yielding (6 + 3x) as the
coefficient of q15.

One objective of [ADR2023] was to provide a closed form for these generating functions. A subset
B of D was identified such that π ∈ B if no summand of π can be reduced by 2 with the resulting
partition remaining in D . For example 2 + 4 + 7 is not in B because 2 + 4 + (7 − 2) = 2 + 4 + 5 is
still in D . On the other hand 2+ 4+ 5 is in B because 2 + 4+ 3 destroys the order of the parts. The
elements of set B can be characterized as follows.

Lemma 2.5 ([ADR2023]) The set of partitions B consists of those elements of D where

(BE1) the smallest part is 2;

(BE2) adjacent parts are never both odd;

(BE3) the difference between adjacent parts is less or equal 2.

The set B is called the basis of D and its elements are called basal because of the following
fundamental property:

Corollary 2.6 ([ADR2023]) Every partition π ∈ D with d parts can be uniquely represented by π1+π2
where π1 ∈ B and π2 is a partition with not more than d parts each even. Conversely, if a partition
is represented as a sum π1 + π2 where π1 ∈ B and π2 is a partition with not more than d parts each
even, then it belongs to D .

Example 2.7 Consider 9 + 4 + 2 ∈ D : 9 + 4 + 2 = (5 + 4 + 2) + (4 + 0 + 0).

One can notice that π and its basal partition π̄ have the same weight:

φ(n, d, π) = φ(n, d, π̄),

since they have the same number of odd parts.
Following [ADR2023], let us denote by s(d, n) the generating function for those partitions in B

that have exactly d parts and largest part equal n.

Example 2.8 We calculate, directly from the definition:

s(5, 8) = x2q23 + x2q25 + x2q27 =

= x5−1−2·1q2+3+4+6+8 + x5−1−2·1q2+4+5+6+8 + x5−1−2·1q2+4+6+7+8.
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Let us recall the Gaussian polynomials or q-binomial coefficients:

[

A

B

]

q

=

{

0, if B < 0 or B > A
(q;q)A

(q;q)B(q;q)A−B
, 0 ≤ B ≤ A

and (x; q)N = (1− x)(1 − xq) · · · (1− xqN−1).

Lemma 2.9 ([ADR2023]) The functions s(d,m) can be expressed as follows, depending on parity of
m:

a)

s(d, 2n) = x2n−d−1q2n
2−2dn−n+d2+2d

[

n− 1
2n − d− 1

]

q2
; (2.3)

b)

s(d, 2n + 1) = x2n−dq2n
2−2dn+d2+3n

[

n− 1
2n − d

]

q2
. (2.4)

The key observation is that once we know the generating function for the basal partitions, it is
easy to get the generating function for partitions in D .

Theorem 2.10 ([ADR2023]) The generating function for the weighted Euclidean billiard partitions
has the following formula:

1 +
∑

n≥1,m≥0

pD (m,n)qn = 1 +

∞
∑

d=1

∞
∑

n=0

s(d, n)

(q2; q2)d
,

where

s(d, 2n) = x2n−d−1q2n
2−2dn−n+d2+2d

[

n− 1
2n− d− 1

]

q2
;

s(d, 2n + 1) = x2n−dq2n
2−2dn−n+d2+3n

[

n− 1
2n− d

]

q2
.

3 Separable integer partitions

3.1 Separable integer partitions of type A

Formalizing further this line of thought, in [And2022] a notion of separable integer partitions class
(SIP) with modulus k was defined as a subset P of all the integer partitions with a subset B, called
the basis of P, with the properties:

(i) for n ≥ 1 the number of elements of B with n parts is finite;

(ii) every partition with n parts in P can be uniquely presented in the form

(b1 + p1) + (b2 + p2) + · · ·+ (bn + pn), (3.1)

0 < b1 ≤ b2 ≤ · · · ≤ bn form a partition b1 + b2 + · · ·+ bn ∈ B, and 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn form
a partition into n parts, with the only restriction that all parts pj were divisible by k;
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(iii) all the partitions of the form 3.1 belong to P.

In [And2022] an interesting set of SIP classes was introduced. Let {c1, c2, . . . , ck} be a set of
positive integers with cr ≡ r(mod k) and {d1, d2, . . . , dk} be a set of nonnegative integers. Let P be
the set of all integer partitions

p1 + p2 + · · ·+ pj

where 0 < p1 ≤ · · · ≤ pj and for all r, 1 ≤ r ≤ k and each pi if pi ≡ r(mod k), then pi ≥ cr and if i > 1

pi − pi−1 ≥ dr.

Then P is a SIP class modulo k. We will say that such a class is of type A. Its basis B was described
in Theorem 1 in [And2022]. It consists of all partitions

b1 + · · ·+ bj ,

where if b1 ≡ r(mod k), then b1 = cr and for 2 ≤ i ≤ j if bi ≡ r(mod k) then dr ≤ bi − bi−1 < dr + k.

Example 3.1 In relation with the Göllnitz-Gordon Theorem, in [And2022] the class PG of all parti-
tions in which the difference between parts is at least 2 and at least 4 between even parts. Then c1 = 1,
c2 = 2, d1 = 2, d2 = 3.

It was observed in [And2022] that billiard partitions do not belong to SIP classes of type A.

3.2 Separable integer partitions of type B

Before we define a set of SIP classes which contains billiard partitions, we will study the numbers of
basal Euclidean billiard partitions with a given number of parts d. Let

f0 = 1, f1 = 1, f2 = 2, . . . , fd = fd−1 + fd−2. (3.2)

Theorem 3.2 (a) There are fd basal billiard partitions with d parts.

(b) There are fd−1 basal billiard partitions with d parts with the largest part being an even number.

(c) There are fd−2 basal partitions with d parts with the largest part being an odd number.

Proof. The proof goes by induction. One can directly verify it for partitions with d = 1, 2, 3 parts.
The basal partitions with d+ 1 parts can be obtained from those with d parts in the following ways:
by adding to the list of parts an even number, the consecutive of the largest odd number, for the
partitions with an odd number as the largest part; by adding to the list of parts an odd number,
the consecutive of the largest even number, for the partitions having an even number as the largest
part; by adding to the list of parts an even number, the consecutive even number of the largest even
number, for the partitions having an even number as the largest part.

Thus, the total number of basal partitions with d+ 1 parts is equal to

fd−2 + 2fd−1 = fd + fd−1.

There are fd−1 basal partitions with d + 1 parts which have an odd number as the largest part,
while there are

fd−2 + fd−1 = fd

basal partitions with d+ 1 parts which have an even number as the largest part. �

6



Theorem 3.3 Let {c1, c2, . . . , ck} be a set of positive integers with cr ≡ r(mod k) and {d1, d2, . . . , dk}
be a set of nonnegative integers. Let P be the set of all integer partitions

p1 + p2 + · · ·+ pj

where 0 < p1 < · · · < pj and for all r, 1 ≤ r ≤ k and each pi if pi ≡ r(mod k), then pi ≥ cr and if
i > 1

pi − pi−1 ≥ max{1, dr}.

Then P is a SIP class modulo k. Its basis B consists of all partitions

b1 + · · ·+ bj ,

where if b1 ≡ r(mod k) then b1 = cr, and for i ≤ j if bi ≡ r(mod k) then bi ≥ cr and max{dr, 1} ≤
bi − bi−1 < dr + k.

Definition 3.4 We will denote the SIP classes described in Theorem 3.3 as type B of modulus k.
Those j(mod k) with dj = 0 we will call odd-like, and the number of odd-like residues we will denote
ℓ. In order to indicate the number ℓ along with modulus k we will say that a given partition class of
type B is of modulus kℓ.

Example 3.5 The billiard partitions belong to a class of type B. We consider those which satisfy E2.
The basis satisfies the axioms BE2 and BE3. In this case c1 = 1, c2 = 2, d1 = 0, d2 = 1, k = 2,
ℓ = 1, and modulus is 21.

Example 3.6 We consider the partition class P3,2 of type B with k = 3, c1 = 1, c2 = 2, c3 = 3,
d1 = 0, d2 = 0, d3 = 1, ℓ = 2. Thus, the modulus is 32. If fd denotes the number of basal elements of
P3,2 with d parts, then,

fd+2 = 2fd+1 + fd. (3.3)

Here f1 = 1, f2 = 3, if we consider partitions with the smallest part equal to 3. If the smallest part
is equal to 1 or 2, then f1 = 1, f2 = 2. If we don’t make any restrictions on the smallest part, then
f1 = 3, f2 = 7.

Example 3.7 We consider the partition class P3,1 of type B with k = 3, c1 = 1, c2 = 2, c3 = 3,
d1 = 0, d2 = 1, d3 = 1, ℓ = 1. Thus, here the modulus is 31. If fd denotes the number of basal
elements of P3,1 with d parts, then,

fd+2 = 2fd+1 + 2fd. (3.4)

Here f1 = 1, f2 = 3, if we consider partitions with the smallest part equal to 2 or 3. If the smallest
part is equal to 1 then f1 = 1, f2 = 2. If we don’t make any restrictions on the smallest part, then
f1 = 3, f2 = 8.

Theorem 3.8 Let P be a partition class of type B of modulus kℓ, and suppose that all non-zero
dj = 1. Let fd denote the number of elements of the basis B of P with d parts. Then fd satisfies the
difference equation

fd+2 = Tk,ℓfd+1 −Rk,ℓfd, (3.5)

where
Tk,ℓ = k − 1, Rk,ℓ = ℓ− k. (3.6)

Here f1 = 1, f2 = k, if we consider partitions with the smallest part being fixed and not odd-like. If the
smallest part is fixed and odd-like then f1 = 1, f2 = k− 1. If there are no restrictions on the smallest
part, then f1 = k, f2 = k2 − ℓ.
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Proof. One can easily see that

fd+1 = (k − 1) · ad + k · bd, d ≥ 1, (3.7)

where
ad+1 = (ℓ− 1) · ad + ℓ · bd,

bd+1 = (k − ℓ)(ad + bd).
(3.8)

Here ad denotes the number of elements of the basis with d parts ending on an “odd digit”, and bd
the number of the rest of the elements of the basis with d parts. Thus,

fd = ad + bd.

By substituting (3.7) and (3.8) into (3.5), one gets (3.6). �

The sequences satisfying the general difference equations of the form (3.5) are called Lucas se-
quences.

Example 3.9 For the billiard partitions, where k = 2, ℓ = 1 we get the Fibonacci sequence T2,1 = 1,
R2,1 = −1 as in (3.2).

Example 3.10 For the partition classes of type B of modulus 31 as in Example 3.7 we get the sequence
T3,1 = 2, R3,1 = −2 as in (3.4).

Example 3.11 For the partition classes of type B of modulus 32 as in Example 3.6 we get the sequence
T3,2 = 2, R3,2 = −1 as in (3.3). So-called Pell’s numbers are generated by Lucas sequences with the
same coefficients 2,−1 and with the initial data f0 = 0, f1 = 1.

We can generalize the last examples in the following ways.

Example 3.12 Consider a partition class of type B of modulus k1. Then Tk,1 = k− 1 = −Rk,1 in the
recurrence relation (3.5) satisfied by the sequence fd of the numbers of basal partitions with d parts.

Consider a partition class of type B of modulus kk−1. Then Tk,k−1 = k−1 and Rk,k−1 = −1 in the
recurrence relation (3.5) satisfied by the sequence fd of the numbers of basal partitions with d parts.

Taking into account that for billiard partitions (T,R) = (1,−1) corresponds to the Fibonacci se-
quence (3.2), there are two natural generalizations: (T,R) = (k−1,−(k−1)) and (T,R) = (k−1,−1).

3.3 Computation of number of refined basal elements

Here we give direct computation of the number of basal elements, with the refinement, via generating
series. We begin with the case of billiard partitions.

Let s(d,m) be the generating function of basal billiard partitions with d parts, and largest part
m. To simplify notation, we simply set x = 1, i.e. we don’t keep explicitly the track of the weight,
since it follows straightforward from d and m. Then as in [ADR2023] we have the obvious recursions:

s(d, 2n) = q2n(s(d− 1, 2n − 2) + s(d− 1, 2n − 1)), (3.9)

s(d, 2n + 1) = q2n+1s(d− 1, 2n). (3.10)

This gives
s(d, 2n) = q2ns(d− 1, 2(n − 1)) + q4n−1s(d− 2, 2(n − 1)). (3.11)
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Let
sn(z) =

∑

d∈Z

s(d, 2n)zd.

Note that the above sum is in fact finite, since s(d, 2n) can be nonzero only when d + 1 ≤ 2n ≤ 2d.
From (3.11) we get:

sn(z) = (q2nz + q4n−1z2)sn−1(z) = q2nz(1 + q2n−1z)sn−1(z), n ≥ 2,

with s1(z) = q2z. Therefore, for n ≥ 1:

sn(z) = q2z

n
∏

i=2

q2iz(1 + q2i−1z) = qn(n+1)zn
n−1
∏

i=1

(1 + q3zq2(i−1)),

which by the quantum binomial formula gives:

sn(z) = qn(n+1)zn
n−1
∑

k=0

q3kzkqk
2−k

[

n− 1
k

]

q2
=

2n−1
∑

d=n

q2n
2−2dn−n+d2+2d

[

n− 1
d− n

]

q2
zd,

where we introduced the summation index d = n + k. This gives the desired explicit formula for
s(d, 2n).

Computations for basal elements of P3,2 Let t(d,m) denote the generating function for the
basal partitions from P3,2 with d parts, and largest part m. Then from the definition we have the
following recursion relations:

t(d, 3n) = q3n(t(d− 1, 3n − 3) + t(d− 1, 3n − 2) + t(d− 1, 3n − 1)), (3.12)

t(d, 3n + 1) = q3n+1(t(d− 1, 3n − 1) + t(d− 1, 3n)), (3.13)

t(d, 3n + 2) = q3n+2(t(d− 1, 3n) + t(d− 1, 3n + 1)). (3.14)

By using (3.14), the expression (3.12) becomes

t(d, 3n) = qt(d, 3n − 1) + q3nt(d− 1, 3n − 1). (3.15)

Further replacing of (3.15) in (3.13) gives:

t(d, 3n + 1) = (q3n+1 + q3n+2)t(d− 1, 3n − 1) + q6n+1t(d− 2, 3n − 1). (3.16)

Finally, by (3.15) and (3.16), the expression (3.14) gives:

t(d, 3n+2) = q3n+3t(d− 1, 3n− 1) + q6n+2(1 + q + q2)t(d− 2, 3n− 1) + q9n+3t(d− 3, 3n− 1). (3.17)

Let

cn(z) =
∑

d∈Z

t(d, 3n + 2)zd (3.18)

bn(z) =
∑

d∈Z

t(d, 3n + 1)zd (3.19)

an(z) =
∑

d∈Z

t(d, 3n)zd. (3.20)
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Then from (3.17) we have

cn(z) = (q3n+3z + q6n+2(1 + q + q2)z2 + q9n+3z3)cn−1(z), for n ≥ 2.

The initial condition is
c1(z) =

∑

d∈Z

t(d, 5)zd = q8z2 + q12z3.

Therefore for n ≥ 1, we have

∑

d∈Z

t(d, 3n + 2)zd = cn(z) = (q8z2 + q12z3)
n
∏

i=2

(q3i+3z + q6i+2(1 + q + q2)z2 + q9i+3z3). (3.21)

From (3.18)-(3.20) and by (3.15) and (3.16), we have

∑

d∈Z

t(d, 3n)zd = an(z) = (q + q3nz)cn−1(z),

∑

d∈Z

t(d, 3n + 1)zd = bn(z) = ((q3n+1 + q3n+2)z + q6n+1z2)cn−1(z).

In the lack of explicit quantum multinomial formula, let us focus on the classical limit q → 1 in
t(d, 3n + 2) i.e. cn(z). Then from (3.21) we have

cn(z)|q=1
= (zn+1 + zn+2)(1 + 3z + z2)n−1 = (zn+1 + zn+2)

∑

i+j+k=n−1

(n− 1)!

i!j!k!
3izi+2j . (3.22)

We note that similar computations where obtained in [And2022], for similar classes of separable
integer partitions with recursion relations of order 3.

4 Relationship with quiver generating series

4.1 Generating series for basal billiard partitions

Using variable a instead of x here, the generating series for the basal billiard partitions is given by:

pB(a, q) = 1 +
∑

n≥1,m≥0

pB(m,n)qn = 1 +

∞
∑

d=1

∞
∑

n=0

s(d, n),

where

s(d, 2n) = a2n−d−1q2n
2−2dn−n+d2+2d

[

n− 1
2n− d− 1

]

q2
;

s(d, 2n + 1) = a2n−dq2n
2−2dn−n+d2+3n

[

n− 1
2n− d

]

q2
.

Let us focus first on the even ones:

pevenB (a, q) = 1 +

∞
∑

d=1

∞
∑

n=0

s(d, 2n).
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Instead of simply using s(d, 2n), let us use further stratification S(d, 2n), where we also keep track of
the largest element n:

S(d, 2n) = xn−1a2n−d−1q2n
2−2dn−n+d2+2d

[

n− 1
2n− d− 1

]

q2
.

Then let

P even
B (a, q) = 1 +

∞
∑

d=1

∞
∑

n=0

S(d, 2n) =
∑

n≤d<2n

xn−1a2n−d−1q2n
2−2dn−n+d2+2d

[

n− 1
2n − d− 1

]

q2
.

After change of variables:

i = 2n − d− 1,

j = d− n,

we get:

P even
B (q, a, x) =

∑

i,j≥0

xi+jaiqi
2+2ij+2j2+3i+5j+2

[

i+ j

i

]

q2
=

= q2
∑

i,j≥0

xi+jaiqi
2+2ij+2j2q3i+5j (q2; q2)i+j

(q2; q2)i(q2; q2)j
. (4.1)

This is now presented in the form of a quiver generating series.

Remark 4.1 The overall factor q2 comes from the fact that the minimal element in billiard partitions
is 2, and can be neglected from now on.

4.2 Quiver generating series

For a symmetric quiver Q, with m nodes and adjacency matrix C, the corresponding quiver generating
series is given by:

P̄Q(x1, . . . , xm; q) =
∑

d1,...,dm≥0

(−q)
∑

i,j Cijdidj
xd11 . . . xdmm

∏m
i=1(q

2; q2)di
. (4.2)

We also say that a power series P is in the quiver form if it is in the form

PQ(x1, . . . , xm; q) =
∑

d1,...,dm≥0

(−q)
∑

i,j Cijdidj
(q2; q2)d1+...+dm
∏m

i=1(q
2; q2)di

xd11 . . . xdmm . (4.3)

The knots-quivers correspondence, introduced in [KRSS2019], relates the generating series of the
colored HOMFLY-PT polynomials of a given knot, with the quiver generating series for a correspond-
ing quiver. In particular, the two quiver forms from above correspond to the unreduced and reduced
version of colored HOMFLY-PT invariants, respectively.

Let Q be the following two-vertex quiver:
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The corresponding adjacency matrix C is 2 × 2 matrix with (i, j) entry being the number of arrow
from vertex i to vertex j, and is therefore given by

C =

[

2 1
1 1

]

. (4.4)

One of the main results of this paper is that the generating series of the even basal billiard partitions
can be recognised to be in the quiver form (4.3). Remarkably, the corresponding quiver is precisely
the quiver Q.

Proposition 4.2 Let P even
B

(q, a, x) be a generating series for even basal billiard partitions, as in
Section 4.1. Let Q be the two-vertex quiver from above. Then after setting

x1 = q5x, x2 = −aq3x,

we get that the quiver generating series of Q matches the generating series for even basal billiard
partitions

P even
B (q, a, x) = PQ(x1, x2; q)|x1=q5x, x2=−aq3x. (4.5)

This particular two-vertex quiver Q from Proposition 4.2, and its quiver generating series, turns out
to be interesting for various reasons. First of all, under the knots-quivers correspondence, the quiver
generating series (4.2) of this quiver corresponds to the series of the unreduced colored HOMFLY-PT
polynomials of the 1-framed unknot:

And secondly, it was shown in [PSS2018] that from the quiver generating series of this quiver, one can
naturally count the Schröder paths – the lattice paths in the first quadrant below the diagonal y = x,
so that each step can be either to the right, up, or diagonal:
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Each such path can be counted with its weight: to a Schröder path starting at (0, 0) and ending
at (n, n), with D diagonal steps, and such that the area between the path and the diagonal y = x is
equal to A, we associate a weight: aDq2Axn. For example, the path from the figure above has weight
a1q6x3.

A surprising result from [PSS2018] shows that the quotient:

P̄Q(x1q, x2q, q)

P̄Q(x1q−1, x2q−1, q)
,

for the above two-vertex quiver Q, after setting x1 = x, x2 = ax, becomes equal, up to an overall
factor, to the generating series of weighted Schröder paths.

4.3 Conclusion

The results of this paper suggest a direct relationship between billiard partitions and quiver generating
series for a specific quiver, and count of Schröder paths. This rises questions about the relations
between various different counts and combinatorial constructions arising from billiard partitions, quiver
generating series and knots-quivers correspondence. In particular, one interesting question would
be to understand whether Donaldson-Thomas invariants, arising from a product form of the quiver
generating series, have some counterpart in billiard partitions. More detailed analysis and study of all
these possible relationships is postponed for the future work.

As a final, low-road comment, it is interesting to note that the relationship described in this paper
contains a curious connection between the two famous combinatorial sequences – Fibonacci numbers,
and Catalan numbers. For billiard partitions, the count is always a natural refinement of Fibonacci
numbers, as seen in [ADR2023] and also in this paper, e.g. Theorem 3.2. On the other hand, in
the counting combinatorics motivated by knots-quivers correspondence and related BPS count (see
[PSS2018] or [KS2016]), Catalan numbers appear naturally, together with their refinements, like the
count of Schröder paths. Therefore, it is quite amusing to see that the two different enumerations that
are natural refinements of Fibonacci numbers and Catalan numbers, are in fact directly related.
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