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The Basset-Boussinesq force is often perfunctory neglected when studying small

inertial particles in turbulence. The force results from the diffusion of vorticity from

the particles, and as it depends on the particles past history, it complicates the

dynamics by turning their equations of motion into integro-differential equations.

However, this force is of the same order as other viscous forces acting on the particles,

and beyond convenience, the reasons for neglecting it are unclear. We derive strict

bounds for the magnitude of the Basset-Boussinesq force in stably stratified flows,

in contexts of interest for geophysical turbulence. The bounds are validated by

direct numerical simulations. The Basset-Boussinesq force can be neglected when

a buoyancy Stokes number Sb = Nτp is small, where N is the flow Brunt-Väisälä

frequency and τp is the particles Stokes time. For sufficiently strong stratification,

or particles with large inertia, this force must be considered in the dynamics.

I. INTRODUCTION

The dynamics of inertial particles submerged in turbulent flows plays a crucial role in
various geophysical contexts, ranging from phenomena in coastal environments and lakes
to the atmosphere and the oceans [1–5]. Despite extensive research on the influence of
turbulence on the transport and spatial distribution of particles, a complete description
of their dynamics in geophysical systems remains elusive. Furthermore, the complexity
extends to the environmental sphere, where the dynamics of plankton and algae, and the
presence of microplastics in the oceans, introduce additional layers of difficulty to particle
dispersion, and emphasize the urgent need to understand these phenomena [6]. In many
of these cases the complexity of modeling and simulating these systems imposes the need
to use reduced models that simplify the physics. Recently, both experiments [7, 8] and
particle-resolved simulations [9, 10] have provided valuable insights into particle dynamics
in different regimes. Many hydrodynamic forces operate over the particles at small scales
within turbulent flows, influencing their interactions, collisions, and cluster formation [9].

The modeling of geophysical flows, particularly those featuring stable density stratifica-
tion, presents also distinct challenges even in the absence of particles. Anisotropy charac-
terizes stably stratified turbulence, setting it apart from homogeneous isotropic turbulence
(HIT) [11–15]. Within these flows, the impact of stratification is evident in the reduction of
vertical velocity, leading to confined, quasi-horizontal layered motions, and to the genera-
tion of vertically sheared horizontal winds (VSHWs) marked by significant vertical variability
[16]. The stratified environment introduces a restoring force, allowing for the coexistence of
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waves with turbulence, each exhibiting a distinct spectral scaling compared to HIT. Stably
stratified turbulence manifests an anisotropic inertial subrange, fostering a direct energy
cascade between buoyancy and Ozmidov scales [17, 18]. Notably, studies also suggest that
larger-scale quasi-horizontal motions serve as a continuous source of small-scale turbulence,
provided the local Reynolds number does not fall below a critical threshold [11]. Examining
these phenomena, it becomes apparent that in stably stratified turbulence, as described by
Herring and Métais [19] and by Riley and Lelong [20], thin layers of large quasihorizontal
vortical structures coexist with internal gravity waves [21]. All these features underscore the
complex interplay of forces and structures characterizing turbulence in geophysical flows.

In this context, several recent studies have considered the dynamics of different particles
advected by stable stratified flows. As a first example, analysis of Lagrangian tracers in
stratified turbulence was performed in [22, 23]. When particles have inertia, for small-sized
particles in a turbulent flow the Maxey-Riley approximation provides a set of equations to
describe their dynamics [24]. This approximation was extended to stratified flows for heavy
[25] and neutrally buoyant and light particles [25–27]. As particles increase in size, Faxen
corrections proportional to the square radius of the particles become relevant [25]. But
even for very small particles the Maxey-Riley equation is an integro-differential system for
the particles evolution that depends on the particles past history. To further simplify the
problem the Basset-Boussinesq force, resulting from the diffusion of vorticity away from the
particles along their trajectories, is often neglected. Methods to reduce the computational
cost to estimate this force were devised [28], and a few studies have considered its effect in
particle laden stratified flows [25]. It was seen that this force becomes particularly relevant
in the presence of flow stratification, as particles experience significant acceleration and
deceleration resulting from oscillatory motions caused by bouyancy. However, it is still
unclear under what general conditions this force becomes dominant, or negligible.

In this work we derive a bound to the Basset-Bousinesq force in a stratified fluid, that
allows the estimation of under which conditions this force can be neglected. To estimate this
bound we consider the Maxey-Riley equation for small inertial particles in a stably stratified
fluid. We also conduct direct numerical simulations of the Boussinesq equations for the fluid,
along with the Maxey-Riley equation with and without the Basset-Bousinesq (or history)
term. We compare particle dispersion and particle velocity statistics, as well as the particle
preferential clustering, for different values of the controlling parameters. We show that the
bound allows estimation of under what conditions neglecting the Basset-Boussinesq history
term does not affecting the statistical behavior of any of these observables.

II. EQUATIONS OF MOTION

We consider a stably stratified fluid described by the incompressible Boussinesq equations
for the velocity u = (u, v, w) and for mass density fluctuations ρ′,

∂tu+ u ·∇u = −∇ (p/ρ0)− (g/ρ0) ρ
′ẑ + ν∇2u+ f , (1)

∂tρ
′ + u ·∇ρ′ =

(
ρ0N

2/g
)
w + κ∇2ρ′, (2)

∇ · u = 0, (3)

where p is the correction to the hydrostatic pressure, ν is the kinematic viscosity, f is an
external mechanical forcing, N is the Brunt-Väisälä frequency (which in this approximation
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sets the stratification), and κ is the diffusivity. In terms of the background density gradient,
the Brunt-Väisälä frequency is N2 = −(g/ρ0)(dρ̄/dz), with dρ̄/dz the imposed linear back-
ground stratification, and ρ0 the mean fluid density. We write scaled density fluctuations ζ
in units of velocity by defining ζ = gρ′/(ρ0N). All quantities are then made dimensionless
using a characteristic length L0 and a characteristic velocity U0 in the domain, resulting in

∂tu+ u ·∇u = −∇ (p/ρ0)−Nζẑ + ν∇2u+ f , (4)

∂tζ + u ·∇ζ = Nw + κ∇2ζ. (5)

We describe small inertial particles using the Maxey-Riley equation, under an approx-
imation consistent with those made to derive the Boussinesq equations [27]. Under the
Boussinesq approximation for a stratified fluid, Eqs. (4) and (5) are obtained from the
Navier-Stokes equations after neglecting density fluctuations everywhere except in the buoy-
ancy force. Thus, for the dynamics of the particles we also approximate the density and
the mass of the fluid displaced by the particles by their mean values, i.e., ρf ≈ ρ̄f = ρ0 and
mf ≈ m̄f = ρ0Vp (where Vp is particle volume), except in the gravity term. In that term we
keep the full fluid density dependence, ρf = ρ0 +(dρ̄/dz)(z− z0)+ ρ′ (note that for a stably
stratified fluid dρ̄/dz < 0). For simplicity we also assume that the typical length over which
the velocity field changes appreciably is much larger than the particle radius a, and Faxén
corrections are thus neglected. With these approximations the equation for the particles is

v̇ =
[u(xp, t)− v(t)]

τp
−2N

3
[N(zp − z0)− ζ] ẑ+

D

Dt
u(xp, t)+

√
3

πτp

∫ t

−∞
dτ

d
dτ
[u(xp, τ)− v(τ)]√

t− τ
,

(6)
where xp(t) is the particle position, v is the particle velocity, u(xp, t) is the fluid velocity
at the particle position, D/Dt is the Lagrangian derivative, d/dt is the time derivative
following the particle trajectory, z0 is the height at which particles are neutrally buoyant,
and τp = (mp + m̄f/2)/(6πaρ̄fν) is the particle relaxation time. For a spherical particle
τp = a2/(3ν) when m̄f/mp = 1 (under these approximations, any other choice for m̄f/mp is
equivalent to changing the reference value ρ0 and results in particles being neutrally buoyant
at a different height, which can be absorbed into a displacement of z0). We can finally define
the particles Stokes number as St = τp/τη, where τη = (ν/ε)1/2 is the Kolmogorov time scale,
and ε is the fluid kinetic energy dissipation rate.

III. BOUNDS TO THE BASSET-BOUSSINESQ FORCE

The integral in the Basset-Boussinesq history term in Eq. (6) can be written as a convo-

lution between a function g(t) and a kernel KBB(t),
∫ t

−∞ KBB(t− τ)g(τ)dτ , where

g(t) =
dh(t)

dt
, h(t) = u(xp(t), t)− v(t) = vslip(t) , KBB(t) =

1√
t
, (7)

Note that when the Faxén corrections are neglected, h(t) is the slip velocity of each particle.
Both the Stokes term in Eq. (6), h(t)/τp, and the Basset-Boussinesq history term, depend on
the particle inertia. Thus, it is reasonable to bound the Basset-Boussinesq force compared
against the Stokes force.
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In the most general (not stratified) case, Van Hinsberg et al. [28] proved that the Basset-
Boussinesq force is finite at any given time, provided some constraints on f(t) and g(t) are
satisfied. First, f(t) must be a continuous function, and its derivative must exist almost
everywhere. Second, the infinity norm of f(t) and g(t) must be finite. These constraints on
f(t) and g(t) are

f ∈ C0, ∥f∥∞ = B1, ∥g∥∞ = B2, (8)

where ∥ · ∥∞ is defined as

∥f∥∞ = inf{C ≥ 0 : |f(t)| ≤ C almost anywhere}, (9)

where |·| represents the typical vector length. Let’s assume that these conditions are fulfilled
for particles in turbulent flows with f(t) = vslip(t). Under these conditions an upper bound
for the Basset-Boussinesq force FBB can be obtained. The convolution is divided into two
parts to control both the singularity in the kernel and in the tail of the integral [28]:

|FBB|
cBB

=

∣∣∣∣
∫ t

−∞
KBB(t− τ)g(τ)dτ

∣∣∣∣

=

∣∣∣∣∣

∫ t−B1/B2

−∞

g(τ)√
t− τ

dτ +

∫ t

t−B1/B2

g(τ)√
t− τ

dτ

∣∣∣∣∣

≤
∣∣∣∣∣

[
f(τ)√
t− τ

]t−B1/B2

−∞
−

∫ t−B1/B2

−∞

f(τ)

2(t− τ)3/2
dτ

∣∣∣∣∣+
∫ t

t−B1/B2

|g(τ)|√
t− τ

dτ

≤
√

B1B2 +
B1

2

∫ t−B1/B2

−∞

1

(t− τ)3/2
dτ +B2

∫ t

t−B1/B2

1√
t− τ

dτ

= 4
√
B1B2, (10)

where cBB =
√

3/(πτp), and where this bound holds for all times.
In the stratified case, note that Eq. (6) can be rewritten as

ẍp +
1

τp
ẋp +

2

3
N2zpẑ = F(t), (11)

where F(t) is a forcing acting on each particle. In the vertical component this is an equation

for a driven damped oscillator with frequency
√

2/3N and with damping constant 1/(2τp)
[27]. As in the vertical direction we have fast fluctuations of the particles velocities, it
makes sense to continue looking at this component of the equation. In [27] it was shown
that assuming that in a stratified flow the vertical fluid velocity is dominated by internal
gravity waves, and thus approximating fluid element displacements as those resulting from
the propagation of these waves, zf = z0 + ζ/N , żf = w(xp(t), t), and z̈f = Dw/Dt, we can
further write the vertical component of Eq. (6) as

(z̈p − z̈f ) +
1

τp
(żp − żf ) +

2

3
N2(zp − zf ) = FBB · ẑ. (12)

The homogeneous solution to this equation, neglecting damping (as we are looking for max-
imum bounds for the velocities and viscous forces acting on the particle), is zp − zf =
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A0 exp(i
√

2/3Nt), and thus we can approximate the vertical component of the slip velocity

as wslip = W0 exp(i
√
2/3Nt) (real parts are assumed everywhere). The vertical component

of the Stokes force can then be written as,

FSt · ẑ =
W0

τp
ei
√

2/3Nt. (13)

Replacing the vertical slip velocity in the vertical component of the Basset-Boussinesq force
we also obtain

FBB · ẑ =

√
3

πτp

∫ t

−∞
dτKBB(t− τ) i

√
2

3
NW0e

i
√

2/3Nτ , (14)

where we used that the vertical component of convolution function in the history term is
gz(t) = dwslip/dt = i

√
2/3Nwslip(t).

From these results, we can proceed further in deriving bounds for the different forces
over particles in the stratified case using Eqs. (7), (9), (13), and (14). As vertical velocity
fluctuations are faster and their time derivatives are larger than in the horizontal direction,
we can keep working with the vertical components of the Stokes and Basset-Boussinesq
forces. We can ask the conditions on Eq. (9) to apply to the vertical component, and thus

∥FSt · ẑ∥∞ =

∥∥∥∥
W0

τp
ei
√

2/3Nt

∥∥∥∥
∞

=
B1z

τp
, (15)

B2z =

∥∥∥∥∥i
√

2

3
NW0e

i
√

2/3Nt

∥∥∥∥∥
∞

=

√
2

3
NB1z. (16)

Applying the bound on Eq. (10) only to the vertical component of the Basset-Boussinesq
force, we can write a new bound as

∥FBB · ẑ∥∞ ≤ 4cBB

√
B1zB2z = 4

√√
2

3

3N

πτp
(τp∥FSt · ẑ∥∞)2 ≤ 4

√
Nτp∥FSt · ẑ∥∞, (17)

and therefore

∥FBB · ẑ∥2∞
∥FSt · ẑ∥2∞

≤ 16Nτp. (18)

Assuming that for sufficiently stratified flows the vertical components of the forces acting
on the particles dominate their dynamics, we can define a dimensionless number

Sb = Nτp, (19)

which in the following we will call the buoyancy Stokes number, as it corresponds to a
ratio between the particle response time and the Brunt-Väisälä period. We expect that for
sufficiently small Sb the effect of the Basset-Boussinesq force should be negligible.
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TABLE I: Relevant parameters of the fluid simulations. NT0 is the Brunt-Väisälä frequency in

units of T−1
0 = U0/L0, Fr is the Froude number, Re is the Reynolds number, Rb is the buoyancy

Reynolds number, L is the flow integral scale, η is the Kolmogorov scale, Lb is the buoyancy

length, and LOz is the Ozmidov length scale. All lengths are in units of the unit length L0.

Run NT0 Fr Re Rb L/L0 η/L0 Lb/L0 LOz/L0

N04 4 0.19 3600 130 1.22 0.0045 0.24 0.35

N08 8 0.11 2300 28 0.90 0.0050 0.10 0.17

N12 12 0.07 2500 12 0.97 0.0051 0.07 0.12

N20 20 0.05 2400 6 0.91 0.0048 0.04 0.07

TABLE II: Parameters of the particles in all simulations. St is the Stokes number, τp/T0 is the

Stokes time in units of T0, a/η is the particle radius in units of the Kolmogorov scale, and Rep
lists the particle Reynolds numbers and Sb the buoyancy Stokes number in all fluid simulations.

Label St τp/T0 ap/η
Rep Sb

N04 N08 N12 N20 N04 N08 N12 N20

St03 0.3 0.02 0.95 0.19 0.15 0.07 0.05 0.08 0.19 0.28 0.43

St1 1 0.07 1.70 0.72 0.52 0.22 0.12 0.25 0.64 0.94 1.40

St3 3 0.21 3.00 2.70 2.00 0.75 0.40 0.75 1.90 2.80 4.30

St6 6 0.43 4.20 6.70 4.80 1.70 0.33 1.50 3.80 5.60 8.60

IV. NUMERICAL SIMULATIONS

We now focus our attention on the numerical validation of the condition obtained in
Sec. III for regimes in which the Basset-Boussinesq force can be neglected or not. To this
end we performed several numerical simulations of stably stratified turbulence (see table I),
each of them with different particles (see table I). The Boussinesq fluid equations given by
Eqs. (4) and (5) were numerically solved in a triply periodic domain using a parallelized and
fully dealiased pseudo-spectral method, along with a second-order Runge-Kutta scheme for
time integration [29]. For the evolution of inertial particles satisfying Eq. (6) we used third-
order spline interpolation to estimate forces at the particles positions, and a second-order
Runge-Kutta method for time integration [30]. The Basset-Boussinesq force was computed
using the second-order method described in van Hinsberg et al. [28].

Numerical simulations were carried out using a spatial resolution of Nx = Ny = 768
and Nz = 192 grid points. The domain had dimensions Lx = Ly = 2πL0 in the horizontal
directions, and Lz = H = πL0/2 in the vertical direction, where L0 is a unit length. We
considered four different Brunt-Väisälä frequencies (see table I), measured in units of the
inverse of a unit turnover time T0 = L0/U0, with U0 representing a unit velocity. For
simplicity, all simulations had a Prandtl number Pr = ν/κ = 1. The kinematic viscosity was
chosen such that the Kolmogorov scale η = (ν3/ε)1/4 ≈ 0.005L0 was well resolved, where the
kinetic energy dissipation rate is ε = ν ⟨|ω|2⟩ and ω = ∇ × u is the vorticity. This results
in κη ≈ 1.6, where κ = Nx/(3L0) is the maximum resolved wave number when using the
2/3 rule for dealiasing, ensuring spatially well-resolved simulations [31, 32].

The forcing in Eq. (4) was a Taylor-Green forcing, that excites directly the flow horizontal
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velocity components, and produces large-scale counter-rotating vortices perpendicular to the
stratification separated by horizontal shear layers in between. Its expression is given by

f = f0 [sin(kfx) cos(kfy) cos(kfz)x̂− cos(kfx) sin(kfy) cos(kfz)ŷ] , (20)

where f0 is the forcing amplitude and kf = 1/L0 is the forcing wave number. This forcing has
been used in many studies of stratified turbulence (see, e.g., [11, 23] for detailed discussions
of the flow geometry and for visualizations). Note that this forcing remains constant over
time, introducing no additional time scales into the system.

Particles were initialized randomly in a horizontal strip of width H/5, centered around
z0 = H/2, and at a time in which the flows had reached a turbulent steady state (i.e.,
after flow integration for over 60 large-scale turnover times). The initial velocities of the
particles matched the fluid velocity at the center of each particle. The particles were one-way
coupled, essentially functioning as test particles. They neither collide with each other nor
contribute to the flow dynamics. To each fluid simulation in Table, four sets of particles were
introduced, each containing 25,000 particles, each set characterized by distinct values of τp.
Particles were integrated for more than 15 large-scale turnover times. Moreover, for each set
of particles, integrations were done solving Eq. (6) with and without the Basset-Boussinesq
history term (labed in the following respectively as “w/H” and “w/oH”). This resulted in a
cumulative count of 32 particle datasets, each with their corresponding Reynolds, Froude,
and Stokes numbers as defined next.

We can characterize the flow dynamics using two dimensionless numbers, the Reynolds
and Froude numbers,

Re =
LU

ν
, Fr =

U

LN
, (21)

where L = π/(2u′2)
∫
E(k)/k dk and U = ⟨|u|2⟩1/2 are respectively the characteristic Eule-

rian integral length and the r.m.s. flow velocity (where E(k) is the isotropic kinetic energy
spectrum, and u′2 = U2/3). With the aid of these numbers, we can also define the buoyancy
Reynolds number,

Rb = ReFr2, (22)

which quantifies the turbulence intensity at the buoyancy scale Lb = U/N , and plays a
crucial role in describing the flow behavior. When Rb ≫ 1 turbulence is strong even in the
presence of stratification, while for Rb ≪ 1 turbulent motions are significantly suppressed
by viscosity in each stratified layer. Geophysical flows typically exhibit large values of Rb
[33], but computational constraints impose severe restrictions on the range of values of Rb
that can be simulated. Previous studies indicate that Rb > 10 is sufficient for the flow to
sustain significant turbulence at small scales [34]. Considering computational limitations
and the need to explore parameter space, we consider flows with Rb ranging from 6 to 130.
Another relevant length scale to characterize the small scales of stratified turbulence is the
Ozmidov scale, LOz = 2π/kOz, with kOz =

√
N3/ε. At scales significantly smaller than LOz

we expect the flow to asymptotically recover isotropy. Thus, when Rb is sufficiently large,
and when LOz is larger than the the Kolmogorov dissipation scale, we can expect small scale
turbulence to be stronger, and to affect as a result the particle dynamics and transport.

The particles dynamics is usually characterized in turn by two dimensionless numbers,

St =
τp
τη
, Rep =

a|u− v|
ν

, (23)
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FIG. 1: (a) Ratio of the squared infinity norm of the vertical components of the

Basset-Boussinesq force to the Stokes force, as a function of the buoyancy Stokes number Sb for

all particles and simulations. A linear relation with slope of 1 is shown as a reference. (b) Same

for the infinity norms considering all components of both foces.

where St is the Stokes number, τη = (ν/ε)1/2 is the Kolmogorov dissipation time, and Rep
is the particle Reynolds number.

Tables I and II provide all these dimensionless numbers and characteristic scales for the
simulations. Note these tables should be read together, as we can have, e.g., particles with
St = 0.3 in a flow with N = 4/T0 (with or without the Basset-Boussinesq history term), or
the same particles but in a flow with N = 8/T0, 12/T0, or 20/T0.

V. NUMERICAL RESULTS

A. Relation between the forces and the buoyancy Stokes number

The first direct test of the bound given by Eq. (18) considers the strength of the
forces in all simulations with particles that include the Basset-Boussinesq force. To es-
timate ∥FBB∥∞, ∥FBB · ẑ∥∞, ∥FSt∥∞, and ∥FSt · ẑ∥∞, the maximum of the vector mod-
ulus and of the vertical component of each force were calculated for each particle in
the simulations over all times, and then the average values of ∥FBB∥2∞/∥FSt∥2∞ and of
∥FBB · ẑ∥2∞/∥FSt · ẑ∥2∞ were computed for each value of Sb. The results are shown in Fig. 1.
Note that ∥FBB · ẑ∥2∞/∥FSt · ẑ∥2∞ < 1 when St < 1. The condition on ∥FBB∥2∞/∥FSb∥2∞
being small is also bounded by St, confirming that the vertical component of the Basset-
Boussinesq force is dominant, and it is the component of interest to obtain a bound on the
effect of this force on the particles dynamics.

B. Influence of the Basset-Boussinesq force on particle dispersion

The next test studies the displacement of the particles in the turbulent flow, when the
Basset-Boussinesq force is considered or neglected. As in the vertical direction neutrally
buoyant particles are confined in a narrow layer (independently of whether the history term
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FIG. 2: Ratio of the mean squared horizontal dispersion considering the history term (w/H) and

without the history term (w/oH), as a function of time, for particles in flows with different

Froude and Stokes numbers: (a) St = 0.3, (b) St = 1, (c) St = 3, and (d) St = 6. The labels the

in first panel provide the Brunt-Väisälä frequency for all panels. Values of Sb for the particles are

given in each panel.

is present or not), we compare their mean square displacements in the horizontal direction,

δ
(j)
i

2
(t) =

〈
[xi(t)− xi(0)]

2
〉
, (24)

where the subindex i = 1, 2 stands for the x or y coordinates, and the supraindex j can
be w/H or w/oH (i.e., integration with or without the history term). Figure 2 shows the
ratio of the averages over all particles of the mean square horizontal displacements with and

without the history term, ⟨δ(w/H)
x

2
+ δ

(w/H)
y

2⟩/⟨δ(w/oH)
x

2
+ δ

(w/oH)
y

2⟩, as a function of time for
different Froude and Stokes numbers.

For small times compared with the Brunt-Väisälä period, 2π/N , the ratio remains close
to unity, but as time becomes close to 2π/N differences in the mean squared horizontal
dispersion develop. For small values of St (corresponding to small τp) and large values of
Fr (i.e., small values of N), the ratio hovers around unity and the differences between the
particles w/H and w/oH remain below 4%. As the value of St of the particles increases, the
ratio deviates from unity. For fixed St values, the ratio also increases as Fr decreases. This
increase in the differences w/H and w/oH is compatible with the increase in Sb. For large
values of Sb differences in the horizontal dispersion are between 10% to 15%, depending
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FIG. 3: Normalized difference between the mean squared velocity variations in cases with and

without the history term (respectively w/H and w/oH), as a function of time for particles in flows

with varying Froude and Stokes numbers (St): (a) St = 0.3, (b) St = 1, (c) St = 3, and (d)

St = 6. The labels the in first panel provide the Brunt-Väisälä frequency for all panels. Values of

Sb for the particles are given in each panel.

on the value of Fr. However, when Sb < 1, errors when neglecting the Basset-Boussinesq
force consistently stay below 5%. It is noteworthy that in many cases the largest errors
are found for intermediate times. Van Aartrijk and Clercx [25] reported that in stratified
flows different regimes develop in the vertical and horizontal dispersion of particles, with
the Basset-Boussinesq force having a significant impact in the development and extension
of transients at times close to the Brunt-Väisälä period.

C. Influence of the Basset-Boussinesq force on particles velocities

We now consider the effect of the Basset-Boussinesq history term on the particles veloc-
ities. To this end we consider again the horizontal (or perpendicular) components, and we
define mean squared velocity variations as

v
(j)
⊥

2
(t) =

〈
[vx(t)− vx(0)]

2
〉
+
〈
[vy(t)− vy(0)]

2
〉
, (25)

where the supraindex j again stands for w/H or w/oH, and where the average is computed
over all particles. We can then consider the absolute value of the difference between the w/H
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FIG. 4: Absolute value of the differences between the standard deviations of the Voronöı areas,

normalized by the average of the standard deviations, for particles considering and neglecting the

history term (respectively w/H and w/oH), as a function of Sb. Note the increase in the

differences as Sb increases. This trend highlights the increasing disagreement in the spatial

distribution of particles and in their clustering as Sb grows.

and w/oH cases, |(v(w/H)
⊥ )2 − (v

(w/oH)
⊥ )2|, normalized by the average of their mean squared

values, |(v(w/H)
⊥ )2 + (v

(w/oH)
⊥ )2|/2, as a function of time (see Fig. 3).

As it was the case for the mean squared horizontal dispersion, the difference between
the velocity variations with and without the Basset-Boussineq force remains small at early
times, and grows as the time approaches 2π/N . The error in the velocities increases with
increasing Stokes number, and with decreasing Froude number. In cases with Sb < 1 the
error in the velocities is less than 6%, while in the cases in which this condition is not
fulfilled the error increases up to ≈ 20%. The increase in this error at intermediate times is
consistent with what is observed in the horizontal particle dispersion in Fig. 2. Finally, note
that the time of the first maximum in this error also depends on the value of St, which is
consistent with observations of the time extension of the early ballistic behavior of particle
dynamics in stratified flows [27].

D. Effect of the Basset-Boussinesq force on particle clustering

The vertical confinement of neutrally buoyant particles in thin layers resulting from the
flow stratification has a strong impact on inertial particle clustering [27]. The aggregation
of particles is relevant in oceanic flows, in which even the dynamics of large particles are
sometimes modeled using modified versions of the Maxey-Riley equation. An example can
be found in the study of sargassum, a type of seaweed that serves as the habitat for marine
fauna but can also pose environmental challenges due to elevated levels of arsenic and heavy
metals when decomposing near coastlines [35, 36]. Another example involves phytoplankton,
that aggregates creating intricate structures spanning kilometers [37, 38], and forming thin
layers at depths correlated with regions of pronounced fluid density gradients and vertical
shear typically occurring near the bottom of the oceanic mixed layer [39]. We therefore
quantify in this subsection the effect of considering or neglecting the Basset-Boussinesq force
on particle clustering. To quantify the aggregation of particles we use a Voronöı tessellation.
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This technique has been used before to characterize the preferential concentration of particles
in laboratory experiments and in numerical simulations [7, 40–46].

In a Voronöı tessellation each particle is assigned a cell, corresponding to all the volume (or
area, in two-dimensional slices) that is closer to that particle than to any other neighbouring
particle. The size of the cells are then inversely proportional to the particle density in that
region: larger cells correspond to voids (i.e., regions with far apart particles), while smaller
cells correspond to clusters (i.e, regions with particles closer to each other). The standard
deviation of the volume (or area) of all the Voronöı cells can then we used to quantify the
amount of clustering in the flow [40, 41]: when the standard deviation is larger than that of a
random Poisson process, there is an excess of clusters and of voids compared with a random
homogeneous distribution of particles. While both three- and two-dimensional tessellations
have been used to study particle clustering in homogeneous and isotropic turbulence, in the
case of stably stratified flows the confinement of all particles in a layer near a the neutrally
buoyant level makes it reasonable to limit the study to 2D tessellations, by projecting all
particles into the horizontal plane (see, e.g., [27]).

We thus computed the standard deviation of the areas of the Voronöı cells in simulations
with the history term, σw/H, and without the history term, σw/oH. Figure 4 shows the
absolute value of the difference between these two deviations normalized by the average
of the standard deviations. For Sb < 1, the error when comparing cases w/H and w/oH
remains below 7%, with most simulations having errors below 4%. However, for Sb > 1
the error in the level of clustering grows rapidly with Sb, reaching values that exceed 20%.
This trend highlights the increasing disagreement in particle clustering when Sb > 1. Thus,
the bounds obtained in Sec. III are also useful to estimate the conditions under which the
Basset-Boussinesq force cannot be neglected when studying particle aggregation.

VI. CONCLUSIONS

We obtained a bound that is useful to determine under what conditions the Basset-
Boussinesq force in the Maxey–Riley equation for inertial particles can be neglected, when
the particles are submerged in a stratified flow. This bound motivated the definition of a
buoyancy Stokes number, Sb = Nτp which is the Stokes number of the particles at the fluid
buoyancy scale, i.e., it is the ratio of the particle response time to the Brunt-Väisälä period.
For sufficiently small Sb the effect of the Basset-Boussinesq force becomes negligible.

This condition was validated using direct numerical simulations of small particles in stably
stratified turbulent flows, exploring parameter space by varying the fluid Froude number
and the particles Stokes number. Numerical integration of the particles was also performed
considering and neglecting the Basset-Boussinesq force in the Maxey–Riley equation, to
quantify differences between these two cases.

Using the numerical simulations we computed the infinity norm of the forces acting on
the particles, and showed that the infinity norm of the Basset-Boussinesq force becomes
smaller than the infinity norm of the Stokes force when Sb < 1. Three other observables
were considered: single particle dispersion (i.e., the mean squared distance traveled by the
particles), the mean squared velocity of the particles, and particle clustering. In all cases,
differences between simulations with and without the Basset-Boussinesq force were small
when Sb < 1, and grew rapidly with Sb when Sb > 1. Thus, the Basset-Boussinesq force
must be considered in particles with large inertia, or in particle laden fluids with strong
stratification. The results presented here allow the estimation of the conditions under which
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this force becomes relevant in different geophysical contexts [5, 6, 22, 25, 35–37].
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