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A novel method is proposed to identify vortex boundary and center of rotation based on tubular
surfaces of constant stagnation pressure and minimum of the stagnation pressure gradient. The
method is derived from Crocco’s theorem, which ensures that the gradient of stagnation pressure
is orthogonal to both the velocity and vorticity vectors. The method is Galilean invariant, requires
little processing and is robust. It enables visualization of complex turbulent flows and provides a
physically consistent definition of vortex boundaries for quantitative analyses. This vortex boundary
is a material surface that is representative of the kinematics of the flow by construction, constitutes
a vortex tube, ensures conservation of circulation in the inviscid limit and provides a unique relation
to the conservation of momentum equations and vortex loads.

Introduction Vortices are a near universal and char-
acteristic feature of fluid flows. Defining their boundary
and centerline is crucial for understanding flow behavior,
loads and more fundamentally, energy transport in tur-
bulence. While they are visually easy to identify, there
is no consensus on the mathematical definition of what
constitutes a vortex, and what Lugt [1] aptly called the
‘dilemna of defining a vortex’ is still a topic of active re-
search. Robinson [2] groups vortices into a more general
category of ‘coherent motions’ which is the foundation
of turbulent structures. This definition perhaps hints at
the difficulty encountered in trying to use a metric that is
local and instantaneous to describe a phenomenon that
is fundamentally non-local (spatial coherence) and tran-
sient (temporal coherence) while being usable across a
wide variety of flows. Several methods have been pro-
posed and successfully applied [3, 4]; the difficulty gener-
ally resides in finding a metric that can accommodate a
large variety of vortex types while distinguishing between
shearing and vortical vorticity and being invariant [5]. In
their review of vortex identification, Epps [4] formalizes
a list of requirements for methods, which includes among
others: be objective (invariant to translation and rota-
tion of the coordinate system); avoid use of ‘an arbitrary
threshold’; identify coherent motion; guarantee non-zero
vorticity; be insensitive to shear vorticity; be applica-
ble to compressible flows and heterogeneous fluids; be
robust to experimental noise. In addition to these crite-
ria, secondary properties are desirable: a method should
be computationally inexpensive and favor the use of lo-
cal variables, and not depend on higher order quantities
that can be slow to converge thus require long sampling
times. Many methods exist that have verified some part
of these requirements [3], [4] although none validate all
of them. Some of the most commonly used methods are
:

• pressure [2]: vortices can be identified as minima of
pressure. This method has the advantage of sim-
plicity and being invariant, however the presence of
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a minimum of pressure does not guarantee the ex-
istence of a vortex. Worse, the presence of a vortex
does not guarantee a minimum of pressure such as
the case of vortices with strong axial velocity (see
paragraph ‘Case II - 6:1 prolate spheroid’). Instead
of using pressure directly, Li and Carrica [6] used
the gradient of pressure normalized by its Lapla-
cian as a distance field to the vortex core. This ap-
proach recovers the radius of a Rankine vortex and
shows promising results for the cases demonstrated
in their study such as homogeneous isotropic tur-
bulence however, as the authors note, it is limited
to cases where the pressure gradient originates from
the vortex;

• vorticity magnitude or axial vorticity [7]: Saffman
[7] defines vortices as a connected region of vor-
ticity. In accordance with this definition, vortices
can be identified through a maximum of axial vor-
ticity although this requires a-priori knowledge of
the axis of vorticity; or through the maximum of
enstrophy [8]. This method is simple and the pres-
ence of a vortex guarantees the existence of a local
extrema of vorticity, however, it does not distin-
guish between shear layer and vortices;

• The Q criterion method, proposed by Hunt et al. [9]
and refined by Dubief and Delcayre [10] using large-
eddy simulation and direct numerical simulation,
identifies vortices as regions where the Q value is
positive with:

Q = ||Ω||22 − ||S||22

where S is the strain rate tensor and Ω is the rota-
tion tensor. Positive values are indicative of regions
with strong streamline curvature;

• Jeong and Hussain [11] proposed another velocity
gradient tensor based method based on the second
eigenvalue of the matrix Ω2 + S2. It uses the fact
that a negative second eigenvalue is indicative of a
rotation-dominated area of the flow, to identify co-
herent rotating motion. Both the Q criterion and
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λ2 methods are widely used and identify vortices in
strong vorticity regions and discriminate efficiently
between shear layer and coherent motion, however
they can generate false positives (corner flow for
example) and may not align as well with a more
intuitive streamline definitions (see paragraph ‘cav-
ity flow’). Their limitation comes from the exclu-
sive use of kinematic variables and it will be shown
that they fail in the case of a cavity flow where the
streamlines are curved outside a vortex;

• Lagrangian based [12]: these methods define vor-
tices in terms of particle trajectory such as closed
streamlines. While they give results that are close
to the qualitative observation of vortices, they are
harder to use since they rely on non-local and time-
varying variables. In addition, it can difficult to as-
sess whether streamlines are closed, especially for
three-dimensional vortices. Furthermore, using ve-
locity vectors is not an objective metric. It may
give a different result if a constant velocity compo-
nent is added to the field [1].

Despite the multitude of methods available, none of-
fers both a robust way of visualizing vortices in complex
flow and a way to identify vortex topology in accordance
with the kinematics of the flow and conservation laws.
Vorticity–based and Lagrangian methods are impracti-
cal for the former while Q criterion and λ2 are unreliable
for the latter. The goal of this study is to propose a
novel vortex identification method which can visualize
complex turbulent flows while providing individual vor-
tex boundaries and centers that are physically sound so
that vortex properties such as loads, circulation, flux can
be measured in a way that is flow–agnostic. The pro-
cess should not rely on complex calculations and should
only use variables that are readily available. The pro-
posed alternative shows similar results to the state of
the art λ2 method for visualizing tripped boundary layer
flow and flow over a cylinder while it outperforms it on
a lid-driven cavity flow and the flow over a 6:1 prolate
spheroid at angle of attack. It is simple, fast to converge
and gives a general definition for purpose of quantitative
vortex analyses.

Theoretical basis The momentum equation is written
in a translating reference frame following a vortex. Let
u⃗ = ui, P = P ′/ρ, and τ = τij be the instantaneous
velocity relative to the center of the vortex, pressure,
density and specific shear stress. The incompressible mo-
mentum equation can be written in index notation where
a repeated index is used to represent summation:

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂P

∂xi
+

1

ρ

∂τij
∂xj

(1)

The convection term can be written as:

uj
∂ui

∂xj
=

1

2

∂ujuj

∂xi
− ujωkϵijkei

Vortex center

Ps = constant

ω⃗

u⃗

u⃗× ω⃗

FIG. 1. Schematic of Crocco’s theorem applied to a vortex

where ei is the unit vector along the ith coordinate and
ϵijk is the Levi–Civita symbol. This expression is in-
serted into equation 1. In addition, using the Taylor’s
hypothesis of frozen turbulence [13], it is assumed that
the relative Eulerian velocity inside the vortex is con-
stant, thus ∂ui/∂t = 0.

1

2

∂ujuj

∂xi
− ujωkϵijkei = − ∂P

∂xi
+

∂τij
∂xj

ujωkϵijkei =
∂

∂xi
(P +

1

2
uiui)−

∂τij
∂xj

The stagnation pressure is written as: Ps = P + 1
2uiui,

yielding:

ujωkϵijkei =
∂Ps

∂xi
− ∂τij

∂xj

This yields Crocco’s theorem for viscous flows in vector
notation:

u⃗× ω⃗ = ∇Ps +∇ · τ (2a)

u⃗ × ω⃗ is referred to as the Lamb vector where ”×” is
the cross product. If the Reynolds number is sufficiently
high, the viscous term is negligible and the equation be-
comes:

u⃗× ω⃗ ≈ ∇Ps (2b)

Note that equation 2b is instantaneous and allows visu-
alization of turbulent flows assuming steady flow inside
the eddies in accordance with Taylor’s hypothesis. This
hypothesis may not be valid for certain flows, for exam-
ple, large coherent recirculation vortices. In this case, a
time–averaged variant can be used:

⟨u⃗× ω⃗⟩ ≈ ∇⟨Ps⟩ (2c)

Where the bracket ⟨·⟩ indicates time averaging.

Figure 1 illustrates the terms of equation 2b. The ve-
locity vector follows the streamline by definition and∇Ps

is orthogonal to the streamline since u⃗× ω⃗ = ∇Ps. This
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∇Ps

r⃗

∇Ps · r⃗ < 0

∇Ps

r⃗
∇Ps · r⃗ ≥ 0

FIG. 2. Schematic illustrating the ∇Ps · r⃗ condition for a
vortex in a shear layer.

means that streamlines are tangential to the isosurfaces
of Ps. Since u⃗ × ω⃗ is also orthogonal to ω⃗, the vortic-
ity vectors are also tangential to the isosurfaces of Ps.
This result is discussed by Truesdell [14] in restrictive
‘complex-lamellar’ cases where u⃗ · ω⃗ = 0 and ∥ω⃗∥ = 0.
The u⃗ × ω⃗ isosurfaces are referred to as Lamb surfaces.
These surfaces have the interesting property of contain-
ing both the streamlines and the vortex lines. An in-
tuitive way of defining a vortex is to consider the inte-
rior of closed streamlines, however, it is difficult to assess
whether streamlines are closed in practice. They also
depend on the coordinate frame and may not close at
all if the vortex is three–dimensional. This issue can be
resolved by observing that a closed streamline will be
contained inside a tube of constant stagnation pressure
since the streamlines are tangential to the Lamb surfaces.
Thus a convenient way to define a vortex is to consider a
tubular Lamb surface, which has several advantages over
more commonly used vortex identification methods, in
the inviscid limit:

• The Lamb tube is a material boundary which en-
sures conservation of circulation along its axis;

• Because the streamlines are tangent to the Lamb
surfaces, the boundary of the vortex is consistent
with a Lagrangian definition while relying on Eule-
rian metrics, which are simpler to evaluate;

• The net flux of momentum and vorticity across the
boundary is zero hence the loads integrated over
the volume of a vortex core is zero. The loads of
the vortex over a nearby wall originate from the
intersection of Lamb surfaces and the wall.

The right-hand side of equation 2c can be expanded
using a Reynolds decomposition where u′

i is the velocity
perturbation:

∇⟨Ps⟩ = ∇(⟨P ⟩+ 1

2
⟨ui⟩⟨ui⟩+

1

2
⟨u′

iu
′
i⟩)

This form shows that equation 2c applied to a vortex is
a statement of energy conservation, stored in the form of

potential energy P , mean kinetic energy 1
2 ⟨ui⟩⟨ui⟩ and

turbulent kinetic energy 1
2 ⟨u

′
iu

′
i⟩. Consider the curva-

ture vector r⃗ (which can be obtained by normalization
of ∂u⃗/∂s = ∂ui/∂xj · uj/∥u⃗∥, where s is the streamwise
coordinate), pointing from in the direction of the vortex
center thus co-linear with ∇Ps. Moving in the direction
of r⃗ from the periphery to the center, the total energy
decreases as the enclosed region contains less integrated
vorticity thus ∇Ps · r⃗ < 0. This is illustrated in figure
2, showing that within the vortex, the gradient is not
only aligned with the direction of curvature, but Ps also
decreases toward the center. Outside the vortex how-
ever, Ps either decreases outward or is constant with the
radius. r⃗ on the other hand, always points toward the
center of rotation by definition. Thus the sign of ∇Ps · r⃗
can inform the region dominated by the vortex. The fol-
lowing criteria are proposed to identify the region of a
vortex:

• Vortex core: Ps ≤ P 0
s where P 0

s is the value of a
closed isoline;

• Outer vortex region: ∇Ps · r⃗ < 0, with ∥∇Ps∥ ≠ 0.
r⃗ can be calculated by normalization of the vector
∂ui/∂xj · uj .

The first condition ensures that the vortex boundary is a
material surface, more specifically a vortex tube that con-
serves circulation along its axis and has zero momentum
deficit hence zero load. The second condition identifies
regions where pressure gradients are aligned with the lo-
cal streamline curvature. Lower threshold than zero may
be used, similar to common methods such as λ2 and Q
criterion. The stagnation pressure field also provides an-
other desirable feature of vortex identification methods,
which is to locate the center. At a vortex center, the
velocity and the vorticity vectors are co-linear, aligned
with the axis of the vortex by axisymmetric constraint,
thus the normalized helicity density is unity and normal
of the Lamb vector ∥u⃗ × ω⃗∥ is close to zero. The center
of the vortex can then be found as a local minimum of
stagnation pressure and its gradient.
Approximation of Lamb surfaces for experimental pur-

poses The pressure field in the fluid may not be readily
experimentally, however, in certain conditions, it is pos-
sible to approximate Lamb surfaces with surfaces of con-
stant total kinetic energy K = 1

2uiui. These iso-surfaces
will approach Lamb surfaces when ∂P/∂xj ≪ K, which
is a similar approximation as the one considered by kine-
matic methods such as λ2. In these condition, vortices
can be visualized by ∇K · r⃗ ≤ 0 surfaces.
Connection with vortex loads Defining vortices based

on isolines offers a unique perspective on the vortex loads
since the stagnation pressure appears in the momentum
equation. Integrating equation 2c over a control volume
V , bounded by a surface S and normal n⃗ gives:∫

V

⟨u⃗× ω⃗⟩dV =

∫
S

⟨Ps⟩n⃗dS
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which can be written as:

Fω =

∫
S

⟨Ps⟩n⃗dS (3)

where:

Fω =

∫
V

⟨u⃗× ω⃗⟩dV (4)

represents the net momentum from vorticity in the con-
trol volume [15], [7], which equates the divergence of the
stagnation pressure. If the boundary of a vortex is de-
fined as a closed isoline of stagnation pressure of constant
value P iso

s , the equation becomes:

Fω =

∫
S

⟨P iso
s ⟩n⃗dS = ⟨P iso

s ⟩
∫
S

n⃗dS = 0

This is consistent with the result that the net momentum
from an isolated vortex is zero. If the vortex is near a
wall, the loads come from the intersection of the isolines
of stagnation pressure and such wall. Indeed, for that
case equation 3 becomes:

Fω = ⟨P iso
s ⟩

∫
Sfluid

n⃗dS +

∫
Swall

⟨Pwall
s ⟩n⃗dS (5)

Where S = Sfluid ∪ Swall, the fluid and wall surfaces
of the control volume respectively. Consider a spanwise
vortex above a horizontal wall located at y = 0 and apply
equation 5 in a semi-infinite control volume in x and y.
Note that the equations are derived in two-dimensions for
ease of reading although extension to three-dimensions is
trivial.

Fω · n⃗y = ⟨P iso
s ⟩

∫
Sfluid

n⃗ · n⃗ydS +

∫
Swall

⟨Pwall
s ⟩dS

= −P∞
s

∫ x=+∞

x−∞

dx+

∫
Swall

⟨Pwall
s ⟩dx

=

∫ x=+∞

x=−∞
⟨Pwall − (P∞ +

1

2
U2
∞)⟩dx (6)

Where Pwall = P ′
wall/ρ is the static pressure at the wall,

P∞ and U∞ are the freestream pressure and velocity
respectively. Equation 6 correctly recovers the expected
expression of force. In addition, if the domain is size lx
in the x direction with lx → 0:

limx→0Fω · n⃗y =

∫ y=+∞

y=0

⟨Pwall − (P∞ +
1

2
U2
∞)⟩

=

∫ y=+∞

y=0

1

2
U2
∞(cp − 1) (7)

Where cp = 2(⟨Pwall⟩ − P∞)/U2
∞ is the wall pressure

coefficient. Combining equations 4 and 7 yields:∫ y=+∞

y=0

⟨u⃗× ω⃗⟩dy =
1

2
U2
∞(cp − 1) (8)

Equation 8 can be used to identify the contribution of
specific area of the flow to the wall pressure.

Procedure In summary, the following procedure is
used to analyze vortical flows.
Calculate stagnation pressure Ps = P + 1

2 u⃗ · u⃗ for un-

steady flows or ⟨Ps⟩ = ⟨P ⟩+ 1
2 ⟨ui⟩⟨ui⟩+ 1

2 ⟨u
′
iu

′
i⟩ for statis-

tically steady flows. Visualization of this variable yields:
regions where the flow is rotational (boundary layers, re-
circulations...) with values of Ps that are smaller than
the free-stream value; vortex centers as local minima of
stagnation pressure; vortex core as region contained in
closed isolines of stagnation pressure; vortex boundary as
largest closed isoline of stagnation pressure. This bound-
ary can be used for the purpose of integral calculation on
the vortex.
This approach is simple and yields reliable results for

the analysis of a 2D slice of isolated vortices. The follow-
ing procedure is followed for the purpose of visualizing
3D isosurface in general turbulent flows:

• Calculate the gradient of stagnation pressure as:

∇Ps =
∂Ps

∂xj
=

∂P

∂xj
+ ui

∂ui

∂xj

• Calculate the vector r⃗, which points toward the cen-
ter of rotation of the streamline as:

r⃗ =
uj

∂ui

∂xj√
ukuk

• Calculate ∇Ps · r⃗ and visualize its negative iso–
surfaces.

Analytical vortex: Rankine model The Rankine vor-
tex is a simplified two-dimensional model where the fluid
moves in solid body rotation within a radius r0 and where
the flow is potential at a distance greater than r0:

ur = uz = 0

uθ = u0
r
r0
, r ≤ r0

uθ = u0
r0
r , r ≥ r0

The momentum equation in cylindrical coordinate sim-
plifies to

∂P

∂r
=

u2
θ

r

Thus the r derivative of the stagnation pressure is:

∂Ps

∂r
=

∂P

∂r
+ uθ

∂uθ

∂r

=

{
u2
0r

r20
+

u2
0r

r20
= 2

u2
0r

r20
, r < r0

u2
0r

2
0

r3 − u2
0r

2
0

r3 = 0, r > r0

If the vortex is taken at the boundary where ∇Ps · r⃗ = 0,
in this special case ∂Ps/∂r = 0, the radius of vortex is
perfectly recovered as r0, thus the method is thus consis-
tent for a Rankine vortex. In the next paragraphs, the
vortex identification method is tested on several numer-
ical cases.
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Numerical approach The incompressible, spatially fil-
tered Navier-Stokes equation are solved in a Large-Eddy
Simulation formulation:

∂ui

∂t
+

∂

∂xj
(uiuj) = − ∂P

∂xi
+ ν

∂2ui

∂xj∂xj
− ∂τ ij

∂xj
, (9)

∂ui

∂xi
= 0, (10)

The Sub-Grid Stress (SGS) τ ij = uiuj −uiuj is modeled
with the dynamic Smagorinsky model [16, 17]. A finite
volume, second order centered spatial discretization is
used where the filtered velocity components and pressure
are stored at the cell-centroids while the face-normal ve-
locities are estimated at the face centers. The equations
are marched in time with a second order Crank-Nicolson
scheme. A diverse range of complex flow have been stud-
ied using the formulation, such as propeller in crashback
[18, 19] and flow over hulls [20, 21]. The kinetic-energy
conservation property of the method [22] makes it suit-
able for high Reynolds number flow such as the one pre-
sented in this paper. Horne and Mahesh [23] extended
the method for overlapping (overset) grids and six-degree
of freedom. Although all the geometries presented in the
current study are static, the overset formulation is used
to limit the computational cost while increasing the res-
olution in regions of high shear.

Case I - Cavity flow A cavity flow is a canonical
problem which produces a steady vortex. The chosen
Reynolds number is 10000, for a cubic cavity of unit
length in all directions. The top boundary has unit ve-
locity U0, no-slip condition are applied on the bottom
and sides walls with a periodic boundary on the span.
The flow is developed until the loads plateau, which hap-
pens at around 40 units. Figure 3 shows the averaged
velocity streamlines, the mean stagnation pressure iso-
lines, λ2 and the mean stagnation pressure blanked by
∇Ps·r⃗. Even for this moderate Reynolds number, the iso-
lines of stagnation pressure are very well aligned with the
streamlines. The deficit of stagnation pressure correctly
identify the location of the primary vortex and the three
secondary vortices. In contrast, λ2 correctly identifies the
primary as well as the secondary vortices, however, the
shape of the vortices deviates from the streamlines. In
addition, it has several false positives, specifically on the
top corner and below the primary vortex. These artifacts
occur where the streamlines have significant curvature
though no vortex is present. The ∇Ps · r⃗ criterion cor-
rectly identifies all the vortical structures without false
positives; the iso-surfaces of stagnation pressure are well
aligned with the streamlines. As previously mentioned,
the method can also be used to estimate loads. Applying
the equation 2a along the vertical direction and integrat-
ing over the cavity yields:∫

V

⟨u⃗× ω⃗⟩ · n⃗ydV = −
∫
Stop

⟨Ps⟩dS

+
1

2
U2
0 (

∫
Sleft

cfdS −
∫
Sright

cfdS +

∫
Sbottom

cpdS) (11)

a) b)

c) d)

FIG. 3. Averaged velocity streamlines (a); mean stagnation
pressure isolines (b); λ2 masked at λ2 < −0.1 (c); and mean
stagnation pressure masked by ∇Ps · r⃗ < 0 (d) in the cavity
at Re = 10000.

where V is the volume of the cavity, Sleft, Sright, Sbottom

and Stop are the surfaces of the back and front walls,
cf is the skin friction coefficient, cp is the wall pressure
coefficient, Ps is the stagnation pressure.

Table I shows the value of each of the terms of equa-
tion 11. Even for this moderate Reynolds number, the
value of the viscous term is negligible (two orders of mag-
nitude) compared to the pressure terms and the vorticity
term. This justifies the inviscid form of Crocco’s theorem
for vortical flows with higher Reynolds number based on
vortex diameter. This also suggests that the Lamb vector
can be used as a way to measure the load contribution
of a fluid parcel on the wall. Figure 4 shows its local
value, representative of the contribution of the vortical
force to the wall: a negative value is indicative of an in-
creased pressure contribution on the bottom wall while a
positive value indicates suction. Most of the loads come
from the region on the edge of the primary vortex and
are suctions, except at the bottom where the separated
sheet impinges on the bottom wall and contributes to an
increased pressure on that boundary.

Figure 5 shows the direction and magnitude of ⟨∇Ps⟩,
demonstrating equation 2b and figures 1 and 2 for a simu-
lated flow. Inside the vortices, the gradient points toward

TABLE I.

⟨u⃗× ω⃗⟩y Fy top Fy sides Fy bottom
0.5071 0.5056 −4.077e−3 −2.064e−3
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FIG. 4. ⟨u⃗× ω⃗⟩y in the cavity in the steady state

the center of rotation and are orthogonal to the stream-
lines seen in figure 3. The lines converge toward localized
minima of stagnation pressure ⟨Ps⟩ which constitute the
centers of the vortices.

FIG. 5. Color: |⟨∇Ps⟩| in the cavity. The lines are tangential
to the direction of ⟨∇Ps⟩

Case II - 6:1 prolate spheroid The 6:1 prolate
spheroid is a canonical geometry that is commonly used
to study smooth three-dimensional separation. At an-
gle of attack, the boundary layer separates and forms a
coherent, attached, counter-rotating vortex pair. A 20◦

incidence of the flow is chosen with a Reynolds num-
ber ReL = 4.2M where L is the length of the geome-
try. Numerical details are available in Plasseraud et al.
[24], from which these results are taken. The flow is
computed using wall-resolved large-eddy simulation on a
600M control volume overset grid tripped at x/L = 0.2.
The statistics are averaged for one spheroid flow-through
of time. In these conditions, the boundary layer separates
along two separate longitudinal lines and two counter-
rotating vortex pairs are formed, a primary pair and a
smaller secondary pair underneath the primary separa-
tion sheet. A certain number of features make this flow

particularly challenging to simulate and for vortex iden-
tification methods [24]:

• The flow is characterized by several smooth 3D sep-
arations leading to several counter-rotating vortex
pairs on the lee of the obstacle. Smooth separa-
tions are hard to resolve because they depend on
the state of turbulence of the boundary layer; 3D
separations are challenging to locate because they
cannot be identified by the cancellation of the near-
wall velocity or skin friction;

• The vortex pairs are attached, which may be prob-
lematic for vortex identification since it is hard to
isolate where the separated sheet ends and where
the vortex begins. Isolating the separated sheet
may be desirable for the purpose of analysis;

• The vortices are strongly three-dimensional, which
means that there is a net flux of momentum along
their axis and that the streamlines are three-
dimensional curves, complicating the vortex iden-
tification especially for Lagrangian methods;

• The multiple vortices and image vortices interact
with each other to modify the velocity field. This
implies that the center of each vortex has non-zero
velocity magnitude;

• The surface of the spheroid is curved thus iden-
tification methods based on streamline curvature
alone (i.e. Q and λ2 method) may interpret the
attached flow as a vortex;

• The separation sheet and the primary vortex pairs
have normalized helicity magnitude that are close
to unity (Beltrami flow), where the velocity vec-
tor and the vorticity vectors are almost co-linear
even though they have non-zero norm. This may
challenge the proposed method that relies on Lamb
surfaces, which could become undefined in Beltrami
flows.

Figure 6 (a) shows secondary streamlines and normal-
ized helicity density on the lee of the prolate spheroid
at x/L = 0.772, where x is the axial coordinate. The
streamlines display the primary vortex pair as well as
the separation sheet. The helicity density shows the pri-
mary vortex pair, the separated sheet as well as the small
counter-rotating secondary vortex pair close to the wall.
The helicity is very close to one in both the separation
sheet and in the center part of the primary recirculation
region; while its absolute value is between 0.5 and 1 in
the outer part of that area.6(b): ⟨λ2⟩ captures the general
area around the vortex however the boundary does not
align well with the streamlines and it does not represent
the elliptical shape seen on the streamlines and in helicity.
Furthermore, the center of the primary vortices cannot
be reliably located as the minimum is too noisy. Simi-
lar values of ⟨λ2⟩ are seen between the attached bound-
ary layer, the separation sheet and the entire secondary
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vortices, making it hard to discriminate between these
three features. This lack of contrast comes from the dif-
ficulty the λ2 method has to eliminate attached curved
streamlines from detached one as discussed above. 6(c)
shows the time-averaged stagnation pressure. The core
is distinctly visible as a closed circular region of lower
pressure. The separation is identifiable as a saddle in
this transverse plane. The isolines on the outer part of
the recirculation and the separation agree well with the
streamlines although the predicted location of the core is
offset from the minimum of secondary velocity, similarly
to λ2. This is due to the induced velocity from the other
real and mirror vortices as discussed previously. 6(d):
⟨∇Ps · r⃗⟩ agrees even better with the secondary stream-
lines. The separation sheet and the inner part of the
vortex where the helicity is unity, are distinctly visible
as a negative, close to zero value. The separation sheet
is thin and allows to both identify the location of sepa-
ration and the point of contact with the primary vortex.
Surprisingly, another region is visible in the recircula-
tion, which surrounds about half of the inner vortex and
that has lower gradient of stagnation pressure. This pat-
tern, along with the observations on the helicity, shows
that the fluid from the separating boundary layer is first
advected in the center of the vortex rather than at the
periphery. The vorticity is then diffused from the core
to the outer outer region that appears with a strong gra-
dient of stagnation pressure. In addition, a secondary
vortex pair is identifiable close to the wall and distinct
from the turbulent boundary layer. The capacity of the
proposed method to distinguish between the various lay-
ers of the vortex and clearly isolate the separation and
small secondary vortices close to the wall is a unique and
invaluable property for the study of complex flows.

The following two cases demonstrate the ability of the
method to visualize complex unsteady turbulent flows.

Case III - Tripped boundary layer The stagnation
pressure method is first used for a flow over a flat plate
with zero pressure gradient. The flow is tripped us-
ing a horizontal cylindrical wire of unit diameter. The
Reynolds number based on trip height is 1000; the inflow
is prescribed as a Blasius profile of boundary layer thick-
ness δ99 = 1.5. The flow is resolved using wall-resolved
large eddy simulation. More details about the simula-
tion and the results are provided in Plasseraud et al. [25],
from which the results are taken. The challenge of vortex
identification methods in this case, is to isolate vorticity
inside vortices (vortical vorticity) from vorticity in the
boundary layer (shearing) since the wake develops in a
boundary layer. Figure 7 shows the λ2 = −0.01 (left) and
∇Ps · r⃗ = −0.1 isosurfaces in the region downstream of
the trip. Both methods have very similar results, showing
the complex development of hairpin vortices in the wake
of the trip. The boundary layer upstream of the trip
has a Blasius profile, which contains non-vortical vortic-
ity. The proposed method successfully isolate the vortical
vorticity from the shearing and does not show any sur-
face from the upstream region. The two methods diverge

a) b)

c) d)

FIG. 6. Secondary streamlines and normalized helicity den-
sity (a); λ2 (b); time-averaged stagnation pressure (b); ⟨∇Ps ·
r⃗⟩ (d) in a transverse plane at x/L = 0.772, in the prolate
spheroid flow at 20◦ incidence

slightly in the near wake of the trip, where the separation
sheet is wavier with the λ2 method compared to a flatter
surface for the stagnation pressure method. This is due
to the former method capturing more rotational motion
of the streamwise instabilities while the latter is better at
identifying separation with a longer radius of curvature.

Case IV - Cylinder The flow around an infinite cylin-
der for Reynolds number based on diameter of 1000 is cal-
culated. A constant inflow of velocity U∞ is prescribed,
with a Neumann boundary as the outflow. The domain
is four diameters in the span with 30M control volumes.
Figure 8 shows the λ2 = −1 isosurface (left) and the
∇Ps · r⃗ = −0.6 isosurface (right), both colored by instan-
taneous vorticity magnitude. This regime is character-
ized by alternate periodic shedding of spanwise vortices
at measured Strouhal number St = fD/U∞ ≈ 0.196
(where f is the frequency of shedding, D the diameter of
the cylinder) with smaller streamwise, elongated counter-
rotating vortices connecting the primary ones. The pro-
posed method is able to capture the unsteady flow in the
wake of the cylinder even at low Reynolds number. It
also correctly show the primary and secondary structures
and give similar results as λ2. The stagnation pressure
method successfully captures a large range of vortices
size, topologies and successfully isolate the streamwise
counter-rotating vortex pairs. Some differences are ob-
served between the two methods: the geometry of the
vortices are slightly different (visible with different val-
ues of vorticity). Similarly to the tripped flow problem
(see paragraph ‘Case III - Tripped boundary layer’), the
stagnation pressure method successfully isolate the vor-
tical vorticity from shearing.
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FIG. 7. λ2 = −0.01 (left) and ∇Ps · r⃗ = −0.1 isosurfaces (right) colored by instantaneous spanwise vorticity, in the tripped
boundary layer case at Re = 1000.

FIG. 8. Cylinder flow at Re = 1000: λ2 = −1 iso-surface (left) and ∇Ps · r⃗ = −0.6 iso-surface (right), colored by instantaneous
vorticity magnitude.

Conclusion A new vortex identification methodolody
is proposed for incompressible flows, which uses isosur-
faces of stagnation pressure as a vortex boundary. More
specifically, a vortex is contained in a region where:

• Vortex core: Ps = P ′/ρ + 1/2uiui ≤ P 0
s where P 0

s

is the value of a closed isoline;

• Outer vortex region: ∇Ps · r⃗ < 0, with ∥∇Ps∥ > 0.
r⃗ is a vector that points towards the local curvature
of the flow and can be calculated by normalization
of the vector ∂ui/∂xj · uj .

• Vortex center: minimum of Ps and ∥∇Ps∥.

The method is robust, fast to converge, trivial to use and
can be applied to both steady and unsteady flows. The
theoretical basis originates from Crocco’s theorem which
guarantees that in the inviscid limit, streamlines are tan-
gential to stagnation pressure iso-surfaces while the norm
of the stagnation pressure gradient is minimal at vor-
tex centers. Despite the assumption of inviscid flow, the
method has demonstrated excellent identification abili-
ties even at moderate Reynolds numbers. The method
can be used to help estimate vortex loads by using the

relation between u⃗× ω⃗ and the isoline of stagnation pres-
sure. For experimental purposes where the pressure field
is not readily available, vortices can instead be visualized
with iso-surfaces of ∇ 1

2uiui · r⃗ < 0, which approximates
the stagnation pressure criterion when the pressure gra-
dient is negligible compared to the gradient of kinetic
energy.
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