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A B S T R A C T

The reduction of carbon emissions in the manufacturing industry holds significant importance in
achieving the national "double carbon" target. Ensuring energy efficiency is a crucial factor to be incor-
porated into future generation manufacturing systems. In this study, energy consumption is considered
in the distributed homogeneous flow shop scheduling problem (DHFSSP). A knowledge-driven
memetic algorithm (KDMA) is proposed to address the energy-efficient DHFSSP (EEDHFSSP).
KDMA incorporates a collaborative initialization strategy to generate high-quality initial populations.
Furthermore, several algorithmic improvements including update strategy, local search strategy, and
carbon reduction strategy are employed to improve the search performance of the algorithm. The
effectiveness of KDMA in solving EEDHFSSP is verified through extensive simulation experiments. It
is evident that KDMA outperforms many state-of-the-art algorithms across various evaluation aspects.

1. Introduction
At present, China is in a critical phase of accelerat-

ing the construction of a new development paradigm and
deepening comprehensive reforms. Building a green and
low-carbon industrial system and development pattern is
an intrinsic requirement for promoting high-quality eco-
nomic development, practicing new development concepts,
and fostering harmonious coexistence between humans and
nature [1]. Therefore, driving carbon emission reduction
in the manufacturing industry is of key significance for
achieving China’s dual carbon goals. Production scheduling,
as a vital component of the manufacturing system, directly
affects the efficiency and competitiveness of enterprises [2].
Researching and applying efficient optimization techniques
and scheduling methods is crucial for achieving energy
conservation and emission reduction, reducing production
costs, and enhancing the optimality of production systems
[3]. It is also central to improving production efficiency, eco-
nomic benefits, and considering environmental impacts [4].
With the rapid development of economic globalization, an
increasing number of manufacturing enterprises are expand-
ing their production models into distributed environments
and establishing multiple factories in different geographical
locations to enhance production efficiency and cope with in-
tensifying market competition [5]. Carbon emissions during
the production scheduling process vary depending on the
different processing jobs and technologies [6]. It is evident
that different production scheduling plans significantly affect
the total carbon emissions of the entire production process.
Therefore, investigating the distributed flow shop scheduling
problem (DFSSP) based on carbon emissions not only has
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profound academic significance but also holds considerable
practical application value.

In the DFSSP, numerous challenges arise from the real-
istic constraints or unique stages of different flow shop types.
Existing research has considered constraints related to flow
time, including fuzzy processing times, random processing
times, setup times, and transportation times. Constraints
related to production flow shops include no-wait, no-idle,
blocking, limited buffer, and batch flow. Other constraints
considered in distributed flow shop scheduling include job
reentrant [7], unrelated machines [8], and heterogeneous
production flow shops [9, 10]. The methods for solving dis-
tributed flow shop scheduling problems are mainly divided
into exact and approximate methods. Exact methods are only
suitable for small-scale problems. When the problem size
becomes too large, they may result in excessively long com-
putation times or become unsolvable. Approximate methods
include heuristic algorithms, metaheuristic algorithms, and
hybrid algorithms [11, 12, 13]. Heuristic algorithms can
produce scheduling plans in a relatively short time, but the
quality of their solutions is difficult to guarantee. In contrast,
metaheuristic and hybrid algorithms can produce better ap-
proximate solutions within an acceptable time frame [14].
Regarding scheduling objectives, those related to comple-
tion time and machine workload are the most evaluated.
Energy consumption and low-carbon-related objectives are
increasingly receiving attention and can be considered as
one of multiple objectives, optimized simultaneously with
traditional objectives. In DFSSP research, the use of real-
world cases is relatively uncommon. Most instances are
expanded from benchmarks of classic flow shop and job
shop scheduling problems. For adaptive searching, various
strategies are employed to improve their local and global
search performance [15].

To Addressing the issue of carbon emissions in flow
shop scheduling, Ai et al. proposed a novel neighborhood
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search, based on the problem’s characteristics, that com-
bines memory and global exchange. This method is de-
signed to solve the hybrid flow shop scheduling problem
with the goal of reducing carbon emissions [16]. Zhong
et al. considered both economic and environmental factors,
setting the minimization of the make-span and total carbon
emissions as optimization goals, and introduced a hybrid
cuckoo search algorithm for solving the multi-objective per-
mutation flow shop scheduling problem [17]. Geng et al.
proposed an improved multi-objective hybrid memetic al-
gorithm (MA) designed to solve the green reentrant hybrid
flow shop scheduling problem, with objectives to minimize
the make-span, total energy consumption costs, and car-
bon emissions [18]. Jubiz-Diaz et al. developed two multi-
objective models integrating packaging size and production
scheduling in flexible flow shop system, minimizing both
costs and carbon emissions while determining the packaging
dimensions and production plans for each finished product,
and introduced a Pareto-based hybrid genetic algorithm [19].
Wu et al. studied the multi-objective flexible flow shop
batch scheduling problem considering variable processing
and handling times, with the goals of minimizing make-span
and carbon emissions, and proposed a hybrid non-dominated
sorting genetic algorithm with variable local search [20]. Gu
et al. also took into account economic and environmental
factors, researching the multi-objective permutation flow
shop scheduling problem with objectives of minimizing
the make-span and total carbon emissions, and proposed
a hybrid cuckoo search algorithm [21]. Saber et al. aimed
to minimize total delay and carbon emissions, presenting
a multi-objective decomposition-based heuristic algorithm
based on job insertion and a multi-objective variable neigh-
borhood search (VNS) algorithm for solving the permutation
flow shop scheduling problem [22]. Fernandez-Viagas et al.,
focusing on green permutation flow shop scheduling with
variable processing times, considered both make-span and
total energy consumption cost, proposing an iterative local
search algorithm based on critical paths [23].

Addressing the issue of carbon emissions in DFSSP,
Dong et al. established a two-stage reentrant hybrid flow
shop bi-level scheduling model with the optimization ob-
jectives of minimizing the make-span, total carbon emis-
sions, and total energy consumption costs. They proposed
an improved hybrid salp swarm and NSGA-III algorithm
for solving this problem [24]. Zhang et al. introduced a
matrix cube-based distributed estimation algorithm aimed
at solving the energy-efficient distributed assembly and per-
mutation flow shop scheduling problem, which minimizes
both make-span and total carbon emissions [25]. Schulz et al.
studied distributed permutation flow shop scheduling with
the goal of minimizing the make-span and carbon emissions.
They used an adaptive bisection method for optimizing small
instances and analyzing problem characteristics, and for
practical situations, they developed a new multi-objective
iterative greedy algorithm [26]. Shao et al., aiming to min-
imize total tardiness, total production cost, and total carbon
emissions, established a distributed heterogeneous hybrid

flow shop scheduling model considering energy and labor,
and proposed a network MA for solution [27].

The performance of evolutionary algorithms in various
types of flow shop scheduling problems is commendable
[28, 29]. Many researchers also design corresponding im-
provement strategies for specific problems [30]. In order to
solve EEDHFSSP, we further improve the algorithm based
on the MA framework according to the problem characteris-
tics. The main contributions of this paper are as follows.

1. A variant of DHFSSP that takes into account carbon
emissions is investigated. accordingly, a multi-objective
mathematical model is constructed to optimize both makespan
and energy consumption. A number of factors such as pro-
cessing sequence, equipment capacity, etc. are considered in
the constraints.

2. A knowledge-driven memetic algorithm (KDMA) is
proposed. KDMA designs collaborative initialization strat-
egy, updating strategy, local search strategy based on key
factories. in addition, a carbon reduction strategy for energy
consumption is used in the algorithm. carbon reduction
strategy is used in the algorithm to save energy.

3. Simulation experiments are conducted to test the
effectiveness of KDMA for solving EEDHFSSP. KDMA
outperforms other comparison algorithms in terms of diver-
sity of solutions, convergence, and overall performance. In
addition, the effectiveness of the strategies in the algorithm
is also verified in the experiments.

The remainder of this paper is organized as follows.
Section 2 introduces the DFFSP. Section 3 introduces the
model of the EEDHFSSP. The KDMA is proposed in Sec-
tion 4. Section 5 verifies the effect of the proposed algorithm.
Section 6 summarizes the content and analyzes possible
directions for further research in the future.

2. Distributed Flow Shop Scheduling Problem
The distributed shop scheduling problem (DSSP) refers

to the collaborative production between companies or differ-
ent factories, jointly processing and manufacturing products.
The core of this problem lies in allocating jobs to different
factories and arranging the processing sequence of these jobs
within each factory, to optimize one or multiple scheduling
indices [31]. The DSSP is an extension of the flow shop
scheduling problem and is classified as an NP-hard problem.
DSSPs are mainly divided into distributed parallel machine
scheduling [32, 33], distributed flow shop scheduling prob-
lem (DFSSP) [34], and distributed job shop scheduling
problem [35]. Among these, the DFSSP is widely prevalent
in the manufacturing industry. It involves allocating 𝑛 jobs
to 𝐹 flow shops for processing, where each factory contains
𝑚 machines. The processing sequence of each job is fixed.
In other words, every job goes through the machines in
the same order. The process flow diagram of the DFSSP is
shown in Figure.1.
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Figure 1: Process flow diagram of distributed flow shop
scheduling

The DFSSP can be categorized based on the processing
technology into distributed permutation flow shop schedul-
ing and distributed flexible flow shop scheduling [36]. Dis-
tributed permutation flow shop is a specific case of dis-
tributed flow shops, requiring that the processing sequence
of jobs on each machine is also identical. Distributed flexible
flow shop refers to flow shops in factories where at least one
operation involves multiple parallel processing machines.
Furthermore, DFSSPs can be classified according to the type
of factory into distributed homogeneous flow shop schedul-
ing problem (DHFSSP) and distributed heterogeneous flow
shop scheduling problem. In homogeneous flow shops, the
dispersed multiple flow shops have identical processing ca-
pabilities, meaning the type and number of machines, the
machines’ age, processing precision, and types of auxiliary
materials consumed are all the same. These can be seen as
multiple factories established according to a standard model,
where each job can be processed in any factory with the same
processing conditions. In contrast, in heterogeneous flow
shops, there are differences in the processing capabilities
of each factory, such as the age of processing equipment,
processing precision, and machine power. These differences
lead to variations in process parameters for jobs in different
factories, and thus different scheduling schemes significantly
impact the scheduling indices.

3. Mathematical Model
3.1. Symbols and Variables

The parameters and variables used in this study are
defined in Table 1.

3.2. Problem Description
The distributed homogeneous flow shop scheduling

problem based on carbon emission (EEDHFSSP) is de-
scribed as follows: 𝑛 jobs are allocated to 𝐹 identical flow
shops for processing, each job comprising 𝑀 processing
operations. All shops have identical flow-line processing
equipment, with each flow line comprising 𝑀 processing
machines. The processing time for each job is the same
in different factories. In the flow shops, the sequence of
processing on the 𝑀 machines is the same for each job,
and the order of processing for jobs on each machine in the
same flow shop is identical. To summarize, EEDHFSSP is
the process of determining the start time of each operation of

Table 1
Parameter definitions for the EEDHFSSP model

Parameter Definition

𝑛 Number of jobs
𝑚 Number of machines in each factory
𝐹 Number of factories
𝑖 Index for jobs, 𝑖 ∈ {1, 2, ..., 𝑛}
𝑗 Index for machines, 𝑗 ∈ {1, 2, ..., 𝑚}
𝑓 Index for Factories, 𝑓 ∈ {1, 2, ..., 𝐹 }

𝑘 Index of the job position in a given
sequence, 𝑘 ∈ {1, 2, ..., 𝑛}

𝑃𝑖,𝑗
Processing time of job 𝑖 on machine
𝑗

𝐶𝑘,𝑗
Completion time of the job at posi-
tion 𝑘 on machine 𝑗

𝑀 An infinitely large positive number
𝐶𝑚𝑎𝑥 makespan

𝑃𝑃𝑖,𝑗
Power consumption of job 𝑖 on ma-
chine 𝑗 during processing

𝑆𝑃 Power consumption of the machine
when idle

𝜀𝑒𝑙𝑒𝑐
Carbon emission coefficient for elec-
tricity

𝜀𝑎𝑢
Carbon emission coefficient for auxil-
iary materials

𝐶𝐸 Total carbon emissions

𝐶𝐸𝑟𝑢𝑛
Carbon emissions generated during
job processing

𝐶𝐸𝑖𝑑𝑙𝑒
Carbon emissions generated during
machine idle time

𝐶𝐸𝑎𝑢

Carbon emissions generated from the
consumption of auxiliary materials for
machines

a job to complete the production of all the products as soon
as possible, taking into account the energy consumption.

3.3. Model
This problem is studied based on the following assump-

tions.
(1) All jobs are independent and can start processing at

zero time.
(2) Jobs can be processed in any factory. Once a job is

assigned to a factory, all its processing must be completed
within that factory.

(3) Each machine can process only one job at a time, and
each job can be processed by only one machine at any given
moment.

(4) Once a job begins processing on a designated ma-
chine, it cannot be pre-empted or interrupted.

(5) The total carbon emissions during the entire produc-
tion scheduling process include three parts: carbon emis-
sions generated during job processing, emissions during
machine idle times, and emissions from the consumption
of auxiliary materials (such as lubricants and coolants for
machines).
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(6) Machine set-up times and transfer times between job
operations are negligible, and situations involving machine
failure or insufficient memory are not considered.

In our work, the optimization objectives of EEDHFSSP
are to minimize the makespan and total carbon emissions.

Objective function:

min
{

𝐶𝑚𝑎𝑥, 𝐶𝐸
}

(1)

In the EEDHFSSP model, let Π be the final arrangement
of 𝑛 jobs in 𝐹 factories, with the arrangement of jobs in
the 𝑓 -th factory denoted as 𝜋𝑓 . Given that the number of
jobs allocated to the 𝑓 -th factory is 𝑛𝑓 , we have 𝑛1 +
𝑛2 + ... + 𝑛𝑓 = 𝑛 , and 𝜋𝑓 =

{

𝜋𝑓 (1) , ..., 𝜋𝑓 (

𝑛𝑓
)}

. The
final arrangement 𝑃 𝑖 contains 𝐹 arrangements, denoted by
Π =

{

𝜋1, 𝜋2, ..., 𝜋𝑓} . The method for calculating 𝐶𝑚𝑎𝑥 (Π)
consists of the following five steps:

Step 1: 𝐶𝜋𝑓 (1),1 = 𝑝𝜋𝑓 (1),1, 𝑓 ∈ {1, 2, ..., 𝐹 }
Step 2:𝐶𝜋𝑓 (𝑖),1 = 𝐶𝜋𝑓 (𝑖−1),1+𝑝𝜋𝑓 (𝑖),1, 𝑓 ∈ {1, 2, ..., 𝐹 } , 𝑗 ∈

{2, 3, ..., 𝑚}
Step 3:𝐶𝜋𝑓 (1),𝑗 = 𝐶𝜋𝑓 (1),𝑗−1+𝑝𝜋𝑓 (1),𝑗 , 𝑓 ∈ {1, 2, ..., 𝐹 } , 𝑗 ∈

{2, 3, ..., 𝑚}
Step 4:𝐶𝜋𝑓 (𝑖),𝑗 = max

{

𝐶𝜋𝑓 (𝑖−1),𝑗 , 𝐶𝜋𝑓 (𝑖),𝑗−1
}

+𝑝𝜋𝑓 (𝑖),𝑗 , 𝑓 ∈
{1, 2, ..., 𝐹 } , 𝑖 ∈

{

2, 3, ..., 𝑛𝑓
}

, 𝑗 ∈ {2, 3, ..., 𝑚}

Step 5: 𝐶𝑚𝑎𝑥 (Π) = max
(

𝐶𝑛𝑓 ,𝑚

)

Therefore, in EEDHFSSP, the makespan is defined by
the maximum completion time across all sub-arrangements
in the final arrangement Π , specifically, it is determined by
the maximum completion time of job 𝑛𝑓 on the last machine
in the 𝑓 -th factory, denoted by𝐶𝑚𝑎𝑥 (Π) = max

(

𝐶𝑚𝑎𝑥
(

𝜋𝑓
))

=

max
(

𝐶𝑛𝑓 ,𝑚

)

.
In the production scheduling process, carbon emissions

originate from four sources: emissions during job process-
ing, emissions when machines are idle, emissions from the
transportation of jobs between machines, and emissions
from the consumption of auxiliary materials during process-
ing. In DFSSPs, the scheduling sequence exerts a minimal
influence on emissions associated with the transportation of
jobs between machines. Therefore, we only consider carbon
emissions produced during job processing (𝐶𝐸𝑟𝑢𝑛), emis-
sions during machine idle time (𝐶𝐸𝑖𝑑𝑙𝑒), and emissions from
the consumption of auxiliary materials during processing
(𝐶𝐸𝑎𝑢). The total carbon emissions (CE) for EEDHFSSP
can be represented as 𝐶𝐸 = 𝐶𝐸𝑟𝑢𝑛 + 𝐶𝐸𝑖𝑑𝑙𝑒 + 𝐶𝐸𝑎𝑢, with
the calculation formulae for the three types of emissions as
follows:

(1) Carbon emissions during job processing (𝐶𝐸𝑟𝑢𝑛):

𝐶𝐸𝑟𝑢𝑛 =
𝑛
∑

𝑖=1

𝑛
∑

𝑘=1

(

𝑥𝑖,𝑘 ⋅ 𝑝𝑖,𝑗 ⋅ 𝑃𝑃𝑖,𝑗
)

⋅ 𝜀𝑒𝑙𝑒𝑐 (2)

The carbon emissions during job processing equal the
product of the actual processing time of all jobs, the rated
energy consumption during processing, and the carbon emis-
sion coefficient for electricity. Here, 𝑝𝑖,𝑗 denotes the process-
ing time of job 𝑖 on machine 𝑗. 𝑃𝑃𝑖,𝑗 represents the unit

energy consumption of job 𝑖 during processing on machine
𝑗. 𝑥𝑖,𝑗 is a decision variable. 𝜀𝑒𝑙𝑒𝑐 is the electricity emission
coefficient.

(2) Carbon emissions during machine idle time (𝐶𝐸𝑖𝑑𝑙𝑒):

𝐶𝐸𝑖𝑑𝑙𝑒 =
𝐸
∑

𝑓

[

𝐶
(

𝜋𝑓
)

−
𝑛
∑

𝑖=1
𝑝𝑖,𝑗 ⋅

𝑛
∑

𝑘=1
𝑦𝑘,𝑦

]

⋅𝑆𝑃 ⋅𝜀𝑒𝑙𝑒𝑐 (3)

The carbon emissions during machine idle time equal
the product of the total idle time of all machines, the rated
energy consumption during idling, and the carbon emission
coefficient for electricity.

(3) Carbon emissions from auxiliary materials consump-
tion (𝐶𝐸𝑎𝑢):

𝐶𝐸𝑎𝑢 =
𝑛
∑

𝑗=1

(

𝑝𝑖,𝑗
𝑇 𝑐𝑜𝑜𝑙
𝑖,𝑗

⋅ 𝐼𝐶𝑐𝑜𝑜𝑙
𝑖,𝑗 ⋅ 𝐸𝐹 𝑐𝑜𝑜𝑙

𝑖,𝑗 +
𝑝𝑖,𝑗
𝑇 𝑙𝑢
𝑖,𝑗

⋅ 𝐿𝑂𝑙𝑢
𝑖,𝑗 ⋅ 𝐸𝐹 𝑙𝑢

𝑖,𝑗

)

=
𝑛𝑖
∑

𝑗=1
𝑝𝑖,𝑗 ⋅

(

𝐼𝐶𝑐𝑜𝑜𝑙
𝑖,𝑗 ⋅ 𝐸𝐹 𝑐𝑜𝑜𝑙

𝑖,𝑗

𝑇 𝑐𝑜𝑜𝑙
𝑖,𝑗

+
𝐿𝑂𝑙𝑢

𝑖,𝑗 ⋅ 𝐸𝐹 𝑙𝑢
𝑖,𝑗

𝑇 𝑙𝑢
𝑖,𝑗

)

=
𝑛𝑖
∑

𝑗=1
𝑝𝑖,𝑗 ⋅ 𝜀𝑒𝑙𝑒𝑐

(4)

Machines in the manufacturing process consume aux-
iliary materials, particularly coolants and lubricating oils.
Coolants are typically circulated by a cooling pump and
gradually diminish due to adherence to metal chips until
replenished. Lubricating oil is primarily used for machine
tool spindles and guide rails, where a small amount of oil is
injected into the spindle and guide rails at regular intervals.
To simplify the model, the time for tool changes and the re-
cycling process for lubricating oil and coolant are ignored. In
our work, 𝑇 𝑐𝑜𝑜𝑙

𝑖,𝑗 represents the average interval for refreshing
the coolant in the machine processing job 𝑂𝑖,𝑗 . 𝐸𝐹 𝑐𝑜𝑜𝑙

𝑖,𝑗 is
the carbon emission coefficient for the machine’s coolant.
𝑝𝑖,𝑗 indicates the processing time of job 𝑖 on machine 𝑗.
𝑇 𝑙𝑢
𝑖,𝑗 denotes the average interval for discharging lubricating

oil in the machine processing job 𝑂𝑖,𝑗 . 𝐿𝑈 𝑙𝑢
𝑖,𝑗 represents the

initial amount of lubricating oil for the machine processing
job 𝑂𝑖,𝑗 . 𝐸𝐹 𝑙𝑢

𝑖,𝑗 is the carbon emission coefficient for the
machine’s lubricating oil 𝐼𝐶𝑐𝑜𝑜𝑙

𝑖,𝑗 indicates the initial amount
of coolant for the machine processing job 𝑂𝑖,𝑗 . 𝜀𝑒𝑙𝑒𝑐 is the
carbon emission coefficient for auxiliary materials.

Decision variables:

𝑥𝑖,𝑘 =
{

1 ,𝑊 ℎ𝑒𝑛 𝑗𝑜𝑏 𝑖 𝑖𝑠 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑘
0 , 𝑒𝑙𝑠𝑒 (5)

𝑦𝑘,𝑓 =

⎧

⎪

⎨

⎪

⎩

1 , 𝑇 ℎ𝑒 𝑗𝑜𝑏 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑘
𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑦 𝑓

0 , 𝑒𝑙𝑠𝑒
(6)
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Constraints:
𝑛
∑

𝑘=1
𝑥𝑖,𝑘 = 1, 𝑖 ∈ {1, 2, ..., 𝑛} (7)

𝑛
∑

𝑖=1
𝑥𝑖,𝑘 = 1, 𝑘 ∈ {1, 2, ..., 𝑛} (8)

𝐹
∑

𝑓=1
𝑦𝑘,𝑓 = 1, 𝑘 ∈ {1, 2, ..., 𝑛} (9)

𝐶𝑘,𝑓 ≥ 𝐶𝑘,𝑗−1+
𝑛
∑

𝑖=1
𝑥𝑖,𝑘⋅𝑝𝑖,𝑗 , 𝑘 ∈ {1, 2, ..., 𝑛} , 𝑗 ∈ {2, 3, ..., 𝑚}

(10)

𝐶𝑘,𝑗 ≥ 𝐶𝑙,𝑗 +
𝑛
∑

𝑖=1
𝑥𝑖,𝑘 ⋅ 𝑝𝑖,𝑗 −𝑀

(

1 − 𝑦𝑘,𝑓
)

−𝑀
(

1 − 𝑦𝑙,𝑓
)

,

𝑘 ∈ {2, 3, ..., 𝑚} , 𝑙 > 𝑘, 𝑖 ∈ {1, 2, ..., 𝑚} , 𝑓 ∈ {1, 2, ..., 𝐹 }
(11)

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑘,𝑚, 𝑘 ∈ {1, 2, ..., 𝑛} (12)

𝐶𝑘,𝑗 ≥ 0, 𝑘 ∈ {1, 2, ..., 𝑛} , 𝑗 ∈ {1, 2, ..., 𝑚} (13)

Equation (1) is the objective function, minimizing the
makespan and total carbon emissions. Equations (2) and
(3) define the range of values for the decision variables.
Equations (4) and (5) ensure that each job appears only once.
Equation (6) ensures that each job is assigned to only one
factory. Equation (7) maintains the constraint of adjacent
operations for the same job, ensuring a job is not processed
on multiple machines simultaneously. Equation (8) enforces
the constraint for adjacent jobs on the same machine, pre-
venting simultaneous processing of multiple jobs on one
machine. Equation (9) indicates that the makespan must be
greater than, or equal to, the completion time of the job on
the last machine in all factories. Equation (10) states that the
completion time for all operations must be greater than zero.

4. The Knowledge-driven Memetic Algorithm
MA is an algorithmic framework inspired by Darwin’s

principle of natural evolution and Dawkin’s concept of
memes, combining global population-based search with
individual heuristic local search [37]. MAs utilize a mecha-
nism that combines global and local searches, making their
search efficiency several orders of magnitude faster than
traditional genetic algorithms in certain problem domains.

Different MAs can be constructed using various global
search strategies and local search strategies [38, 39].

Knowledge-driven strategies are an effective way to
improve on MA. These strategies can use features in the
problem that drive the algorithm search. In our study,
a knowledge-driven MA (KDMA) is proposed to solve
the EEDHFSSP. This algorithm primarily consists of a
collaborative initialization strategy, an updating strategy, a
local search strategy based on key factories, and a carbon
reduction strategy. The algorithm flowchart is illustrated in
Figure.2.

Begin

Collaborative initialization strategy to 

generate initial populations（N）

Satisfy the end-of-

algorithm condition?

Update strategy (selection, crossover, 

mutation)

Local search strategy based on key 

factory

Carbon Reduction 

Strategy

k=0

k=k+1

End

Yes

No

Fast non-dominated 

sorting

Combining parents and new 

individuals

Crowding distance 

allocation

i = 1

Number of new 

populations ≤N

Population 

integration

i = i+1
Fast non-dominated 

sorting

Yes

No

Figure 2: Flowchart through the KDMA

4.1. Collaborative Initialization Strategy
The quality of initial solutions in combinatorial opti-

mization problems significantly affects the algorithm’s per-
formance [40]. Optimizing initial solutions can improve
algorithm performance [41]. Generally, it is challenging
to find an optimal solution that satisfies dual objectives,
namely, minimizing makespan and total carbon emissions.
To ensure a more uniform distribution of initial solutions,
we propose a collaborative initialization strategy based on
the encoding characteristics of EEDHFSSP. The Nawaz-
Enscore-Ham (NEH) heuristic algorithm has been proven
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to be one of the most effective heuristic algorithms for
addressing flow shop scheduling problems [42]. A modified
NEH (MNEH) algorithm is introduced to generate an initial
solution with the minimum makespan during initialization.
The steps in the MNEH algorithm are as follows:

Step 1: Generate a random initial job allocation se-
quence Π =

[

𝑂1, ..., ..., 𝑂𝑛
]

.
Step 2: Sequentially insert each job 𝑂𝑖 (𝑖 = 1, 2, ..., 𝑛)

into all possible positions in each factory and select the
scheduling sequence with the minimum makespan value.

Step 3: The scheduling sequence after inserting job 𝑂𝑖
is used for the insertion of the next job, continuing until all
jobs are allocated to factories.

To minimize total carbon emissions, the following strat-
egy is adopted to generate an initial solution with the mini-
mum total carbon emissions:

Step 1: Sort all jobs in non-ascending order of their rated
processing power, denoted by 𝑂 =

[

𝑂1, ..., ..., 𝑂𝑛
]

.
Step 2: Following this order, sequentially insert each job

𝑂𝑖 (𝑖 = 1, 2, ..., 𝑛) into all possible positions and calculate the
carbon emissions associated with each position.

Step 3: Select the position with the minimum carbon
emissions as the final allocation for each job. Continue this
process until all jobs are allocated. The remaining initial
solutions are generated randomly to maintain diversity in the
population.

Inevitably, there will be situations where constraints
are difficult to satisfy during the decoding process. The
algorithm attempts to backtrack the operation in case of a
constraint violation, until the constraint is met.

4.2. Variation Strategy
During the algorithm’s search process, crossover and

mutation operators are used to update solutions. Considering
the characteristics of EEDHFSSP, a tournament selection
method is adopted to choose parents. The partially mapped
crossover (PMX) operator, widely applied in scheduling do-
mains, is used for crossover operations, and a swap mutation
operator is employed for mutation [43].

Tournament selection is a local competition-based se-
lection method. From the population, 𝑘 individuals are ran-
domly selected for comparison, and the individual with the
highest fitness value is chosen to enter the parent population.
This process is repeated 𝑁 times until the parent population
reaches the desired size.

The steps for the PMX operator are as follows:
Step 1: Randomly select two positions on the chosen

parent chromosomes, and define the elements between these
two positions as the matched sub-string, as shown in Figure
3.

Step 2: Swap the two matched sub-strings of the parent
chromosomes to obtain two temporary offspring chromo-
somes, as shown in Figure 4.

Step 3: Determine and map the relationships of conflict-
ing jobs based on the swapped pairs of genes, as shown in
Figure 5.

parents1

parents2

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

5 4 6 9 2 1 7 8 35 4 6 9 2 1 7 8 3

Figure 3: PMX operator selection operation

Proto-child1

Proto-child2

1 2 6 9 2 1 7 8 91 2 6 9 2 1 7 8 9

5 4 3 4 5 6 7 8 35 4 3 4 5 6 7 8 3

Figure 4: PMX operator swap operation

6 9 2 16 9 2 1

3 4 5 63 4 5 6

1 6 3

2 5

9 4

Figure 5: PMX operator determining conflicting jobs operation

Step 4: Ensure the feasibility of the job sequence based
on the mapping relationship, with no need for any changes
to the sub-string, as shown in Figure 6.

offspring1

offspring2

3 5 6 9 2 1 7 8 43 5 6 9 2 1 7 8 4

2 9 3 4 5 6 7 8 1

Figure 6: PMX operator determining job order operation

The swap mutation operation involves randomly select-
ing two genes on the chosen parent chromosome and swap-
ping the jobs on these two genes.

4.3. Local Search Strategy Based on Key Factories
According to existing research, local search heuristics

are one of the effective methods for solving single-objective
optimization problems (SOPs) [44, 45]. However, in multi-
objective scheduling problems, conflicts exist among multi-
ple objectives, and optimizing one objective may lead to the
deterioration of another. Therefore, local search heuristics
effective for single-objective optimization problems cannot
be directly applied to EEDHFSSP. By analyzing and sum-
marizing the characteristics of EEDHFSSP, a local search
strategy based on key factories is designed to enhance the
performance of the algorithm.

Four types of local search operation operators are de-
signed. These four local search operators can be divided into
operations within factories and operations between factories.
The operations within factories include 𝐼𝑛𝑠𝑒𝑟𝑡_𝑖𝑛_𝐶𝑟𝑖𝑓𝑎𝑐
and 𝑆𝑤𝑎𝑝_𝑖𝑛_𝐶𝑟𝑖𝑓𝑎𝑐, while operations between factories
include 𝐼𝑛𝑠𝑒𝑟𝑡_𝑏𝑒𝑡𝑤𝑒𝑒𝑛_𝑓𝑎𝑐 and 𝑆𝑤𝑎𝑝_𝑏𝑒𝑡𝑤𝑒𝑒𝑛_𝑓𝑎𝑐 , as
follows:
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(1) 𝐿1 (𝐼𝑛𝑠𝑒𝑟𝑡_𝑖𝑛_𝐶𝑟𝑖𝑓𝑎𝑐): job insertion within key
factories. In a key factory, randomly select a job and insert
it into all possible positions within that key factory.

(2) 𝐿2 (𝑆𝑤𝑎𝑝_𝑖𝑛_𝐶𝑟𝑖𝑓𝑎𝑐): job swap within key facto-
ries. In a key factory, randomly select two positions 𝑗 and 𝑘
, and swap the jobs at positions 𝑗 and 𝑘.

(3) 𝐿3 (𝐼𝑛𝑠𝑒𝑟𝑡_𝑏𝑒𝑡𝑤𝑒𝑒𝑛_𝑓𝑎𝑐): job exchange between
factories. Randomly select a non-key factory 𝑏, choose a
position 𝑘 within factory 𝑏, then select a position 𝑗 within
a key factory, and swap the jobs at positions 𝑘 and 𝑗.

(4) 𝐿4 (𝑆𝑤𝑎𝑝_𝑏𝑒𝑡𝑤𝑒𝑒𝑛_𝑓𝑎𝑐): job insertion between
factories. In a key factory, randomly select a position 𝑗 and
remove the job from that position, then insert it into any
position 𝑘 in any non-key factory 𝑏.

4.4. Carbon Reduction Strategy
In the DHFSSP, the total carbon emissions consist of

three parts: carbon emissions produced during job process-
ing, emissions generated during machine idle time, and
emissions arising from consumption of auxiliary materials.
Since the processing time for each job is the same in each
factory, the carbon reduction strategy designed here mainly
targets the carbon emissions generated during machine idle
time.

Assume 𝑇0 is the idle waiting time of the machine,
𝑇𝑜𝑓𝑓−𝑜𝑛 is the time required to turn off and then turn on
the machine, 𝐶𝐸𝑖𝑑𝑙𝑒 denotes the carbon emissions produced
during machine idle time, and 𝐶𝐸𝑜𝑓𝑓−𝑜𝑛 is the carbon
emissions generated by turning off and then on the machine.
When 𝐶𝐸𝑖𝑑𝑙𝑒 > 𝐶𝐸𝑜𝑓𝑓−𝑜𝑛 and 𝑇0 > 𝑇𝑜𝑓𝑓−𝑜𝑛, shutting
down the idle machine may reduce the carbon emissions
generated during idle time, as illustrated in Figure 7.

P

Job2 Job1

CEidle

T0 t

P

Job2 Job1

CEoff-on

tToff-on0 0

Figure 7: Example of the machine on/off strategy

5. Experimental Results and Analysis
5.1. Experimental Setup

To validate the effectiveness of KDMA in solving the
EEDHFSSP, a series of comparative experiments were de-
signed and conducted on a PC with Microsoft Windows
10 operating system, equipped with an Intel Core I5-10500
CPU @ 3.10 GHz and 16 GB RAM.

As the EEDHFSSP is a new problem without open
datasets, a set of test datasets were established according
to the characteristics and main parameters of EEDHF-
SSP. The instances include different numbers of factories

𝑓 = {2, 3, 4, 5, 6}, jobs 𝑛 = {20, 50, 100}, and ma-
chines 𝑚 = {2, 5, 8}. For each (𝑓, 𝑛, 𝑚) combination, 10
instances were generated, giving a total of 450 instances.
For each instance, the standard processing time of jobs 𝑝𝑖,𝑗
was uniformly sampled from the discrete range [10, 50],
the unit energy consumption of jobs during processing
on machines 𝑃𝑃𝑖,𝑗 was sampled from [5, 10], the idle
power consumption of each machine 𝑆𝑃 = 2, and the
carbon emissions for turning off/on a machine were set to
𝐶𝐸𝑜𝑓𝑓−𝑜𝑛 = 6. Following the Corporate Greenhouse Gas
Emission Accounting and Reporting Guide-Power Facilities
(Revised Edition 2022), the electricity carbon emission
coefficient was set. Additionally, the carbon emission co-
efficient 𝜀𝑒𝑙𝑒𝑐 = 0.581𝑘𝑔𝐶𝑂2𝑒∕𝑘𝑊 ℎfor auxiliary materials
used during machine 𝜀𝑎𝑢 processing was uniformly sampled
from[0.05, 0.1]

(

𝑘𝑔𝐶𝑂2𝑒∕𝑘𝑔
)

, as it is related to the type of
machine used.

To evaluate the performance of the algorithm, the Pareto
solution set from various aspects, including diversity of
solutions, convergence, and overall performance, using three
different performance metrics:

(1) 𝑆𝑝𝑟𝑒𝑎𝑑: This metric evaluates the extent of distribu-
tion of the Pareto solution set obtained by the algorithm in
the objective space.

(2)𝐺𝐷 (Generation Distance): This metric calculates the
average minimum distance of each point in the solution set
𝑃 to the reference set 𝑃 ∗, reflecting the convergence of the
obtained solution set. A smaller 𝐺𝐷 value indicates better
convergence of the algorithm.

𝐺𝐷
(

𝑃 , 𝑃 ∗) =

√

∑

𝑦∈𝑃 ∗ min𝑥∈𝑃 𝑑𝑖𝑠 (𝑥, 𝑦)2

|𝑃 |
(14)

where, 𝑃 is the Pareto solution set obtained by the
algorithm, 𝑃 ∗ denotes a set of uniformly distributed refer-
ence points sampled from the Pareto front, and 𝑑𝑖𝑠 (𝑥, 𝑦)
represents the Euclidean distance between point 𝑥 in the
solution set 𝑃 and point 𝑃 ∗ in the reference set.

(3) 𝐼𝐺𝐷 (Inverted Generation Distance): This metric
calculates the average distance from each reference point to
the nearest solution, reflecting the overall performance of
the algorithm. A smaller 𝐼𝐺𝐷 value indicates better overall
performance.

𝐼𝐺𝐷
(

𝑃 , 𝑃 ∗) =
∑

𝑦∈𝑃 min𝑥∈𝑃 ∗ 𝑑𝑖𝑠 (𝑥, 𝑦)
|𝑃 ∗

|

(15)

where, 𝑃 is the Pareto solution set obtained by the algo-
rithm, 𝑃 ∗ is a set of uniformly distributed reference points
sampled from the Pareto front, and 𝑑𝑖𝑠 (𝑥, 𝑦) represents the
Euclidean distance between point 𝑥 in the reference set 𝑃 ∗

and point 𝑦 in the solution set 𝑃 .

5.2. Parameter Settings
The KDMA involves three key parameters: (1) pop-

ulation size (𝑃𝑆), (2) crossover probability (𝑝𝑐), and (3)
mutation probability (𝑝𝑚). To study the effects of these
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Table 2
Parameter level correspondence

Parameter Level
1 2 3 4

𝑃𝑆 50 100 150 200
𝑝𝑐 0.7 0.8 0.9 1.0
𝑝𝑚 0.1 0.2 0.3 0.4

Table 3
Average metric values for each parameter

Level 𝑃𝑆 𝑝𝑐 𝑝𝑚
1 0.181088 0.152377 0.131506
2 0.157780 0.155338 0.155154
3 0.142486 0.154651 0.164213
4 0.135692 0.154680 0.166173
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 0.154262 0.154262 0.154262
𝑑𝑒𝑙𝑡𝑎 0.045396 0.002961 0.034667
Rank 1 3 2

parameters on the performance of the KDMA, this re-
search used the widely utilized Taguchi experimental design
method. As shown in Table 2, four different levels were
set for each parameter: 𝑃𝑆 = {50, 100, 150, 200} , 𝑝𝑐 =
{0.7, 0.8, 0.9, 1.0} , and 𝑝𝑚 = {0.1, 0.2, 0.3, 0.4} . The
orthogonal array 𝐿16

(

43
)

generated from these settings was
used in the parameter calibration experiments. Addition-
ally, the overall performance metric was 𝐼𝐺𝐷 adopted to
measure the effects of different parameter configurations on
the dataset of instances. For each instance, the KDMA was
executed 10 times for each parameter configuration, with the
maximum number of function evaluations set to 25000.

Table 3 presents the significance levels of the metrics
and parameters, where the value indicates the maximum
difference between the average metric value and other metric
values. A larger 𝑑𝑒𝑙𝑡𝑎 value implies that the corresponding
parameter is more important. Figure 8 shows the perfor-
mance metrics of the three parameters at different levels.

Figure 8: Comparison of parameter performance metrics at
different levels

As presented in Table 3, population size (𝑃𝑆) has the
greatest effect on the algorithm’s performance, followed by
mutation probability (𝑝𝑚), and crossover probability (𝑝𝑐) has
the least impact. This means that the importance ranking
is: population size (𝑃𝑆) as the most important, followed
by mutation probability (𝑝𝑚), and then crossover probability
(𝑝𝑐). According to Figure 8 , the optimal values for the three
key parameters are: 𝑃𝑆 = 100, 𝑝𝑐 = 0.9, 𝑝𝑚 = 0.2.

5.3. Experiment on the Effectiveness of Strategies
To validate the efficacy of the proposed collaborative

initialization strategy and the local search strategy based on
key factories, this study conducted comparative experiments
among KDMA with both the collaborative initialization and
local search strategies, KDMA without the collaborative
initialization strategy (wherein the initial population is en-
tirely generated randomly, denoted as “without-init”), and
KDMA without the knowledge-based local search strategy
(referred to as “without-local”). Each algorithm was in-
dependently run 10 times on each instance, all using the
same termination criterion (the maximum number of func-
tion evaluations set to 25,000). Figures 9,10,11 present the
𝑆𝑝𝑟𝑒𝑎𝑑, 𝐺𝐷, and 𝐼𝐺𝐷 values obtained after running the
three algorithms: KDMA, without-init, and without-local.

Figure 9: Comparison of 𝑆𝑃 values in the strategy effectiveness
experiments

As illustrated in Figure 9, across all instances, KDMA’s
results in the 𝑆𝑃 metric significantly surpass those of
without-init, while the difference with without-local is less
pronounced. This indicates that the collaborative initial-
ization strategy proposed herein contributes to enhancing
the diversity of solutions. As shown in Figure 10, KDMA
outperforms the two strategies-lacking algorithms in the 𝐺𝐷
performance metric, suggesting that both the collaborative
initialization strategy and the knowledge-based local search
strategy improve the convergence of the algorithm. As de-
picted in Figure 11, regarding the 𝐼𝐺𝐷 performance metric,
KDMA’s results are markedly superior to both without-
init and without-local, demonstrating that the strategies
proposed herein enhance the overall performance of the
algorithm.
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Figure 10: Comparison of 𝐺𝐷 values in the strategy effective-
ness experiment

Figure 11: Comparison of 𝐼𝐺𝐷 values in the strategy effec-
tiveness experiment

To validate the effectiveness of the carbon reduction
strategy in KDMA, KDMA was compared with the carbon
reduction strategy to KDMA without the carbon reduction
strategy (referred to as non-carbon). Each algorithm was
independently run 10 times on each instance, all using the
same termination criterion (the maximum number of func-
tion evaluations set to 25,000). The total carbon emission
results for both algorithms were compiled, and the average
carbon emissions for each type of factory were calculated
based on different numbers of factories. Figure 12 shows
the average carbon emissions for the two algorithms across
different numbers of factories.

As shown in Figure 12, regardless of the number of
factories, the average carbon emission values for KDMA
with the carbon reduction strategy are consistently lower
than those for non-carbon schema, which do not use the
carbon reduction strategy. This indicates that the proposed
carbon reduction strategy reduces the carbon emissions in
distributed homogeneous flow shop scheduling problems.
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Figure 12: Comparison of average carbon emissions for differ-
ent numbers of factories

5.4. Comparison of Different Algorithms
Three classic multi-objective optimization algorithms

were selected: a non-dominated sorting genetic algorithm-
II (NSGA-II) [46], a multi-objective evolutionary algorithm
based on decomposition (MOEA/D) [47], and a weighting
achievement scalarizing function genetic algorithm (WAS-
FGA) [48], for comparison with KDMA. The experiments
were conducted on a generated instance dataset, with identi-
cal algorithm parameters and termination conditions set for
all. Each of the four algorithms was independently run 10
times on each (𝑓, 𝑛, 𝑚) combination dataset, and the results
were averaged over these 10 experiments. The efficacy of
KDMA in solving the EEDHFSSP was verified by compar-
ing the 𝑆𝑃 , 𝐺𝐷 , and 𝐼𝐺𝐷 metrics. Tables 4-6 respectively
list the 𝑆𝑃 , 𝐺𝐷 , and 𝐼𝐺𝐷 values for KDMA, NSGA-II,
MOEA/D, and WASFGA.

It is obvious from Table 4 that KDMA achieves the
best 𝑆𝑃 values in forty-one instances, NSGA-II in one
instance, MOEA/D in three instances, and WASFGA does
not achieve any optimal 𝑆𝑃 values in all forty-five (𝑓, 𝑚, 𝑛)
combinations. The mean of KDMA’s 𝑆𝑃 values across the
forty-five datasets is 0.750615 (better than those realized
using the other three algorithms). Therefore, in terms of solv-
ing the EEDHFSSP, KDMA demonstrates superior solution
diversity.

According to Table 5, KDMA has the best average
values in thirty-eight instances, NSGA-II in two instances,
MOEA/D in five instances, and WASFGA in none. Addi-
tionally, the overall average value (0.139118) of KDMA is
significantly lower than those of NSGA-II, MOEA/D, and
WASFGA, indicating the superior convergence of KDMA.

The experimental results of IGD are shown in Table 6.
From Table 6, it can be seen that KDMA has the best per-
formance. Regarding the overall average 𝐼𝐺𝐷, the average
value (0.124671) of KDMA is significantly lower than those
of the other three algorithms. Hence, KDMA demonstrates
superior overall performance in solving the EEDHFSSP and
holds a clear advantage, especially when applied to large-
scale datasets.
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Table 4
Comparison of average 𝑆𝑃 values

𝐹 𝑚 𝑛 KDMA NSGA-II MOEA/D WASFGA

2

2
20 0.803659 0.743158 0.752892 0.653639
50 0.762419 0.715467 0.748665 0.643803
100 0.782145 0.718958 0.755771 0.669015

5
20 0.774332 0.688873 0.767472 0.600316
50 0.751021 0.695362 0.715166 0.643988
100 0.780631 0.702863 0.753433 0.7090495

8
20 0.767921 0.671917 0.698723 0.671018
50 0.747668 0.696998 0.706409 0.636901
100 0.753020 0.695810 0.724216 0.669222

3

2
20 0.723902 0.705576 0.719963 0.632921
50 0.763501 0.712029 0.742161 0.605642
100 0.738157 0.716682 0.717895 0.618383

5
20 0.731253 0.688978 0.691626 0.618832
50 0.747066 0.696465 0.718189 0.600427
100 0.735297 0.697297 0.724628 0.638984

8
20 0.799082 0.680402 0.736225 0.594415
50 0.708704 0.689910 0.711009 0.619342
100 0.781145 0.698146 0.750615 0.595450

4

2
20 0.758691 0.689227 0.733954 0.624130
50 0.763147 0.690873 0.748324 0.637060
100 0.730720 0.713162 0.715489 0.640808

5
20 0.801364 0.679019 0.764121 0.6955272
50 0.712999 0.692416 0.684561 0.6048977
100 0.775285 0.664577 0.741605 0.595998

8
20 0.783354 0.663554 0.759846 0.577628
50 0.727478 0.709145 0.711456 0.663443
100 0.758634 0.690469 0.733429 0.591219

5

2
20 0.690899 0.699662 0.701525 0.652180
50 0.713242 0.712468 0.710150 0.634902
100 0.698824 0.716379 0.704651 0.648044

5
20 0.749176 0.685902 0.724796 0.675969
50 0.729309 0.694974 0.713021 0.677386
100 0.763138 0.687546 0.734786 0.681083

8
20 0.779347 0.707880 0.754157 0.579095
50 0.765622 0.667469 0.755479 0.6015463
100 0.733192 0.710643 0.715427 0.637003

6

2
20 0.719806 0.722424 0.734201 0.647811
50 0.702079 0.693147 0.710427 0.6165592
100 0.763388 0.686958 0.729897 0.621244

5
20 0.763755 0.702172 0.734510 0.693951
50 0.733391 0.686126 0.719880 0.630869
100 0.748348 0.712714 0.722406 0.5738283

8
20 0.737870 0.679402 0.715045 0.637772
50 0.749314 0.689410 0.730157 0.648392
100 0.774391 0.690839 0.745160 0.604552

𝑀𝑒𝑎𝑛 0.750615 0.696743 0.728522 0.633658

In summary, KDMA surpasses the comparison algo-
rithms in multiple evaluation aspects. Moreover, certain
strategies employed in KDMA can also be applied to address
energy-efficient concerns in manufacturing system schedul-
ing problems. The remarkable performance of KDMA in
solving EEDHFSSP demonstrates the algorithm’s signifi-
cant practical value. Certainly, our efforts to enhance the
algorithm are merely preliminary attempts, and there are still
numerous directions that warrant further exploration. For

example, machine learning are effective methods to complex
combinatorial optimization problems such as EEDHFSSP
[49].

6. Conclusion
With the growing global attention to climate change,

research and applications related to carbon emissions, emis-
sion peaks, and carbon neutrality are gradually unfolding in
the field of production scheduling. In this study, we designed
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Table 5
Comparison of average 𝐺𝐷 values

𝐹 𝑚 𝑛 KDMA NSGA-II MOEA/D WASFGA

2

2
20 0.130907 0.209836 0.134251 0.263656
50 0.117021 0.188481 0.145242 0.245695
100 0.131465 0.195991 0.146456 0.283036

5
20 0.142824 0.180450 0.153150 0.289138
50 0.139271 0.185475 0.124258 0.239942
100 0.125911 0.185522 0.133522 0.269129

8
20 0.153784 0.192498 0.150404 0.271157
50 0.157753 0.173053 0.159463 0.306227
100 0.166116 0.183362 0.175642 0.245474

3

2
20 0.084211 0.188526 0.135264 0.208595
50 0.125353 0.159955 0.126843 0.249466
100 0.087903 0.208731 0.142685 0.275144

5
20 0.104572 0.168560 0.122024 0.231684
50 0.149928 0.157242 0.151203 0.248649
100 0.124900 0.198360 0.149855 0.229609

8
20 0.172210 0.174276 0.156342 0.238206
50 0.171589 0.197791 0.178925 0.285797
100 0.150863 0.178183 0.170124 0.226481

4

2
20 0.105579 0.180463 0.135825 0.270665
50 0.122612 0.172362 0.140457 0.238674
100 0.094088 0.241235 0.124646 0.315502

5
20 0.149340 0.165323 0.155462 0.221736
50 0.142910 0.152168 0.151342 0.207915
100 0.173359 0.149749 0.157421 0.265105

8
20 0.169032 0.169018 0.163450 0.229791
50 0.177563 0.188397 0.179642 0.301976
100 0.147685 0.176995 0.150125 0.215146

5

2
20 0.073698 0.184855 0.135406 0.314665
50 0.143801 0.174189 0.147982 0.210477
100 0.105752 0.200810 0.124568 0.272070

5
20 0.113409 0.150964 0.126431 0.208673
50 0.159253 0.169624 0.160158 0.263108
100 0.154368 0.159390 0.160013 0.244988

8
20 0.152244 0.153972 0.155423 0.248254
50 0.147033 0.201189 0.164215 0.256551
100 0.168920 0.175371 0.166478 0.267107

6

2
20 0.088489 0.183778 0.135264 0.334893
50 0.118600 0.150759 0.142106 0.202783
100 0.175823 0.180070 0.179543 0.272389

5
20 0.162428 0.146049 0.154217 0.190410
50 0.163159 0.183072 0.175465 0.212960
100 0.134627 0.182143 0.143247 0.224290

8
20 0.160114 0.207423 0.169746 0.279497
50 0.154402 0.176949 0.166485 0.320717
100 0.165445 0.186427 0.170124 0.203172

𝑀𝑒𝑎𝑛 0.139118 0.179756 0.150908 0.253346

scheduling model and solution algorithms for EEDHFSSP.
Initially, a mathematical model of EEDHFSSP is established
with the optimization objectives of minimizing both the
makespan and total carbon emissions, and the methods for
calculating completion time and total carbon emissions are
provided. Then, KDMA is proposed to solve EEDHFSSP. To
improve the quality of initial solutions, a collaborative ini-
tialization strategy is introduced. New update operations are
proposed to strengthen global search capabilities, and a local

search strategy based on key factories is developed to im-
prove algorithm performance. Moreover, a carbon reduction
strategy is proposed to decrease carbon emissions. Finally,
experiments are conducted on problem-specific instances.
Experimental results show that KDMA is more advanta-
geous for solving EEDHFSP compared to other algorithms.

In future research, we will consider other DHFSSPs that
closely resemble real-world scenarios, such as equipment
failures or temporary postponement or cancellation of jobs.
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Table 6
Comparison of average 𝐼𝐺𝐷 values

𝐹 𝑚 𝑛 KDMA NSGA-II MOEA/D WASFGA

2

2
20 0.099725 0.165646 0.153325 0.194498
50 0.126656 0.163129 0.144145 0.243189
100 0.121372 0.183355 0.185146 0.220639

5
20 0.145625 0.167178 0.122575 0.140707
50 0.137474 0.190675 0.187606 0.211841
100 0.149501 0.155092 0.158336 0.186242

8
20 0.129004 0.158984 0.146007 0.205527
50 0.144635 0.191440 0.194440 0.247086
100 0.125820 0.143361 0.141841 0.181570

3

2
20 0.098842 0.155548 0.122575 0.225182
50 0.108451 0.189477 0.129891 0.203021
100 0.071217 0.208990 0.142015 0.187182

5
20 0.120471 0.149720 0.135422 0.163979
50 0.139077 0.155620 0.151055 0.178884
100 0.104930 0.176947 0.161120 0.201196

8
20 0.173000 0.165429 0.154284 0.179023
50 0.136784 0.167173 0.147855 0.166502
100 0.153265 0.140916 0.153421 0.139563

4

2
20 0.087671 0.173094 0.124251 0.186692
50 0.105270 0.163451 0.135250 0.198447
100 0.087575 0.154939 0.142121 0.170695

5
20 0.163019 0.136626 0.142511 0.169446
50 0.150840 0.153240 0.133528 0.144785
100 0.153136 0.169468 0.166454 0.168217

8
20 0.164111 0.144535 0.152435 0.157462
50 0.147515 0.144261 0.147850 0.151218
100 0.144501 0.156920 0.155648 0.163399

5

2
20 0.061719 0.166276 0.138521 0.252240
50 0.135102 0.170598 0.158498 0.184704
100 0.101984 0.178423 0.169967 0.226277

5
20 0.100546 0.138746 0.129785 0.151350
50 0.139545 0.138314 0.136354 0.162086
100 0.142699 0.172142 0.155846 0.176521

8
20 0.136523 0.152567 0.164010 0.193828
50 0.104025 0.145856 0.151785 0.196455
100 0.134346 0.156988 0.142555 0.186240

6

2
20 0.084394 0.162152 0.158421 0.240563
50 0.102837 0.140105 0.141425 0.159635
100 0.151013 0.173533 0.163565 0.221553

5
20 0.118012 0.134985 0.144882 0.147451
50 0.1131699 0.156111 0.150452 0.157785
100 0.1223997 0.158768 0.133649 0.155864

8
20 0.125170 0.163610 0.145206 0.243423
50 0.128028 0.170973 0.153974 0.210269
100 0.119191 0.137920 0.131022 0.156111

𝑀𝑒𝑎𝑛 0.1246718 0.160962 0.144891 0.186856

These intricate situations will impose higher demands on
the algorithms. It is worth exploring machine learning and
reinforcement learning methods to facilitate algorithm evo-
lution. Effective problem feature mining can enhance the
ability of optimization algorithms to discover high-quality
solutions.
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