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ABSTRACT

Several evaluation notions for _-calculus qualify as reasonable cost models according to Slot and van Emde Boas’ Invariance
Thesis. A notable result achieved by Accattoli and Dal Lago is that leftmost-outermost reduction is reasonable, where the term
representation uses sharing and the steps are useful. These results, initially studied in call-by-name, have also been extended
to call-by-value. However, the existing formulations of usefulness lack inductive structure, making it challenging in particular
to define and reason about type systems on top of the untyped syntax. Additionally, no type-based quantitative interpretations
exist for useful evaluation.
In this work, we establish the first inductive definition of useful evaluation for open weak call-by-value. This new useful

strategy connects to a previous implementation of usefulness through a low-level abstract machine, incurring only in linear
time overhead, thus providing a reasonable cost model for open call-by-value implementation. We also propose a semantic

interpretation of useful call-by-value using a non-idempotent intersection type system equipped with a notion of tightness.
The resulting interpretation is quantitative, i.e. provides exact step-count information for program evaluation. This turns out
to be the first semantical interpretation in the literature for a notion of useful evaluation.

1 INTRODUCTION

The formal model behind functional programming languages and some interactive proof assistants is known as the _-calculus,
which expresses all computable functions. However, not only computability matters, but also resource efficiency. In this sense,
it is not clear whether different models of computation are interchangeable. The Invariance Thesis [49] states that there is a
standard class of machine models, including Turing machines and RAMs, that are able to simulate each other with polynomial
overhead in time and constant factor overhead in space. They are called reasonable models of computation.
One fundamental question is whether the _-calculus is a reasonable model of computation. To answer that, a time cost

model needs to be fixed in order to measure the run time cost of a _-term. An initial idea would be to measure the number
of V-steps (function application steps) to normal form. However, since V-evaluation may produce arbitrarily many copies of
arbitrarily large terms, implementing V-evaluation in a Turing machine using a simple representation for _-terms cannot be
done with polynomial time overhead, as it does not even suffice to write down the result of the computation on the tape.

Formulating a Cost Model. Building cost models for _-calculus has received considerable interest in the last decades [20,
43, 44]. To achieve such a formulation it is necessary to choose a particular evaluation strategy and a particular term repre-

sentation. Concerning the evaluation strategies for _-calculus, there are many of them. For example, in call-by-name (CBN) a
function is applied without evaluating its argument, whereas in call-by-value (CBV) a function may be applied only when its
argument has become a value. Concerning term representation, it is well-known that usual trees are not sufficient to obtain a
reasonable cost model, as illustrated by the famous size explosion problem (see e.g. [10]), exhibiting a reduction sequence from
a term C= of linear size =, which evaluates in = V-steps to a term B= with exponential size in =.
However, one may find more succinct representations for _-terms, such as those based on sharing, that can be represented

using explicit substitutions (ES). The remarkable reasonable cost models achieved by Accattoli and Dal Lago [9, 10] for leftmost-
outermost reduction rely on two key ingredients: representing _-terms using ESs for sharing, and restricting the copy of shared
subterms as to avoid size explosion, a strategy which is known as useful evaluation. We briefly discuss each of them.
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Explicit Substitutions. The ES calculus used to implement sharing in [10] is based on the Linear Substitution Calcu-

lus (LSC) [1, 14], a variant of Accattoli and Kesner’s structural _-calculus [8], which in turn generalizes Milner’s Calcu-
lus [39, 46]. In the LSC, the truly computational steps are called distant beta steps (db) and create new ESs; for example
(_G. G ~) [~/I] I →db (G ~) [G/I] [~/I]. This operation is distant in that there may be ESs between the _-abstraction and its
argument, such as [~/I] in the example. Also, a single occurrence of a variable G may be substituted by a term C whenever G
is bound to C by an ES. More precisely, there are linear substitution steps (ls), of the form C〈G〉[G/C] →ls C〈C〉[G/C], where C
denotes an arbitrary context. Substitution is called linear because it replaces variables one occurrence at a time, for example
(_G. G G)~ →db (G G) [G/~] →ls (G ~) [G/~] →ls (~ ~) [G/~].

Useful Evaluation. The second central notion behind Accattoli and Dal Lago’s results is useful evaluation, which identifies
the conditions underwhich shared subterms can be copiedwithout producing size explosion. The insight that drives the notion
of useful evaluation is that ls-steps, which copy shared subterms, should only be performed when contributing to the creation
of a db-redex. For example, the step (G G) [G/I] →ls (I G) [G/I] is useful, because substituting G by I creates the db-redex I G . A
subtler example is (G G) [G/~] [~/I] →ls (~ G) [G/~] [~/I]. This step is useful because it indirectly contributes to creating a db-
redex, in one more step: (~ G) [G/~] [~/I] →ls (I G) [G/~] [~/I]. On the other hand, the steps (G G) [G/~~] →ls ((~ ~) G) [G/~~]

and (G G) [G/I] →ls (G I) [G/I] are not useful, because the substitutions do not contribute to creating a db-redex.

Open Call-by-Value. In functional programming languages, evaluation is defined on closed terms, i.e., evaluation is re-
stricted to terms without occurrences of free variables (e.g. _G. G G ). Accordingly, evaluation is weak, not proceeding inside
the bodies of abstractions. However, in proof assistants, evaluation is strong, allowing evaluation inside abstractions, and thus
needs to be able to operate on open terms, which may include occurrences of free variables (e.g. _G. G ~).
This work is part of a broader, community-driven effort to understand the concept of useful strong CBV. Indeed, it has been

noted that usefulness is not really required to obtain a reasonable cost model in the open and weak case [6]. However, in order
to achieve a robust notion of useful strong call-by-value, it is essential to develop tools that enhance our comprehension
of usefulness within a less complex framework, which already presents numerous technical challenges. Our work aims to
achieve this, starting from an open weak setting for CBV.
There are well-established notions of evaluation for closed terms, such as Plotkin’s CBV [48], but the situation is more subtle

in the open case, as naive extensions of CBV to open terms are not adequate. The intuitive idea to obtain adequacy is that
normal forms should be meaningful terms (technically defined by the notion of solvable terms1). To illustrate non-adequacy,
consider the term C := (_G. X) (~ ~) X , where X := _I. I I. Note that _G. X is applied to an argument ~~ which is not a value,
so C cannot be further reduced (i.e. it is a normal form); however, C is not solvable. As evidenced by this example, a naive
extension of Plotkin’s CBV to the open framework does not give an adequate calculus, since the term C is a normal form and
meaningless at the same time.
Our starting point is a formulation of open weak CBV which recovers adequacy, called the fireball calculus [2]. Useful

evaluation for the fireball calculus, also in [2], is specified by imposing global restrictions on reduction steps at the meta-
level, which is contrary to the inductive way in which one usually reasons about the syntax and semantics of programming
languages and proof-assistants. Indeed, inductive methods offer a more structured and rigorous approach to understand,
specify, and implement evaluation strategies in programming language theory. They provide clarity and precision, making it
easier to achieve formal analysis and proofs. As part of this work, we reformulate useful open weak CBV inductively.

Quantitative Interpretations. The denotational semantics of CBV is comparatively less explored and not as well under-
stood as that of CBN. This discrepancy primarily stems from the complexities inherent to open terms and non-erasable terms.
One of our goals is to enhance the semantic understanding of useful CBV evaluation in an open setting. This is achieved
through the use of a quantitative interpretation specified by intersection types. These types extend simple types with a new
type constructor ∩ such that a program C becomes typable with U ∩ V if C is typable with both types U and V independently.
They were originally introduced as (qualitative) models capturing computational properties of functional programs [31]. For
example, termination of a particular evaluation strategy can be characterized by typability in an appropriate intersection type
system, so that a program C is terminating for the evaluation strategy if and only if C is typable in the associated type system
(which means that typability becomes undecidable in these systems). Initially, the intersection type constructor was defined
in particular as an idempotent type constructor (i.e. f ∩ f = f). By instead adopting a non-idempotent notion of intersec-
tion [29, 36], types can be naturally understood as multisets. Just like their idempotent precursors, non-idempotent types
still allow for a characterization of operational properties of programs by means of typability [29, 36], but they also grant

1A general discussion on CBV-solvability can be found in [7, 35, 47].
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a substantial improvement: they provide quantitative measures of these properties. For example, it is still possible to prove
that a program is terminating if and only if it is typable, but now an upper bound or even an exact measure for the number of
steps to normal form can be obtained from the typing derivation. Quantitative types based on non-idempotent intersection
types have been used to provide upper and exact measures for evaluation strategies in the _-calculus [15, 24, 26, 32], classical
calculi [40, 41], call-by-value [5, 7, 34, 38, 42], call-by-need [11, 21, 23], call-by-push-value [28], languages with effects [19],
etc.
One crucial insight is that exact measures, instead of upper bounds, can be obtained by consideringminimal type derivations,

called tight [17]. Using appropriate refined tight systems, it is also possible to obtain independent measures for different kinds
of evaluation steps. More precisely, quantitative typing systems are equipped with constants and counters, together with a
condition called tightness, ensuring that a typing derivation is minimal. Soundness of the resulting intersection type system
means that for any tight type derivation Φ of a program C with a counter<, the term C evaluates to a normal form in exactly
< steps (generalized for steps of many possible kinds with counters<1, . . . ,<=).

On the other hand, completeness means that each evaluation sequence of a given size has a corresponding (tight) typing
derivation with appropriate counters. Exact measures based on tight systems have been extended to encompass different
notions of evaluation such as call-by-name [17], call-by-value [5, 42], call-by-need [16, 45], call-by-push-value [27, 42], and
classical calculi [27].

Contributions. As an initial contribution, we define a useful CBV evaluation strategy for open terms. This is the first
inductive specification of usefulness in the literature. To formulate our strategy, we refine in two stages the value substitution
calculus (vsc) [12]: first, we introduce the linear open CBV calculus (locbv◦), which refines the vsc with linear substitution

but it is still not useful (Section 3). Second, we introduce the useful open CBV evaluation strategy (uocbv•) by restricting
evaluation to substitute abstractions only for progress (Section 4). Our inductive approach to usefulness has been inspired by
Balabonski et al.’s remarkable definition of strong call-by-need evaluation [22]. We then show that our notion of usefulness
enjoys the diamond property, and thus confluence. Further, we relate locbv◦ and uocbv• (Section 5).
As a second contribution, we show that uocbv• is a reasonable implementation of open CBV (Section 6). To do this, we

follow the methodology of [2], by showing a high-level and a low-level implementation theorem. Composing these implemen-
tation theorems entails that uocbv• indeed implements open CBV reasonably.
One of the remarkable benefits of our inductive approach is that it allows us to provide a semantic interpretation for

usefulness, the first one in the literature. This complements our syntactic presentation. Indeed, as a third contribution, we
propose a quantitative interpretation for uocbv•, based on non-idempotent intersection types (Section 7). This interpretation
provides independent and exact measures. More precisely, we define a type system based on non-idempotent intersection
types and equip it with a notion of tightness, and we show that useful evaluation according to uocbv• is sound and complete,
meaning in particular that for any tight type derivation of a program C with counters< and 4 , the term C evaluates to a normal
form in exactly< function application steps and 4 substitution steps. This is a novel result in the literature, as existing useful
evaluation notions lack semantic interpretations, and existing quantitative interpretations do not consider usefulness.

2 PRELIMINARY NOTIONS

We define here the shared notions for our calculi and strategies.
Given a denumerable set of variables (G,~, I, . . .), the sets of terms (C, B,D, . . .), substitution contexts (L, L′, . . .) and values

(E,F, . . .) are given by the following grammars:

C ::= G | _G. C | C C | C [G/C] L ::= ^ | L[G/C] E ::= G | _G. C

The set of terms includes variables, abstractions, applications, as well as closures C [G/B] representing an explicit substi-
tution (ES) [G/B] on a term C . Free and bound occurrences of variables are defined as expected, where free occurrences of
G in C are bound in C [G/B]. Terms are considered up to U-renaming of bound variables. We write CL for the variable-capturing
replacement of the hole ^ in L by C (keeping the standard notation C〈C〉 for other kinds of contexts). We write C ∈ Abs if C
is of the form (_G. C)L and C{G := B} stands for the capture-avoiding substitution of the free occurrences of G by B in C . The
sets of free variables of a term (fv(C)) and a context (fv(L)) are defined as expected. The set of reachable variables of a
term C is written rv(C) and defined as:

rv(G) := {G} rv(C B) := rv(C) ∪ rv(B)

rv(_G. C) := ∅ rv(C [G/B]) := (rv(C) \ {G}) ∪ rv(B)
3
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We now introduce some general notions of reduction that will be used all along the paper. Given a reduction system
R, we denote by→R the (one-step) reduction relation associated to system R. We write→=

R
and→∗

R
for the reflexive and

reflexive-transitive closure of→R , and→=
R
for the composition of =-steps of→R . A term C is said to be R-reducible if there

is B such that C →R B , and C is said to be R-irreducible, or in R-normal form, written C 6→R , if there is no B such that C →R B .
A term C is said to be R-terminating if there is no infinite R-sequence starting at C . A term C is R-diamond (or enjoys the
R-diamond property) if C →R C0 and C →R C1 with C0 ≠ C1 imply there is C ′ such that C0 →R C ′ and C1 →R C ′. A term C is
R-locally confluent (resp. R-confluent) if C →R C0 and C →R C1 (resp. C →∗R C0 and C →

∗
R
C1 ) imply there is C ′ such that

C0 →
∗
R
C ′ and C1 →∗R C

′. A relation R is terminating (resp. diamond, locally confluent, confluent) if and only if every
term is R-terminating (resp. R-diamond, R-locally confluent, R-confluent). Any relation verifying the diamond property is in
particular confluent, and any relation verifying termination and local confluence is confluent [50]. Moreover, if C is confluent,
then its R-normal form, if it exists, is unique [50].

3 LINEAR OPEN CALL-BY-VALUE

Most notions of open CBV evaluation that have been studied in the literature are not useful, in the sense explained in the
introduction. The only exception is the useful fireball calculus [2, 4], whose formulation is non-inductive: the evaluation of
a complex expression is not given in terms of the evaluation of its immediate subexpressions, but rather by means of side
conditions of a global nature. This makes it hard to reason inductively, as typically done when one wants to build type systems
on top of an untyped syntax. In this paper, a new inductive notion of usefulness for CBV is developed. This is done in two
steps. Indeed, useful evaluation is based on two key components:
Sharing structures. A term is a structure2 if its unfolding (performing all the remaining substitutions) is an application

headed by a variable, i.e. of the form G C1 . . . C= (= ≥ 0). For example, (G G) [G/~ I] [~/I I] is a structure because it unfolds to
I I I (I I I), which is headed by I. Substituting a variable by a structure never creates a db-redex, thus, in useful evaluation,
structures inside ESs must always remain shared. This means, for example, that (G G) [G/~ I] [~/I I] is a normal form in useful
evaluation.
Substituting abstractions for progress. In useful evaluation, abstractions not only have to be substituted on demand, as in call-

by-need, but they also must contribute to creating a db-redex, in order for the computation to make progress, for example,
G [G/I] → I[G/I] and (C G) [G/I] → (C I) [G/I] are not useful steps, while G [G/I] ~ → I[G/I] ~ is. Some of these ideas can
already be found in the literature about optimal reduction, e.g. [51]. Hence, in this section, we present a CBV calculus, called
linear open CBV (locbv◦), which only implements sharing of structures, so that value substitution remains unrestricted, even
if this does not contribute to the progress of the computation. To allow sharing structures, locbv◦ extends the fireball calculus
with ESs. This calculus is linear in the sense that variables are substituted one occurrence at a time. In the following Section 4,
we shall further refine locbv◦ to obtain a notion of useful open CBV evaluation, based on the second key component described
above to achieve usefulness. In Section 5 we relate these two notions.

The Fireball Calculus. In Plotkin’s closed CBV, values are defined to be just abstractions. In the fireball calculus, values
are generalized to fireballs (5 ::= _G. C | 8) defined mutually recursively with the notion of inert term (8 ::= G 51 . . . 5= with
= ≥ 0). Since inert terms necessarily contain free variables, fireballs collapse to _-abstractions in a closed setting, and thus we
can see the fireball calculus as a natural extension of Plotkin’s closed CBV.
The reduction relation of the fireball calculus is given by the reduction rule (_G. C) 5 →V5 C{G := 5 }, which is closed by (pure)

surface contexts S ::= ^ | CS | SC . Here C{G := 5 } performs full substitution: all the free occurrences of G in C are replaced by 5
simultaneously, avoiding capture. The fireball calculus as presented above is not reasonable as an implementation technique.
Indeed, the families of terms of Example 3.1 show that the fireball calculus without sharing still suffers from the size explosion
problem:

Example 3.1 (Size explosion). Consider the families of terms (C=)=∈N and (B=)=∈N given by:

C0 := I C=+1 := (_G. G G) C= B0 := I B=+1 := B= B=

Then C= has size linear in =, evaluates in = V-steps to B= , but the size of B= is exponential in =.

Sharing Structures. As extensively discussed in [4], it is sufficient in general to avoid the substitution of structures to
obtain a reasonable implementation of openCBV and, for that, one can rely on ESs. One calculus implementing this mechanism
for open terms is the value substitution calculus (vsc) [12]. The vsc is based on two kinds of steps.

2This name is borrowed from [21], but the terminology inert term is also used [2].
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Distant beta steps: they perform function applications by creating a delayed ES; for example, reducing (_G. I) (~~) I pro-
duces I[G/~~] I. However, the ES [G/~~] could be seen in principle as blocking the interaction between I and its value
argument I. The solution is to adopt a generalized rule for function application which allows to directly reduce I[G/~~] I
to G ′ [G ′/I] [G/~~], i.e. a list of ESs [G1/D1] . . . [G=/D=] is allowed now to lie between an abstraction and its argument, as in
(_G. C) [G1/D1] . . . [G=/D=]B → C [G/B] [G1/D1] . . . [G=/D=]. This rule is written more succinctly as (_G. C)L B →db C [G/B]L, where
L is a substitution context. The rule is called distant beta (db), originally introduced by [8].
Substitution steps: they perform full substitution, but only of values, by pushing outside the eventual substitution context

affecting the substituted value. This rule is written as C [G/EL] → C{G := E}L, where L is a substitution context. For example
(G G) [G/X [~/I]] → (X X) [~/I], where we recall that X := _I. I I.
Given that substitution of structures may produce size explosion, and that it does not contribute to the progress of the

computation (i.e. it does not create function applications), such substitutions are going to be disallowed. Indeed, the vsc

shares structures, i.e. substitution steps are allowed only to substitute variables by values, but not to substitute variables by
structures. Thus, an evaluation step like (G G) [G/I I] → I I (I I) is disallowed.
Note that substituting variables by variables may be required to contribute to the progress of the computation; for example,

substituting the underlined G by~ in (G I) [G/~] [~/I] → (~ I) [~/I] → I I contributes to creating later the underlined function
application I I. Recall that the two key ingredients for useful evaluation are sharing structures and substituting abstractions

for progress. The vsc shares structures, as it never substitutes a variable by a structure. This is enough to recover adequacy.
In particular the term (_G. X) (~ ~) X mentioned in the introduction reduces to X [G/~ ~]X , and this in turn to (X X) [G/~ ~],
which is now meaningless (i.e. unsolvable). However, this calculus is not useful, since it always substitutes a variable by an
abstraction, even if this does not contribute to creating a function application.

Linear Substitution. The obvious idea is to restrict vsc to substitute variables by abstractions only when contributing to
creating a function application. The delicate point is that a variable can occur multiple times: substituting some of them by
an abstraction may lead to creating function applications, but others might not. For example, in the step (I (G ~) G) [G/I] →
I (I~) I, substituting the first (underlined) occurrence of G by I creates a function application I~, while substituting the
second (overlined) occurrence of G by I does not contribute to creating a function application.
To formulate a useful notion of open CBV evaluation, we depart from the vsc by refining the operation of substitution to

be linear, i.e. to substitute one occurrence of a variable at a time. One possible way to present this linear variant of vsc is
simply to equip it with the distant beta rule (whose left-hand side is called a db-redex), together with a rule to substitute a
single occurrence of a variable G by a value E . The resulting calculus is called here the linear vsc, and written lvsc:

(_G. C)L B →db C [G/B]L S〈G〉[G/EL] →ls S〈E〉[G/E]L

In these rules, S stands for a surface context, i.e. a context that does not go inside abstractions: S ::= ^ | S C | C S | S[G/C] | C [G/S].
For example:

(_G. _~. G ~ ~) (I I) (I I) → (_~. G ~ ~) [G/I I] (I I)

→ (G ~ ~) [~/I I] [G/I I] → (G ~ ~) [~/F [F/I]] [G/I I]

→ (G F ~) [~/F] [F/I] [G/I I] → (G F F) [~/F] [F/I] [G/I I]

The calculus above implements linear substitution, which proceeds by micro-steps, replacing one variable at a time. Note
that in the last term, the substitution [~/F] cannot be used anymore, because ~ does not occur free in G F F . Some calculi
with linear substitution incorporate a reduction rule to erase unused substitutions, called garbage collection [8]. In this work,
we are not interested in space complexity, so we disregard the issue of garbage collection. Linear substitution models more
closely how abstract machines usually work [13].
We now give an alternative presentation of lvsc, using a style closer to the one we finally used for the uocbv• in Section 4.

The Linear Open CBV Calculus. The linear open CBV calculus, abbreviated locbv◦, is just an alternative presentation
of the lvsc of above which follows Balabonski et al.’s style, —in fact, they define the same reduction relation—. By linear we
mean that the lvsc and the locbv◦ use a linear substitution operation (in contrast with vsc which uses a full substitution
operation).
Formally, we define a family of binary relations ◦−→d , where d distinguishes the step kind, which is an element of the set
{db, lsv, sub(G,E) }, G being a variable and E a value such that G ∉ fv(E). The set of free variables of a step kind d is given by
fv(db) = ∅, fv(lsv) = ∅, and fv(sub(G,E) ) = {G} ∪ fv(E). The linear relation ◦−→d of locbv◦ is defined inductively as follows:

db◦

(_G. C)L B ◦−→db C [G/B]L
5
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sub◦

G ◦−→sub(G,E) E

C ◦−→sub(G,E) C
′

lsv◦

C [G/EL] ◦−→lsv C
′ [G/E]L

C ◦−→d C
′

appL◦

C B ◦−→d C
′ B

B ◦−→d B
′

appR◦

C B ◦−→d C B
′

C ◦−→d C
′ G ∉ fv(d)

esL◦

C [G/B] ◦−→d C
′ [G/B]

B ◦−→d B
′

esR◦

C [G/B] ◦−→d C [G/B
′]

Rules db◦, sub◦, and lsv◦ introduce the three kinds of evaluation steps, whereas appL◦, appR◦, esL◦, and esR◦ are the only
congruence rules, because reduction is weak (i.e. evaluation does not proceed inside the bodies of _-abstractions).
A step of the form C ◦−→db B represents a distant beta step. The evaluation steps C ◦−→sub(G,E) B and C

◦−→lsv B correspond to
two kinds of substitution steps. The first kind of step, C ◦−→sub(G,E) B , substitutes a free occurrence of G in C by the value E . The
second kind of step, C ◦−→lsv B , substitutes a bound occurrence of a variable G by a value E , as long as G is bound to a term of the
form EL by an ES. The two kinds of substitution steps focus on a single occurrence of a variable, i.e. they are linear substitution
steps. The only rule that allows to create a lsv-step is lsv◦, while the contextual rules appL◦, appR◦, esL◦ and esR◦ are used
to propagate any kind of steps, including lsv. Indeed, each step substituting a bound variable ( ◦−→lsv) depends internally on a
step that substitutes a free variable ( ◦−→sub(G,E) ). In addition to the rule db◦ mentioned above, an application may be evaluated
using rules appL◦ and appR◦, which evaluate within the left and right subterms, respectively. Note that rules db◦, appL◦ and
appR◦ overlap, so reduction is not deterministic. For example:

G [G/I] (I I) ◦←−db I I (I I)
◦−→db I I G [G/I]

Congruence rules for ESs allow evaluating the left-hand side of the term (esL◦), as well as the argument of the substitution
(esR◦). Again, there is an overlap between these rules. A technical point in rule esL◦ is that the variable G bound by the ES
[G/B] may not occur free in the step kind d . This is to avoid variable capture; e.g. it is not possible to derive a “pathological”
step like ~ [G/I] ◦−→sub(~,G ) G [G/I] by means of rule esL◦ from the valid step ~ ◦−→sub(~,G ) G .

Example 3.2. For example, the following is a sequence of evaluation steps to normal form according to locbv◦:

(_G. I G (G ~)) I ◦−→db (I G (G ~)) [G/I]
◦−→lsv (I I (G ~)) [G/I]

◦−→lsv (I I (I~)) [G/I]
◦−→db (I I (F [F/~])) [G/I]

◦−→lsv (I I (~ [F/~])) [G/I]

Confluence. Despite the overlaps in the rules mentioned above, it is not difficult to show that toplevel ◦−→ reduction is
confluent. This claim may be somewhat puzzling, given that the sub◦ rule allows to substitute a variable for any value, thus
G ◦−→sub(G,E1 )

E1 and G ◦−→sub(G,E2 )
E2. Indeed, confluence of ◦−→sub(_,_) makes no sense: these steps are only an auxiliary mechanism

to be able to define lsv reduction steps and in particular to define the notion of linear substitution of a single occurrence of a
variable by a value. What one actually want to show is that confluence holds for the toplevel step kinds (db and lsv) and not
for sub(_,_) . More precisely, if ◦−→top:= ◦−→db ∪

◦−→lsv stands for toplevel locbv◦ reduction, then:

Proposition 3.3. ◦−→top is confluent.

4 USEFUL OPEN CALL-BY-VALUE

The notion of useful evaluation first appeared in [10], in which useful leftmost-outermost CBN evaluation is proposed. Their
definition of useful step [10, Definition 6.1] relies on the key notion of the relative unfolding of a term C with respect to a
surrounding context C, written C↓C. The relative unfolding performs all the ESs found in C, so for example (G G)↓(^~) [G/I I ] =
I I (I I). While function application steps are always deemed to be useful, the situation is more subtle for substitutions. Indeed,
consider a step C〈G〉 → C〈C〉, where the variable G is substituted by the term C ; this step occurs when G is bound to C through
an ES, appearing in the context C. This step is deemed to be useful depending on the relative unfolding C↓C. Specifically, the
substitution step is useful if it contributes to the progress of the computation. In CBN, this can be due to two reasons: first, it
may be that C↓C itself contains a V-redex; second, it may be that the substitution creates a V-redex, when C↓C is an abstraction
and the hole of the context C is applied to an argument. For example, the substitution step G [G/I I] → (I I) [G/I I] is useful
for the first reason, because (I I)↓^ = I I is reducible. The substitution step G [G/~ I] [~/I] → (~ I) [G/~ I] [~/I] is also useful
for the first reason, because (~ I)↓[~/I] = I I is reducible. On the other hand, (G I) [G/~] [~/I] → (~ I) [G/~] [~/I] is useful by
the second reason, because ~↓[~/I] = I is an abstraction, and the hole of (^ I) [G/~] [~/I] is applied to an argument I.
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Useful evaluation has been extended to CBV [2, 4]. This definition again relies on the notion of relative unfolding: useful
CBV evaluation steps are not characterized by local predicates, but rather by means of side conditions of a global nature. The
main difficulty is that their notion is not inductive, in the sense that applying congruence rules below term constructors may
turn a non-useful step into a useful one. For example, the substitution step G [G/I] → I[G/I] is not useful, because G is not
applied, whereas G [G/I] C → I[G/I] C is a useful step. This makes it hard to reason about the properties of useful evaluation
using inductive arguments.
In this section, we refine the notion of locbv◦ reduction introduced in Section 3, in order to encompass usefulness. Indeed,

we keep sharing of structures as in locbv◦, but we also restrict evaluation to substitute abstractions only for progress. This
restriction is non-trivial to impose: in order to achieve an inductive specification of usefulness we define a family of evalu-
ation relations that are indexed by certain parameters representing the essential information coming from the surrounding
evaluation contexts: this is the minimal data that cannot be ignored to decide what is useful and what is not.
The remainder of this section is organized as follows: We first define the new notion of useful open CBV, written uocbv•.

We then give an inductive characterization of its normal forms. We finally show that uocbv• satisfies the Diamond Property
(Theorem 4.5), which ensures that the length = of a reduction sequence to normal form does not depend on the particular
order chosen to evaluate the terms, thus allowing this natural number = to be taken as a time complexity measure.

The Useful Open CBV Strategy. We now introduce the notion of useful open CBV evaluation, which implements both
sharing of structures and substitution of abstractions only when progress is guaranteed. The second feature is subtle. In-
tuitively, progress is in principle related to the substitution of an applied variable by an abstraction, so that a db-step is
immediately created. But progress can also be related to the substitution of an applied variable by another variable, which
in turn can be substituted by an abstraction, indirectly leading to a db-step. We thus need to identify those terms that are
already abstractions and those that are currently variables but will be substituted in turn by abstractions; both are necessary
to achieve progress. Thus, given a set of variablesA called an abstraction frame, the set of terms considered as hereditary
abstractions under A, written HAA , is defined inductively as follows:

h-lam
_G. C ∈HAA

C ∈HAA G ∉A
h-sub1

C [G/B] ∈HAA

G ∈A
h-var

G ∈HAA

C ∈HAA∪{G } G ∉A B ∈HAA
h-sub2

C [G/B] ∈HAA

Indeed, every abstraction belongs to the set of hereditary abstractions, for any A. In the case of variables, only those in
the abstraction frame are hereditary abstractions: they will eventually be substituted by abstractions to create —directly or
indirectly— a db-step, thus guaranteeing progress in the computation. The set of hereditary abstractions may also contain
terms with ES, depending on whether the argument by which the variable will be substituted is a hereditary abstraction or not.
For example, performing a substitution step in the term G [G/~1 ~2] I will never generate a db-step: thus the term G [G/~1 ~2]

is not a hereditary abstraction. Another example is given by G [G/I] I: progress is obtained by performing a substitution step
on the left-hand side of the application because a db-redex of the form I[G/I] I can be created. This means that G [G/I] is
a hereditary abstraction, according to rule h-sub2. Terms that are applications (whether they are db-redexes or not) do not
belong to the set of hereditary abstractions under any abstraction frame, as they do not comply with the principle of being
abstractions or variables to be substituted by abstractions during the evaluation.
It is also necessary to distinguish the irreducible terms that are not hereditary abstractions. For that, given a set of variables
S called a structure frame, the set of structures under S, written StS , is inductively defined as follows:

G ∈S
s-var

G ∈StS

C ∈StS G ∉S
s-sub1

C [G/B] ∈StS

C ∈StS
s-app

C B ∈StS

C ∈StS∪{G } G ∉S B ∈StS
s-sub2

C [G/B] ∈StS

Indeed, no abstraction belongs to the set of structures, for any structure frame. An application is a structure if its left-hand
side is itself a structure; this excludes db-redexes from belonging to any structures set. In the case of variables, those that
belong to the structure frame are structures. As for the case of terms with ESs, the intuition for rules s-sub1 and s-sub2 is
analogous to the ones for rules h-sub1 and h-sub2, respectively. For example, G [G/~1 ~2] I cannot generate a db-step, hence

7



Barenbaum, Kesner, and Milicich

G [G/~1 ~2] is considered to be a structure. The same happens with the term (G ~) [~/I] I, so (G ~) [~/I] is considered to be a
structure, even though ~ is bound to a function.

We summarize below some key (but easy) properties of hereditary abstractions and structures:

Remark 4.1. (1) If A ⊆ A′ then HAA ⊆ HAA′ ; (2) A term of the form C B is never in HAA ; (3) If C ∈ HAA then C is of
the form C = EL; (4) If S ⊆ S′ then StS ⊆ StS′ ; (5) A term of the form (_G. C)L is never in StS ; (6) For any L, one has that
(_G. C)L ∈ HAA .

Given all the previous ingredients, we canmove on to the reduction rules for uocbv•. We define a family of binary relations
•−→d,A,S,` , where d is a step kind,A is an abstraction frame, S a structure frame and ` ∈ {@, 6@} a positional flag. The useful
relation •−→d,A,S,` is defined inductively as follows:

db•

(_G. C)L B •−→db,A,S,` C [G/B]L
sub•

G •−→sub(G,E) ,A∪{G },S,@ E

C •−→sub(G,E) ,A∪{G },S,` C
′ G ∉ A ∪ S EL ∈ HAA

lsv•

C [G/EL] •−→lsv,A,S,` C
′ [G/E]L

C •−→d,A,S,@ C ′

appL•

C B •−→d,A,S,` C
′ B

C ∈ StS B •−→d,A,S, 6@ B′

appR•

C B •−→d,A,S,` C B
′

B •−→d,A,S, 6@ B′

esR•

C [G/B] •−→d,A,S,` C [G/B
′]

C •−→d,A∪{G },S,` C
′ B ∈ HAA G ∉ A ∪ S G ∉ fv(d)

esLA•

C [G/B] •−→d,A,S,` C
′ [G/B]

C •−→d,A,S∪{G },` C
′ B ∈ StS G ∉ A ∪ S G ∉ fv(d)

esLS•

C [G/B] •−→d,A,S,` C
′ [G/B]

Note that each uocbv• step is in particular a locbv◦ step, i.e., •−→d,A,S,` ⊆
◦−→d . Note also that the reduction relation defined

above is non-erasing: C •−→d,A,S,` C
′ implies fv(C) = fv(C ′) whenever d = {db, lsv}. As in the previous section, rules db•, sub•

and lsv• introduce the three possible kinds of evaluation steps, whereas all the other cases are congruence rules for steps of
an arbitrary step kind d ∈ {db, lsv, sub(G,E) }. Note also that there are no congruence rules to evaluate under abstractions, so
that reduction is again weak.
Rule db• performs a function application step, the same one performed by rule db◦ in locbv◦. Note that evaluation steps of

the form C •−→sub(G,E) ,A,S,` B and C
•−→lsv,A,S,` B correspond to two different kinds of substitution steps, as in locbv◦: the former

substitutes a free occurrence of a variable, while the latter substitutes a bound occurrence. The only rule that allows to create
an lsv-step is lsv•, while the congruence rules appL•, appR•, esLA•, esLS• and esR• are used to propagate any kind of steps,
including lsv. Indeed, each application of the lsv• rule depends internally on a sub(G,E) -step, where E is necessarily required to
be a hereditary abstraction, a restriction which is not required in the lsv◦ rule of locbv◦. Notice also that substituting a free
variable in a term C using rule sub• is only possible when C is in an applied position, meaning that progress of the computation
is possible. The following example is an instance of the lsv• rule:

sub•

G •−→sub(G,I) ,{G },{I},@ I
I[~/I] ∈ HA∅

lsv•

G [G/I[~/I]] •−→lsv,∅,{I},@ I[G/I] [~/I]

appL• and appR• are congruence rules for the application constructor. The rule appR• also requires the left subterm of the
application to be a structure, thus avoiding a possible overlap with rule db•. Still, rules appL• and appR• overlap, so reduction
is not deterministic, like in the linear CBV strategy. For example:

G ~ [~/I] (I I) •←−db,∅,{G }, 6@ G (I I) (I I) •−→db,∅,{G }, 6@ G (I I)~ [~/I]

esR•, esLA• and esLS• are congruence rules for the ES constructor. More precisely, rule esR• allows the evaluation of the
argument of any ESs, while the two other rules allow the evaluation of the left-hand side of the substitution under some
conditions: esLA• (resp. esLS•) can only be applied if the argument of the substitution is a hereditary abstraction (resp. a
structure). Note that rules esLA• and esLS• force to evaluate the argument B of an ES C [G/B] until it becomes “rigid”, and only
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then one is allowed to proceed to evaluate the body C . This is consistent with a CBV strategy. As long as evaluation terminates,
these rules cover all possible cases, because a normalizing term is guaranteed to always become either a hereditary abstraction
or a structure (cf. Lemma B.4 in Appendix B). These last two rules are subject to the condition that the variable G bound by
the ES [G/B] must not occur free in the step kind d . This is the same kind of restriction used in the rule esL◦ presented in
Section 3, and it intends to prevent variable capture and pathological steps such as ~ [G/I] •−→sub(~,G ) ,{~},∅,@ G [G/I]. Note that
there is a possible overlap between rule esR• and rules esLA• and esLS•.
A term C is (d,A,S, `)-reducible if there exists a term C ′ such that C •−→d,A,S,` C

′. A term C belongs to the set Red•
A,S,` if C

is (d,A,S, `)-reducible for some step kind d ; and C belongs to Irred•
A,S,` if C ∉ Red•

A,S,` .
Up to this point, hereditary abstractions and structures exhibit distinct and disjoint behaviors within the framework of

uocbv•. This divergence is evident through the use of the abstraction frame and structure frame, each capturing the unique
characteristics of these constructs. For that, an abstraction frameA and a structure frameS are said to verify the correctness
invariant for C , written inv(A,S, C), ifA∩S = ∅ and fv(C) ⊆ A∪S. Wewill usually need to assume this invariant inv(A,S, C)
when stating theorems. Remark that inv(∅, fv(C), C) always holds, so for a toplevel term C , one takesA := ∅, and S := fv(C).

Example 4.2. The following is a sequence of evaluation steps in uocbv• to normal form:

(_G. I G (G ~)) I •−→db,∅,{I,~}, 6@ (I G (G ~)) [G/I]
•−→lsv,∅,{I,~}, 6@ (I G (I~)) [G/I]

•−→db,∅,{I,~}, 6@ (I G (F [F/~])) [G/I]

Compare this evaluation with the corresponding evaluation of the same term in locbv◦ (Example 3.2). Note that in uocbv•

the leftmost occurrence of G and the occurrence ofF are not substituted, because they do not contribute to creating a function
application.

Example 4.3. The following is a sequence of evaluation steps in uocbv• to normal form:

(G I) [G/~ [~/I]] •−→lsv,∅,{I}, 6@ (~ I) [G/~] [~/I]
•−→lsv,∅,{I}, 6@ (I I) [G/~] [~/I]

•−→db,∅,{I}, 6@ G1 [G1/I] [G/~] [~/I]

Operational Properties. We state two theorems about the operational properties of uocbv•. Theorem 4.4 provides an
inductive characterization of the set of normal forms, while Theorem 4.5 shows that it enjoys a very strong form of confluence,
namely the diamond property. See the appendix (Appendix B) for more details and proofs.

Theorem 4.4 (Characterization of normal forms). The set of irreducible terms Irred•
A,S,` is exactly the set NF•

A,S,`

defined inductively as below:
G ∈ A ⇒ ` = 6@

NF-var•

G ∈ NF•A,S,`
NF-lam•

_G. C ∈ NF•A,S, 6@

C ∈ NF•A,S,@ B ∈ NF•A,S, 6@
NF-app•

C B ∈ NF•A,S,`

C ∈ NF•A∪{G },S,` B ∈ NF•A,S, 6@ B ∈ HAA
NF-esA•

C [G/B] ∈ NF•A,S,`

C ∈ NF•A,S∪{G },` B ∈ NF•A,S, 6@ B ∈ StS
NF-esS•

C [G/B] ∈ NF•A,S,`

Theorem 4.5 (Diamond Property). Let C •−→d1,∅,S, 6@ C1 and C •−→d2,∅,S, 6@ C2, where C1 ≠ C2 and d1, d2 ∈ {db, lsv} and S = fv(C).

Then there exists C ′ such that C1
•−→d2,∅,S, 6@ C ′ and C2

•−→d1,∅,S, 6@ C ′.

The two announced consequences of the previous result follow:

Corollary 4.6. Any two reduction sequences to normal form in uocbv• have the same number of db and lsv steps.

Similarly as for locbv◦, confluence of uocbv• holds only for the toplevel step kinds (db and lsv). Indeed, if •−→top,S :=
•−→db,∅,S, 6@ ∪

•−→lsv,∅,S, 6@ stands for toplevel uocbv• reduction, then:

Corollary 4.7. •−→top,S is confluent.
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5 RELATING LINEAR AND USEFUL OPEN CBV

This section aims to establish a connection between locbv◦ and uocbv•, defined in Sections 3 and 4 respectively, in particular
showing that our concept of usefulness is a (complete) restriction of locbv◦, in the sense that uocbv• achieves evaluation
to equivalent normal forms by omitting certain substitution steps, specifically those that do not contribute to the creation of
function applications.
Going from uocbv• to locbv◦ is easy: indeed, each uocbv• step is, in particular, a locbv◦ step, because the former disallows

some substitution steps that the latter allows. However, relating them in the reverse direction is much more delicate, because
not every locbv◦ step is useful. For example, (G ~) [~/I] ◦−→ (G I) [~/I] is not useful. In fact, (G ~) [~/I] is a normal form for
uocbv• (details in Proposition 5.1), whereas its normal form is (G I) [~/I] in locbv◦.
Normal forms in both formalisms are different, but structurally equivalent because locbv◦ evaluates terms further than

uocbv•. We then need a precise way to relate them, which is done by means of an unfolding operation. Recall that, in calculi
with ESs, unfolding is used to perform all of the pending substitutions. For example, unfolding the term G [G/~~] [~/I I]

yields I I (I I) [G/~~] [~/I I]. In this work, unfolding is much subtler, and it has to be defined in a controlled way. For example,
unfolding the term G [G/I], which is a normal form in uocbv•, yields its corresponding normal form in locbv◦, which is I[~/I].
But the new unfolding operation does not need to unfold all ESs: in particular, (_G.~) [~/I] is not unfolded to (_G. I) [~/I]
(because evaluation is weak), and G [G/~~] is not unfolded to (~~) [G/~ ~] (because structures are shared and never substituted).
Intuitively, this notion of unfolding only performs the substitution of those reachable variables that are bound to values.
The remainder of this section is organized as follows. First, we define the notion of unfolding of a term C with respect to

a value assignment f . We then relate locbv◦ and uocbv• by means of two technical results (Proposition 5.1): we show that
the unfolding of normal forms in uocbv• always yields a normal form in locbv◦ and that terms reducible in uocbv• remain
reducible in locbv◦.

Recursive Definition of Unfolding. According to the preceding discussion, we start by defining the notion of value
assignment, written f , which is a partial function mapping each variable to a value. The domain and image of a value
assignment f are denoted by dom(f) and im(f) respectively. To ensure idempotence, we require the domain dom(f) and the
free variables fv(im(f)) of the image to be disjoint (i.e. dom(f) ∩ fv(im(f)) = ∅). Additionally, we write · to denote the value
assignment with an empty domain.
The unfolding of a term C under the value assignment f , written C↓f , is defined recursively as follows.

(_G. C)↓f := _G. C
(C B)↓f := C↓f B↓f

G↓f :=

{
f (G) if G ∈ dom(f)
G otherwise

C [G/B]↓f :=

{
C↓f∪(G ↦→E) [G/E]L if B↓f = EL, G ∈ rv(C)

C↓f [G/B↓f ] otherwise

Notice that there are two base cases. The unfolding operation causes no effect on abstractions, justified by the fact that
evaluation is weak. The other base case is when the term is a variable: if G ∈ dom(f), the definition mirrors the behavior
of performing a step of the form G ◦−→sub(G,f (G ) ) E ; otherwise, the variable is unchanged, reflecting the fact that it will not be
substituted by a value. Note that the expansion of f with G ↦→ E is still a value assignment since we may always assume by
U-conversion that G ∉ dom(f), G ∉ fv(E) and for any E ′ ∈ im(f), G ∉ fv(E ′). The unfolding of toplevel terms is done under the
empty value assignment. Some examples of such unfoldings follow: (_I. G) [G/~]↓ = (_I. G) [G/~], (G ~) [~/I]↓ = (G I) [~/I]
and G [G/~ [I/I]]↓ = ~ [G/~] [I/I]. Sometimes, the value assignment used for the left subterm of an ES is the original one, as
in the first example, given that G ∉ rv(_I. G). However, sometimes it must be extended, as in the last example: when we apply
the unfolding over the subterm G , the value assignment is extended to (G ↦→ ~).

Relating Reduction Steps and Normal Forms. We now relate locbv◦ to uocbv• by using as a midpoint the unfolding
of a term with respect to a value assignment, as previously explained. Our goal is to prove that uocbv• simulates locbv◦

while still obtaining the same normal forms, up to unfolding. To prove this, we state the following result, which has two parts:
first, the unfolding of a useful normal form is a linear normal form; second, the unfolding of a reducible term in the useful
strategy is either db-reducible in the linear strategy or an abstraction in an applied position. This second point is precisely the
one that justifies the name “useful”, as it intuitively means that any substitution step in the useful strategy must contribute
to the creation of a db-step (cf. Section 1).
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Recall that ◦−→top and •−→top,S stand for toplevel locbv◦ and uocbv• reduction respectively, i.e.:
◦−→top := ( ◦−→db ∪

◦−→lsv)
•−→top,S := ( •−→db,∅,S, 6@ ∪

•−→lsv,∅,S, 6@)

The following proposition relates locbv◦ and uocbv• in the toplevel case. In the appendix (Proposition C.24) the statement
is generalized for arbitrary parameters (A, S, `, etc.), which has some subtleties.

Proposition 5.1. Let C be a term and S = fv(C). Then:

1. If C is •−→top,S-irreducible then C
↓ is ◦−→top-irreducible.

2. If C •−→top,S C
′ then there exists C ′′ such that C↓ ◦−→db C

′′.

As an example of the first property, (G ~) [~/I] is •−→top,{G }-irreducible, and its unfolding under the empty value assignment
is (G I) [~/I], which is ◦−→top-irreducible. For an example of the second property, consider the lsv step C = (G ~) [G/I] •−→top,{~}

(I~) [G/I] = C ′ = C↓, and note that C ′ ◦−→db G1 [G1/G] [~/I].
The preceding results can be easily combined to conclude that C is •−→top,fv(C ) -irreducible if and only if C

↓ is ◦−→top-irreducible.

6 USEFUL OPEN CBV IS REASONABLE

In this section, we relate the uocbv• strategy with prior work in the literature, showing that uocbv• is a reasonable implemen-
tation of open CBV. We proceed in two stages, following [2]. On one side, we prove a high-level implementation theorem,
stating that reduction in the fireball calculus [2] can be simulated by reduction in uocbv•, with quadratic overhead in time. On
the other side, we prove a low-level implementation theorem, stating that reduction in uocbv• can be implemented by the
GLAMoUr abstract machine [2], with linear overhead in time. By composing these results, we obtain that uocbv• implements
open CBV reasonably. The key property in this section is a simulation result, which embeds the GLAMoUr abstract machine
into uocbv•.
The definitions and proofs in this section follow well-known methodologies (e.g. [2, 4, 13]). Due to space limitations, we

state the main theorems and leave out most of the technical details in Appendix D.

Stability Notions. We say that a term is rigid under (A,S) if it is a hereditary abstraction (B ∈ HAA) or a structure
(B ∈ StS). When evaluating an ES like C [G/B], uocbv• reduction only evaluates the body C when the argument B is rigid.
To establish a closer correspondence with a low-level abstract machine, we identify a subset of terms, called stable terms
under (A,S), in which the arguments of all ESs are rigid. Furthermore, we consider a subset of uocbv• reduction, called

stable reduction, and written
N

−→d,A,S,` ⊆
•−→d,A,S,` , which forces arguments of applications to be rigid before going on.

Sometimes we omit some of the parameters, e.g. writing just
N

−→, if they are clear from the context. In the stable reduction, the
congruence rule appL• allows to evaluate the head C of an application C B only if B is rigid, and the db rule allows to contract a

redex (_G. C)L B
N

−→ C [G/B]L only if B is rigid. Stable reduction preserves stable terms. It can also be shown to enjoy the diamond
property.

Embedding the GLAMoUr into useful Open CBV . The abstract machine GLAMoUr [2], operates on states B , which
contain in particular a term t without ESs —the current focus of evaluation—. There are seven kinds of transitions in the
GLAMoUr:multiplicative transitions (B {um B

′) corresponding to function application steps, exponential transitions (B {ue B
′)

corresponding to linear substitution steps, and administrative transitions B {c8 B
′ for 8 ∈ 1..5 that change the focus of

evaluation without performing computation. We refer the reader to [2, 4] (or the appendix) for full details.
Each state B of the GLAMoUr can be decoded to a term {{B}} with ESs. As is typical when relating abstract machines and

calculi with ESs [13], the GLAMoUr abstract machine can be simulated into uocbv• up to a standard notion of structural
equivalence (≡) between terms [3]. In a call-by-value framework, this notion of structural equivalence allows to commute
ESs with applications and other ESs, so for example C D [G/B] ≡ (C D) [G/B] and C [G/B [~/D]] ≡ C [G/B] [~/D] hold as long as
there is no variable capture. The main technical lemma is:

Lemma 6.1 (GLAMoUr simulation). Let B be a state reachable from an initial state whose focus is C0, and let S0 := fv(C0).

Then:

1. If B {um B
′, then {{B}}

N

−→db≡ {{B
′}}.

2. If B {ue B
′, then {{B}}

N

−→lsv≡ {{B
′}}.

3. If B {c8 B
′, then {{B}} = {{B′}}, for all 8 ∈ {1..5}.

4. Progress: if B is{-irreducible then {{B}} is
N

−→-irreducible.
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As a consequence, a sequence of GLAMoUr transitions can be decoded as a sequence of (stable) uocbv• steps interleaved

with equivalences. To be able to postpone all the intermediate structural equivalence steps to obtain {{B1}}
N

−→
N

−→ . . .
N

−→≡

{{B=}}, we need the following lemma, stating that ≡ is a strong bisimulation with respect to
N

−→, thus obtaining in particular a
postponement property:

Lemma 6.2 (Strong bisimulation). Let C0, B0 be stable terms such that B0 ≡ C0
N

−→d,A,S,` C1 then there exists B1 such that

B0
N

−→d,A,S,` B1 ≡ C1.

The preceding result relies crucially on the fact that we work with stable terms. Indeed, suppose D is not rigid. Then the
equivalence C [G/B] [~/D] ≡ C [~/D] [G/B] cannot be postponed after the (non-stable) step C [~/D] [G/B] •−→ C [~/D] [G/B′] because
the rules esLA• and esLS• cannot be applied to derive a step C [G/B] [~/D] •−→ C [G/B′] [~/D], given that D is not rigid.

High and Low-Level Implementation. Relying on the previous results, it can now be shown that reduction in the fireball
calculus (→V5 ) can be implemented through uocbv• ( •−→) with quadratic overhead. More precisely, if we write C⇓ for the full
unfolding of a term C , performing all the pending ESs in C :

Theorem 6.3 (High-level implementation). Let C be a pure term (without ESs) and S = fv(C). If C →=
V5
C ′ then there exists

B such that C
N

−→
:
B where B⇓ = C ′ and : ∈ $ (|C | · (=2 + 1)).

To complete the picture, it can be shown that uocbv• ( •−→) can be implemented in the GLAMoUr ({) with linear overhead.
More precisely:

Theorem 6.4 (Low-level implementation). Let C be a pure term (without ESs). If C
N

−→
=
C ′ with C ′ in normal form and B is

an initial state such that {{B}} = C then B {: B′ where {{B′}} is structurally equivalent to C ′ and : ∈ $ (|C | · (= + 1)).

We can then conclude,

Corollary 6.5. The uocbv• strategy is a reasonable implementation of open CBV.

7 A QUANTITATIVE INTERPRETATION

In this section, we propose a type system for the new strategy uocbv• introduced in Section 4. This system, based on non-
idempotent intersection types, can be seen as a semantical interpretation, akin to relational models in the usual sense of linear
logic [25, 37].
The existing formulations of useful evaluation in the literature lack the inductive characteristics required to identify the

invariant predicates essential for establishing soundness and completeness of the interpretation. On the other hand, there are
no semantical interpretations for CBV designed specifically for useful evaluation, as the existing ones e.g. [7, 34, 42] do not
implement usefulness.
Our work addresses this gap by introducing the first notion of tightness which provides exact quantitative information

about evaluation length for useful evaluation. The resulting interpretation is surprisingly natural and simple. It is given by
means of a type system, calledU (forUseful), which is sound and complete with respect to uocbv• normalization, i.e. a term
is typable if and only if it is normalizing. This is why we say that the type system characterizes normalization. Furthermore,
U provides quantitative information about the use of resources during evaluation, so it can be considered as a quantitative
interpretation/typing system. More precisely, types inU represent quantitative specifications of the behavior of a program
when evaluated in uocbv•. In particular, we want the interpretation to be perfectly faithful to the quantitative behavior of
the calculus, i.e. we not only want the type system to capture upper bounds for the evaluation length but instead to capture
exactly the number of times that each function is applied during the evaluation of the program (i.e. the number of db steps) as
well as the number of substitutions that are performed (i.e. the number of lsv steps). In particular, our inductive formulation
of useful evaluation turns out to be well-suited for demonstrating the typical properties associated with such tight type
systems, including subject reduction (Proposition 7.3), subject expansion (Proposition 7.6), and tight typability of normal
forms (Proposition 7.5). These proofs would be difficult using a global definition of usefulness.
The remainder of this section is organized as follows: Section 7.1 introduces the formal definition of the quantitative type

system U, while Section 7.2 shows thatU is sound and complete with respect to uocbv•.
12
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7.1 The Quantitative Type SystemU

In quantitative type systems, one important point is that the same expression may play different roles in different contexts.
For example, in some programs an occurrence of the identity function I may be applied twice, while in other programs it
may be applied only once. In each case, the type of the subexpression I should change to reflect this quantitative difference.
Hence terms do not have a unique type. In fact, as usual in intersection type systems, there is no notion of principal type inU.
To be able to capture quantitative information about evaluation, the type of each _-abstraction is a multiset (rather than a

set) whose cardinality corresponds exactly to the number of times that the abstraction is applied to some argument during
the whole evaluation process. In general, the type of an abstraction is a multiset of the form T = [U1, . . . , U=], where each of
the U8 is an arrow type. For example, the underlined identity function in the expression (_5 . G (5 ~) (5 I)) I takes part in two

function applications. Hence, one possible type assignment for that subexpression is ⊢ I : [(T → T), (S → S)], meaning
that the identity function is applied twice during evaluation, once to an argument of type T and once to an argument of type
S. However, some abstractions may never be applied. For example, the identity function in the program G [G/I] does not take
part in any function application. These abstractions are typed with the empty multiset [].
As studied in Section 4, all (terminating) terms evaluate to either a variable, an abstraction, or a structure. Abstractions, as

well as variables bound to abstractions, are assigned finite multisets of arrow types, as we just said, called arrow multi-types.
Structures, and variables bound to structures, on the other hand, are always given a distinguished type, just written s.
Formally, types ofU are given by the following grammar:

(Arrow Types) U, V, . . . ::= T ? → T

(Arrow Multi-Types) M,N , . . . ::= [U: ]:∈ 
(Types) T ,S, . . . ::= s | M

(Optional Types) T ?,S?, . . . ::= ⊥ | T

We distinguish a set of tight constants given by t ::= s | [ ], where s is assigned to terms evaluating to structures, while [ ]
is assigned to terms evaluating to abstractions that are not going to be applied. Unlike in previous quantitative interpretations
of CBV, we distinguish here the type ⊥ from the type [ ], the former meaning that no typing information is available, and the
latter is used as explained above.
The counting function ta(_) returns the number of toplevel arrows in a type (or optional type), and it is defined by

ta( s) := 0, ta(⊥) := 0, and ta( [U: ]:∈ ) := | |.Typing environments Γ,Δ, . . . are functions from variables to optional types,
assigning ⊥ to all but finitely many variables. The domain of an environment Γ is defined as dom(Γ) := {G | Γ(G) ≠⊥}, and∅
denotes the empty typing environment, mapping every variable to ⊥. The union of arrow multi-types, writtenM1 ⊎ M2,
are multisets of types defined as expected, where [ ] is the neutral element. The union of types, written T1 + T2, is the
(associative) partial operation on types given by s + s := s andM1 +M2 :=M1 ⊎ M2, where all other cases are undefined.
Note that ta(T1 + T2) = ta(T1) + ta(T2). The union of optional types is given by ⊥ +⊥ := ⊥, ⊥ + T := T , and T + ⊥ := T ,
so that ⊥ is the neutral element of +. Given typing environments (Γ8)8∈� , we write +8∈�Γ8 for the environment mapping each
variable G to +8∈�Γ8 (G), where Γ+Δ and Γ+:∈ Δ: are particular instances of the general notation.When dom(Γ)∩dom(Δ) = ∅
we may write Γ;Δ instead of Γ + Δ to emphasize that the domains are disjoint. As a consequence, Γ; G :⊥ is identical to Γ. We
write G : T ? for the environment assigning T ? to G and ⊥ to any other variable. A binary relation of subsumption between
optional types and types is defined by two cases, declaring that ⊥ ⊳ t and T ⊳ T hold. This subsumption relation is used to
introduce a controlled form of weakening in the system.
Typing judgments in U are not just triples of the form Γ ⊢ C : T , as usual, but they are rather annotated with natural

numbers< and 4 called counters, i.e. judgments are of the form Γ ⊢(<,4 ) C : T . Under appropriate conditions, these counters
correspond exactly to the number of function application steps (<) and substitution steps (4) required to evaluate terms by
means of the useful CBV strategy. Typing rules of systemU are:

= = ta(T )
var

G : T ⊢(0,=) G : T

Γ ⊢(<,4 ) C : s Δ ⊢(<
′,4′ ) D : t

appP
Γ + Δ ⊢(<+<

′,4+4′ ) C D : s

(Γ8 ; G : T ?
8 ⊢

(<8 ,48 ) C : S8 )8∈�
abs

+8∈�Γ8 ⊢
(+8∈�<8 ,+8∈� 48 ) _G. C : [T ?

8 → S8 ]8∈�

Γ ⊢(<,4 ) C : [T ? → S] T ?
⊳ T Δ ⊢(<

′,4′ ) D : T
appC

Γ + Δ ⊢(1+<+<
′,4+4′ ) C D : S
13
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Γ; G : T ? ⊢(<,4 ) C : S T ?
⊳ T Δ ⊢(<

′,4′ ) D : T
es

Γ + Δ ⊢(<+<
′,4+4′ ) C [G/D] : S

The counters are only extra information propagated along with typing rules, but they do not impose any condition on typing
derivations. It is in fact easy to show that they can be recovered in a single (linear time) recursive traversal from any derivation
without counters. For example, it is sufficient to increment one for every rule appC in the derivation to compute the first
counter. Occasionally, we omit them if they are not relevant, writing just Γ ⊢ C : T .
System U is linear, i.e. each type assumption must be used once and only once. In proof-theoretical jargon, there are

no explicit weakening nor contraction rules. This explains in particular the form of the rule var, which only has minimal
information on the left. In this same rule, the second counter is the number of arrows in the type of the variable G , which
represents the number of (useful) substitutions of the variable by a function. Rule abs is a standard rule in quantitative CBV,
and reflects the fact that uocbv• evaluation isweak, i.e. the strategy does not evaluate terms below _-abstractions. For example,
the judgment ⊢ _G.Ω : [] is valid even if Ω is non-terminating.
Rule es can be easily derived from rules abs and appC. Rules for applications deserve some discussion. Indeed, the typing

system U keeps track of the different natures of the application constructors involved during the evaluation process: a term
constructor is consuming if it is destroyed during evaluation, while a persistent constructor remains preserved until the
normal form. For example in G ((_~.~)I) •−→ G (~ [~/I]), the leftmost application constructor is persistent, while the rightmost
one is consuming. Therefore, we split the typing rules for applications in two different cases: appP and appC, where P stands
for persistent and C for consuming. Rule appP types a persistent application constructor, and requires the left-hand side of
the application to have type s, so that there is a guarantee that no new redex will be created, and thus the (typed) applica-
tion constructor remains persistent. Rule appC types a consuming application constructor and requires the left-hand side of
the application to have a functional type, so that there is a guarantee that a db-redex will be created, and thus the (typed)
application constructor is consuming and the first counter is incremented.
We now discuss the use of the subsumption relation in the consuming rules appC and es. This is needed because some

abstractions do not depend on their arguments. For example, in the program (_G. I) (I I) the subexpression I I is a structure
of type s, so one would like to type the body of the abstraction as G : s ⊢ I : T . But this judgment is not valid because the
type assumption G : s must be used exactly once, and here it is not used because G does not occur free in I. To deal with these
kinds of situations, the rules for typing an application C B and for typing an ESs C [G/B] allow to “discard” the type of B as long
as it is not used by C . This subsumption relation can then be seen as a controlled form of weakening. Assuming that ⊥ ⊳ s, one
typing derivation that illustrates the use of subsumption is the following:

var
~ : s; G :⊥ ⊢(0,0) ~ : s

abs
~ : s ⊢(0,0) _G.~ : [⊥ → s]

var
I : s ⊢(0,0) I : s

appC
~ : s; I : s ⊢(1,0) (_G.~) I : s

We end this section by mentioning some basic properties and notions of the typing systemU.

Relevance. Given that the typing system is linear, all of the type assumptions in the typing environment must be actually
used. This is formally expressed by the following property:

Lemma 7.1 (Relevance). If Γ ⊢(<,4 ) C : T then rv(C) ⊆ dom(Γ) ⊆ fv(C).

The inclusion fv(C) ⊆ dom(Γ) does not always hold; for instance, ⊢ _G.~ : [ ] but {~} * ∅.

Appropriateness. To be able to reason inductively about typing derivations, sometimes we need to guarantee invariants
for the types of the free variables occurring in a term. For example, whenwe are reasoning about a term C [G/I], wemay need to
keep track of the fact thatG is bound to an abstractionwhen resorting to the inductive hypothesis for the subterm C . Specifically,
we say that a typing environment Γ is appropriatewith respect to an abstraction frameA, written appropriateA (Γ), if for
each G ∈ A one has that Γ(G) ≠ s. i.e. Γ(G) =⊥ or Γ(G) =M for someM.

Tightness. Typing derivations in U contain counters that provide upper bounds for the length of evaluations to normal
form. To be able to provide exact bounds, we identify a subset of typing derivations, called tight derivations. Recall that a type is
tight if it is of the form s or of the form [ ]. An optional type T ? is tight if it is either ⊥ or a tight type. A typing environment
Γ is tight if Γ(G) is tight for every variable G . A typing judgment Γ ⊢(<,4 ) C : T is tight if both Γ and T are tight. A derivation
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of a typing judgment is tight if the judgment is tight. For example, the derivable judgment G : [ ] ⊢(0,0) G : [ ] is tight, and
the counters (0, 0) tell us that the evaluation of G requires no function application and no substitution steps, i.e. G is already
in normal form. On the other hand, the derivable judgment G : [T → S] ⊢(0,1) G : [T → S] is not tight, and the counters
(0, 1) are an upper bound for the number of computation steps to evaluate G . As another example, the derivation typing the
term (_G.~) I given above to illustrate subsumption is tight, while its subderivation typing _G.~ is not.

Example 7.2. Let C = (G I) [G/~ [~/I]]. Taking T := [ s→ s], the following typing derivation D turns out to be tight:

var
G : T ⊢(0,1) G : T

var
I : s ⊢(0,0) I : s

appC
I : s, G : T ⊢(1,1) G I : s D′

es
I : s ⊢(1,2) (G I) [G/~ [~/I]] : s

where D′ is the following derivation:

var
~ : T ⊢(0,1) ~ : T

...

∅ ⊢(0,0) I : T
es

∅ ⊢(0,1) ~ [~/I] : T

and s⊳ s, as well as T = [ s→ s] ⊳ [ s→ s] = T both hold. Note that all the other subderivations ofD are not tight, except
for the derivation corresponding to the judgment I : s ⊢(0,1) I : s.

Tightness is a key ingredient to show that the typing system U is sound and complete with respect to the quantitative
interpretation in Theorems 7.4 and 7.7.

7.2 Soundness and Completeness of SystemU

In this subsection, we prove that tight derivations do not only guarantee termination of useful CBV (uocbv•), but also provide
exact quantitative information about this evaluation strategy. More precisely, we show that when a term C is tightly typable
with counters (<, 4), i.e. Γ ⊢(<,4 ) C : T , then C evaluates in uocbv• to a normal form B in exactly< function application steps
(i.e. db-steps) and exactly 4 substitution steps (lsv-steps). In this sense,U is a quantitative interpretation.

To prove soundness one can follow well-understood techniques: it requires a subject reduction property, based in turn on
a substitution lemma (omitted here but presented in the appendix).
However, given the contextual specification of evaluation in uocbv•, these lemmas are not straightforward, since they

require formulating complex invariants on the contextual parametersA,S, and ` used to define the useful evaluation strategy.
More generally, we have to show that any uocbv• step preserves typing and decrements the counters correctly.

Proposition 7.3 (Subject Reduction). Let C •−→d,A,S,` C
′ where d ∈ {db, lsv} and Γ ⊢(<,4 ) C : T and appropriateA (Γ).

Suppose moreover that, if ` = @ then either T = s or T is a singleton, i.e. of the form [U]. Then Γ ⊢(<
′,4′ ) C ′ : T , where, if d = db

we have that< > 0 and (<′, 4′) = (< − 1, 4), and if d = lsv we have that 4 > 0 and (<′, 4′) = (<,4 − 1).

We can now prove soundness. That is, a tight derivation of a term C with counters (<,4) necessarily gives a terminating
uocbv• evaluation sequence, containing exactly< function application steps (i.e. db-steps) and exactly 4 substitution steps
(lsv-steps).

Theorem 7.4 (Soundness of U). Let S = fv(C) and let Γ ⊢(<,4 ) C : T be a tight derivation. Then there exists a •−→top,S-

irreducible term B such that C •−→<+4
top,S B where< and 4 are respectively the number of db and lsv steps in the reduction.

To illustrate this property, take the tight derivation for the term C = (G I) [G/~ [~/I]] in Example 7.2, where the final counter
is (1, 2). On the other hand, there is a reduction sequence from C that ends in G1 [G1/I] [G/~] [~/I] ∈ NF•∅,{I}, 6@ in Example 4.3.
Note that the first counter coincides with the number of db-steps in the evaluation sequence of Example 4.3 (that is, 1), while
the second counter coincides with the number of lsv-steps in the evaluation sequence of Example 4.3 (that is, 2). Notice also
that the judgments that are not tight do not necessarily give exact information about the length of evaluation sequences. For
example, the judgment I : s ⊢(1,1) G : s in Example 7.2 is not tight —since T is not tight—, and the counters (1, 1) do not
correspond to the number of steps needed to get a normal form, as G I is already in normal form.
In order to show completeness of the typing systemU with respect to uocbv•, we first guarantee that normal forms are

tightly typable inU. For that, tight environments are constructed for each normal form C ∈ NF•
A,S,`

, by typing the reachable
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variables inA with [ ] and those in S with s. More precisely, given C ,A andS such that inv(A,S, C), the tight environment
for C under A and S is written TEnv(A,S, C) and defined as the environment Γ such that Γ(G) = [ ] when G ∈ A ∩ rv(C),
Γ(G) = s when G ∈ S ∩ rv(C), and Γ(G) =⊥ otherwise.
Tight environments are used to tightly type normal forms:

Proposition 7.5 (Normal forms are tight typable). Let C be a term such that C ∈ NF•
A,S,`

and inv(A,S, C). Then there

exists a tight type t such that TEnv(A,S, C) ⊢(0,0) C : t. Moreover, if C ∈ HAA then t = [ ], and if C ∈ StS then t = s.

Completeness of quantitative type systems can also be proved by following well-understood techniques: it requires a subject
expansion property, based in turn on an anti-substitution lemma (omitted here but presented in the appendix). The statements
are quite technical because the properties have to be appropriately generalized to be able to reason inductively.
Subject expansion is similar to subject reduction, but going backward: given a typed term C ′ and a reduction step C •−→d,A,S,`

C ′ , the term C is typed as well.

Proposition 7.6 (Subject Expansion). Let inv(A,S, C), and let C •−→d,A,S,` C
′ where d ∈ {db, lsv} and Γ ⊢(<

′,4′ ) C ′ : T and

appropriateA (Γ). Suppose moreover that if ` = @ then either T = s or T is a singleton, i.e. of the form [U]. Then Γ ⊢(<,4 ) C : T ,
where, if d = db we have that (<, 4) = (<′ + 1, 4′), and if d = lsv we have that (<,4) = (<′, 4′ + 1).

We now prove completeness. That is, given a terminating uocbv• evaluation sequence from C containing exactly< function
application steps (i.e. db-steps) and exactly 4 substitution steps (lsv-steps), there is necessarily a tight derivation of C with
counters (<,4).

Theorem 7.7 (Completeness ofU). LetS = fv(C) and consider a reduction sequence C •−→=
top,S B where B is

•−→top,S-irreducible.

Let= =<+4 where< and 4 are respectively are the number of db and lsv steps in the sequence. Then there exists a tight environment

Γ and a tight type t such that Γ ⊢(<,4 ) C : t.

To illustrate this property, take the reduction sequence from C = (G I) [G/~ [~/I]] that ends in G1 [G1/I] [G/~] [~/I] ∈
NF•
∅,{I}, 6@ in Example 4.3. This reduction sequence is of length 3 = < + 4 , < corresponding to the db-steps and 4 to the

lsv-steps. Then Example 7.2 gives a tight environment I : s and a tight type s such that I : s ⊢(1,2) C : s, where< = 1 and
4 = 2.

We can then conclude,

Corollary 7.8. The type systemU is sound and complete for the uocbv• strategy.

8 CONCLUSIONS

This paper contributes to the study of reasonable cost models for functional programming languages in two different ways. At
a syntactic level, we propose an inductive specification of usefulness for open CBV evaluation, in contrast to previous notions
of usefulness (both for CBN and CBV) that are not inductive. The kind of technique that we use to achieve such an inductive
definition is inspired by [21], which focuses on strong call-by-need evaluation, another evaluation strategy being dependent
on essential information coming from the surrounding evaluation context. We think that this technique scales to other lan-
guages; in particular, it could be applied to provide an inductive formulation of useful call-by-name evaluation [10], which is
formulated non-inductively. Moreover, we show that our new formulation of usefulness provides a reasonable implementation
of open CBV. This is done by connecting our formalism to previous work in the literature.
At a semantical level, we propose the first model for usefulness in the literature. Our interpretation is based on intersection

types, thus allowing to characterize normalization of useful open CBV (uocbv•) by means of typing. Moreover, intersection
types are non-idempotent, so that the model is quantitative, and provides independent and exact measures for evaluation
lengths. Our semantic interpretation achieves high precision while staying surprisingly simple. This highlights the ability
of our semantical approach based on intersection types to capture intricate operational details by streamlined and intuitive
means.
Several complementary properties are worth studying. Firstly, it would be interesting to understand if the linear time

algorithm in [30], comparing unshared _-terms represented by sharing, still applies. Secondly, we would like to understand
how flexible is the quantitative model (i.e. type system) so that some optimizations in [18] can be captured by both the
syntactical specification and the semantical one.
Another interesting question is related to the extension of our formalization to strong CBV so that evaluation is also allowed

inside abstractions. This is relevant for the implementation of proof assistants based on dependent type theory, in which
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type checking requires deciding the definitional equality of type expressions up to full V-conversion, thus requiring strong
evaluation. Even more challenging would be to adapt all this technology to call-by-need, and to call-by-push-value.
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SUPPLEMENTARY MATERIAL

In this appendix we use the following complementary notations:
If -,. are sets, we write - # . to mean that - and . are disjoint, i.e. - ∩ . = ∅.
We write dom(L) for the domain of L, i.e. dom( [G1/C1] . . . [G=/C=]) := {G1, . . . , G=}.

A PROOFS OF SECTION 3 “LINEAR OPEN CALL-BY-VALUE”

In this section of the appendix we discuss technical details and show results regarding the locbv◦ calculus.

Lemma A.1 (Weakening lemma). Let C ∈ NF◦
V,` and letV

′ be such thatV′ # rv(C). Then C ∈ NF◦
V∪V′,` .

Proof. The proof is straightforward by induction on the derivation of C ∈ NF◦
V,` . �

Now we move to provide a syntactic characterization of normal forms for locbv◦ (Corollary A.7).
We take inspiration from Balabonski et al. [22] to obtain an inductive syntactic characterization of normal forms. Two

parameters are used to obtain an inductive definition: a value frame V, which is a set of variables, and a positional flag
` ∈ {@, 6@}. These two parameters give information about the evaluation context in which the term is considered to be
a normal form. More precisely, the set V keeps track of the variables that are bound to a value in the context, while the
constant ` keeps track of applied positions of subterms w.r.t. the context. For example, G appears in an applied position in the
term G ~, while ~ appears in a non-applied position. For toplevel terms, the positional element is always 6@. The set of normal
forms underV and `, written NF◦

V,` , is defined inductively as follows:

G ∉ V
NF-var◦

G ∈ NF◦V,`

C ∈ NF◦V∪{G },` B ∈ NF◦V, 6@ B ∈ Val
NF-esVal◦

C [G/B] ∈ NF◦V,`

NF-lam◦

_G. C ∈ NF◦V, 6@

C ∈ NF◦V,@ B ∈ NF◦V, 6@
NF-app◦

C B ∈ NF◦V,`

C ∈ NF◦V,` B ∈ NF◦V, 6@ ¬(B ∈ Val)
NF-esNonVal◦

C [G/B] ∈ NF◦V,`

Value frames are sets of variables bound to values, so in rule NF-esVal◦, we extend the value frame of the left premise with
the variable bound by the ES. Accordingly, in rule NF-var◦ , the variable G must not be in the value frame; otherwise it would
mean that it must be substituted by some value. As an example, G [G/~] ◦−→lsv ~ [G/~] can be derived using the inductive rule
lsv◦ because G ◦−→sub(G,~) ~, so intuitively G [G/~] ∉ NF◦

∅, 6@. However, ~ [G/~] ∈ NF
◦
∅, 6@ as stated below:

NF-var◦

~ ∈ NF◦{G }, 6@
NF-var◦

~ ∈ NF◦∅, 6@
NF-esVal◦

~ [G/~] ∈ NF◦∅, 6@

If we wanted to derive a judgment G [G/~] ∈ NF◦
∅, 6@, we would end up with a premise stating G ∉ {G}, which is false. The

predicate ~ ∈ NF◦
{G }, 6@ in the previous derivation tree reflects the fact that ~ is in normal form with respect to a value frame

containing G , which comes from the reduction step G ◦−→sub(G,~) ~. Just as normal forms are parameterized by a value frame
V , which represent the set of variables that are bound to values, we also need to generalize evaluation, parameterizing it
with respect to a value frame, in order to establish a precise relation between reduction and normal forms. Consequently, we
define the set of reduction rules related to a value frameV as:

RV := {db, lsv} ∪ {sub(G,E) | G ∈ V}

A term C belongs to the set Red◦V of reducible terms under a value frame V if there is a step kind d ∈ RV and a term C ′

such that C ◦−→d C
′; and C belongs to the set Irred◦V of irreducible terms underV if C ∉ Red◦V .

We can now show the two main results. First, we show soundness of the syntactic characterization of normal forms w.r.t.
the parametrized reduction rules i.e. we show that given any value frameV and any positional flag `, a term in normal form
underV and ` is in Irred◦V .

Lemma A.2. (_G. C)L ∉ NF◦
V,@ for anyV .

Proof. The proof is straightforward by induction on L. �
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Proposition A.3 (Soundness of linear normal forms). If C ∈ NF◦
V,`

then C ∈ Irred◦V .

Proof. By induction on the derivation of the judgment C ∈ NF◦
V,` .

1. NF-var◦ . Then C = ~ and
~ ∉ V

NF-var◦

~ ∈ NF◦V,`

Suppose ~ ∈ Red◦V . Then, the only rule that would allow us to reduce ~ is sub◦, as follows: ~ ◦−→sub(~,E) E with ~ ∈ V.
But the premise of rule NF-var◦ states that ~ ∉ V , which gives a contradiction. We conclude then ~ ∈ Irred◦V .

2. NF-lam◦. Then C = _~. B ∈ NF◦
V, 6@, where ` = 6@. There are no rules to reduce an abstraction, so it is immediate to

conclude _~. B ∈ Irred◦V .
3. NF-app◦. Then C = B D and

B ∈ NF◦V,@ D ∈ NF◦V, 6@
NF-app◦

B D ∈ NF◦V,`

There are three rules that would allow us to reduce B D. We argue that no reduction rule applies:
3.1 B ∈ Irred◦V by i.h. on B , so the term does not reduce via rule appL◦,
3.2 D ∈ Irred◦V by i.h. on D, so the term does not reduce via rule appR◦,
3.3 B D does not reduce via rule db◦, otherwise B = (_~. B′)L ∈ NF◦

V,@, which is impossible by Lemma A.2.
4. NF-esVal◦. Then C = B [~/D] and

B ∈ NF◦V∪{~},` D ∈ NF◦V, 6@ D ∈ Val
NF-esVal◦

B [~/D] ∈ NF◦V,`

There are three rules that would allow us to reduce B [~/D]. We argue that no reduction rule applies:
4.1 D ∈ Irred◦V by i.h. on D, so the term does not reduce via rule esR◦,
4.2 B ∈ Irred◦

V∪{~} by i.h. on B , so the term does not reduce via rule esL◦, whenever ~ ∉ fv(d),

4.3 B ∈ Irred◦
V∪{~} by i.h. on B , so the term does not reduce via rule lsv◦.

5. NF-esNonVal◦. We have that C = B [~/D] and

B ∈ NF◦V,` D ∈ NF◦V, 6@ ¬(D ∈ Val)
NF-esNonVal◦

B [~/D] ∈ NF◦V,`

There are three rules that would allow us to reduce B [~/D]. We argue that no reduction rule applies:
5.1 D ∈ Irred◦V by i.h. on D, so the term does not reduce via rule esR◦,
5.2 B ∈ Irred◦V by i.h. on B , so the term does not reduce via rule esL◦, whenever ~ ∉ fv(d),
5.3 given that ¬(D ∈ Val), then the term does not reduce via rule lsv◦.

�

Completeness intuitively states that any term in Irred◦V is in normal form under the same V and any positional flag `.
However, we need to consider the set Irred◦V with caution, since given an irreducible abstraction in an applied position, the
normal form predicate would fail, as it means that the computation of the whole term can continue with a db-step. Formally,

Lemma A.4. If C ◦−→sub(G,E) C
′ then for every value F there exists C ′′ such that C ◦−→sub(G,F) C

′′ .

Proof. The proof is straightforward by induction on the derivation of C ◦−→sub(G,E) C
′. �

Lemma A.5. Let G ∉ V . If C ∈ Red◦V′ then C [G/B] ∈ Red
◦
V withV′ = V ∪ {G} if B is of the form EL, andV′ = V otherwise.

Proof. By definition there exist a rule d ∈ RV′ and a term C ′ such that C ◦−→V′ C ′. We have two cases:

1. G ∈ fv(d). Then d = sub(~,F ) with ~ ∈ V
′. We have two subcases:

1.1 G = ~. Then C ◦−→sub(G,F) C
′, and we have to analyze the form of B:

1.1.1 B = EL. We can apply rule lsv◦ and derive C [G/EL] ◦−→lsv C
′ [G/E]L that is, C [G/B] ◦−→V C ′ [G/E]L.

1.1.2 B ≠ EL: ThenV′ = V. Since G ∉ V by hypothesis and G = ~ ∈ V , then this case is impossible.
1.2 G ≠ ~. Then G ∈ fv(F). LetF ′ be a value such that G ∉ fv(F ′). By Lemma A.4 there exists C ′′ such that C ◦−→sub(~,F′ ) C

′′ .
Applying rule esL◦ we derive C [G/B] ◦−→sub(~,F′ ) C

′ [G/B], with ~ ∈ V, that is, C [G/B] ◦−→V C ′ [G/B].
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2. G ∉ fv(d). Then d is db or lsv or sub(~,E) with G ∉ {~}∪fv(E). In all cases, applying rule esL◦ we derive C [G/B] ◦−→d C
′ [G/B]

that is, C [G/B] ◦−→V C ′ [G/B].

In either case C [G/B] ∈ Red◦V . �

Proposition A.6 (Completeness of linear normal forms). If C ∈ Irred◦V and (C ∈ Abs⇒ ` = 6@), then C ∈ NF◦
V,` .

Proof. By induction on C .

1. C = G . The only rule that would reduce G is sub◦. By hypothesis G ∈ Irred◦V so that G ∉ V . Then applying rule NF-var◦

we derive G ∈ NF◦
V,` .

2. C = _~. B . Then ` = 6@ by hypothesis, so applying rule NF-lam◦ we derive _~. B ∈ NF◦
V, 6@.

3. C = B D. We necessarily have that B ∈ Irred◦V , because otherwise B D would reduce by rule appL◦; also B ≠ (_~. B′)L

because otherwise B D would reduce by rule db◦, and both cases contradict the hypothesis. Then B ∈ NF◦
V,@ by i.h. on

B . Likewise, we necessarily have that D ∈ Irred◦V , because otherwise B D would reduce by rule appR◦, contradicting the
hypothesis. Then D ∈ NF◦

V, 6@ by i.h. on D. Applying rule NF-app◦ we derive B D ∈ NF◦
V,`

.

4. C = B [~/D]. By U-conversion we can assume ~ ∉ V . We necessarily have D ∈ Irred◦V , because otherwise B [~/D] would
reduce by rule esR◦, contradicting the hypothesis. ThenD ∈ NF◦

V, 6@ by i.h. onD. By U-conversion, wemay assume~ ∉ V.
We have to analyze two cases:

4.1 D ∈ Val. Since B [~/D] ∈ Irred◦V , then B ∈ Irred◦
V∪{~} by contraposition of Lemma A.5. Moreover, the implication of

the statement also trivially holds. Therefore B ∈ NF◦
V∪{~},`

by i.h. on B . Applying rule NF-esVal◦ we derive B [~/D] ∈

NF◦
V,`

.

4.2 ¬D ∈ Val. Since B [~/D] ∈ Irred◦V , then B ∈ Irred◦V by contraposition of Lemma A.5. Moreover, the implication
of the statement also trivially holds. Therefore B ∈ NF◦

V,` by i.h. on B . Applying rule NF-esNonVal◦ we derive
B [~/D] ∈ NF◦

V,`
.

�

The following corollary combines the previous soundness and completeness results, so that the set of terms that are in
normal form according to the inductive predicate NF◦

V,` is exactly the set Irred◦V . Recall that the parameters V and ` are
used in the definition of locbv◦ in order to define evaluation inductively. However, we are actually interested in the toplevel
situation, that is, in the evaluation of an isolated term. In the case of an isolated term, the value frame V is empty, because
there is no surrounding context binding any variable, and the positional flag ` is taken to be non-applied ( 6@), because an
isolated term is never applied.

Corollary A.7 (Characterization of linear normal forms). C ∈ NF◦
∅, 6@ iff C ∈ Irred◦∅.

An example of this result is the term ~ [G/~]: it is in NF◦
∅, 6@, as shown above, and it is in Irred◦∅, since none of the rules in

R∅ are applicable to it.

B PROOFS OF SECTION 4 “USEFUL OPEN CALL-BY-VALUE”

In this section of the appendix we show results regarding the uocbv• strategy. First, we start in Appendix B.1 by characterizing
normal forms. Second, in Appendix B.2 we show that the uocbv• strategy enjoys the diamond property.

B.1 Normal Forms for Useful Open Call-by-Value

This section provides a syntactic characterization of normal forms of uocbv•, together with their corresponding soundness
and completeness results (Corollary B.11).
Characterizing normal forms for useful evaluation is not simple [11]. The main idea of our inductive characterization bears

some resemblance to the one given for the locbv◦ calculus, in the sense that a inductive definition is obtained bymeans of some
parameters, as done e.g. in [21]. Here, we use an abstraction frame A, a structure frame S, and a positional flag ` ∈ {@, 6@}.
These three parameters give information about the evaluation context in which the (sub)term is considered to be a normal
form. As explained before, the purpose of the framesA and S is to keep track of the variables that are hereditary abstractions
or structures respectively, whereas the positional flag keeps track of applied positions of subterms w.r.t. the context. For the
toplevel terms, the positional element is always 6@, as in the characterization of normal forms of locbv◦. The set of normal
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forms of uocbv• under A,S and `, also called (A,S, `)-normal forms, written NF•
A,S,`

, is inductively defined as follows:

G ∈ A ⇒ ` = 6@
NF-var•

G ∈ NF•
A,S,`

NF-lam•

_G. C ∈ NF•
A,S, 6@

C ∈ NF•A,S,@ B ∈ NF•A,S, 6@
NF-app•

C B ∈ NF•A,S,`

C ∈ NF•
A∪{G },S,` B ∈ NF•

A,S, 6@ B ∈ HAA
NF-esA•

C [G/B] ∈ NF•A,S,`

C ∈ NF•
A,S∪{G },` B ∈ NF•

A,S, 6@ B ∈ StS
NF-esS•

C [G/B] ∈ NF•A,S,`

If a variable is an hereditary abstraction (G ∈ A) and it is applied (` = @), substituting the variable contributes to creating
a db-redex, so the variable is not in normal form. Otherwise, it is in normal form, according to NF-var• . For example, the
term G [G/I] is in normal form if non-applied (` = 6@), whereas it reduces to I[G/I] if applied (` = @). To derive the judgment
G [G/I] ∈ NF•∅,∅,@, we would end up with a premise stating G ∈ {G} ⇒ @ = 6@, which does not hold.

Abstractions are in normal form if they are not applied. In rule NF-esA• (resp. NF-esS•) the abstraction (resp. structure)
frame of the left premise is extended with the bound variable in the ES, given that it is bound to an hereditary abstraction
(resp. structure), exactly as in the left premises of the reduction rule esLA• (resp. esLS•).

We can now present the two main results of this section. The first one is soundness of the syntactic characterization of
normal forms w.r.t. the parametrized reduction rules i.e. we state that given any abstraction and structure frames A and S
and a positional flag `, a term in normal form under these parameters is in the set Irred•

A,S,` .

Lemma B.1. (_G. C)L ∉ NF•
A,S,@ for any A,S.

Proof. The proof is straightforward by induction on L. �

Lemma B.2. If A # S then either C ∉ HAA or C ∉ StS .

Proof. By induction on C .

1. C = G : Note that G is not simultaneously in A and S since A # S, so either G ∉ A and G ∉ HAA , or G ∉ S and G ∉ StS .
2. C = _G. B: We conclude that _G. B ∈ StS does not hold since it cannot be derived by any rule.
3. C = B D: We conclude that B D ∈ HAS does not hold since it cannot be derived by any rule.
4. C = B [G/D]: To show that C ∉ HAA or C ∉ StS , we assume C ∈ HAA , and argue that C ∉ StS . We have the following

subcases, depending on the rule used to derive C ∈ HAA :
4.1 h-sub1: then B ∈ HAA , where we may assume G ∉ A ∪ S by U-conversion. Note that B ∉ StS by i.h. on B , so

B [G/D] ∈ StS cannot be derived using s-sub1, and, similarly, B ∉ StS∪{G } by i.h. on B , so B [G/D] ∈ StS cannot be
derived using s-sub2.

4.2 h-sub2: then B ∈ HAA∪{G } and D ∈ HAA holds, where we may assume G ∉ A ∪ S by U-conversion. Note that by
B ∉ StS i.h. on B , so B [G/D] ∈ StS cannot be derived using s-sub1, and D ∉ StS by i.h. on D, so B [G/D] ∈ StS cannot be
derived using s-sub2. �

Proposition B.3 (Soundness of useful normal forms). If inv(A,S, C) and C ∈ NF•
A,S,`

then C ∈ Irred•
A,S,` .

Proof. By induction on the derivation of C ∈ NF•
A,S,`

.

1. NF-var• . Then (G ∈ A ⇒ ` = 6@) and G ∈ NF•
A,S,`

holds. The only rule that would allow us to reduce G is sub• but

this rule requires G ∈ A, so ` must be 6@, contrary to the fact that the sub• requests it to be @. Hence no reduction rule
applies.

2. NF-lam•. Immediate, since there are no rules to reduce an abstraction.
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3. NF-app• Then
B ∈ NF•A,S,@ D ∈ NF•A,S, 6@

NF-app•

B D ∈ NF•A,S,`

Moreover, inv(A,S, B D) implies inv(A,S, B) and inv(A,S, D). There are three rules that would allow us to reduce
C = B D. We argue that no reduction rule applies:

3.1 By i.h. on B , we have B ∈ Irred•
A,S,@, so the rule appL• does not allow us to conclude that C ∈ Red•

A,S,` .

3.2 By i.h. on B , we have D ∈ Irred•
A,S, 6@, so the rule appR• does not allow us to conclude that C ∈ Red•

A,S,` .

3.3 Furthermore, rule db• does not allow us to conclude that C ∈ Red•
A,S,` . Indeed, when B = (_G. C1)L then (_G. C1)L ∈

NF•
A,S,@ by hypothesis, which is impossible by Lemma B.1.

4. NF-esA•. Then
B ∈ NF•A∪{G },S,` D ∈ NF•A,S, 6@ D ∈ HAA

NF-esA•

B [G/D] ∈ NF•A,S,`

We may assume G ∉ A ∪ S by U-conversion. Moreover, inv(A,S, B [G/D]) implies inv(A ∪ {G},S, B) and inv(A,S, D).
There are four rules that would allow us to reduce C = B [G/D]. We argue that no reduction rule applies:

4.1 By i.h. on D, we have D ∈ Irred•
A,S, 6@, so the rule esR• does not allow us to conclude that C ∈ Red•

A,S,` .
4.2 Note that A # S holds by the invariant and D ∈ HAA holds by the hypothesis, so D ∉ StS by Lemma B.2. Hence the

rule esLS• does not allow us to conclude that B [G/D] ∈ Red•
A,S,` .

4.3 By i.h. on B , we have B ∈ Irred•
A∪{G },S,` . Hence the rule esLA

• does not allow us to conclude that B [G/D] ∈ Red•
A,S,` .

4.4 By i.h. on B , we have B ∈ Irred•
A∪{G },S,` . Hence the rule lsv

• does not allow us to conclude that B [G/D] ∈ Red•
A,S,` .

5. NF-esS•. Then
B ∈ NF•

A,S∪{G },` D ∈ NF•
A,S, 6@ D ∈ StS

NF-esS•

B [G/D] ∈ NF•A,S,`

We may assume G ∉ (A ∪ S) by U-conversion, Moreover, inv(A,S, B [G/D]) implies inv(A,S ∪ {G}, B) and
inv(A,S ∪ {G}, D). There are four rules that would allow us to reduce C = B [G/D]. We argue that no reduction rule
applies:

5.1 By i.h. on D, we have D ∈ Irred•
A,S∪{G }, 6@, so the rule esR• does not allow us to conclude that C ∈ Red•

A,S,` .
5.2 Note that A # S holds by the invariant and D ∈ StS holds by the hypothesis, so D ∉ HAA by Lemma B.2. Hence the

rule esLA• does not allow us to conclude that C ∈ Red•A,S,` .

5.3 By i.h. on B , we have B ∈ Irred•
A,S∪{G },` . Hence the rule esLS

• does not allow us to conclude that B [G/D] ∈ Red•
A,S,` .

5.4 Note that B [G/D] does not reduce using the rule lsv•, since D = EL ∈ StS , but the rule lsv
• requires that D ∈ HAA ,

which contradicts Lemma B.2. �

Completeness states that a term C ∈ Irred•
A,S,` is in normal form with respect to the same parametersA, S and `. Actually,

there is an exception to this rule, since the context surrounding C has to be taken into account. In particular, an irreducible
abstraction is not considered to be a normal form if it occurs in applied position, because the evaluation of the whole term
(including the surrounding context) can proceed by means of a db-step. An hereditary abstraction C must be either a term of
the form (_G. C ′)L, or a term which is reducible in an applied position, such as G [G/I]. This means that an applied hereditary
abstraction is always reducible. The first part of the following proposition covers the case in which an irreducible term is a
normal form, while the second and third parts cover the case of applied hereditary abstractions, which are not in normal form
even if they are irreducible.

Lemma B.4. Let inv(A,S, C). If C ∈ NF•
A,S,`

then C ∈ HAA ∪ StS . Furthermore, if ` = @ then C ∈ StS .

Proof. By induction on the derivation of C ∈ NF•
A,S,`

.

1. NF-var• : Then
G ∈ A ⇒ ` = 6@

NF-var•

G ∈ NF•A,S,`

Since inv(A,S, G) holds, there are two cases depending on whether G ∈ A or G ∈ S. If G ∈ A, by rule h-var we derive
G ∈ HAA and ` = 6@. If G ∈ S, by rule s-var we derive G ∈ StS . Then we get G ∈ HAA ∪ StS .

2. NF-lam•: Then _G. B ∈ NF•
A,S, 6@. By rule h-lam we derive _G. B ∈ HAA , so we can conclude that _G. B ∈ HAA ∪ StS .
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3. NF-app•: Then
B ∈ NF•A,S,@ D ∈ NF•A,S, 6@

NF-app•

B D ∈ NF•A,S,`

Note that inv(A,S, B D) implies in particular inv(A,S, B), so B ∈ StS by i.h. on B , since the positional argument is @.
Then, by applying rule s-app, we derive B D ∈ StS , so in particular B D ∈ HAA ∪ StS .

4. NF-esA•: Then
B ∈ NF•A∪{G },S,` D ∈ NF•A,S, 6@ D ∈ HAA

NF-esA•

B [G/D] ∈ NF•
A,S,`

We can assume G ∉ A ∪ S by U-conversion, so that inv(A,S, B [G/D]) implies in particular inv(A ∪ {G},S, B). Then,
by applying the i.h. on B , we have two possible cases depending on whether B ∈ HAA∪{G } or B ∈ StS . If B ∈ HAA∪{G },
applying rule h-sub2 we derive B [G/D] ∈ HAA . If B ∈ StS , we can apply rule s-sub1 and derive B [G/D] ∈ StS . Note that
if ` = @, then the last case is the only possible case by i.h. on B .

5. NF-esS•: Then
B ∈ NF•

A,S∪{G },` D ∈ NF•
A,S, 6@ D ∈ StS

NF-esS•

B [G/D] ∈ NF•A,S,`

We can assume G ∉ A∪S by U-conversion, so that inv(A,S, B [G/D]) implies in particular inv(A,S ∪ {G}, B). Then, by
applying the i.h. on B , we have two possible cases depending on whether B ∈ HAA or B ∈ StS∪{G } . If B ∈ HAA , applying
rule h-sub1 we derive B [G/D] ∈ HAA . If B ∈ StS∪{G } , we can apply rule s-sub2 and derive B [G/D] ∈ StS . Note that if
` = @, then the last case is the only possible case by i.h. on B .

�

Remark B.5. If C •−→sub(G,E) ,A,S,` C
′ then G ∈ fv(C).

Lemma B.6. Let inv(A,S, C). If C •−→sub(G,E) ,A,S,` C
′ then G ∈ A.

Proof. By induction on the derivation of C •−→sub(G,E) ,A,S,` C
′. The interesting case is the sub• rule. Then G •−→sub(G,E) ,A

′∪{G },S,`

E withA = A′ ∪ {G}, so G ∈ A trivially. The remaining cases are straightforward by resorting to the i.h.. For example, in the
esLA• case, we have that:

B •−→sub(G,E) ,A∪{~},S,` B
′ D ∈ HAA ~ ∉ A ∪S ~ ∉ fv(sub(G,E) )

esLA•

B [~/D] •−→sub(G,E) ,A,S,` B
′ [~/D]

Note that inv(A,S, B [~/D]) implies in particular inv(A ∪ {~},S, B), so by i.h. G ∈ A ∪ {~}. Furthermore we may assume
~ ≠ G by U-conversion, so G ∈ A as required. �

Lemma B.7. Let inv(A,S, C). If C •−→sub(G,E) ,A,S,` C
′ then for every value F there exists C ′′ such that C •−→sub(G,F) ,A,S,` C

′′ .

Proof. By induction on the derivation of C •−→sub(G,E) ,A,S,` C
′ . The interesting case is the sub• rule. In that case, we have that

G •−→sub(G,E) ,A,S,` E , so G ∈ A. Hence G •−→sub(G,F) ,A,S,` F by rule sub•. The remaining cases are straightforward by resorting to
the i.h.. For example, in the case of the esLA• rule, we have that:

B •−→sub(G,E) ,A∪{~},S,` B
′ D ∈ HAA ~ ∉ A ∪S ~ ∉ fv(sub(G,E) )

esLA•

B [~/D] •−→sub(G,E) ,A,S,` B
′ [~/D]

Note that inv(A ∪ {~},S, B), so by i.h. on B there exists B′′ such that B •−→sub(G,F) ,A∪{~},S,` B
′′. Applying esLA• we derive

B [~/D] •−→sub(G,F) ,A,S,` B
′′ [~/D], as required. �

Lemma B.8. Let inv(A ∪ {G},S, C) and B ∈ HAA , with G ∉ A. If C ∈ Red•
A∪{G },S,` then C [G/B] ∈ Red

•
A,S,` .

Proof. By definition there exist d, C ′ such that C •−→d,A∪{G },S,` C
′. Notice that G ∉ (A ∪ S) holds by the hypothesis. There

are two cases depending on whether G ∈ fv(d) or not:

1. G ∈ fv(d). Then d = sub(~,E) . We have two subcases, depending on whether G = ~ or not:
1.1 G = ~. Notice that B is of the formFL by Remark 4.1. Taking the valueF and applying Lemma B.7, we get that there

exists C ′′ such that C •−→sub(G,F) ,A∪{G },S,` C
′′ . We can apply rule lsv•, yielding C [G/FL] •−→lsv,A,S,` C

′ [G/F]L.
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1.2 G ≠ ~. LetF be a value such that G ∉ fv(F). There exists C ′′ such that C •−→sub(~,F) ,A∪{G },S,` C
′′ by Lemma B.7. We can

apply rule esLA•, yielding C [G/B] •−→sub(~,F) ,A,S,` C
′′ [G/B].

2. G ∉ fv(d). We can apply rule esLA•, yielding C [G/B] •−→d,A,S,` C
′ [G/B].

In either case C [G/B] ∈ Red•
A,S,` . �

Lemma B.9. Let inv(A,S ∪ {G}, C) and B ∈ StS , with G ∉ S. If C ∈ Red•
A,S∪{G },` , then C [G/B] ∈ Red

•
A,S,` .

Proof. By definition there exist d, C ′ such that C •−→d,A,S∪{G },` C
′. Notice that G ∉ (A ∪ S) holds by the hypothesis. There

are two cases depending on whether G ∈ fv(d) or not:

1. G ∈ fv(d). Then d = sub(~,E) . We have two subcases, depending on whether G = ~ or not:
1.1 G = ~. This case is not possible, since G = ~ ∈ A by Lemma B.6, and at the same time G ∉ A, because A # (S ∪ {G})

by hypothesis.
1.2 G ≠ ~. LetF be a value such that G ∉ fv(F). There exists C ′′ such that C •−→sub(~,F) ,A,S∪{G },` C

′′ by Lemma B.7. We can
apply rule esLS•, yielding C [G/B] •−→sub(~,F) ,A,S,` C

′′ [G/B].
2. G ∉ fv(d). We can apply rule esLS•, yielding C [G/B] •−→d,A,S,` C

′ [G/B].

In either case C [G/B] ∈ Red•
A,S,` . �

Proposition B.10 (Completeness of useful normal forms). Let inv(A,S, C).

1. If C ∈ Irred•
A,S,` and (C ∈ HAA ⇒ ` = 6@), then C ∈ NF•

A,S,`
.

2. If C ∈ HAA , then either C ∈ Abs or C ∈ Red•
A,S,@.

3. If C ∈ HAA , then C B ∈ Red
•
A,S,` , for any term B .

Proof. Part 3 is an immediate consequence of part 2, since if C ∈ Abs then C B •−→db,A,S,` by rule db
•, while if C ∈ Red•

A,S,@,
then C B ∈ Red•A,S,` by rule appL•. Parts 1 and 2 are shown by simultaneous induction on C .

1.
1.1 C = G . Since G ∈ Irred•

A,S,` , we cannot apply the reduction rule sub•. If G ∈ A, then also G ∈ HAA , so ` = 6@ by
hypothesis. Hence we may apply NF-var• , yielding G ∈ NF•

A,S,`
.

1.2 C = _G. B . Since C ∈ HAA , then ` = 6@ by hypothesis, and by aplying NF-lam• we derive _G. B ∈ NF•
A,S, 6@.

1.3 C = B D. We necessarily have B ∈ Irred•
A,S,@, because otherwise B D would be in Red•

A,S,` by rule appL•. Moreover,
B D ∉ HAA . Note that inv(A,S, B D) implies, in particular, that inv(A,S, B). We have B ∈ StS by Lemma B.4, so
applying Lemma B.2 we obtain B ∉ HAA . By i.h. (1) on B we have B ∈ NF•

A,S,@. Lastly, notice that D ∈ Irred•
A,S, 6@,

because otherwise, B D would reduce by rule appR•. Moreover, inv(A,S, B D) implies, in particular, that inv(A,S, D).
Then D ∈ NF•

A,S, 6@ by i.h. (1) on D. Applying rule NF-app• we derive B D ∈ NF•
A,S,`

.

1.4 C = B [G/D]. We necessarily have D ∈ Irred•
A,S, 6@, because otherwise B [G/D] would be in Red•

A,S,` by rule esR•. More-

over, inv(A,S, B [G/D]) implies in particular inv(A,S, D). Since the positional element associated to D is 6@, then
D ∈ NF•

A,S, 6@ by i.h. (1) on D. Note that we may assume G ∉ (A ∪S) by U-conversion, and inv(A,S, C) impliesA # S.
Then D is either in HAA or in StS by Lemma B.4. We analyze both cases:

1.4.1 D ∈ HAA . Since inv(A,S, B [G/D]) holds, it implies in particular inv(A ∪ {G},S, B). Then B ∈ Irred•
A∪{G },S,` by the

contraposition of Lemma B.8.
Moreover, if B [G/D] ∈ HAA holds, it can be derived either by (1) h-sub1, meaning that B ∈ HAA , and thus B ∈
HAA∪{G } by Remark 4.1, or by (2) h-sub2, meaning that B ∈ HAA∪{G }. By the hypothesis in 1 we have ` = 6@. Then
we can apply i.h. (1) on B , yielding B ∈ NF•

A∪{G },S,`
. By applying rule NF-esA• we derive B [G/D] ∈ NF•

A,S,`
.

1.4.2 D ∈ StS . Since inv(A,S, B [G/D]) holds, it implies in particular inv(A,S ∪ {G}, B). Then B ∈ Irred•
A,S∪{G },` by the

contraposition of Lemma B.9.
Since D ∈ StS , and A # S holds by hypothesis, then D ∉ HAA by Lemma B.2. As a consequence, if B [G/D] ∈ HAA ,
we necessarily have B ∈ HAA by rule h-sub1, and not by rule h-sub2. By hypothesis 1 we have ` = 6@. Then we can
apply i.h. (1) on B , yielding B ∈ NF•

A,S∪{G },`
. By applying rule NF-esS• we derive B [G/D] ∈ NF•

A,S,`
.

2.
2.1 C = G . Then G ∈ HAA is derived from rule h-var, so G ∈ A. We can apply rule sub• with d = sub(G,E) and C

′
= E ,

yielding G •−→sub(G,E) ,A,S,@ E .
2.2 C = _I. C ′ . Immediate.
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2.3 C = C1 C2. This case is not possible since C1 C2 ∈ HAA never holds.
2.4 C = C1 [G/C2]. There are two cases depending on which rule we use to derive C1 [G/C2] ∈ HAA :
2.4.1 h-sub1: Then

C1 ∈ HAA G ∉ A
h-sub1

C1 [G/C2] ∈ HAA

If there exist d and C ′2 such that C2 •−→d,A,S, 6@ C ′2, then applying rule esR• we derive C1 [G/C2] •−→d,A,S,` C1 [G/C
′
2] for any

`, in particular ` = @.
If there is no d and C ′2 such that C2

•−→d,A,S, 6@ C ′2, then C2 ∈ Irred
•
A,S, 6@. By i.h. (1) on C2 we have that C2 ∈ NF

•
A,S, 6@. Since

inv(A,S, C1 [G/C2]) implies in particular inv(A,S, C2), then C2 ∈ HAA ∪ StS by Lemma B.4. We reason by cases:
2.4.1.1 C2 ∈ HAA . We have that inv(A,S, C1 [G/C2]) implies in particular inv(A ∪ {G},S, C1), so by i.h. (2) on C1, we have

that either C1 ∈ Abs or C1 ∈ Red
•
A∪{G },S,@:

• If C1 ∈ Abs, then C1 [G/C2] ∈ Abs and we are done.
• If C1 ∈ Red

•
A∪{G },S,@, then C1 [G/C2] ∈ Red

•
A,S,@ by Lemma B.8, and we are done.

2.4.1.2 C2 ∈ StS . We have that inv(A,S, C1 [G/C2]) implies in particular inv(A,S ∪ {G}, C1), so by i.h. (2) on C1, we have
that either C1 ∈ Abs or C1 ∈ Red

•
A,S∪{G },@:

• If C1 ∈ Abs, then C1 [G/C2] ∈ Abs and we are done.
• If C1 ∈ Red

•
A,S∪{G },@, then C1 [G/C2] ∈ Red

•
A,S,@ by Lemma B.9, and we are done.

2.4.2 h-sub2: Then
C1 ∈ HAA∪{G } G ∉ A C2 ∈ HAA

C1 [G/C2] ∈ HAA

By i.h. (2) on C1 we have that either C1 ∈ Abs or C1 ∈ Red
•
A∪{G },S,@:

• If C1 ∈ Abs, then C1 [G/C2] ∈ Abs, and we are done.
• If C1 ∈ Red

•
A∪{G },S,@, then C1 [G/C2] ∈ Red

•
A,S,@ by Lemma B.8, and we are done. �

The following corollary combines soundness (Proposition B.3) and completeness (Proposition B.10) for a term in toplevel
position, i.e. when the abstraction frame A is empty, the structure frame S is the set of all free variables, and the positional
element is taken to be 6@.

Corollary B.11 (Characterization of useful normal forms). C ∈ NF•
∅,fv(C ), 6@

iff C ∈ Irred•
∅,fv(C ), 6@.

An example of this result is the term (G ~) [~/I]: on one hand the term is in Red•
∅,{G }, 6@, since it cannot reduce using any

reduction rule, on the other hand it is normal (names of starting rules in the derivation appear on the top for lack of space).

NF-var•

G ∈ NF•{~},{G },@

NF-var•

~ ∈ NF•{~},{G }, 6@
NF-app•

G ~ ∈ NF•{~},{G }, 6@

NF-lam•

I ∈ NF•
∅,{G }, 6@

h-lam

I ∈ HA∅

NF-esA•

(G ~) [~/I] ∈ NF•
∅,{G }, 6@

B.2 Diamond Property

Definition B.12 (Expansion of abstraction and structure frames). Let A be an abstraction frame. We inductively define the
expansion ofA under L, written AL , as follows:

A^ := A

AL′ [G/C ] :=

{
AL′ ∪ {G} if C ∈ HAA
AL′ otherwise

Analogously, let S be a structure frame. We inductively define the expansion of S under L, written SL, as follows:

S^ := S

SL′ [G/C ] :=

{
SL′ ∪ {G} if C ∈ StS
SL′ otherwise

Lemma B.13. CL ∈ StS iff C ∈ StSL .
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Proof. We prove both implications by induction on the length of L.
We first show CL ∈ StS implies C ∈ StSL .

• L = ^. Immediate.
• L = L′ [G/B]. The judgment CL′ [G/B] ∈ StS can be derived either by rule s-sub1 or by rule s-sub2:
1. s-sub1. Then CL′ ∈ StS and G ∉ S. We apply i.h. on L′, yielding C ∈ StSL′ . SinceS

L′ ⊆ SL′ [G/B ] by definition of SL′ [G/B ] ,
then StSL′ ⊆ StSL′ [G/B ] by Remark 4.1. Therefore C ∈ StSL .

2. s-sub2. Then CL′ ∈ StS∪{G } , G ∉ S and B ∈ StS . We apply i.h. on L′, yielding C ∈ StSL′∪{G } . Since B ∈ StS , then

SL
= SL′ ∪ {G}. We then conclude C ∈ StSL .

We now show C ∈ StSL implies CL ∈ StS .

• L = ^. Immediate.
• L = L′ [G/B]. Then C ∈ StSL′ [G/B ] . We have two cases.
1. B ∈ StS . Then S

L′ [G/B ]
= SL′ ∪ {G}, so C ∈ StSL′∪{G } , and CL

′ ∈ StS∪{G } by i.h. on L′. By U-conversion we may assume

G ∉ SL′ , and in particular G ∉ S, since S ⊆ SL′ . Applying rule s-sub2 we conclude CL′ [G/B] ∈ StS .
2. B ∉ StS . Then S

L′ [G/B ]
= SL′ , so C ∈ StSL′ . By U-conversion we may assume G ∉ SL′ , and in particular G ∉ S. We

apply i.h. on L′, yielding CL′ ∈ StS . By rule s-sub1 we conclude CL′ [G/D] ∈ StS .

�

Lemma B.14. Let inv(A ∪ {G},S, C), and letB be a set of variables disjoint fromA. If C •−→sub(G,E) ,A∪{G },S,` C
′ with E ∈ HAA∪B

and C ∈ HAA∪{G }, then C
′ ∈ HAA∪{G }∪B.

Proof. By induction on the derivation of C •−→sub(G,E) ,A∪{G },S,` C
′. Note that cases appL• and appR• are impossible since

C = B D, which cannot be an element of HAA∪{G } by Remark 4.1. We analyze the remaining cases.

1. sub•. Then C = G •−→sub(G,E) ,A∪{G },S,@ E = C ′ , with ` = @. Since E ∈ HAA∪B by hypothesis, then E ∈ HAA∪{G }∪B by
Remark 4.1, asA ∪ B ⊆ A ∪ {G} ∪ B.

2. esR•. Then
D •−→sub(G,E) ,A∪{G },S, 6@ D′

esR•

C = B [~/D] •−→sub(G,E) ,A∪{G },S,` B [~/D
′] = C ′

By U-conversion we may assume ~ ∉ B. We consider two cases depending on whether B [~/D] ∈ HAA∪{G } is derived
either by rule h-sub1 or by rule h-sub2:

2.1 h-sub1. Then B ∈ HAA∪{G } and ~ ∉ A∪ {G}. We have B ∈ HAA∪{G }∪B by Remark 4.1. We apply rule h-sub1, yielding
B [~/D′] ∈ HAA∪{G }∪B.

2.2 h-sub2. Then B ∈ HAA∪{G }∪{~}, ~ ∉ A ∪ {G} and D ∈ HAA∪{G }. We have B ∈ HAA∪{G }∪{~}∪B and D ∈ HAA∪{G }∪B
by Remark 4.1, so D′ ∈ HAA∪{G }∪B by i.h. on D. We apply rule h-sub2, yielding B [~/D′] ∈ HAA∪{G }∪B.

3. esLA•. Then

B •−→sub(G,E) ,A∪{G }∪{~},S,` B
′ D ∈ HAA∪{G } ~ ∉ (A ∪ {G}) ∪ S ~ ∉ fv(sub(G,E) )

esLA•

C = B [~/D] •−→sub(G,E) ,A∪{G },S,` B
′ [~/D] = C ′

The judgment B [G/D] ∈ HAA∪{G } can be derived either by rule h-sub1 or by rule h-sub2. The former has B ∈ HAA∪{G }
as premise, and since A ∪ {G} ⊆ A ∪ {G} ∪ {~} then B ∈ HAA∪{G }∪{~} by Remark 4.1. And it is also the case that
D ∈ HAA∪{G } by premise of the rule esLA•, so in both cases we proceed as follows. Since inv(A ∪ {G},S, B [G/D]) then
in particular inv(A ∪ {G} ∪ {~},S, B). Moreover, note that E ∈ HAA∪{~}∪B by Remark 4.1, so we apply i.h. on B , yielding
B′ ∈ HA(A∪{~} )∪{G }∪B. Moreover, D ∈ HAA∪{G }∪B by Remark 4.1, as A ∪ {G} ⊆ A ∪ {G} ∪ B. And we may assume
~ ∉ B by U-conversion, so we apply rule h-sub2, yielding B′ [G/D] ∈ HAA∪{G }∪B.

4. esLS•. Then

B •−→sub(G,E) ,A∪{G },S∪{~},` B
′ D ∈ StS ~ ∉ (A ∪ {G}) ∪ S ~ ∉ fv(sub(G,E) )

esLS•

C = B [~/D] •−→sub(G,E) ,A∪{G },S,` B
′ [~/D] = C ′

We consider two cases depending on whether B [G/D] ∈ HAA∪{G } is derived either by rule h-sub1 or by rule h-sub2:
4.1 h-sub1. Then B ∈ HAA∪{G } and~ ∉ A∪{G}. Since inv(A ∪ {G},S, B [G/D]) then in particular inv(A ∪ {G},S ∪ {~}, B).

We apply i.h. on B , yielding B′ ∈ HAA∪{G }∪B. Applying rule h-sub1 we obtain B′ [G/D] ∈ HAA∪{G }∪B.
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4.2 h-sub2. Then B ∈ HAA∪{G }∪{~}, ~ ∉ A∪{G} and D ∈ HAA∪{G }. Moreover, D ∈ StS by premise of the rule esLS•. Then
(A ∪ {G}) ∩ S ≠ ∅ by contraposition of Lemma B.2, which contradicts inv(A ∪ {G},S, B [G/D]). Hence this case is
not possible.

�

Definition B.15 (Hereditary variables). The set of hereditary variables under a variable G , written HVarG , is defined induc-
tively as follows:

hvar-var
G ∈ HVarG

C ∈ HVarG G ≠ ~
hvar-sub1

C [~/B] ∈ HVarG

C ∈ HVar~ B ∈ HVarG
hvar-sub2

C [~/B] ∈ HVarG

Remark B.16. If C ∈ HVarG and G ∉ dom(L) then CL ∈ HVarG .

Lemma B.17. LetA be an abstraction frame and G any variable. If C ∈ HVarG then C ∈ HAA∪{G }.

Proof. The proof is straightforward by induction on the derivation of the judgment C ∈ HVarG . �

Lemma B.18. LetA be an abstraction frame and consider an arbitrary partitionA = A1 ∪A2. If C ∈ HAA then C ∈ HAA1
or

there exists G ∈ A2 such that C ∈ HVarG .

Proof. By induction on the judgment C ∈ HAA1∪A2
.

1. h-var. Then C = ~, and ~ ∈ A1 ∪ A2 by premise of the rule h-var. There are two cases, depending on whether ~ ∈ A1

or ~ ∈ A2. If ~ ∈ A1, then ~ ∈ HAA1
by rule h-var. If ~ ∈ A2, then ~ ∈ HVar~ by rule hvar-var.

2. h-lam. Then C = _~. B . We apply rule h-lam, yielding _~. B ∈ HAA1
.

3. h-sub1. Then C = B [~/D]. The judgment B [~/D] ∈ HAA1∪A2
is derived from B ∈ HAA1∪A2

and ~ ∉ A1 ∪ A2. We take
A′ = A1 ∪ (A2 ∪ {~}) and apply i.h. on B , yielding two possible cases:

3.1 B ∈ HAA1
. Since ~ ∉ A1 we can apply rule h-sub1, yielding B [~/D] ∈ HAA1

.
3.2 B ∈ HVarG , for some G ∈ A2. Since ~ ∉ A2, then G ≠ ~ and we can apply rule hvar-sub1, yielding B [~/D] ∈ HVar~ .
4. h-sub2. Then C = B [~/D]. The judgment B [~/D] ∈ HAA1∪A2

is derived from B ∈ HA(A1∪A2)∪{~} , ~ ∉ A1 ∪ A2 and
D ∈ HAA1∪A2

. By i.h. on B we have two possible cases:
4.1 B ∈ HAA1

. Since ~ ∉ A1, we can apply rule h-sub1, yielding B [~/D] ∈ HAA1
.

4.2 B ∈ HVarG for some G ∈ (A2 ∪ {~}). We have two cases depending on whether G = ~ or not:
4.2.1 G = ~. By i.h. on D we have two possible subcases:
4.2.1.1 D ∈ HAA1

. Since ~ ∉ A1, and B ∈ HAA1∪{~} by Lemma B.17, applying rule h-sub2 we conclude B [~/D] ∈ HAA1
.

4.2.1.2 D ∈ HVarI for some I ∈ A2. Then B [~/D] ∈ HVarI by rule hvar-sub2.
4.2.2 G ≠ ~. Then B [~/D] ∈ HVarG by rule hvar-sub1.

�

Lemma B.19. CL ∈ HAA if and only if C ∈ HAAL .

Proof. We prove both implications by induction on the length of L.
We first show CL ∈ HAA implies C ∈ HAAL .

• L = ^. Immediate.
• L = L′ [G/B]. The judgment CL′ [G/B] ∈ HAA can be derived either by rule h-sub1 or by rule h-sub2:
1. h-sub1. Then CL′ ∈ HAA and G ∉ A. We apply i.h. on L′, yielding C ∈ HAAL′ . Since AL′ ⊆ AL′ [G/B ] by definition of
AL′ [G/B ] , then HAAL′ ⊆ HAAL′ [G/B ] by Remark 4.1. Therefore C ∈ HAAL .

2. h-sub2. Then CL′ ∈ HAA∪{G }, G ∉ A and B ∈ HAA . We apply i.h. on L′, yielding C ∈ HAAL′∪{G } . Since B ∈ HAA , then

AL
= AL′ ∪ {G}.

We now show C ∈ HAAL implies CL ∈ HAA .

• L = ^. Immediate.
• L = L′ [G/B]. Then C ∈ HAAL′ [G/B ] . We have to analyze two cases.
1. B ∈ HAA . Then AL′ [G/B ]

= AL′ ∪ {G}, so C ∈ HAAL′∪{G } . By U-conversion we may assume G ∉ AL′ . There are two
possible subcases by Lemma B.18:

1.1 C ∈ HAAL′ . Then CL′ ∈ HAA by i.h. on L′, and CL′ [G/D] ∈ HAA by rule h-sub1.
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1.2 C ∈ HVarG . Then CL′ ∈ HVarG by Remark B.16, and HVarG ⊆ HAA∪{G } by Lemma B.17, so we have CL′ ∈ HAA∪{G }.
By rule h-sub2 we conclude CL′ [G/B] ∈ HAA .

2. B ∉ HAA . Then AL′ [G/B ]
= AL′ , so C ∈ HAAL′ . We apply i.h. on L′, yielding CL′ ∈ HAA . By U-conversion we may

assume G ∉ AL′ , and in particular G ∉ A. Applying rule h-sub1 we conclude CL′ [G/D] ∈ HAA .

�

Lemma B.20 (Hereditary abstractions and structures are closed by reduction). Let inv(A,S, C).

1. Let C ∈ HAA and C •−→d,A,S,` C
′ where d ∈ {db, lsv}. Then C ′ ∈ HAA .

2. If C ∈ StS and C •−→d,A,S,` C
′ then C ′ ∈ StS .

Proof. By induction on the derivation of C •−→d,A,S,` C
′. �

Given a substitution context L, we can use the reduction rules defined in Section 4 to define the notion of useful reduction
for substitution contexts, by just understanding these elements as terms, where ^ is taken as a free variable.

Remark B.21.

1. If (_G. C)L •−→d,A,S,@ B and ^ ∉ A ∪ S, then B is of the form (_G. C)L′, and L •−→d,A,S∪{^},` L
′.

2. If EL •−→d,A,S, 6@ C and ^ ∉ A ∪ S, then there exists L′ such that C = EL′, and L •−→d,A,S∪{^},` L
′.

3. If L •−→d,A,S∪{^},` L
′ then CL •−→d,A,S,` CL

′.

Lemma B.22. If C •−→d,A,S,` C
′, then for all sets A′ and S′ such that A ⊆ A′ and S ⊆ S′ it holds that C •−→d,A′,S′,` C

′ .

Proof. By induction on the derivation of the judgment C •−→d,A,S,` C
′ .

1. db•. Then C = (_G. B)LD •−→db,A,S,` B [G/D]L = C ′, where d = db. We conclude (_G. B)LD •−→db,A′,S′,` B [G/D]L by rule db•.
2. sub•. Then C = G •−→sub(G,E) ,A∪{G },S,@ E = C ′, where d = sub(G,E) and ` = @.We conclude G •−→sub(G,E) ,A′∪{G },S′,@ E by rule

sub•.
3. lsv•. Then

B •−→sub(G,E) ,A∪{G },S,` B
′ G ∉ A ∪S EL ∈ HAA

lsv•

C = B [G/EL] •−→lsv,A,S,` B
′ [G/E]L = C ′

where d = lsv. IfA ⊆ A′ and S ⊆ S′, then in particularA ∪ {G} ⊆ A′ ∪ {G}. Therefore B •−→sub(G,E) ,A′∪{G },S′,` B
′ by i.h.

on B . Moreover EL ∈ HAA′ by Remark 4.1, and we can always assume G ∉ A′ ∪ S′. We can then apply rule lsv• and
conclude B [G/EL] •−→lsv,A′,S′,` B

′ [G/E]L.
4. appL•. Then

B •−→d,A,S,@ B′

appL•

C = B D •−→d,A,S,` B
′D = C ′

Then B •−→d,A′,S′,@ B′ by i.h. on B . We can then apply rule appL•, yielding B D •−→d,A′,S′,` B
′D.

5. appR•. Then
B ∈ StS D •−→d,A,S, 6@ D′

appR•

C = B D •−→d,A,S,` B D
′
= C ′

Then D •−→d,A′,S′, 6@ D′ by i.h. on D. Moreover B ∈ StS′ by Remark 4.1, so we can apply rule appR• and conclude
B D •−→d,A′,S′,` B D

′.
6. esR•. Then

D •−→d,A,S, 6@ D′

esR•

C = B [G/D] •−→d,A,S,` B [G/D
′] = C ′

Then D •−→d,A′,S′, 6@ D′ by i.h. on D. We can then apply rule esR•, yielding B [G/D] •−→d,A′,S′,` B [G/D
′].

7. esLA•. Then
B •−→d,A∪{G },S,` B

′ D ∈ HAA G ∉ A ∪ S G ∉ fv(d)
esLA•

C = B [G/D] •−→d,A,S,` B
′ [G/D] = C ′

Then A ∪ {G} ⊆ A′ ∪ {G} and thus B •−→d,A′∪{G },S′,` B
′ by i.h. on B . Moreover D ∈ HAA′ by Remark 4.1. We can also

assume G ∉ A′ ∪ S′ by U-conversion. We can then apply rule esLA•, yielding B [G/D] •−→d,A′,S′,` B
′ [G/D].
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8. esLS•. Then

B •−→d,A,S∪{G },` B
′ D ∈ StS G ∉ A ∪ S G ∉ fv(d)

esLS•

C = B [G/D] •−→d,A,S,` B
′ [G/D] = C ′

Then S ∪ {G} ⊆ S′ ∪ {G} and thus B •−→d,A′,S′∪{G },` B
′ by i.h. on B . Moreover D ∈ StS′ by Remark 4.1, and we can always

assume G ∉ A′ ∪ S′. We can then apply rule esLS•, yielding B [G/D] •−→d,A′,S′,` B
′ [G/D].

�

Proposition B.23 (Towards the Diamond Property). Let inv(A,S, C) and let C •−→d1,A,S,` C1 and C •−→d2,A,S,` C2, with

C1 ≠ C2. Moreover, assume that if d1 = sub(G,E1 ) and d2 = sub(G,E2 ) then E1 = E2. Moreover, let B1,B2 be sets of variables disjoint

from A, such that if d8 = sub(G,E8 ) then E8 ∈ HAA∪B8 , for all 8 ∈ {1, 2}. Then there exists C ′ such that C1
•−→d2,A∪B1,S,` C

′ and

C2
•−→d1,A∪B2,S,` C

′.

Proof. By induction on C . Case C = _G. B is impossible, as there are no rules to reduce abstractions.We analyze the remaining
cases.

1. C = G . This case does not apply since we would have G •−→sub(G,E1 ) ,A∪{G },S,@
E1 = C1 and G •−→sub(G,E2 ) ,A∪{G },S,@

E2 = C2,
with E1 = E2 = E by the hypothesis, which contradicts the hypothesis that states C1 ≠ C2.

2. C = B D. Since inv(A,S, B D), then both inv(A,S, B) and inv(A,S, D) holds. We can reduce an application via rules
db•,appL• and appR•, so we have the following subcases:

2.1 db•-db•. This case does not apply since it ends up being that C1 = C2, which contradicts the hypothesis.
2.2 db•-appL•. We have C = (_G. B′)LD •−→db,A,S,` B

′ [G/D]L = C1, where B = (_G. B′)L and d1 = db. On the other hand
C = (_G. B′)LD •−→d2,A,S,` B2D = C2 is derived from (_G. B′)L •−→d2,A,S,@ B2, where B2 is of the form (_G. B′)L′ by
Remark B.21. Then C2 = (_G. B′)L′D •−→db,A,S,` B

′ [G/D]L′ = C ′ by rule db•, and C1 = B′ [G/D]L •−→d2,A,S,` B
′ [G/D]L′ = C ′

by Remark B.21, And we conclude by applying Lemma B.22 on both reductions to extend A to A ∪ B1 and A ∪ B2

respectively. The following diagram summarizes the proof:

C = (_G. B′)LD
•

db,A,S,`
//

•d2,A,S,`

��

B′ [G/D]L = C1

•d2,A∪B
1,S,`

��

C2 = (_G. B
′)L′D

•

db,A∪B2,S,`

// B′ [G/D]L′ = C ′

2.3 db•-appR•. We have C = (_G. B′)LD •−→db,A,S,` B
′ [G/D]L = C1, where B = (_G. B′)L and d1 = db. On the other hand

C = (_G. B′)LD •−→d2,A,S,` (_G. B
′)LD2 = C2 is derived from (_G. B′)L ∈ StS and D •−→d2,A,S, 6@ D2. This case is not possible

since (_G. B′)L cannot be an element of StS by Remark 4.1.
2.4 appL•-appR•. We have C = B D •−→d1,A,S,` B1D = C1 derived from (1) B •−→d1,A,S,@ B1, and we have C = B D •−→d2,A,S,`

B D2 = C2 is derived from (2) B ∈ StS and (3) D •−→d2,A,S, 6@ D2. We can apply rule appL• with (1) as premise, yielding
C2 = B D2

•−→d1,A,S,` B1D2 = C
′ . Having (1) and (2), then B1 ∈ StS by Lemma B.20. With this result and (3) we can apply

rule appR•, yielding C1 = B1D
•−→d2,A,S,` B1D2 = C ′. And we conclude by applying Lemma B.22 on both reductions to

extend A to A ∪ B1 andA ∪ B2 respectively. The following diagram summarizes the proof:

C = B D
•

d1,A,S,`
//

•d2,A,S,`

��

B1D = C1

•d2,A∪B
1,S,`

��

C2 = B D2
•

d1,A∪B
2,S,`

// B1 D2 = C
′

2.5 appL•-appL•. We have C = B D •−→d1,A,S,` B1D = C1 derived from B •−→d1,A,S,@ B1, and we have C = B D •−→d2,A,S,`

B2D = C2 derived from B •−→d2,A,S,@ B2, where B1 ≠ B2 since B1D ≠ B2D by hypothesis. We apply i.h. on B , yielding B′

such that B1 •−→d2,A∪B1,S,@ B′ and B2 •−→d1,A∪B2,S,@ B′. Applying rule appL• to reduce both B1D and B2 D, we obtain
C1 = B1D

•−→d2,A∪B1,S,` B
′ D = C ′ and C2 = B2D •−→d1,A∪B2,S,` B

′D = C ′ respectively. The following diagram summarizes
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the proof:

C = B D
•

d1,A,S,`
//

•d2,A,S,`

��

B1D = C1

•d2,A∪B
1,S,`

��

C2 = B2D
•

d1,A∪B
2,S,`

// B′ D = C ′

2.6 appR•-appR•. Analogous to the previous case.
3. C = B [G/D]. Since inv(A,S, B [G/D]) then inv(A ∪ {G},S, B), inv(A,S ∪ {G}, B) and inv(A,S,D). We can reduce C via

rules lsv•, esR•, esLA• and esLS•, so we have the following cases:
3.1 lsv•-lsv•. We have

B •−→sub(G,E) ,A∪{G },S,` B1 G ∉ A ∪S EL ∈ HAA
lsv•

C = B [G/EL] •−→lsv,A,S,` B1 [G/E]L = C1

where D = EL and d1 = lsv, and we have

B •−→sub(G,E) ,A∪{G },S,` B2 G ∉ A ∪S EL ∈ HAA
lsv•

C = B [G/EL] •−→lsv,A,S,` B2 [G/E]L = C2

where d2 = lsv• and B1 ≠ B2 since B1 [G/EL] ≠ B2 [G/EL].We apply i.h. on B , yielding B′ such that B1 •−→sub(G,E) ,A∪{G }∪B1,S,`

B′ and B2 •−→sub(G,E) ,A∪{G }∪B
2,S,` B′. Moreover, B1 •−→sub(G,E) ,AL∪{G }∪B1,SL,` B′ and B2 •−→sub(G,E) ,AL∪{G }∪B2,SL,` B′ by

Lemma B.22. Furthermore, the hypothesis EL ∈ HAA implies E ∈ HAAL by Lemma B.19 and E ∈ HAAL∪B8 by
Lemma B.22. Since G ∉ A∪S by hypothesis, and G ∉ dom(L) ∪B1 ∪B2 by U-conversion, then G ∉ AL ∪B1 ∪SL and
G ∉ AL ∪ B2 ∪ SL. We can then apply rule lsv• on both B1 [G/E] and B2 [G/E], yielding B1 [G/E] •−→lsv,AL∪B1,SL,`

B′ [G/E] and B2 [G/E] •−→lsv,AL∪B2,SL,` B′ [G/E] resp. To conclude, C1 = B1 [G/E]L
•−→lsv,A∪B1,S,` B′ [G/E]L = C ′ and

C2 = B2 [G/E]L
•−→lsv,A∪B2,S,` B

′ [G/E]L = C ′ by successively applying rule esLA• or esLS• accordingly. The follow-
ing diagram summarizes the proof:

C = B [G/EL]
•

lsv,A,S,`
//

•lsv,A,S,`

��

B1 [G/E]L = C1

•lsv,A∪B2,S,`

��

C2 = B2 [G/E]L
•

lsv,A∪B1,S,`

// B′ [G/E]L = C ′

3.2 lsv•-esR•. We have

B •−→sub(G,E) ,A∪{G },S,` B1 (1) G ∉ A ∪ S (2) EL ∈ HAA (3)
lsv•

C = B [G/EL] •−→lsv,A,S,` B1 [G/E]L = C1

where D = EL and d1 = lsv, and we have C = B [G/EL] •−→d2,A,S,` B [G/D2] = C2 which is derived from (4) EL •−→d2,A,S, 6@ D2.
Moreover,D2 = EL′ by Remark B.21. We can then apply rule esR•, esLA• or esLS• to (d2,A,S, `)-reduce C1 = B1 [G/E]L
to the term B1 [G/E]L

′
= C ′. And we conclude by applying Lemma B.22 to extendA toA ∪B1. On the other hand, we

analyze two possible cases, depending on the form d2 can have:
3.2.1 d2 ∈ {db, lsv}. Since (3) and (4) then EL′ ∈ HAA by Lemma B.20. With this result and having that (1) and (2) holds,

then we can apply rule lsv•, yielding C2 = B [G/EL′] •−→lsv,A,S,` B1 [G/E]L
′
= C ′ . To conclude, we extendA toA ∪B2

by Lemma B.22.
3.2.2 d2 = sub(G2,E2 ) . By U-conversion, we may assume G2 ≠ G , and G2 ∈ A by Lemma B.6. Moreover, E2 ∈ HAA∪B2 by hy-

pothesis. Since (4) and (3) then EL′ ∈ HAA∪B2 by LemmaB.14. Moreover, since (1) holds then B •−→sub(G,E) ,A∪{G }∪B1,S,`

B1 by Lemma B.22. We apply rule lsv•, yielding C2 = B [G/EL′] •−→lsv,A∪B2,S,` B [G/E]L
′
= C ′ .

The following diagram summarizes the proof:

C = B [G/EL]
•

lsv,A,S,`
//

•d2,A,S,`

��

B1 [G/E]L = C1

•d2,A∪B
1,S,`

��

C2 = B [G/EL
′]

•

lsv,A∪B2,S,`

// B1 [G/E]L
′
= C ′
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3.3 lsv•-esLA•. We have
B •−→sub(G,E) ,A∪{G },S,` B1 G ∉ A ∪S EL ∈ HAA

lsv•

C = B [G/EL] •−→lsv,A,S,` B1 [G/E]L = C1

where D = EL and d1 = lsv, and we have

B •−→d2,A∪{G },S,` B2 EL ∈ HAA G ∉ A ∪ S G ∉ fv(d2) (1)
esLA•

C = B [G/EL] •−→d2,A,S,` B2 [G/EL] = C2

We apply i.h. on B , yielding B′ such that B1 •−→d2,A∪{G }∪B1,S,` B′ and (2) B2 •−→sub(G,E) ,A∪{G }∪B
2,S,` B′. Moreover (3)

B1
•−→d2,AL∪{G }∪B1,SL,` B

′ by Lemma B.22. The hypothesis EL ∈ HAA implies E ∈ HAAL by Lemma B.19 and E ∈
HAAL∪B8 by Lemma B.22, with 8 ∈ {1, 2}. Hence, we have (4) E ∈ HAAL∪B1 and (5) EL ∈ HAA∪B2 by Lemma B.19.
Since G ∉ A ∪ S by hypothesis, and G ∉ B1 ∪ B2 ∪ dom(L) by U-conversion, then (6) G ∉ (A ∪ B2) ∪ S and (7) G ∉

(AL∪B1) ∪SL. Therefore, B1 [G/E] •−→d2,AL∪B1,SL,` B
′ [G/E] by rule esLA•, with (3), (4), (7) and (1) as premises. And we

conclude C1 = B1 [G/E]L •−→d2,A∪B1,S,` B
′ [G/E]L = C ′ by successively applying rule esLA• or rule esLS• accordingly. On

the other hand, applying rule lsv• with (2), (6) and (5) as premises we obtain C2 = B2 [G/EL] •−→lsv,A∪B2,S,` B
′ [G/E]L = C ′.

The following diagram summarizes the proof:

C = B [G/EL]
•

lsv,A,S,`
//

•d2,A,S,`

��

B1 [G/E]L = C1

•d2,A∪B
1,S,`

��

C2 = B2 [G/EL]
•

lsv,A∪B2,S,`

// B′ [G/E]L = C ′

3.4 lsv•-esLS•. We have
B •−→sub(G,E) ,A∪{G },S,` B1 G ∉ A ∪S EL ∈ HAA

lsv•

C = B [G/EL] •−→lsv,A,S,` B1 [G/E]L = C1

where D = EL and d1 = lsv; and we have C = B [G/EL] •−→d2,A,S,` B2 [G/EL] = C2 derived from B •−→d2,A,S∪{G },` B2,
EL ∈ StS , G ∉ A ∪ S and G ∉ fv(d2). Since inv(A,S, EL), then in particular A # S. Hence we have that EL ∈ HAA
and EL ∈ StS , and at the same time we have EL ∉ HAA or EL ∉ StS by Lemma B.2. Therefore we reach a contradiction,
so this case is not possible.

3.5 esR•-esR•. We have C = B [G/D] •−→d1,A,S,` B [G/D1] = C1 derived fromD
•−→d1,A,S, 6@ D1; andwe have C = B [G/D] •−→d2,A,S,`

B [G/D2] = C2 derived from D •−→d2,A,S, 6@ D2; where D1 ≠ D2 since B [G/D1] ≠ B [G/D2] by hypothesis. We apply i.h. on D,
yielding D′ such thatD1 •−→d2,A∪B1,S, 6@ D′ and D2 •−→d1,A∪B2,S, 6@ D′. Applying rule esR• on both B [G/D1] and B [G/D2], we
obtain C1 = B [G/D1] •−→d2,A∪B1,S,` B [G/D

′] = C ′ and C2 = B [G/D2] •−→d1,A∪B2,S,` B [G/D
′] = C ′ respectively. The following

diagram summarizes the proof:

C = B [G/D]
•

d1,A,S,`
//

•d2,A,S,`

��

B [G/D1] = C1

•d2,A∪B
1,S,`

��

C2 = B [G/D2]
•

d1,A∪B
2,S,`

// B [G/D′] = C ′

3.6 esR•-esLA•. We have C = B [G/D] •−→d1,A,S,` B [G/D1] = C1 derived from (1) D •−→d1,A,S, 6@ D1, and we have C =

B [G/D] •−→d2,A,S,` B2 [G/D] = C2 derived from (2) B •−→d2,A∪{G },S,` B2, (3) D ∈ HAA , (4) G ∉ A ∪ S and (5) G ∉ fv(d2).
We can apply rule esLA• with (2), (3), (4) and (5) as premises, yielding C1 = B [G/D1]

•−→d2,A,S,` B2 [G/D1] = C ′ ; and
we can apply rule esR• with (1) as premise, yielding C2 = B2 [G/D] •−→d1,A,S,` B2 [G/D1] = C

′. We conclude by applying
Lemma B.22 on both reductions to extendA toA∪B1 andA∪B2 respectively. The following diagram summarizes
the proof:

C = B [G/D]
•

d1,A,S,`
//

•d2,A,S,`

��

B [G/D1] = C1

•d2,A∪B
1,S,`

��

C2 = B2 [G/D]
•

d1,A∪B
2,S,`

// B2 [G/D1] = C
′

3.7 esR•-esLS•. Analogous to the previous case.
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3.8 esLA•-esLS•. We have C = B [G/D] •−→d1,A,S,` B1 [G/D] = C1 which is derived by B
•−→d1,A∪{G },S,` B1,D ∈ HAA , G ∉ A∪S

and G ∉ fv(d1); and we have C = B [G/D] •−→d2,A,S,` B2 [G/D] = C2 which is derived by B •−→d2,A,S∪{G },` B2, D ∈ StS ,
G ∉ A ∪ S and G ∉ fv(d2). Since inv(A,S,D) then in particular A # S. At the same time that D ∈ HAA and D ∈ StS ,
we have D ∉ HAA or D ∉ StS by Lemma B.2. Therefore we reach a contradiction, so this case is not possible.

3.9 esLA•-esLA•. We have C = B [G/D] •−→d1,A,S,` B1 [G/D] = C1 which is derived from B •−→d1,A∪{G },S,` B1, D ∈ HAA ,
G ∉ A ∪ S and G ∉ fv(d1), and we have C = B [G/D] •−→d2,A,S,` B2 [G/D] = C2 which is derived from B •−→d2,A∪{G },S,` B2,
D ∈ HAA , G ∉ A∪S and G ∉ fv(d2); where B1 ≠ B2 since B1 [G/D] ≠ B2 [G/D] by hypothesis. We apply i.h. on B , yielding
B′ such that B1 •−→d2,A∪{G }∪B1,S,` B′ and B2 •−→d1,A∪{G }∪B2,S,` B

′. Applying rule esLA• to reduce both B1 [G/D] and
B2 [G/D], we obtain C1 = B1 [G/D]

•−→d2,A∪B1,S,` B
′ [G/D] = C ′ and C2 = B2 [G/D]

•−→d1,A∪B2,S,` B
′ [G/D] = C ′ respectively.

The following diagram summarizes the proof:

C = B [G/D]
•

d1,A,S,`
//

•d2,A,S,`

��

B1 [G/D] = C1

•d2,A∪B
1,S,`

��

C2 = B2 [G/D]
•

d1,A∪B
2,S,`

// B′ [G/D] = C ′

3.10 esLS•-esLS•. Analogous to the previous case.

�

Theorem 4.5 (Diamond Property). Let C •−→d1,∅,S, 6@ C1 and C
•−→d2,∅,S, 6@ C2, where C1 ≠ C2 and d1, d2 ∈ {db, lsv} and S = fv(C).

Then there exists C ′ such that C1 •−→d2,∅,S, 6@ C ′ and C2 •−→d1,∅,S, 6@ C ′.

Proof. This is a particular case of Proposition B.23. �

C PROOFS OF SECTION 5 “RELATING LINEAR AND USEFUL OPEN CBV”

This section presents the technical details regarding the relation between the locbv◦ calculus and the uocbv• strategy. We
start first by discussing in Appendix C.1 the unfolding operation we introduced in Section 5: we give in particular a char-
acterization of the unfolding operation via rewriting. Our main goal here is to show that the relation →f is terminating
(Theorem C.14). To achieve this result, we prove that there is a decreasing measure, which we define in this same subsection.
Then we move on to Appendix C.2, where we show the technical results that are necessary to relate locbv◦ and uocbv•

(Corollary C.25).

C.1 Characterizing the Unfolding Operation via Rewriting

The relation of evaluation under a value assignment f , written→f , is defined as follows:

→f := ◦−→lsv ∪G ∈dom (f ) (
◦−→sub(G,f (G ) ) )

A term C is said to be f-reducible if there exists B such that C →f B . Notice that dom(f) plays the role of a value frame, so
this notion is closely related to the set Red◦V (defined in Appendix A).
We start by proving that the reduction relation→f is terminating (cf. Section 2). To prove this, we define a measure #f (_)

on terms and we show that it is strictly decreasing w.r.t.→f (Lemma C.7). The measure #f (_) is inspired by de Vrijer’s direct
proof of the finite developments theorem [33], and defined by means of intermediate functions #G (_) and #(_).
So, given a term C and a variable G , the potential number of occurences of G in C , written #G (C), is defined as 0 if G ∉ fv(C),

and otherwise is defined recursively as follows:

#G (G) := 1 #G (C B) := #G (C) + #G (B)
#G (_~. C) := 0 #G (C [~/B]) := #G (C) + #G (B) · (1 + #~ (C))

This gives an overapproximation of the number of free reachable occurrences of G in the unfolding of C . By this we mean
that #G (C) counts the potential number of free occurrences of G in the unfolding of C , even if not all the substitutions are
performed during useful reduction for some reason. For example, #~ (G [G/~~]) = 4, although the substitution of G by ~ ~ is
never executed because it is not useful. Another example is C0 := G [G/~ [~/I]]. We have #I (C0) = 4, despite the fact that I only
occurs three times in the corresponding unfolding I [G/I] [~/I].
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We now define the measure of C , written #(C), as follows:

#(G) := 0 #(C B) := #(C) + #(B)
#(_G. C) := 0 #(C [G/B]) := #(C) + #G (C) + #(B) · (1 + #G (C))

This measure can be seen as the number of steps that the evaluation takes to perform all the substitutions in the longest
reduction sequence starting at C . Notice that #(E) = 0 for any value E .
Furthermore, given f a value assignment, we define the measure of C under f , written #f (C), as #f (C) := #(C) +∑
G ∈dom (f ) #G (C).
For example, take again the term C0 from above. Since→f -reduction is non-deterministic, we consider two different reduc-

tion sequences from C0, of lengths 2 and 3 respectively, where the second sequence is the longest possible. In this example, f
is the empty value assignment (f = ·):

C0 = G [G/~ [~/I]] → B = G [G/I [~/I]] → C3 = I [G/I] [~/I]

C0 = G [G/~ [~/I]] → C1 = ~ [G/~] [~/I] → C2 = ~ [G/I] [~/I]

→ C3 = I [G/I] [~/I]

Then #I (C0) = 4, #I (C1) = 3, #I (C2) = 3, #I (C3) = 3, and #I (B) = 4. Note for example that #I (C0) = 4 is greater than the actual
number of free reachable occurrences of I in its unfolding (which is 3).
Note also that #(C0) = 3, #(C1) = 2, #(C2) = 1, #(C3) = 0, and #(B) = 1. These are upper bounds for the number of substitution

steps required to completely unfold these terms. For instance, #(C0) = 3, even though the first reduction sequence reaches the
unfolding in only two steps. The important point is that the measure strictly decreases at each step of any reduction sequence,
as we prove at the end of this subsection.
Given a value frame V , the set of substitution contexts in normal form under V is written CtxNF◦

V
and is defined

inductively as follows:

Ctx-NF-empty
^ ∈ CtxNF◦V

L ∈ CtxNF◦V∪{G } C ∈ NF◦V, 6@ C ∈ Val
Ctx-NF-addVal

L[G/C] ∈ CtxNF◦V

L ∈ CtxNF◦V C ∈ NF◦V, 6@ ¬(C ∈ Val)
Ctx-NF-addNonVal

L[G/C] ∈ CtxNF◦V

Definition C.1 (Expansion of value frames). Let V be a value frame. We inductively define the expansion of V under L,
writtenVL, as follows:

V^ := V

VL′ [G/C ] :=

{
VL′ ∪ {G} if C ∈ Val
VL′ otherwise

Lemma C.2. The following are equivalent:

1. CL ∈ NF◦
V,`

2. C ∈ NF◦
VL,`

and L ∈ CtxNF◦
V
.

Proof. Simultaneously by induction on L. �

Definition C.3. Let i : Var → N. Given a substitution context L, the potential number of occurrences of G in L under
i , written #iG (L), is recursively defined as follows:

#iG (^) := i (G) #iG (L
′ [~/C]) := #iG (L

′) + #G (C) · (1 + #
i
~ (L
′))

We define the measure of L under i , written #i (L), as follows:

#i (^) := 0 #i (L′ [G/C]) := #i (L′) + #
i
G (L
′) + #(C) · (1 + #

i
G (L
′))

For any term C , we define iC (G) := #G (C).

Lemma C.4 (Splitting of measures). Let C be a term and L be a substitution context. Then

1. #G (CL) = #
iC
G (L)

2. #(CL) = #(C) + #iC (L)

Proof. Simultaneously by induction on L. �
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Lemma C.5. Let C and B be terms, and L be a substitution context. If fv(C) # dom(L) then

1. #
iC [~/B ]
G (L) ≤ #G (C) + #

iB
G (L) · (1 + #~ (C)) for any variable G

2. #iC [G/B ] (L) ≤ #iB (L) · (1 + #G (C))

Proof. Simultaneously by induction on L. �

Lemma C.6. Let C be a term such that C →f C
′ for some term C ′ , and let G be a variable such that if C (sub(~,E) )-reduces to C

′

then G ∉ fv(E). Then #G (C) ≥ #G (C ′). Moreover, if G = ~ then #G (C) > #G (C ′).

Proof. By induction on the derivation of the judgment C →f C
′. �

Now we can state a lemma that involves the general notion of decreasing measure:

Lemma C.7. Let C be a term.

• If C ◦−→d C
′ then #(C) ≥ #(C ′) when d = sub(G,E) or #(C) > #(C ′) when d = lsv.

• If C →f C
′ then #f (C) > #f (C ′).

Proof. The proof uses Lemmas C.8, C.9 and C.10. �

Lemma C.8. Let C ◦−→sub(G,E) C
′. Then #(C) ≥ #(C ′).

Proof. By induction on the derivation of the judgment C ◦−→sub(G,E) C
′ . �

Lemma C.9. Let C ◦−→lsv C
′. Then #(C) > #(C ′).

Proof. By induction on the derivation of the judgment C ◦−→lsv C
′. �

Lemma C.10. Let C →f C
′. Then, #f (C) > #f (C ′).

Proof. By case analysis on the rule used to derive C →f C
′. �

Lemma C.11. Let E be a value and L a substitution context.

1. If there exists C such that EL ◦−→d C then there exist E ′ and L′ such that C = E ′L′.

2. If EL ◦−→d E
′L′ then C [G/E]L ◦−→d C [G/E

′]L′, for any term C .

Proof. We prove each item independently.

1. By induction on the derivation of EL ◦−→d C . Note that it is not possible to apply rules db◦, appL◦ nor appR◦, given that
EL is not an application. Then we are left to analyze the following cases:
• sub◦. Then G ◦−→sub(G,F) F , where E = G , L = ^ and C = F , so we are done, with E ′ = F and L′ = ^.
• lsv◦. Then L = L1 [G/FL2], thus deriving

EL1
◦−→sub(G,F) C1

lsv◦

EL1 [G/FL2]
◦−→lsv C1 [G/F]L2 = C

We apply i.h. on EL1, yielding E ′1 and L′1 such that C1 = E ′1L
′
1. And we are done, with E

′
= E ′1 and L′ = L′1[G/F]L2.

• esL◦. Then L = L1 [G/B], thus deriving

EL1
◦−→d C1 G ∉ fv(d)

esL◦

EL1 [G/B]
◦−→d C1 [G/B]

We apply i.h. on EL1, yielding E ′1 and L′1 such that C1 = E ′1L
′
1. And we are done, with E

′
= E ′1 and L′ = L′1[G/B].

• esR◦. Then L = L1 [G/B], thus deriving EL1 [G/B] ◦−→d EL1 [G/B
′] from B ◦−→d B

′. We are donewith E ′ = E and L′ = L1 [G/B
′],

2. By induction on the length of L.
• L = ^. Then E ◦−→d E

′ which can only be derived by rule sub◦. We obtain C [G/E] ◦−→d C [G/E
′] by applying rule esR◦,

so we are done.
• L = L1 [~/B]. We analyze different cases, depending on the rule which is used to derive EL1 [~/B] ◦−→d E

′L′. Since it is
not possible to apply rules sub◦, db◦, appL◦ and appR◦, given that EL1 [~/B] is neither a variable nor an application,
we are left to analyze the following three cases:
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– lsv◦. Then B = FL2 and d = lsv, deriving

EL1
◦−→sub(~,F) D

lsv◦

EL1 [~/FL2]
◦−→lsv D [~/F]L2

Moreover,D = E ′L3 by point (1), hencewe necessarily have L′ = L3 [~/F]L2. Thus in particular EL1 ◦−→ E ′L3. We apply
i.h. on L1, yielding C [G/E]L1 ◦−→sub(~,F) C [G/E

′]L3. Applying rule lsv◦, we obtain C [G/E]L = C [G/E]L1 [~/FL2]
◦−→sub(~,F)

C [G/E ′]L3 [~/F]L2 = C [G/E
′]L′.

– esL◦. Then
EL1

◦−→d D ~ ∉ fv(d)
esL◦

EL1 [~/B]
◦−→d D [~/B]

Moreover, D = E ′L3 by point (1), hence we necessarily have L′ = L3 [~/B]. Thus in particular EL1 ◦−→ E ′L3. We
apply i.h. on L1, yielding C [G/E]L1 ◦−→d C [G/E ′]L3. Given that ~ ∉ fv(d), we can then apply rule esL◦, yielding
C [G/E]L = C [G/E]L1 [~/B]

◦−→d C [G/E
′]L3[~/B] = C [G/E

′]L′.
– esR◦. Then EL1 [~/B] ◦−→d EL1 [~/B

′] is derived from B ◦−→d B
′. Hence E ′ = E and L′ = L1 [~/B

′]. By applying esR◦, we
obtain C [G/E]L = C [G/E]L1 [~/B]

◦−→d C [G/E]L1 [~/B
′] = C [G/E ′]L′.

�

Lemma C.12. If C ◦−→sub(G,E) C1 and EL
◦−→d E

′L′, then there exists C ′1 such that C1
◦−→

=

d C
′
1.

Proof. By induction on the derivation of C ◦−→sub(G,E) C1. Cases sub
◦ and esL◦ are the most interesting, while the rest are

analogous to the esL◦ case.

• sub◦. Then C = G ◦−→sub(G,E) E = C1, so we take C ′1 = E , as E reduces to itself in zero steps.
• esL◦. Then

B ◦−→sub(G,E) B1 ~ ∉ fv(sub(G,E) )
esL◦

C = B [~/D] ◦−→sub(G,E) B1 [~/D] = C1

We apply i.h. on B , yielding B′1 such that B1 ◦−→
=

d B
′
1. We may assume ~ ∉ fv(d) by U-conversion, so we can apply rule esL◦,

yielding C1 = B1 [~/D] ◦−→
=

d B
′
1 [~/D] = C

′
1.

�

Proposition C.13 (Local Confluence / WCR of→f ). Let C be a f-reducible term such that C ◦−→d1 C1 and C
◦−→d2 C2, with

d1, d2 ∈→f . Then there exists C ′ such that C1
◦−→
∗
d2
C ′ and C2

◦−→
∗
d1
C ′.

Proof. By induction on C . Case C = _G. B is impossible, as there are no rules to reduce abstractions.We analyze the remaining
cases.

• C = G . The only rule to reduce G is sub◦, and thus C = G ◦−→sub(G,dom(f ) ) f (G) = C1 = C2. Hence we are done, as C1 reduces in
zero steps to itself.
• C = B D. We can f-reduce C with the rules appL◦ and appR◦, so we have the following cases:
1. appL◦-appR◦. We have C = B D ◦−→d1 B1D = C1, which is derived from (1) B ◦−→d1 B1, and we have C = B D ◦−→d2 B D2 = C2,

which is derived from (2)D ◦−→d2 D2. We apply rule appL◦ with (1) as premise, yielding C2 = B D2 ◦−→d1 B1D2 = C
′. And we

apply rule appR◦ with (2) as premise, yielding C1 = B1 D ◦−→d2 B1D2 = C
′ . The following diagram summarizes the proof:

C = B D
◦

d1
//

◦d2

��

B1D = C1

◦d2

��

C2 = B D2
◦

d1
// B1D2 = C

′

2. appL◦-appL◦. We have C = B D ◦−→d1 B1D = C1, which is derived from B ◦−→d1 B1, and we have C = B D
◦−→d2 B2D = C2, which

is derived from B ◦−→d2 B2. We apply i.h. on B , yielding B′ such that B1 ◦−→
∗
d2
B′ and B2 ◦−→

∗
d1

B′. Applying rule appL◦ to

reduce both B1D and B2D, we obtain C1 = B1D
◦−→
∗
d2
B′D = C ′ and C2 = B2D

◦−→
∗
d1
B′ D = C ′ respectively. The following
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diagram summarizes the proof:

C = B D
◦

d1
//

◦d2

��

B1D = C1

◦

∗

d2

��

C2 = B2D
◦ ∗

d1
// B′ D = C ′

3. appR◦-appR◦. Analogous to the previous case.
• C = B [G/D]. We can f-reduce C with the rules lsv◦, esL◦ and esR◦, so we have the following cases:
1. lsv◦-lsv◦. We have

B ◦−→sub(G,E) B1
lsv◦

C = B [G/EL] ◦−→lsv B1 [G/E]L = C1

where D = EL and d1 = lsv, and we have

B ◦−→sub(G,E) B2
lsv◦

C = B [G/EL] ◦−→lsv B2 [G/E]L = C2

where d2 = lsv◦. We apply i.h. on B , yielding B′ such that B1 ◦−→
∗
sub(G,E)

B′ and B2 ◦−→
∗
sub(G,E)

B′. We can then apply rule

lsv◦ on both B1 [G/E] and B2 [G/E], yielding C1 = B1 [G/E] ◦−→
∗
lsv B

′ [G/E] and C2 = B2 [G/E] ◦−→
∗
lsv B

′ [G/E] resp. To conclude,
B1 [G/E]L

◦−→
∗
lsv B

′ [G/E]L and B2 [G/E]L ◦−→
∗
lsv B

′ [G/E]L is derived by successively applying rule esL◦, as fv(lsv) = ∅. The
following diagram summarizes the proof:

C = B [G/EL]
◦

lsv
//

◦lsv

��

B1 [G/E]L = C1

◦

∗
lsv

��

C2 = B2 [G/E]L
◦ ∗

lsv
// B′ [G/E]L = C ′

2. lsv◦-esL◦. We have
B ◦−→sub(G,E) B1

lsv◦

C = B [G/EL] ◦−→lsv B1 [G/E]L = C1

where D = EL and d1 = lsv, and we have

B ◦−→d2 B2 G ∉ fv(d2) (1)
esL◦

C = B [G/EL] ◦−→d2 B2 [G/EL] = C2

We apply i.h. on B , yielding B′ such that (2) B1 ◦−→
∗
d2
B′ and (3) B2 ◦−→

∗
sub(G,E)

B′. Then B1 [G/E] ◦−→
∗
d2
B′ [G/E] by rule esL◦,

with (2) and (1) as premises. And we conclude that C1 = B1 [G/E]L
◦−→
∗
d2
B′ [G/E]L is derived by successively applying

rule esL◦. On the other hand, C2 = B2 [G/EL]
◦−→
∗
lsv B

′ [G/E]L by rule lsv◦ with (3) as premise. The following diagram
summarizes the proof:

C = B [G/EL]
◦

lsv
//

◦d2

��

B1 [G/E]L = C1

◦

∗

d2

��

C2 = B2 [G/EL]
◦ ∗

lsv
// B′ [G/E]L = C ′

3. lsv◦-esR◦. We have
B ◦−→sub(G,E) B1 (1)

lsv◦

C = B [G/EL] ◦−→lsv B1 [G/E]L = C1

whereD = EL and d1 = lsv, and we have C = B [G/EL] ◦−→d2 B [G/D2] = C2, which is derived from (2) EL ◦−→d2 D2. Moreover,
D2 = E ′L′ by Lemma C.11 (1). By Lemma A.4, there exists B′1 such that B ◦−→sub(G,E′ ) B

′
1, hence we can apply rule lsv◦,

yielding C2 = B [G/E ′L′] ◦−→lsv B
′
1 [G/E

′]L′ = C ′. On the other hand, we have B1 [G/E]L ◦−→d2 B1 [G/E
′]L′ by Lemma C.11

(2). And since B1 ◦−→d2 B
′
1 by Lemma C.12, we can derive B1 [G/E ′] ◦−→d2 B

′
1 [G/E

′] by rule esL◦, given that G ∉ fv(d2)
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by U-conversion. Then B1 [G/E ′]L′ ◦−→d2 B
′
1 [G/E

′]L′ by applying rule esL◦ (length of L′) times. The following diagram
summarizes the proof:

C = B [G/EL]
◦

lsv
//

◦d2

��

B1 [G/E]L = C1

◦d2

��

B1 [G/E
′]L′

◦d2

��

C2 = B [G/E
′L′]

◦

lsv
// B′1 [G/E

′]L′ = C ′

4. esL◦-esL◦. We have C = B [G/D] ◦−→d1 B1 [G/D] = C1 which is derived from B ◦−→d1 B1 and G ∉ fv(d1), and we have
C = B [G/D] ◦−→d2 B2 [G/D] = C2 which is derived from B ◦−→d2 B2 and G ∉ fv(d2). We apply i.h. on B , yielding B′ such that
B1
◦−→
∗
d2
B′ and B2 ◦−→

∗
d1
B′. Applying rule esL◦ we derive C1 = B1 [G/D] ◦−→

∗
d2
B′ [G/D] = C ′ and C2 = B2 [G/D] ◦−→

∗
d1
B′ [G/D] =

C ′ respectively. The following diagram summarizes the proof:

C = B [G/D]
◦

d1
//

◦d2

��

B1 [G/D] = C1

◦

∗

d2

��

C2 = B2 [G/D]
◦ ∗

d1
// B′ [G/D] = C ′

5. esL◦-esR◦. We have C = B [G/D] ◦−→d1 B1 [G/D] = C1, which is derived from (1) B ◦−→d1 B1 and (2) G ∉ fv(d1), and we
have C = B [G/D] ◦−→d1 B [G/D2] = C2, which is derived from (3) D ◦−→d2 D2. We can apply rule esR◦ with (3) as premise,
yielding C1 = B1 [G/D] ◦−→d2 B1 [G/D2]. On the other hand we can apply rule esL◦ with (1) and (2) as premises, yielding
C2 = B [G/D2]

◦−→d1 B1 [G/D2]. The following diagram summarizes the proof:

B [G/D]
◦

d1
//

◦d2

��

B1 [G/D] = C1

◦d2

��

C2 = B [G/D2]
◦

d1
// B1 [G/D2] = C

′

6. esR◦-esR◦. We have C = B [G/D] ◦−→d1 B [G/D1] = C1, which is derived from D ◦−→d1 D1; and we have C = B [G/D] ◦−→d2

B [G/D2] = C2 which is derived from D ◦−→d2 D2. We apply i.h. on D, yielding D′ such that D1 ◦−→
∗
d2
D′ and D2 ◦−→

∗
d1
D′.

Applying rule esR◦ we derive C1 = B [G/D1]
◦−→
∗
d2
B [G/D′] = C ′ and C2 = B [G/D2]

◦−→
∗
d1
B [G/D′] = C ′ respectively. The

following diagram summarizes the proof:

B [G/D]
◦

d1
//

◦d2

��

B [G/D1] = C1

◦

∗

d2

��

C2 = B [G/D2]
◦ ∗

d1
// B [G/D′] = C ′

�

Observe that the second point of Lemma C.7 provides a decreasing measure for →f reduction, and the previous lemma
states that→f is locally confluent. Hence:

Theorem C.14. The reduction relation →f is terminating and confluent. In particular, a term C always has a unique →f -

normal form.

Proof. Termination is a straightforward consequence of Lemma C.7. Confluence is a consequence of the fact that→f is
also locally confluent (Proposition C.13 in Appendix C), and Newman’s Lemma (cf. Section 2). Confluence trivially entails the
uniqueness of normal forms. �

The following corollary relates the normal form of the reduction relation→f and the unfolding of a term under a value
assignment f .
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Corollary C.15. For any term C and any value assigment f , the (unique) f-normal form of C is C↓f .

Proof. By Theorem C.14, →f is terminating so there exists a term B such that C →∗f B and B is in f-normal form. By
Lemma C.17(2) (see Appendix C) we have C →∗f C↓f . Moreover by Lemma C.17(1) C↓f is in f-normal form. Therefore by
confluence of→f (Theorem C.14) we conclude C↓f = B . �

In particular, in the toplevel case, C↓ is the (unique) lsv-normal form of C .

C.2 Relating locbv
◦ and uocbv

•

Lemma C.16. Let EL be a term in f-normal form and C be a term in (f ∪ (G ↦→ E))-normal form. Then C [G/E]L is in f-normal

form.

Proof. By induction on L.

• L = ^. There are three rules to evaluate C [G/E]. We argue that none of them apply.
(1) If the term reduces by rule lsv◦, then

C ◦−→sub(G,E) C
′

lsv◦

C [G/E] ◦−→lsv C
′ [G/E]

but we reach a contradiction since C is in (f ∪ (G ↦→ E))-normal form.
(2) If the term reduces by rule esL◦, then, given a rule name d such that ◦−→d∈→f ,

C ◦−→d C
′ G ∉ fv(d)

esL◦

C [G/E] ◦−→d C
′ [G/E]

but we reach a contradiction since C is in (f ∪ (G ↦→ E))-normal form.
(3) If the term reduces by rule esR◦, then, given a rule name d such that ◦−→d∈→f ,

E ◦−→d E
′

esR◦

C [G/E] ◦−→d C [G/E
′]

but we reach a contradiction since E is a value, and so it is in f-normal form.
• L = L′ [~/B]. There are three rules to evaluate C [G/E]L′ [~/B]. We argue that none of them apply.
(1) If the term reduces by rule lsv◦, then B = FL1 and

C [G/E]L′ ◦−→sub(~,F) A
lsv◦

C [G/E]L′ [~/FL1]
◦−→lsv A [~/F]L1

Since EL′ [~/FL1] is in f-normal form, then EL′ is in (f ∪ (~ ↦→ F))-normal form. By U-conversion, ~ ∉ fv(C), so we
also have that C is in (f ∪ (G ↦→ E) ∪ (~ ↦→ F))-normal form. Then C [G/E]L′ is in (f ∪ (~ ↦→ F))-normal form by i.h.

on L′, so we reach a contradiction. Hence C [G/E]L is in f-normal form.
(2) If the term reduces by rule esL◦, then, given a rule name d such that ◦−→d∈→f ,

C [G/E]L′ ◦−→d A ~ ∉ fv(d)
esL◦

C [G/E]L′ [G/B] ◦−→d A [G/B]

since EL is in f-normal form, then EL′ is in (f ∪ (~ ↦→ F))-normal form. By U-conversion, ~ ∉ fv(C), so we also have
that C is in (f ∪ (G ↦→ E) ∪ (~ ↦→ F))-normal form. Then C [G/E]L′ is in (f ∪ (~ ↦→ F))-normal form by i.h. on L′, so
we reach a contradiction. Hence C [G/E]L is in f-normal form.

(3) If the term reduces by rule esR◦, then, given a rule name d such that ◦−→d∈→f ,

B ◦−→d B
′

esR◦

C [G/E]L′ [~/B] ◦−→d C [G/E]L
′ [~/B′]

but we reach a contradiction since EL is in f-normal form by hypothesis.

�

Lemma C.17. Let C be a term and f a value assignment. Then

1. C↓f is in f-normal form.
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2. C →∗f C
↓f

Proof.

1. By induction on C .
• C = G . There are two cases depending on the form of G↓f :
– If G ∈ dom(f) then G↓f = f (G). If f (G) is a variable, then f (G) is in f-normal form as there are no reduction rules
in→f to reduce f (G): f (G) ∉ dom(f) because f is idempotent. If f (G) is an abstraction, then f (G) is in f-normal
form as there are no reduction rules to reduce abstractions.

– Otherwise, G ∉ dom(f) and G↓f = G . We conclude G is in f-normal form since there are no reduction rules in→f

to reduce G .
• C = _G. B . Then (_G. B)↓f = _G. B , which is in f-normal form since there are no reduction rules in→f to reduce an
abstraction.
• C = B D. Then (B D)↓f = B↓f D↓f . There are two rules that would allow us to reduce B↓f D↓f . We argue that neither
applies:
– We can apply i.h. on B , yielding B↓f is in f-normal form, so B↓f D↓f does not reduce via rule appL◦.
– We can apply i.h. on D, yielding D↓f is in f-normal form, so B↓f D↓f does not reduce via rule appR◦.
• C = B [G/D]. There are two cases depending on the form of B [G/D]↓f :
– If D↓f = EL and G ∈ rv(B), then B [G/D]↓f = B↓f∪(G ↦→E) [G/E]L, which is in f-normal form by the i.h. and by
Lemma C.16.

– Otherwise B [G/D]↓f = B↓f [G/D↓f ]. Let us reason by contradiction, assuming that the term is f-reducible. Firstly, if
B↓f [G/D↓f ] reduces by rule esR◦, then it is also the case that D↓f is f-reducible, therefore we reach a contradiction
since D↓f is in f-normal form by i.h. on D. Then the only way to reduce the whole term is by first reducing B↓f , but
we reach again a contradiction, since B↓f is in f-normal form by i.h. on B . Then B↓f [G/D↓f ] is in f-normal form.

2. By induction on C .
• C = G . There are two cases depending on the form of G↓f :
– If G ∈ dom(f) then G↓f = f (G). We conclude G ◦−→sub(G,f (G ) ) f (G) by rule sub◦.

– Otherwise G →∗f G = G↓f , so we are done.
• C = _G. B . Then _G. B →∗f _G. B = (_G. B)

↓f , so we are done.
• C = B D. Then (B D)↓f = B↓f D↓f . We can apply i.h. on B , yielding B →∗f B

↓f . Hence we have the reduction sequence
B D →∗f B

↓f D in which each step is obtained by applying rule appL◦. Analogously, we can apply i.h. on D, yielding
D →∗f D

↓f . Hence we have the reduction sequence B↓f D →∗f B
↓f D↓f in which each step is obtained by applying rule

appR◦. Then we can conclude B D →∗f B
↓f D↓f .

• C = B [G/D]. There are two cases depending on the form of B [G/D]↓f :
– If D↓f = EL and G ∈ rv(B) then B [G/D]↓f = B↓f∪(G ↦→E) [G/E]L. We can apply i.h. on D, yielding D →∗f D

↓f . Hence we
have the reduction sequence B [G/D] →∗f B [G/EL] in which each step is obtained by applying rule esR◦. On the other
hand, we can apply i.h. on B , yielding B →∗

f∪(G ↦→E)
B↓f∪(G ↦→E) ; we can then write this reduction sequence as B →∗f

B′ →f∪(G ↦→E) B
↓f∪(G ↦→E) , for some B′. Then B [G/EL] →∗f B

′ [G/EL] by rule esL◦, and B′ [G/EL] →f B
↓f∪(G ↦→E) [G/E]L

by rule lsv◦. Then we can conclude B [G/D] →∗f B
↓f∪(G ↦→E) [G/E]L.

– Otherwise, B [G/D]↓f = B↓f [G/D↓f ]. We can apply i.h. on B , yielding B →∗f B
↓f . Hencewe have the reduction sequence

B [G/D] →∗f B
↓f [G/D] in which each step is obtained by applying rule esL◦, since G does not occur free in the rule

name by U-conversion. On the other hand, we can apply i.h. on D, yielding D →∗f D
↓f . Hence we have the reduction

sequence B↓f [G/D] →∗f B
↓f [G/D↓f ] in which each step is obtained by applying rule esR◦. Therefore we can conclude

B [G/D] →∗f B
↓f [G/D↓f ].

�

Remark C.18. If C is of the form EL, then C↓f is of the form E ′L′.

Remark C.19. If C↓f ∈ Abs then C↓f
′

∈ Abs, with dom(f) ⊆ dom(f ′).

Lemma C.20. Let f1, f2 be value assignments. Let C be a term.

1. C↓f1 ∈ Val if and only if C↓f2 ∈ Val.
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2. Let E be a value. If C ∈ StS and (G↓f1 = G↓f2 for all G ∈ S), then there exists L1 such that C↓f1 = EL1 if and only if there

exists L2 such that C↓f2 = EL2.

Proof. We prove the two statements simultaneously.

1. We reason by induction on C , showing only the left-to-right implication since the other is similar.
• C = G . There are two possible cases, depending on the form of G↓f2 . If G↓f2 = f2(G), then we conclude f2(G) ∈ Val by
definition. Otherwise, G↓f2 = G , and we conclude since G ∈ Val.
• C = _G. B . Immediate, since (_G. B)↓f2 = _G. B holds by definition.
• C = B D. This case is not possible since there are no E1, L1 such that (C B)↓f1 = B↓f1 D↓f1 = E1L1.
• C = B [G/D]. We analyze two cases, depending on the form of B [G/D]↓f1 .
– If D↓f1 = E0L0 and G ∈ rv(B), then B [G/D]↓f1 = B↓f1∪(G ↦→E0 ) [G/E0]L0 . Thus by hypothesis B↓f1∪(G ↦→E0 ) ∈ Val. By i.h.

(1) onD, there exist E1 and L1 such thatD↓f2 = E1L1 . We are then in the case where B [G/D]↓f2 = B↓f2∪(G ↦→E1 ) [G/E1]L1 .
We can apply i.h. (1) on B , yielding B↓f2∪(G ↦→E1 ) ∈ Val. Therefore B [G/D]↓f2 ∈ Val.

– Otherwise, B [G/D]↓f1 = B↓f1 [G/D↓f1]. Thus by hypothesis B↓f1 ∈ Val. If G ∉ rv(B), then we are in the case B [G/D]↓f2 =
B↓f2 [G/D↓f2]. If ¬D↓f1 ∈ Val, then the i.h. (1) on D states ¬D↓f2 ∈ Val, and so we are also in the case B [G/D]↓f2 =

B↓f2 [G/D↓f2]. Hence, we can apply i.h. (1) on B , yielding B↓f2 ∈ Val. Therefore B [G/D]↓f2 ∈ Val.
2. By induction on the derivation of the judgment C ∈ StS , showing only the left-to-right implication since the other is

similar.
• s-var. Then C = ~ ∈ StS , with ~ ∈ S. By hypothesis ~↓f1 = EL1 and ~↓f1 = ~↓f2 . Hence we conclude ~↓f2 = EL2 with
L2 = L1.
• s-app. Then C = B D ∈ StS , which is derived from B ∈ StS . This case is not possible since there are no E , L1 such that
(B D)↓f1 = B↓f1 D↓f1 = EL1.
• s-sub1. Then

B ∈ StS ~ ∉ S
s-sub1

C = B [~/D] ∈ StS

By hypothesis B [~/D]↓f1 = EL1. We analyze two cases depending on the form of the unfolding:
– If D↓f1 = E0L0 and ~ ∈ rv(B), then B [~/D]↓f1 = B↓f1∪(~ ↦→E0 ) [~/E0]L0 . Thus by hypothesis there exists L2 such that
B↓f1∪(~ ↦→E0 ) = EL2 , where L1 = L2 [~/E0]L0 . By i.h. (1) on D, there exist E1 , L1 such that D↓f2 = E1L1 . Hence we are
in the case B [~/D]↓f2 = B↓f2∪(~ ↦→E1 ) [~/E1 ]L1 . We are still in the case G↓f1∪(~ ↦→E0 ) = G↓f2∪(~ ↦→E1 ) for all G ∈ S, since
~ ∉ S. We can then apply i.h. (2) on B , yielding L3 such that B↓f2∪(~ ↦→E1 ) = EL3 . Therefore B [~/D]

↓f2 = EL2, where
L2 = L3 [~/E1]L1 .

– Otherwise, B [~/D]↓f1 = B↓f1 [~/D↓f1 ]. By hypothesis there exists L2 such that B↓f1 = EL2 , where L1 = L2 [~/D
↓f1 ].

If G ∉ rv(B), then we are in the case where B [G/D]↓f2 = B↓f2 [G/D↓f2]. If ¬D↓f1 ∈ Val, then the i.h. (1) on D states
¬D↓f2 ∈ Val and so we are also in the case B [G/D]↓f2 = B↓f2 [G/D↓f2]. Hence, we can apply i.h. (2) on B , yielding L3

such that B↓f2 = EL3 . Therefore B [~/D]
↓f2 = EL2, where L2 = L3 [~/D

↓f2 ].
• s-sub2. Then

B ∈ StS∪{~} ~ ∉ S D ∈ StS
s-sub2

C = B [~/D] ∈ StS

By hypothesis, there exists L1 such that B [~/D]
↓f1 = EL1. We analyze two cases depending on the form of the unfolding

under f1:
– IfD↓f1 = E0L0 and G ∈ rv(B), then EL1 = B [~/D]

↓f1 = B↓f1∪(~ ↦→E0 ) [~/E0]L0 . Thus by hypothesis it must be the case that
B↓f1∪(~ ↦→E0 ) = EL2 , with L1 = L2 [~/E0]L0 , for some L2 . By i.h. (2) onD, there exists L1 such thatD↓f2 = E0L1 . Moreover,
G ∈ rv(B), so B [~/D]↓f2 = B↓f2∪(~ ↦→E0 ) [~/E0]L1 . On the other hand, G↓f1∪(~ ↦→E0 ) = G↓f2∪(~ ↦→E0 ) for all G ∈ S∪{~}. We
then apply i.h. (2) on B , yielding L2′ such that B↓f2∪(~ ↦→E0 ) = EL2′ . Hence we conclude C↓f2 = B↓f2∪(~ ↦→E0 )L2′ [~/E0]L1 ,
where L2 = L2′ [~/E0]L1 .

– Otherwise EL1 = B [~/D]↓f1 = B↓f1 [~/D↓f1 ]. Thus by hypothesis it must be the case that B↓f1 = EL2 , with L1 =

L2 [~/D
↓f1 ], for some L2 . If G ∉ rv(B), then we are in the case where B [G/D]↓f2 = B↓f2 [G/D↓f2]. If ¬D↓f1 ∈ Val, then

the i.h. (1) on D states ¬D↓f2 ∈ Val, and so we are also in the case B [G/D]↓f2 = B↓f2 [G/D↓f2]. We then apply i.h. (2)
on B , yielding L2′ such that B↓f2 = EL2′ . Hence we conclude C↓f2 = B↓f2L2′ [~/D↓f2 ], where L2 = L2′ [~/D

↓f2 ].

�
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Definition C.21 (Compatibility). Given a value assigment f , we say f is compatible with the sets of variables A and S,
written compatible(f,A,S) if the following three conditions hold:

1. The value assignment must affect all variables in A and some of the variables in S (i.e. A ⊆ dom(f) ⊆ A ∪ S).
2. Variables in A must be mapped to abstractions (i.e. f (G) ∈ Abs must hold for every G ∈ A).
3. Variables in S affected by f must be mapped to variables (i.e. f (G) must be a variable for every G ∈ S ∩ dom(f)).

Lemma C.22. Let C [G/B], with inv(A,S, C [G/B]) and compatible(f,A,S).

1. If B ∈ HAA and B↓f = EL, then compatible(f ∪ (G ↦→ E),A ∪ {G},S).

2. If B ∈ StS , then compatible(f ′,A,S ∪ {G}), where f ′ = f ∪ (G ↦→ E) if G ∈ rv(C) and B↓f is of the form EL for some E , L,

or f ′ = f otherwise.

Proof. Since inv(A,S, C [G/B]) then inv(A ∪ {G},S, C), inv(A,S ∪ {G}, C) and inv(A,S, B). We prove each item indepen-
dently.

1. We check that conditions of the definition of compatible(f ∪ (G ↦→ E),A ∪ {G},S) holds:
(a) SinceA ⊆ dom(f) ⊆ A∪S by the hypothesis compatible(f,A,S), thenA∪{G} ⊆ dom(f) ∪ {G} ⊆ (A∪{G}) ∪S.
(b) Let ~ ∈ A∪{G}. If~ ≠ G , then (f∪ (G ↦→ E)) (~) = f (~), and f (~) ∈ Abs holds by the hypothesis compatible(f,A,S).

Otherwise ~ = G , and EL ∈ Abs by Lemma C.23 and thus E ∈ Abs holds.
(c) Let ~ ∈ S ∩ dom(f ∪ (G ↦→ E)). Since inv(A ∪ {G},S, C) then G ∉ S, therefore G ∉ S ∩ dom(f ∪ (G ↦→ E)). Then

G ≠ ~ and thus the property holds by the hypothesis compatible(f,A,S).
2. We check that conditions of the definition of compatible(f ′,A,S ∪ {G}) holds:
(a) Since A ⊆ dom(f) ⊆ A ∪ S by the hypothesis compatible(f,A,S), then A ⊆ dom(f ′) ⊆ A ∪ (S ∪ {G}).
(b) Let~ ∈ A. Since inv(A,S ∪ {G}, C) implies G ∉ A, then G ≠ ~ so f ′ (~) = f (~) and thus f ′ (~) ∈ Abs by the hypothesis

compatible(f,A,S).
(c) Let ~ ∈ (S ∪ {G}) ∩ dom(f ′). If ~ ≠ G , then f ′(~) = f (~) and thus f ′ (~) is a variable by the hypothesis

compatible(f,A,S). If ~ = G , there are two subcases, depending on whether G ∈ rv(B). If G ∈ rv(B), then
f ′ = f ∪ (G ↦→ E), so we have that f ′(~) = E , and we are in the case B↓f = EL, where E is a variable by Lemma C.23 (2).
If G ∉ rv(B), then f ′ = f , so f ′ (~) = f (G). Note that, by U-conversion, we may assume that G ∉ dom(f), so f (G) = G ,
which is a variable.

�

Lemma C.23. Let inv(A,S, C). Let f be a value assignment, and A and S sets of variables such that compatible(f,A,S)

holds. Then:

1. If C ∈ HAA then C↓f ∈ Abs.

2. If C ∈ StS and C↓f = EL, then E is a variable.

Proof. We prove each item independently.

1. By induction on the derivation of C ∈ HAA .
1.1 h-var. Then C = G ∈ HAA , with G ∈ A. Since compatible(f,A,S) then G↓f = f (G), and f (G) ∈ Abs.
1.2 h-lam. Then C = _G. B , and (_G. B)↓f = _G. B , which satisfies the predicate abs.
1.3 h-sub1. Then C = B [G/D] ∈ HAA which is derived from B ∈ HAA and G ∉ A. Since inv(A,S, B [G/D]) then

inv(A,S ∪ {G}, B) holds. We proceed by showing that compatible(f,A,S ∪ {G}) holds:
(a) Since A ⊆ dom(f) ⊆ A ∪ S by the hypothesis compatible(f,A,S), then A ⊆ dom(f) ⊆ A ∪ (S ∪ {G}).
(b) Let ~ ∈ A. Since inv(A,S ∪ {G}, B) implies G ∉ A, then G ≠ ~ and thus f (~) ∈ Abs by the hypothesis

compatible(f,A,S).
(c) Let~ ∈ (S∪{G})∩dom(f). Since G ∉ dom(f) by U-conversion then~ ≠ G . Thus f (~) is a variable by the hypothesis

compatible(f,A,S).
We can now apply i.h. (1) on B , yielding B↓f ∈ Abs. We analyze two cases:
• If D↓f = EL and G ∈ rv(B), then B [G/D]↓f = B↓f∪(G ↦→E) [G/E]L. Since B↓f ∈ Abs by i.h. (1) on B , then B↓f∪(G ↦→E) ∈ Abs
by Remark C.19. Hence we conclude that B↓f∪(G ↦→E) [G/E]L ∈ Abs holds.
• Otherwise, B [G/D]↓f = B↓f [G/D↓f ]. Since B↓f ∈ Abs by i.h. (1) on B , then B↓f [G/D↓f ] ∈ Abs.

1.4 h-sub2. Then C = B [G/D] ∈ HAA which is derived from B ∈ HAA∪{G }, G ∉ A, and D ∈ HAA . Since inv(A,S, B [G/D])
then inv(A ∪ {G},S, B) and inv(A,S, D). Moreover, D ∈ Val holds by Remark 4.1, so D↓f = EL by Remark C.18. Thus
we analyze two cases, depending on whether G ∈ rv(B) or not:

42



The Essence of Useful Evaluation Through�antitative Types (Extended Version)

• If G ∈ rv(B), then B [G/D]↓f = B↓f∪(G ↦→E) [G/E]L. Moreover, compatible(f∪(G ↦→ E),A∪{G},S) holds by LemmaC.22
(1). Then B↓f∪(G ↦→E) ∈ Abs by i.h. (1) on B . Therefore we conclude B↓f∪(G ↦→E) [G/E]L ∈ Abs.
• If G ∉ rv(B), then B [G/D]↓f = B↓f [G/D↓f ]. Moreover, G ∉ rv(B) implies B↓f = B↓f∪(G ↦→E) . Similarly to the previous
case, we obtain B↓f∪(G ↦→E) ∈ Abs by i.h. (1) on B , thus having B↓f ∈ Abs, so that we can conclude B↓f [G/D↓f ] ∈ Abs
as well.

2. By induction on the derivation of C ∈ StS .
2.1 s-var. Then C = G ∈ StS , with G ∈ S. There are two possible cases, depending on whether G ∈ dom(f) or not:
2.1.1 If G ∈ dom(f), then G↓f = f (G). Since compatible(f,A,S), then f (G) is a variable.
2.1.2 Otherwise, G↓f = G , which has the form EL with L = ^ and E a variable.
2.2 s-app. Then C = B D ∈ StS . This case is not possible, given that (B D)↓f = B↓f D↓f is not of the form EL.
2.3 s-sub1. Then C = B [G/D] ∈ StS which is derived from B ∈ StS and G ∉ S. We analyze two cases:
2.3.1 If D↓f = E0L0 and G ∈ rv(B), then B [G/D]

↓f
= B↓f∪(G ↦→E0 ) [G/E0]L0. Since C↓f is of the form EL then so is B↓f∪(G ↦→E0 ) .

Then there exist L1 such that B↓f = EL1 by Lemma C.20 (2), given that G ∉ S by hypothesis so that ~↓f∪(G ↦→E0 ) = ~↓f

for all ~ ∈ S. We can then apply i.h. (2) on B , and conclude that E is a variable.
2.3.2 Otherwise, B [G/D]↓f = B↓f [G/D↓f ]. Since C↓f is of the form EL then so is B↓f . Moreover, compatible(f,A,S ∪

{G}) holds, as shown in (1), case h-sub1, and B ∈ StS∪{G } by Remark 4.1. Given that inv(A,S, B [G/D]) implies
inv(A,S ∪ {G}, B), we can then apply i.h. (2) on B , yielding that E is a variable.

2.4 s-sub2. Then C = B [G/D] ∈ StS , which is derived from B ∈ StS∪{G } , G ∉ S and D ∈ StS . Since inv(A,S, B [G/D]) then in
particular inv(A,S ∪ {G}, B). Moreover, compatible(f ′,A,S∪{G}) holds by LemmaC.22 (2), where f ′ = f∪(G ↦→ E0)

if G ∈ rv(B) and D↓f = E0L0 , for some E0 , L0 , or f ′ = f otherwise. Since C↓f is of the form EL then so is B↓f
′

. We can
then apply i.h. (2) on B , yielding that E is a variable.

�

Proposition C.24. Let C be a term, f a value assignment, and A,S sets of variables. Suppose inv(A,S, C) and

compatible(f,A,S) hold. Then:

1. If C ∈ NF•
A,S,`

then C↓f ∈ NF◦
dom(f ),`

.

2. If C •−→d,A,S,` C
′ then either there exists a term C ′′ such that C↓f ◦−→db C

′′ , or C↓f ∈ Abs and ` = @.

Proof. We prove each item independently.

1. By induction on the derivation of the judgment C ∈ NF•
A,S,`

. The interesting cases are NF-var• , NF-esA•, and NF-esS•.

• NF-var• . Then C = G , and G ∈ NF•
A,S,`

is derived from G ∈ A ⇒ ` = 6@. Remark that inv(A,S, C) implies fv(G) =

{G} ⊆ A ∪ S and A # S. We then analyze two possible cases:
1.1 G ∈ A. Then ` = 6@. Since compatible(f,A,S), then G ∈ dom(f), and G↓f is an abstraction. Applying ruleNF-lam◦

we conclude G↓f ∈ NF◦
dom(f ), 6@.

1.2 G ∈ S. Then G ∈ dom(f) or not. If G ∈ dom(f) then G ∈ dom(f) ∩ S, and G↓f = ~, G ≠ ~. By idempotency
of value assignments we have ~ ∉ dom(f), so ~ ∈ NF◦

dom(f ),`
by rule NF-var◦ . If G ∉ dom(f), then we conclude

G↓f = G ∈ NF◦
dom (f ),`

by rule NF-var◦ .

• NF-esA•. Then
B ∈ NF•A∪{G },S,` (1) D ∈ NF•A,S, 6@(2) D ∈ HAA (3)

NF-esA•

C = B [G/D] ∈ NF•A,S,`

Since (3), then D ∈ Val by Remark 4.1, and thus (4) D↓f = EL by Remark C.18, for some E and L. Moreover,
inv(A,S, B [G/D]) implies inv(A ∪ {G},S, B) and inv(A,S, D); and given (3) and (4), we obtain compatible(f ∪ (G ↦→

E),A ∪ {G},S) by Lemma C.22 (1). Given (2), we apply i.h. on D, yielding D↓f = EL ∈ NF◦
dom(f ), 6@. Given (1), we apply

i.h. on B , yielding B↓f∪(G ↦→E) ∈ NF◦
dom(f )∪{G },`

. There are two possible cases, depending on whether G ∈ rv(B) or not:

1.1 If G ∈ rv(B), then B [G/D]↓f = B↓f∪(G ↦→E) [G/E]L. We obtain (5) E ∈ NF◦
dom(f )L, 6@

and L ∈ CtxNF◦
dom(f )

by Lemma C.2.

We may assume dom(L) # fv(B↓f∪(G ↦→E) ) by U-conversion, so dom(L) # rv(B↓f∪(G ↦→E) ). Hence we can apply
Lemma A.1, yielding (6) B↓f∪(G ↦→E) ∈ NF◦

dom(f )L∪{G },`
. Applying rule NF-esVal◦ with (6) and (5) as premises, we

obtain that B↓f∪(G ↦→E) [G/E] ∈ NF◦
dom (f )L,`

. We conclude C↓f = B↓f∪(G ↦→E) [G/E]L ∈ NF◦
dom (f ),`

by Lemma C.2.
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1.2 If G ∉ rv(B), then B [G/D]↓f = B↓f [G/D↓f ]. Since G ∉ rv(B) then B↓f∪(G ↦→E) = B↓f . We conclude C↓f = B↓f [G/D↓f ] ∈

NF◦
dom (f ),`

by rule NF-esVal◦.

• NF-esS•. Then
B ∈ NF•A,S∪{G },` (1) D ∈ NF•A,S, 6@(2) D ∈ StS (3)

NF-esS•

B [G/D] ∈ NF•A,S,`

There are two possible cases, depending on the form of B [G/D]↓f :
– If D↓f = EL and G ∈ rv(B), then B [G/D]↓f = B↓f∪(G ↦→E) [G/E]L, and the proof is the analogous as case 1.1 in rule
NF-esA•.

– Otherwise, B [G/D]↓f = B↓f [G/D↓f ]. There are two subcases, depending on whether D↓f ∈ Val or not. If D↓f ∈
Val then the proof is analogous, yet simpler, then case 1.2 in rule NF-esA•. Otherwise, inv(A,S, B [G/D]) implies
inv(A,S ∪ {G}, B) and inv(A,S, D). Given (2) we can apply i.h. onD, yielding (4)D↓f ∈ NF◦

dom (f ), 6@. Moreover, given
(3), we have that compatible(f,A,S ∪ {G}) holds by Lemma C.22 (2). Given (1) we can apply i.h. on B , yielding
(5) B↓f ∈ NF◦

dom(f ),`
. Applying rule NF-esNonVal◦ with (4) and (5) as premises, we obtain C↓f = B↓f [G/D↓f ] ∈

NF◦
dom (f ),`

.

2. By induction on the derivation of C •−→d,A,S,` C
′.

• sub•. Then C = G •−→sub(G,E) ,A′∪{G },S,@ E = C ′ , where d = sub(G,E) , A = A′ ∪ {G} and ` = @. Since G ∈ A′ ∪ {G} and

compatible(f,A′ ∪ {G},S), then f (G) ∈ Abs (i.e. G↓f ∈ Abs).
• db•. Then (_G. B)LD •−→db,A,S,` B [G/D]L, where C = (_G. B)LD, C ′ = B [G/D]L and d = db. We have ((_G. B)LD)↓f =

(_G. B)L↓f D↓f . Moreover, (_G. B)L ∈ HAA by Remark 4.1, then (_G. B)L↓f ∈ Abs by Lemma C.23 (1), so (_G. B)L↓f =

(_G. B)L′ Then ((_G. B)L′) D↓f ◦−→db B [G/D
↓f ]L′ by rule db◦.

• lsv•. Then
B •−→sub(G,E) ,A∪{G },S,` B

′ G ∉ A ∪S EL ∈ HAA
lsv•

C = B [G/EL] •−→lsv,A,S,` B
′ [G/E]L = C ′

where d = lsv. Since inv(A,S, B [G/EL]) then in particular inv(A ∪ {G},S, EL). We then have (EL)↓f ∈ Abs by
Lemma C.23, and (EL)↓f is of the form E ′L′ by Remark C.18. Moreover, compatible(f ∪ (G ↦→ E ′),A ∪ {G},S) by
Lemma C.22 (1). We can apply i.h. on B , yielding two possible cases:

2.1 There exists B′′ such that B↓f∪(G ↦→E
′ ) ◦−→db B

′′. We analyze two different cases, depending on whether G ∈ rv(B) or
not:
– If G ∈ rv(B), then B [G/EL]↓f = B↓f∪(G ↦→E

′ ) [G/E ′]L′ ◦−→db B
′′ [G/E ′]L′ by applying (length of L′ + 1) times rule esL◦,

so we are done.
– If G ∉ rv(B), then B [G/D↓f ]

↓f
= B↓f [G/D↓f ] = B↓f∪(G ↦→E

′ ) [G/(EL)↓f ] ◦−→db B
′′ [G/D↓f ] = C ′′ by rule esL◦.

2.2 B↓f∪(G ↦→E
′ ) ∈ Abs and ` = @. Then B [G/EL]↓f ∈ Abs, and ` = @, so we are done.

• appL•. Then
B •−→d,A,S,@ B′

appL•

C = B D •−→d,A,S,` B
′D = C ′

Since inv(A,S, B D) then in particular inv(A,S, B). We have two possible cases by i.h. on B:
2.1 There exists B′′ such that B↓f ◦−→db B

′′ . Then B↓f D↓f ◦−→db B
′′ D↓f = C ′′ by rule appL◦.

2.2 B↓f ∈ Abs and ` = @. Then B↓f is of the form (_G. A )L, and (_G. A )LD↓f ◦−→db A [G/D
↓f ]L by rule db◦.

• appR•. Then
B ∈ StS D •−→d,A,S, 6@ D′

appR•

C = B D •−→d,A,S,` B D
′
= C ′

Since inv(A,S, B D) then in particular inv(A,S, D). We have two possible cases by i.h. on D:
2.1 There exists D′′ such that D↓f ◦−→db D

′′ . Then B↓f D↓f ◦−→db B
↓f D′′ = C ′′ by rule appR◦.

2.2 D↓f ∈ Abs and ` = @. This case is not possible since ` = 6@ by premise of rule appR•.
• esR•. Then

D •−→d,A,S, 6@ D′

esR•

C = B [G/D] •−→d,A,S,` B [G/D
′] = C ′

Since inv(A,S, B [G/D]) then in particular inv(A,S, D). Two cases are possible cases by i.h. on D:
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2.1 There exists D′′ such that D↓f ◦−→db D
′′ . By definition of B [G/D]↓f there are two subcases:

– If D↓f = EL and G ∈ rv(B), then B [G/D]↓f = B↓f∪(G ↦→E) [G/E]L. We have that EL should have the form EL1 [~/A ]L2,
with A ◦−→db A

′. Then B↓f∪(G ↦→E) [G/E]L1 [~/A ]L2 ◦−→db B
↓f∪(G ↦→E) [G/E]L1[~/A

′]L2 = C ′′ by applying rules esL◦ and
esR◦ as appropriate.

– Otherwise, B [G/D]↓f = B↓f [G/D↓f ]. Applying rule esR◦ we obtain B↓f [G/D↓f ] ◦−→db B
↓f [G/D′′] = C ′′.

2.2 D↓f ∈ Abs and ` = @. This case is not possible since ` = 6@ by premise of rule esR•.
• esLA•. Then

B •−→d,A∪{G },S,` B
′(1) D ∈ HAA (2) G ∉ A ∪ S(3) G ∉ fv(d) (4)

esLA•

C = B [G/D] •−→d,A,S,` B
′ [G/D] = C ′

Since inv(A,S, B [G/D]) then in particular inv(A ∪ {G},S, B). Given (2), thenD↓f = EL by RemarkC.18. By LemmaC.22
(1) then compatible(f ∪ (G ↦→ E),A ∪ {G},S), so we can apply i.h. on B , yielding two possible cases:

2.1 There exists B′′ such that B↓f∪(G ↦→E) ◦−→db B
′′. By definition of B [G/D]↓f there are two possible subcases:

2.1.1 If B [G/D]↓f = B↓f∪(G ↦→E) [G/E]L, we conclude B↓f∪(G ↦→E) [G/E]L ◦−→db B
′′ [G/E]L = C ′′ by successively applying rule

esL◦.
2.1.2 If B [G/D]↓f = B↓f [G/D↓f ], then G ∉ rv(B), so B↓f∪(G ↦→E) = B↓f . Applying rule esL◦ we obtain B↓f [G/D↓f ] ◦−→db

B′′ [G/D↓f ] = C ′′.
2.2 B↓f∪(G ↦→E) ∈ Abs and ` = @. Then it is immediate to conclude B [G/D]↓f ∈ Abs and ` = @.
• esLS•. Then

B •−→d,A,S∪{G },` B
′ D ∈ StS G ∉ A ∪ S G ∉ fv(d)

esLS•

C = B [G/D] •−→d,A,S,` B
′ [G/D] = C ′

Since inv(A,S, B [G/D]) then in particular inv(A,S ∪ {G}, B), and compatible(f ′,A,S ∪ {G}) holds by Lemma C.22
(2). We can apply i.h. on B , yielding two possible cases:

2.1 There exists B′′ such that B↓f
′ ◦−→db B

′′. There are two subcases by definition of B [G/D]↓f :
2.1.1 If D↓f = EL and G ∈ rv(B), then f ′ = f ∪ (G ↦→ E), and B [G/D]↓f = B↓f∪(G ↦→E) [G/E]L. Thus B↓f∪(G ↦→E) [G/E]L ◦−→db

B′′ [G/E]L = C ′′ by successively applying rule esL◦.
2.1.2 Otherwise, f ′ = f and B [G/D]↓f = B↓f [G/D↓f ]. Applying rule esL◦ we obtain B↓f [G/D↓f ] ◦−→db B

′′ [G/D↓f ] = C ′′ .
2.2 B↓f ∈ Abs and ` = @. Then it is immediate to conclude B [G/D]↓f ∈ Abs and ` = @.

�

Corollary C.25. C ∈ NF•
∅,fv(C ), 6@

iff C↓ ∈ NF◦
∅, 6@.

Proof. The ‘only if’ direction is an immediate consequence of Proposition C.24(1). For the ‘if’ direction, it suffices to show
the contrapositive, namely that C ∉ NF•

∅,fv(C ), 6@ implies C↓· ∉ NF◦
∅, 6@. Using soundness and completeness of the characterization

of normal forms (Corollary B.11), this is equivalent to showing that that if C •−→d,∅,fv(C ), 6@ C ′ then there exist a rule name d ′ and
a term C ′′ such that C↓· ◦−→d ′ C

′′ . This is a consequence of Proposition C.24(2). �

D PROOFS OF SECTION 6 “USEFUL OPEN CBV IS REASONABLE”

In this section we develop the technical details that are necessary to show that our inductive characterization of useful eval-
uation is reasonable. Recall that we proceed in two stages, following the technique in [2]: on one hand we prove a high-level
implementation result, presented in Theorem 6.3. On the other hand, we show a low-level implementation result, presented
in Theorem 6.4. This second stage requires more development than the first one, given that we need to relate our uocbv•

strategy with the GLAMoUr abstract machine in [2].

D.1 Low-level implementation

Definition D.1 (Stable terms). A term C is pure, written C ∈ Pure, if it does not contains explicit substitutions. Let A be an
abstraction frame and S a structure frame. The set of stable terms under A, S, written StableA,S , is inductively defined as
follows:

stable-var
G ∈ StableA,S

C ∈ Pure
stable-abs

_G. C ∈ StableA,S
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C ∈ StableA,S B ∈ StableA,S
stable-app

C B ∈ StableA,S
C ∈ StableA∪{G },S B ∈ StableA,S B ∈ HAA G ∉ A ∪ S

stable-es-habs
C [G/B] ∈ StableA,S

C ∈ StableA,S∪{G } B ∈ StableA,S B ∈ StS G ∉ A ∪ S
stable-es-struct

C [G/B] ∈ StableA,S

Remark D.2. If C ∈ Pure, then C ∈ StableA,S , for any framesA, S.

Remark D.3. Let C be a term, A an abstraction frame an S a structure frame. Then:

1. Let B be an abstraction frame such that B # fv(C), and T be a structure frame such that T # fv(C) and B # T . If
C ∈ StableA,S, then C ∈ StableA∪B,S∪T .

2. Let B is an abstraction frame such thatA # B, and T be a structure frame such that S # T and B # T . If C ∈ StableA,S ,
then C ∈ StableA∪B,S∪T .

Definition D.4 (Stable substitution contexts). Let A be an abstraction frame and S a structure frame. The set of stable
substitution contexts under A, S, written StableCtxA,S , is inductively defined as follows:

stableCtx-empty
^ ∈ StableCtxA,S

L ∈ StableCtxA∪{G },S C ∈ StableA,S C ∈ HAA G ∉ A ∪ S
stableCtx-habs

L[G/C] ∈ StableCtxA,S
L ∈ StableCtxA,S∪{G } C ∈ StableA,S C ∈ StS G ∉ A ∪S

stableCtx-struct
L[G/C] ∈ StableCtxA,S

Lemma D.5. Let A be an abstraction frame and S be a structure frame, C be a term and L be a substitution context such that

inv(A,S, CL) holds. Then CL ∈ StableA,S if and only if C ∈ StableAL,SL and L ∈ StableCtxA,S .

Proof. We prove both sides by induction on the length of L.
1⇒ 2)

• L = ^. On the one hand, A^ = A and S^ = S hold by definition, therefore we conclude C ∈ StableA,S by hypothesis.
Lastly, we conclude ^ ∈ StableCtxA,S applying rule stableCtx-empty.
• L = L′ [G/B]. We can derive CL′ [G/B] either by rule stable-es-habs or rule stable-es-struct. Both cases are analogous,
so we will only show case stable-es-habs, where we have CL′ ∈ StableA∪{G },S and (1) B ∈ StableA,S, with (2) B ∈ HAA
and (3) G ∉ A ∪ S. We can apply i.h. on L′, yielding C ∈ Stable(A∪{G } )L′,SL′ and (4) L′ ∈ StableCtxA∪{G },S. Note that

(A ∪ {G})L
′

= AL′ ∪ {G} = AL′ [G/B ] , and since inv(A,S, CL′ [G/B]) implies inv(A,S, B), then we have B ∉ StS by
Lemma B.2. Hence by definition SL′

= SL′ [G/B ] . Therefore C ∈ StableAL′ [G/B ] ,SL
′ [G/B ] . On the other hand, we can apply

rule stableCtx-habs with (1), (2), (3) and (4) as premises, yielding L′ [G/B] ∈ StableCtxA,S.

2⇒ 1)

• L = ^. ThenA^ = A and S^ = S hold by definition, therefore we conclude C^ = C ∈ StableA,S by hypothesis.
• L = L′ [G/B]. We have two cases, depending on whether B ∈ HAA or B ∈ StS . Both cases are analogous, so we will only
show case B ∈ HAA . Given inv(A,S, CL′ [G/B]) then inv(A ∪ {G},S, CL′) and inv(A,S, B) hold, and the last statement
implies B ∉ StS by Lemma B.2. Hence by definition AL′ [G/B ]

= AL′ ∪ {G} = (A ∪ {G})L
′
, and SL′ [G/B ]

= SL′ . Therefore
(1) C ∈ Stable(A∪{G } )L′,SL′ . On the other hand, L′ [G/B] can only be derived by rule stableCtx-habs, with (2) L′ ∈
StableCtxA∪{G },S, (3) B ∈ StableA,S, (4) B ∈ HAA , and (5) G ∉ A ∪ S. We can apply i.h. on L′ with (1) and (2) as
hypothesis, yielding (6) CL′ ∈ StableA∪{G },S. We conclude CL′ [G/B] ∈ StableA,S by applying rule stable-es-habs, with
(3), (4), (5) and (6) as hypothesis.

�

Lemma D.6. Let C be a term, A, B be two abstraction frames and S, T be two structure frames such that A # B and S # T
and B # T , and suppose that inv(A ∪ {G},S, C) holds. If C •−→sub(G,E) ,A∪{G },S,` C

′ with E ∈ StableA∪B,S∪T and C ∈ StableA∪{G },S,

then C ′ ∈ StableA∪{G }∪B,S∪T.
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Proof. By induction on the derivation of C •−→sub(G,E) ,A∪{G },S,` C
′.

1. sub•. Then C = G •−→sub(G,E) ,A∪{G },S,@ E = C ′, with ` = @. Since E ∈ StableA∪B,S∪T by hypothesis, then E ∈

StableA∪{G }∪B,S∪T by Remark D.3.
2. appL•. Then

B •−→sub(G,E) ,A∪{G },S,@ B′

appL•

C = B D •−→sub(G,E) ,A∪{G },S,` B
′ D = C ′

and B D ∈ StableA∪{G },S can only be derived from rule stable-app, so that B ∈ StableA∪{G },S and D ∈ StableA∪{G },S
hold. Moreover, inv(A ∪ {G},S, B D) implies inv(A ∪ {G},S, B), therefore we can apply i.h. on B , yielding B′ ∈

StableA∪{G }∪B,S∪T. By Remark D.3, we have D ∈ StableA∪{G }∪B,S∪T. We conclude B′ D ∈ StableA∪{G }∪B,S∪T by apply-
ing rule stable-app.

3. appR•. Analogous to the previous case.
4. esR•. Then

D •−→sub(G,E) ,A∪{G },S, 6@ D′

esR•

C = B [~/D] •−→sub(G,E) ,A∪{G },S,` B [~/D
′] = C ′

By U-conversion we may assume ~ ∉ B∪T . We can derive B [~/D] ∈ StableA∪{G },S either by rule stable-es-habs or by
rule stable-es-struct. Both cases are analogous, so we only show case stable-es-habs. Hence B ∈ StableA∪{G }∪{~},S,
D ∈ StableA∪{G },S, D ∈ HAA∪{G }, and ~ ∉ A ∪ {G} ∪ S, so that (1) ~ ∉ A ∪ {G} ∪ B ∪ S ∪ T . Given that
inv(A ∪ {G},S, B [~/D]) implies inv(A ∪ {G},S, D), we can apply i.h. on D, yielding (2) D′ ∈ StableA∪{G }∪B,S∪T. More-
over, (3) B ∈ StableA∪{G }∪{~}∪B,S∪T by Remark D.3. We have (4) D′ ∈ HAA∪{G }∪B by Lemma B.14. We apply rule
stable-es-habs with (1), (2), (3) and (4) as premises, yielding B [~/D′] ∈ StableA∪{G }∪B,S∪T.

5. esLA•. Then

B •−→sub(G,E) ,A∪{G }∪{~},S,` B
′ D ∈ HAA∪{G } ~ ∉ (A ∪ {G}) ∪ S ~ ∉ fv(sub(G,E) )

esLA•

C = B [~/D] •−→sub(G,E) ,A∪{G },S,` B
′ [~/D] = C ′

Note that the judgment B [G/D] ∈ StableA∪{G },S can be derived only by rule stable-es-habs. Then B ∈

StableA∪{G }∪{~},S and D ∈ StableA∪{G },S. By U-conversion, we may assume that ~ ∉ B ∪ T . Moreover,
inv(A ∪ {G},S, B [~/D]) implies inv(A ∪ {G} ∪ {~},S, B), and note that E ∈ StableA∪{~}∪B,S∪T by hypothesis and
Remark 4.1. We can apply i.h. on B , yielding (1) B′ ∈ StableA∪{G }∪{~}∪B,S∪T. By Remark D.3 we have D ∈
StableA∪{G }∪B,S∪T. And we have D ∈ HAA∪{G }∪B by Remark 4.1, and ~ ∉ A ∪ {G} ∪ B ∪ S ∪ T . We conclude
B′ [~/D] ∈ StableA∪{G }∪B,S∪T by applying rule stable-es-habs.

6. esLS•. Analogous to the previous case.

�

Lemma D.7. Let C be a term, A an abstraction frame and S a structure frame such that inv(A,S, C) holds. If C •−→d,A,S,` C
′

with d ∈ {db, lsv} and C ∈ StableA,S, then C
′ ∈ StableA,S.

Proof. We proceed by induction on C •−→d,A,S,` C
′.

• db•. Then C = (_G. B)LD •−→db,A,S,` B [G/D]L = C ′ , where d = db. The hypothesis (_G. B)LD ∈ StableA,S is derived from:

(_G. B)L ∈ StableA,S D ∈ StableA,S
stable-app

(_G. B)LD ∈ StableA,S

Moreover, inv(A,S, (_G. B)LD) implies inv(A,S, (_G. B)L) and inv(A,S, D). We then have _G. B ∈ StableAL,SL and
(1) L ∈ StableCtxA,S by Lemma D.5, and this judgment can only be derived from rule stable-abs, hence B ∈ Pure.
By Remark D.2, B ∈ StableAL∪{G },SL , and we have to analyze whether D ∈ HAAL or D ∈ StSL . Since both cases are
analogous, we will proceed with the first one. Since dom(L) # fv(D) by U-conversion, then D ∈ StableAL,SL holds by
Remark D.3, and applying rule stable-es-habs we have that (2) B [G/D] ∈ StableAL,SL . Given that inv(A,S, (_G. B)LD)
implies inv(A,S, B [G/D]L), we can apply Lemma D.5 with (1) and (2), to obtain B [G/D]L ∈ StableA,S.
• lsv•. Then C = B [G/EL] •−→lsv,A,S,` B

′ [G/E]L = C ′, where d = lsv and it is derived from B •−→sub(G,E) ,A∪{G },S,` B
′, G ∉

A ∪ S, and (1) EL ∈ HAA . The hypothesis B [G/EL] ∈ StableA,S is derived from rule stable-es-habs by (1), so (2)
B ∈ StableA∪{G },S and EL ∈ StableA,S . By Lemma D.5, we have (3) E ∈ StableAL,SL and (4) L ∈ StableCtxA,S . On
the other hand, since inv(A,S, B [G/D]) then inv(A ∪ {G},S, B) holds and we can apply Lemma D.6 with (2) and (3) as
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hypothesis, yielding (5) B′ ∈ Stable(A∪{G } )L,SL = StableAL∪{G },SL . Moreover (6) E ∈ HAAL by Lemma B.19. we may
assume G ∉ dom(L) by U-conversion, hence we can apply rule stable-es-habs with (3), (5), (6) and G ∉ AL ∪ SL as
premises, thus having (7) B′ [G/E] ∈ StableAL,SL . We conclude B′ [G/E]L ∈ StableA,S by applying Lemma D.5 with (4)
and (7) as hypothesis.
• appL•. Then C = B D •−→d,A,S,` B

′ D = C ′ , derived from B •−→d,A,S,@ B′. The hypothesis B D ∈ StableA,S can only be derived
from rule stable-app, so (1) B ∈ StableA,S and D ∈ StableA,S. Given that inv(A,S, B D) implies inv(A,S, B), we can
apply i.h. on B , yielding (2) B′ ∈ StableA,S. By rule stable-appwith (1) and (2) as premises, we conclude B′ D ∈ StableA,S.
• appR•. Analogous to the previous case.
• esR•. Then C = B [G/D] •−→d,A,S,` B [G/D

′] = C ′ , derived from D •−→d,A,S, 6@ D′. The hypothesis B [G/D] ∈ StableA,S can
be derived either from rule stable-es-habs or rule stable-es-struct, so D ∈ StableA,S. Given that inv(A,S, B [G/D])
implies inv(A,S,D), we can apply i.h. on D, yielding D′ ∈ StableA,S. We can apply either rule stable-es-habs or
stable-es-struct to conclude B [G/D′] ∈ StableA,S.
• esLA•. Then C = B [G/D] •−→d,A,S,` B′ [G/D] = C ′ , derived from B •−→d,A∪{G },S,` B

′, (1) D ∈ HAA , G ∉ A ∪ S, and
G ∉ fv(d). The hypothesis B [G/D] ∈ StableA,S can only be derived from rule stable-es-habs, so B ∈ StableA∪{G },S
and (2) D ∈ StableA,S . Given that inv(A,S, B [G/D]) implies inv(A ∪ {G},S, B), we can apply i.h. on B , yielding (3)
B′ ∈ StableA∪{G },S. By rule stable-es-habs with (1), (2) and (3) as premises, we conclude B′ [G/D] ∈ StableA,S .
• esLS•. Analogous to the previous case.

�

We restrict the reduction rule •−→d,A,S,` to stable terms. The relation of evaluation of stable terms, written
N

−→d,A,S,` , is
defined by the same reduction rules as the relation •−→d,A,S,` , but rule db

• is replaced by

B ∈ HAA ∪ StS
db-stable•

(_G. C)L B
N

−→db,A,S,` C [G/B]L

Definition D.8 (Structural equivalence). We define a relation of structural equivalence, written ≡, recursively as follows:

G ∉ fv(D) ~ ∉ fv(B)
es-comm

C [G/B] [~/D] ≡ C [~/D] [G/B]

~ ∉ fv(C)
es-assoc

C [G/B] [~/D] ≡ C [G/B [~/D]]

G ∉ fv(B)
es-l-dist

(C B) [G/D] ≡ C [G/D] B

G ∉ fv(C)
es-r-dist

(C B) [G/D] ≡ C B [G/D]

C ≡ C ′ B ≡ B′

cong-app
C B ≡ C ′ B′

C ≡ C ′ B ≡ B′

cong-es
C [G/B] ≡ C ′ [G/B′]

refl
C ≡ C

C ≡ B
sym

B ≡ C

C ≡ B B ≡ D
trans

C ≡ D

Remark D.9. If EL ≡ C then C is of the form E ′L′, and the proof of equivalence necessarily uses rule refl.

Remark D.10 (Strengthening of abstraction and value frames). Let A be an abstraction frame and S a structure set. Let C be
a term such that G ∉ fv(C). Then the following holds:

1. If C ∈ HAA∪{G } then C ∈ HAA .
2. If C ∈ StS∪{G } then C ∈ StS .

Lemma D.11 (Hereditary abstractions and structures are closed by structural eqivalence). LetA and S be sets

of variables, and C be a term such that inv(A,S, C). If C ≡ B then the following holds:

1. C ∈ HAA if and only if B ∈ HAA .

2. C ∈ StS if and only if B ∈ StS .

Proof. Each item is proved by induction on the derivation of C ≡ B . �

Lemma 6.2 (Strong bisimulation). Let C0, B0 be stable terms such that B0 ≡ C0
N

−→d,A,S,` C1 then there exists B1 such that

B0
N

−→d,A,S,` B1 ≡ C1.
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Proof. We start by introducing an auxiliary equivalence relation ≡2 on terms, recursively defined by:

G ∉ fv(D) ~ ∉ fv(B)
es-comm

C [G/B] [~/D] ≡2 C [~/D] [G/B]

~ ∉ fv(C)
es-assoc(1)

C [G/B] [~/D] ≡2 C [G/B [~/D]]

~ ∉ fv(C)
es-assoc(2)

C [G/B [~/D]] ≡2 C [G/B] [~/D]

G ∉ fv(B)
es-l-dist(1)

(C B) [G/D] ≡2 C [G/D] B

G ∉ fv(B)
es-l-dist(2)

C [G/D] B ≡2 (C B) [G/D]

G ∉ fv(C)
es-r-dist(1)

(C B) [G/D] ≡2 C B [G/D]

G ∉ fv(C)
es-r-dist(2)

C B [G/D] ≡2 (C B) [G/D]

C ≡2 C
′ B ≡2 B

′

cong-app
C B ≡2 C

′ B′

C ≡2 C
′ B ≡2 B

′

cong-es
C [G/B] ≡2 C

′ [G/B′]

Note in particular that ≡ is the reflexive-transitive closure of ≡2 . We divide the proof into two parts:

1. We show that if C0
N

−→d,A,S,` C1 and C0 ≡2 B0, then there exists B1 such that B0
N

−→d,A,S,` B1 and C1 ≡ B1.
2. Given that ≡ is the reflexive-transitive closure of ≡2 , we show the same result but for the ≡ relation by resorting to

Item 1.

Item 2 is proved by induction on the reflexive and transitive closure of ≡2 and is immediate. The proof of Item 1 is by induction

on the derivation of C0
N

−→d,A,S,` C1 and case analysis.

• db-stable•. Then C0 = (_G.D)L A
N

−→db,A,S,` D [G/A ]L = C1, with A ∈ HAA ∪ StS . We also have C0 = (_G.D)L A ≡2 B0. We
analyze the different cases according to which rule was used to derive the equivalence. Note that cases es-comm, es-assoc
and cong-es are impossible due to the form of C0. The relevant cases are es-l-dist, es-r-dist, and cong-app:
a. es-l-dist(2). Then C0 = (_G.D)L′ [~/?] A ≡2 ((_G.D)L

′ A ) [~/?] = B0, with ~ ∉ fv(A ) and L = L′ [~/?]. There are two
cases for reducing ((_G.D)L′ A ) [~/?], depending on whether ? ∈ HAA or ? ∈ StS ; both are analogous, so we show

only the first case. Then we obtain B0 = ((_G.D)L′ A ) [~/?]
N

−→db,A,S,` D [G/A ]L
′[~/?] = B1 by applying rules esLA• and

db-stable•. Note that B1 ≡ C1 by rule refl. The following diagram summarizes the proof:

C0 = (_G.D)L
′ [~/?] A

N

db,A,S,`
// D [G/A ]L′[~/?] = C1

≡2 ≡

B0 = ((_G.D)L
′ A ) [~/?]

N

db,A,S,`
// D [G/A ′]L′ [~/?] = B1

b. es-r-dist(2). Then C0 = (_G.D)L (A ′[~/?]) ≡2 ((_G.D)L A
′) [~/?] = B0, with ~ ∉ fv((_G.D)L) and A = A ′[~/?] with

A ′ ∈ HAA′ ∪ StS′ where A
′
= A [~/? ] and S′ = S [~/? ] . In particular (1) ~ ∉ fv(D) ∪ fv(L), since G ≠ ~ by U-conversion.

There are two cases for reducing ((_G.D)L A ′) [~/?], depending on whether ? ∈ HAA or ? ∈ StS ; both are analogous,

so we show only the first one. Then we obtain B0 = ((_G.D)L A ′) [~/?]
N

−→db,A,S,` D [G/A
′]L[~/?] = B1 by applying

rules esLA• and db-stable•, since we already know A = A ′[~/?] ∈ HAA ∪ StS , so it is easy to note in particular
A ′ ∈ HAA∪{~} ∪ StS . Then C1 = D [G/A ′[~/?]]L ≡2 D [G/A

′] [~/?]L = C ′1 by applying rules cong-es and es-assoc, and
since ~ ∉ fv(D) by (1). We conclude C ′1 ≡ B1 by rules cong-es and es-comm, since ~ ∉ fv(L) by (1), and dom(L) # fv(?) by
U-conversion, thus C1 ≡ B1. The following diagram summarizes the proof:

C0 = (_G.D)L A
′[~/?]

N

db,A,S,`
// D [G/A ′[~/?]]L = C1

≡

≡2 D [G/A ′] [~/?]L = C ′1

≡

B0 = ((_G.D)L A
′) [~/?]

N

db,A,S,`
// D [G/A ′]L[~/?] = B1
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c. cong-app. Then C0 = (_G.D)L A ≡2 ? A
′
= B0, where (1) (_G.D)L ≡2 ? , and A ≡2 A ′. We split into subcases, according

to the rule used to derive the equivalence (1). Note that the only relevant cases are the axioms of the relation ≡2 , since
cases es-l-dist and es-r-dist are impossible due to the form of (_G.D)L.
– es-comm. Then (_G.D)L = (_G.D)L′ [~1/@1] [~2/@2] ≡2 (_G.D)L

′ [~2/@2] [~1/@1] = ? , where ~1 ∉ fv(@2) and ~2 ∉

fv(@1). Therefore C0 = (_G.D)L′ [~1/@1] [~2/@2] A ≡2 (_G.D)L
′ [~2/@2] [~1/@1] A

′
= B0, and B0 (db,A,S, `)-reduces to

B1 = D [G/A ′]L′ [~2/@2] [~1/@1] by rule db-stable•, since A ′ ∈ HAA ∪ StS by Lemma D.11 given that A ∈ HAA ∪ StS .
From C1 = D [G/A ]L

′[~1/@1] [~2/@2], we build the derivation D of B1 ≡ D [G/A ′]L′ [~1/@1] [~2/@2] = C ′1:

D :=

©­­­­­
«

D′ refl
@1 ≡ @1

cong-es
D [G/A ]L′[~1/@1] ≡ D [G/A

′]L′ [~1/@1]

refl
@2 ≡ @2

cong-es
C1 ≡ C

′
1

ª®®®®®
¬

where

D′ :=

©­­­­­­­
«

refl
D ≡ D

By hypothesis

A ≡ A ′

cong-es
D [G/A ] ≡ D [G/A ′]

. . .

cong-es. . .
cong-es

D [G/A ]L′ ≡ D [G/A ′]L′

ª®®®®®®®
¬

and since ~1 ∉ fv(@2) and ~2 ∉ fv(@1), we can apply rule es-comm, yielding C ′1 ≡ D [G/A
′]L′ [~2/@2] [~1/@1] = B1, thus

C1 ≡ B1. The following diagram summarizes the proof:

C0 = (_G.D)L
′ [~1/@1] [~2/@2] A

N

db,A,S,`
// D [G/A ]L′[~1/@1] [~2/@2] = C1

≡

≡2 D [G/A ′]L′ [~1/@1] [~2/@2] = C
′
1

≡

B0 = (_G.D)L
′ [~2/@2] [~1/@1] A

′ N

db,A,S,`
// D [G/A ′]L′ [~2/@2] [~1/@1] = B1

– es-assoc(1). Then (_G.D)L = (_G.D)L′ [~1/@1] [~2/@2] ≡2 (_G.D)L
′ [~1/@1 [~2/@2]] = ? , where ~2 ∉ fv((_G.D)L′).

Hence C0 = (_G.D)L′ [~1/@1] [~2/@2] A ≡2 (_G.D)L
′ [~1/@1 [~2/@2]] A

′
= B0, and B0 (db,A,S, `)-reduces to B1 =

D [G/A ′]L′[~1/@1 [~2/@2]] by rule db-stable•, given that A ′ ∈ HAA ∪ StS by Lemma D.11 since A ∈ HAA ∪ StS .
We have C1 ≡ D [G/A ′]L′ [~1/@1] [~2/@2] = C ′1, obtained from the derivation D from the previous subcase. To conclude
C ′1 ≡ B1 by rule es-assoc since ~2 ∉ fv(D [G/A ′]L′): on one hand~2 ∉ fv((_G.D)L′) by hypothesis and on the other hand
~2 ∉ fv(A ′) by U-conversion. Thus C1 ≡ B2. The following diagram summarizes the proof:

C0 = (_G.D)L
′ [~1/@1] [~2/@2] A

N

db,A,S,`
// D [G/A ]L′[~1/@1] [~2/@2] = C1

≡

≡2 D [G/A ′]L′ [~1/@1] [~2/@2] = C
′
1

≡

B0 = (_G.D)L
′ [~1/@1 [~2/@2]] A

′ N

db,A,S,`
// D [G/A ′]L′ [~1/@1 [~2/@2]] = B1
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– es-assoc(2). Then (_G.D)L = (_G.D)L′ [~1/@1 [~2/@2]] ≡2 (_G.D)L
′ [~1/@1] [~2/@2] = ? , where ~2 ∉ fv((_G.D)L′). The

steps are analogous to the previous case, with following diagram summarizing the proof:

C0 = (_G.D)L
′ [~1/@1 [~2/@2]] A

N

db,A,S,`
// D [G/A ]L′[~1/@1 [~2/@2]] = C1

≡

≡2 D [G/A ′]L′ [~1/@1] [~2/@2] = C
′
1

≡

B0 = (_G.D)L
′ [~1/@1] [~2/@2] A

′ N

db,A,S,`
// D [G/A ′]L′ [~1/@1] [~2/@2] = B1

– cong-es. Then (_G.D)L = (_G.D)L′ [~/?], and (_G.D)L′ [~/?] ≡2 @′ [~/? ′], with (_G.D)L′ ≡2 @′ and ? ≡2 ? ′. Then this
case is not possible since we need to use rule refl, by Remark D.9.

• lsv•. Then C0 = D0 [G/EL]
N

−→lsv,A,S,` D1 [G/E]L = C1, where d = lsv, and it is derived from D0
N

−→sub(G,E) ,A∪{G },S,` D1 and
G ∉ A ∪ S, and EL ∈ HAA . We also have C0 = D [G/EL] ≡2 B0. We analyze the different cases according to which rule was
used to derive the equivalence. Note that case cong-app is impossible due to the form of C0.
a. es-comm. Then C0 = D′0 [~/A ] [G/EL] ≡2 D′0 [G/EL] [~/A ] = B0, with ~ ∉ fv(EL) and G ∉ fv(A ). The step

D′0 [~/A ]
N

−→sub(G,E) ,A∪{G },S,` D1 can be derived either from rule esR•, esLA• or esLS•:

– esR•. Then D1 = D′0 [~/A
′], with A

N

−→sub(G,E) ,A∪{G },S, 6@ A ′. By Remark B.5, we have G ∈ fv(A ), but at the same time
G ∉ fv(A ) by hypothesis of rule es-comm. Therefore this case is not possible.

– esLA•. Then D1 = D′′0 [~/A ], with D
′
0
N

−→sub(G,E) ,A∪{G }∪{~},S,` D
′′
0 . Then B0 = D

′
0 [G/EL] [~/A ]

N

−→lsv,A,S,` D
′′
0 [G/E]L[~/A ] =

B1 derived from rules esLA• and lsv•. Since ~ ∉ fv(EL), we can apply several times rules cong-es and es-comm,
yielding B1 ≡ C1. The following diagram summarizes the proof:

C0 = D
′
0 [~/A ] [G/EL]

N

lsv,A,S,`
// D′′0 [~/A ] [G/E]L = C1

≡2 ≡

B0 = D
′
0 [G/EL] [~/A ]

N

lsv,A,S,`
// D′′0 [G/E]L[~/A ] = B1

– esLS•. Analogous to the previous case.

b. es-assoc(1). Then C0 = D′0 [~/A ] [G/EL] ≡2 D
′
0 [~/A [G/EL]] = B0, with G ∉ fv(D′0). The step D

′
0 [~/A ]

N

−→sub(G,E) ,A∪{G },S,` D1
can be derived either from rule esR•, esLA• or esLS•:
– esR•. Then D1 = D′0 [~/A

′], with A
N

−→sub(G,E) ,A∪{G },S, 6@ A ′. An we can perform the reduction step B0 =

D′0 [~/A [G/EL]]
N

−→lsv,A,S,` D
′
0 [~/A

′ [G/E]L] = B1, derived from rules esR• and lsv•. Then C1 = D′0 [~/A
′] [G/E]L ≡2

D′0 [~/A
′ [G/E]]L = C ′1 by rules cong-es and es-assoc, since G ∉ fv(D′0) by hypothesis. We conclude C ′1 ≡ B1 by applying

several times rules cong-es and es-assoc, given that we may assume dom(L) # fv(D′0) by U-conversion. Thus C1 ≡ B1.
The following diagram summarizes the proof:

C0 = D
′
0 [~/A ] [G/EL]

N

lsv,A,S,`
// D′0 [~/A

′] [G/E]L = C1

≡

≡2 D′0 [~/A
′ [G/E]]L = C ′1

≡

B0 = D
′
0 [~/A [G/EL]]

N

lsv,A,S,`
// D′0 [~/A

′ [G/E]L] = B1

– esLA•. Then D1 = D′′0 [~/A ], with D
′
0
N

−→sub(G,E) ,A∪{G },S,` D
′′
0 . By Remark B.5, we have G ∈ fv(D′0), but at the same time

G ∉ fv(D′0) by hypothesis of rule es-assoc. Therefore this case is not possible.
– esLS•. This case is analogous to the previous one, hence it is impossible.

c. es-assoc(2). Then C0 = D0 [G/EL
′ [~/A ]] ≡2 D0 [G/EL

′] [~/A ] = B0, with ~ ∉ fv(D0) and L = L′ [~/A ]. The predicate
EL′ [~/A ] ∈ HAA from the premise of rule lsv• can be derived either by ruleh-sub1 orh-sub2, so we have two subcases to

derive B0
N

−→lsv,A,S,` D1 [G/E]L
′ [~/A ] = B1. Since both are analogous, we only focus on the case where EL′ [~/A ] ∈ HAA is
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derived by ruleh-sub2, with EL′ ∈ HAA∪{~} and A ∈ HAA and~ ∉ A. Hencewe can build a derivation of B0
N

−→lsv,A,S,` B1
by applying rules esLA• and lsv•. To conclude, we have C1 ≡ B1 by applying rule refl. The following diagram summarizes
the proof:

C0 = D0 [G/EL
′ [~/A ]]

N

lsv,A,S,`
// D1 [G/E]L

′ [~/A ] = C1

≡2 ≡

B0 = D0 [G/EL
′] [~/A ]

N

lsv,A,S,`
// D1 [G/E]L

′ [~/A ] = B1

d. es-l-dist(1). Then C0 = (A0 A1) [G/EL] ≡2 A0[G/EL] A1 = B0, with G ∉ fv(A1). The step A0 A1
N

−→sub(G,E) ,A∪{G },S,` D1 can be
derived from rules appL• and appR•:
– appL•. Then D1 = A ′0 A1, where A0

N

−→sub(G,E) ,A∪{G },S,` A
′
0 with C1 = (A ′0 A1) [G/E]L, and B0 = A0 [G/EL] A1

N

−→lsv,A,S,`

A ′0 [G/E]L A1 = B1 by rules appL• and lsv•. Since G ∉ fv(A1) by hypothesis and dom(L) # fv(A1) by U-conversion, we can
then apply rule es-l-dist to conclude C1 ≡ B1. The following diagram summarizes the proof:

C0 = (A0 A1) [G/EL]
N

lsv,A,S,`
// (A ′0 A1) [G/E]L = C1

≡2 ≡

B0 = A0 [G/EL] A1
N

lsv,A,S,`
// A ′0 [G/E]L A1 = B1

– appR•. Then D1 = A0 A ′1, derived from A0 ∈ StS and A1
N

−→sub(G,E) ,A∪{G },S, 6@ A ′1. By Remark B.5, we have G ∈ fv(A1), but at
the same time G ∉ fv(A1) by hypothesis of rule es-l-dist. Therefore this case is not possible.

e. es-r-dist(1). Analogous to the previous case.
f. cong-es. Then C0 = D0 [G/EL] ≡2 D

′
0 [G/A ] = B0, derived from D0 ≡2 D

′
0 and EL ≡2 A ; note that A = E ′L′ by Remark D.9,

hence it must be the case that we need to use rule refl, so this case is not possible.

• sub•. Then C0 = G
N

−→sub(G,E) ,A′∪{G },S,@ E = C1, where d = sub(G,E) ,A = A′ ∪ {G} and ` = @. We also have C0 = G ≡2 B0. This
case is not possible since there are no rules to derive G ≡2 B0.
• The remaining cases are treated in a similar way.

�

D.1.1 Simulation of GLAMOUr steps in Useful Open CBV.

Definition D.12 (Syntax of the GLAMoUr). The set of states (B, B′), dumps (�,� ′, . . .), stacks (c, c ′, . . .), stack items
(q,k, . . .), and global environments (�, �′, . . .) are given by the following grammars:

B ::= (�, t, c, �)

� ::= n | � : (t, c)
c ::= n | q; : c where ; ∈ {A,S}
q ::= t | (t, c)

� ::= n | [G/q; ] : � where ; ∈ {A,S}

where codes (t, s, . . .) are terms with no explicit substitutions (i.e. pure terms), but they are not considered up to U-equivalence.
We use to decorate stack items with labels ; ∈ {A,S}, writing q; rather than q . By convention this label always indicates the
shape of q , so in particular, ; = A if and only if q is of the form C , and ; = S if and only if q is of the form (C, c). Intuitively,
these labels indicate whether a stack item unfolds to a hereditary abstraction (A) or a structure (S).
Let B = (�, t, c, �). A binding occurrence for a variable G in B is either the leftmost occurrence of G in an abstraction _G. t

or the leftmost occurrence of G in an element [G/q] of the environment. We say that B is well-named if the three following
conditions hold:

1. Each variable G has at most one binding occurrence. For example, ((_G. _~.~, n),F, n, [I/F]) is well-named, while
(n, _G . G, n, [G/F]) and (n, _G . _G .~, n, n) are not.

2. If there is some binding occurrence for a variable G in an abstraction,then, all occurrences of G only occur inside the
body of this abstraction. For example, (n, _G . _~. G, G, n) is not well-named.

3. If there is some binding occurrence for a variable G in an environment of the form �1 : [G/q] : �2, then there are no
other occurrences of G in �2. For example, ((n, n),~,~, [G/~] [I/G]) is not well-named.

52



The Essence of Useful Evaluation Through�antitative Types (Extended Version)

Definition D.13 (Decoding of components). The decoding of the components of the GLAMoUr abstract machine into the
syntax of our calculus is given by the following function:

{{(�, t, c, �)}} := {{�}}〈{{�}}〈{{c}}〈C〉〉〉

{{n}} := ^

{{� : (t, c)}} := {{�}}〈{{c}}〈C^〉〉

{{q; : c}} := {{c}}〈^{{q; }}〉

{{[G/q; ] : �}} := {{�}}〈^[G/{{q; }}]〉

{{(t, c); }} := {{c}}〈C〉

{{t; }} := C

{{t}} := C

In the two last lines, C denotes a term which is U-equivalent to t.

Definition D.14 (Transitions of the GLAMoUr abstract machine). The transitions of the GLAMoUr abstract machine are
defined as follows:

� t u c � {c1 � : (t, c) u n �

� _x. t q; : c � {um � t c [G/q; ] : �
� : (t, c) _x. u n � {c2 � t (_x. u)A : c �

� : (t, c) x c ′ � {c3 � t (x, c ′)S : c � x ∉ dom(�)

� : (t, c) x c ′ �1 : [G/qS] : �2 {c4 � t (x, c ′)S : c �1 : [G/qS] : �2
� : (t, c) x n �1 : [G/uA] : �2 {c5 � t x

A : c �1 : [G/uA] : �2
� x q; : c �1 : [G/uA] : �2 {ue � u

U q; : c �1 : [G/uA] : �2

where sU is any code U-equivalent to s that preserves well-naming of the machine. Note that in [2] there are two syntactically
different sorts of variables, corresponding to free and bound variables respectively. Here we use only one sort of variables,
but this is just a matter of presentation.

Definition D.15. A state B0 is initial if and only if it is of the form B0 = (n, t, n, n) for some code t. We say that a state B is
reachable if and only if there exists an initial state B0 such that B0 {∗ B .

Definition D.16. Let B0 = (n, t0, n, n) be an initial state in the abstract machine, and � a global environment. We say that a
stack item q is �-rigid if and only if:

1. q; = t implies {{q; }} = C ∈ HAA , where A = ∅{{�}} is an abstraction frame, and {{�}} is the list of substitution contexts
resulting from the decoding of �. This is equivalent to saying that if ; = A then {{q; }} ∈ HAA .

2. q; = (t, c) implies {{q; }} = {{c}}〈C〉 ∈ StS , where S = fv(t0)
{{�}} is a structure frame, and {{�}} is the list of substitution

contexts resulting from the decoding of �. This is equivalent to saying that if ; = S then {{q; }} ∈ StS .

Remark D.17. The following holds:

1. {{�}}〈C〉 ∈ StableA,S if and only if C ∈ StableA,S and {{�}} ∈ StableA,S .
2. {{c}}〈C〉 ∈ StableA,S if and only if C ∈ StableA,S and {{c}} ∈ StableA,S .
3. {{�}}〈C〉 ∈ StableA,S if and only if C ∈ StableA{{�}},S{{�}} and {{�}} ∈ StableA,S .

Lemma D.18 ((New) Invariants for the GLAMoUr). Let BA be a reachable state from an initial state (n, t0, n, n). Then BA
verifies the following invariant:

1. {{BA }} ∈ Stable∅,fv(C0 )
2. If BA = (�, t, c1 : q; : c2, �), then q; is �-rigid.
3. If BA = (�, t, c, �1 : [G/q; ] : �2), then q; is �2-rigid.

Proof. We prove that each transition step{ in the GLAMoUr machine preserves the invariant i.e. if B { B′ and B verifies
the invariant, then B′ verifies the invariant as well. We proceed by induction on the transition step{.
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• If B = (�, t u, c, �) {c1 (� : (t, c), u, n, �) = B′ then

{{(�, t u, c, �)}} = ({{�}}〈{{�}}〈{{c}}〉〉)〈C D〉

= {{�}}〈{{�}}〈{{c}}〈C D〉〉〉

= ({{�}}〈{{�}}〈{{c}}〈C^〉〉〉)〈D〉

= ({{�}}〈({{�}}〈{{c}}〈C^〉〉)〈^〉〉)〈D〉

= ({{�}}〈({{�}}〈{{c}}〈C^〉〉)〈{{n}}〉〉)〈D〉

= ({{�}}〈{{� : (t, c)}}〈{{n}}〉〉)〈D〉
= {{(� : (t, c), u, n, �)}}

Therefore {{B′}} ∈ Stable∅,fv(C0 ) holds as the translation of both states is the same. Item 2 of the invariant trivially holds
for B′ since it has an empty stack, and item 3 holds for B′ since it holds for B which has the same environment �.
• If B = (�, _G. t, q; : c, �) {um (�, t, c, [G/q

; ] : �) = B′, then B verifies the invariant:
1’. {{(�, _G. t, q; : c, �)}} = {{�}}〈{{�}}〈{{c}}〈(_G. C) {{q; }}〉〉〉 ∈ Stable∅,fv(C0 ) . Then by Remark D.17 {{�}}, {{c}} and {{q; }}

are all in Stable∅{{�}},fv(C0 ) {{�}} , and {{�}} ∈ Stable∅,fv(C0 )
2’. q; is �-rigid, and if c is of the form c1 : k ; : c2, thenk ; is �-rigid
3’. If � is of the form �1 : [~/k ; ] : �2, thenk ; is �2-rigid.
Let us show that the invariant holds for B′:
1. {{�}}〈{{�}}〈{{c}}〈C [G/{{q; }}]〉〉〉 ∈ Stable∅,fv(C0 ) : this holds directly from (1’).
2. If c is of the form c1 : k ; : c2, thenk ; is �-rigid: this holds directly from (2’).
3. q; is �-rigid, by item (2’), and the rest of this condition holds by (3’).
• If B = (�, G,q; : c, �) {ue (�, t

U , q; : c, �) = B′, where � = �1 : [G/tA] : �2, then B verifies the invariant:
1’. {{(�, G,q; : c, �1 : [G/tA] : �2)}} = {{�2}}〈{{�}}〈{{c}}〈G {{q; }}〉〉{{�1 [G/tA]}}〉 ∈ Stable∅,fv(C0 ) . Then by Remark D.17 {{�}},
{{c}} and {{q; }} are all in Stable∅{{�}},fv(C0 ) {{�}} , and {{�}} = {{�1 : [G/t

A] : �2}} ∈ Stable∅,fv(C0 )
2’. q; is �-rigid
3’. tA is �2-rigid
Let us show that the invariant holds for B′:
1. {{�2}}〈{{�}}〈{{c}}〈C {{q; }}〉〉{{�1 [G/tA]}}〉 ∈ Stable∅,fv(C0 ) : this holds directly from (1’)
2. q; is �1 : [G/tA] : �2-rigid: this holds directly from (2’)
3. tA is �2-rigid: this holds directly from (3’).
• If B = (� : (t, c), _G . u, n, �) {c2 (�, t, (_G. u)

A : c, �) = B′ then

{{(� : (t, c), _G . u, n, �)}} = ({{�}}〈{{� : (t, c)}}〈{{n}}〉〉)〈_G.D〉

= ({{�}}〈{{�}}〈{{c}}〈C^〉〉〈{{n}}〉〉)〈_G.D〉

= ({{�}}〈{{�}}〈{{c}}〈C^〉〉〈^〉〉)〈_G.D〉

= ({{�}}〈{{�}}〈{{c}}〈C^〉〉〉)〈_G.D〉

= ({{�}}〈{{�}}〈{{c}}〈C _G .D〉〉〉)

= ({{�}}〈{{�}}〈{{c}}〈^(_G.D) 〉〉〉)〈C〉

= ({{�}}〈{{�}}〈{{(_G. u)A : c}}〉〉)〈C〉

= {{(�, t, (_G. u)A : c, �)}}

Therefore {{B′}} ∈ Stable∅,fv(C0 ) holds as the translation of both states is the same. Item 2 of the invariant trivially holds
for B′ since _G.D ∈ HAA for any abstraction frame A. Item 3 holds for B′ since it holds for B which has the same
environment �.
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• If B = (� : (t, c), G, c ′, �) {c3 (�, t, (G, c
′)S : c, �) = B′, with G ∉ dom(�), then

{{(� : (t, c), G, c ′, �)}} = ({{�}}〈{{� : (t, c)}}〈{{c ′}}〉〉)〈G〉
= ({{�}}〈{{�}}〈{{c}}〈C^〉〉〈{{c ′ }}〉〉)〈G〉

= ({{�}}〈{{�}}〈{{c}}〈C {{c ′}}〉〉〉)〈G〉

= {{�}}〈{{�}}〈{{c}}〈C {{c ′}}〈G〉〉〉〉

= ({{�}}〈{{�}}〈{{c}}〈^{{c ′ }}〈G〉〉〉〉)〈C〉

= ({{�}}〈{{�}}〈{{c}}〈^{{(G, c ′)S}}〉〉〉)〈C〉

= ({{�}}〈{{�}}〈{{(G, c ′)S : c}}〉〉)〈C〉
= {{(�, t, (G, c ′)S : c, �)}}

Therefore {{B′}} ∈ Stable∅,fv(C0 ) holds as the translation of both states is the same. Item 2 of the invariant holds for B′

since {{c ′}}〈G〉 ∈ Stfv(C0 ) {{�}} , given the fact that G ∈ fv(C0). And item 3 holds for B′ since it holds for B which has the same
environment �.
• If B = (� : (t, c), G, c ′, �1 : [G/qS] : �2) {c4 (�, t, (G, c

′)S : c, �1 : [G/qS] : �2) = B′ then

{{(� : (t, c), G, c ′, �1 [G/qS]�2)}} = ({{�1 [G/q
S]�2}}〈{{� : (t, c)}}〈{{c ′}}〉〉)〈G〉

= (({{�2}}〈^{{�1 [G/q
S]}}〉)〈{{� : (t, c)}}〈{{c ′}}〉〉)〈G〉

= ({{�2}}〈{{� : (t, c)}}〈{{c ′}}〉{{�1 [G/qS]}}〉)〈G〉

= ({{�2}}〈{{�}}〈{{c}}〈C^〉〉〈{{c
′ }}〉{{�1 [G/q

S]}}〉)〈G〉

= ({{�2}}〈{{�}}〈{{c}}〈C {{c
′}}〉〉{{�1 [G/q

S]}}〉)〈G〉

= {{�2}}〈{{�}}〈{{c}}〈C {{c
′}}〈G〉〉〉{{�1 [G/q

S]}}〉

= ({{�2}}〈{{�}}〈{{c}}〈^{{c
′ }}〈G〉〉〉{{�1 [G/q

S]}}〉)〈C〉

= ({{�2}}〈{{�}}〈{{c}}〈^{{(G, c
′)S}}〉〉{{�1 [G/q

S]}}〉)〈C〉

= ({{�2}}〈{{�}}〈{{(G, c
′)S : c}}〉{{�1 [G/qS]}}〉)〈C〉

= ({{�2}}〈^{{�1 [G/q
S]}}〉〈{{�}}〈{{(G, c ′)S : c}}〉〉)〈C〉

= ({{�1 [G/q
S]�2}}〈{{�}}〈{{(G, c

′)S : c}}〉〉)〈C〉
= {{(�, t, (G, c ′)S : c, �1 [G/qS]�2)}}

Therefore {{B′}} ∈ Stable∅,fv(C0 ) holds as the translation of both states is the same. Item 2 of the invariant holds for B′

since {{c ′}}〈G〉 ∈ St
fv(C0 ) {{�1:[G/q

S ]:�2}}
, since the stack item is decorated with the label S. And item 3 holds for B′ since it

holds for B which has the same environment �.
• If B = (� : (t, c), G, n, �1 : [G/uA] : �2) {c5 (�, t, G

A : c, �1 : [G/uA] : �2) = B′ then

{{(� : (t, c), G, n, �1 [G/uA]�2)}} = ({{�1 [G/u
A]�2}}〈{{� : (t, c)}}〈{{n}}〉〉)〈G〉

= ({{�2}}〈^{{�1 [G/u
A]}}〉〈{{� : (t, c)}}〈{{n}}〉〉)〈G〉

= ({{�2}}〈{{� : (t, c)}}〈{{n}}〉{{�1 [G/uA]}}〉)〈G〉

= ({{�2}}〈{{�}}〈{{c}}〈C^〉〉〈{{n}}〉{{�1 [G/u
A]}}〉)〈G〉

= ({{�2}}〈{{�}}〈{{c}}〈C^〉〉〈^〉{{�1 [G/u
A]}}〉)〈G〉

= ({{�2}}〈{{�}}〈{{c}}〈C^〉〉{{�1 [G/u
A]}}〉)〈G〉

= {{�2}}〈{{�}}〈{{c}}〈C G〉〉{{�1 [G/u
A]}}〉

= ({{�2}}〈{{�}}〈{{c}}〈^G〉〉{{�1 [G/u
A]}}〉)〈C〉

= ({{�2}}〈{{�}}〈{{G
A : c}}〉{{�1 [G/uA]}}〉)〈C〉

= ({{�2}}〈^{{�1 [G/u
A]}}〉〈{{�}}〈{{GA : c}}〉〉)〈C〉

= ({{�1 [G/u
A]�2}}〈{{�}}〈{{G

A : c}}〉〉)〈C〉
= {{(�, t, GA : c, �1 [G/uA]�2)}}

Therefore {{B′}} ∈ Stable∅,fv(C0 ) holds as the translation of both states is the same. Item 2 of the invariant holds since
G ∈ HA∅{{�1:�2}}∪{G } , since the code u is decorated with the label A. And item 3 for B′ holds since it holds for B which has
the same environment �.

�

Lemma D.19. Let G ∉ fv({{c}}) and G ∉ fv({{�}}). The following holds:

1. {{c}}〈C [G/B]〉 ≡ {{c}}〈C〉[G/B]

2. {{�}}〈C [G/B]〉 ≡ {{�}}〈C〉[G/B]
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Proof.

1. We proceed by induction on the structure of c .
• If c = n , then {{n}}〈C [G/B]〉 = ^〈C [G/B]〉 = C [G/B] ≡ ^〈C〉[G/B] = {{n}}〈C〉[G/B].
• If c = q; : c ′, then by U-equivalence, we may assume in particular G ∉ fv({{q; }}). Therefore

{{q; : c ′}}〈C [G/B]〉 = {{c ′}}〈^ {{q; }}〉〈C [G/B]〉

= {{c ′}}〈C [G/B] {{q; }}〉

≡ {{c ′}}〈(C {{q; }}) [G/B]〉 (by es-l-dist, since G ∉ fv({{q; }}))
≡ {{c ′}}〈C {{q; }}〉[G/B] (by i.h. on c ′)
= {{q; : c ′}}〈C〉[G/B]

2. We proceed by induction on the structure of � .
• If � = n , then it is analogous to the base case in the previous item.
• If � = � ′ : (u, c), then by U-equivalence, we may assume in particular G ∉ fv(D). Therefore

{{� ′ : (u, c)}}〈C [G/B]〉 = {{� ′}}〈{{c}}〈D ^〉〉〈C [G/B]〉

= {{� ′}}〈{{c}}〈D C [G/B]〉〉

≡ {{� ′}}〈{{c}}〈(D C) [G/B]〉〉 (by es-r-dist, since G ∉ fv(D))
≡ {{� ′}}〈{{c}}〈D C〉[G/B]〉 (by (1))
≡ {{� ′}}〈{{c}}〈D C〉〉[G/B] (by i.h. on � ′)
= {{� ′ : (u, c)}}〈C〉[G/B]

�

Lemma 6.1 (GLAMoUr simulation). Let B be a state reachable from an initial state whose focus is C0, and let S0 := fv(C0).

Then:

1. If B {um B
′, then {{B}}

N

−→db≡ {{B
′}}.

2. If B {ue B
′, then {{B}}

N

−→lsv≡ {{B
′}}.

3. If B {c8 B
′, then {{B}} = {{B′}}, for all 8 ∈ {1..5}.

4. Progress: if B is{-irreducible then {{B}} is
N

−→-irreducible.

Proof. We proceed by case analysis of{. To lighten the proof, we simplify the notation [G/q; ] : � by [G/q; ]�.

1. If (�, _G. t, q; : c, �) {um (�, t, c, [G/q
; ] : �) then

{{(�, _G. t, q; : c, �)}} = ({{�}}〈{{�}}〈{{q; : c}}〉〉)〈_G. C〉
= ({{�}}〈{{�}}〈{{c}}〈^{{q; }}〉〉〉)〈_G. C〉

= {{�}}〈{{�}}〈{{c}}〈(_G. C ) {{q; }}〉〉〉
N

−→db,∅,fv(B0 ), 6@ (★)

{{�}}〈{{�}}〈{{c}}〈C [G/{{q; }}]〉〉〉

≡ {{�}}〈{{�}}〈{{c}}〈C〉〉[G/{{q; }}]〉 By Lemma D.19(∗)
= ({{�}}〈{{�}}〈{{c}}〉[G/{{q; }}]〉)〈C〉

= ({{�}}〈^[G/{{q; }}]〉〈{{�}}〈{{c}}〉〉)〈C〉

= ({{[G/q; ]�}}〈{{�}}〈{{c}}〉〉)〈C〉

= {{(�, t, c, [G/q; ]�)}}

The step (★) holds by the following: {{�}}〈{{�}}〈{{c}}〈(_G. C ) {{q; }}〉〉〉 ∈ Stable∅,fv(C0 ) and q
; is �-rigid by Lemma D.18

(items 1 and 2) respectively. Then {{q; }} ∈ HA∅{{�}} ∪ Stfv(C0 ) {{�}} , so applying congruence reduction rules accordingly to

reach the redex (_G. C) {{q; }}, we can reduce this subterm with rule db-stable•, so that (_G. C) {{q; }}
N

−→db,∅{{�}},fv(C0 ) {{�}},`

C [G/{{q; }}].
On the other hand, the step (∗) holds applying rule es-l-dist, as G ∉ fv({{c}}) and G ∉ fv({{�}}) holds by U-conversion.
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2. If (�, G,q; : c, �1 : [G/vA] : �2) {ue (�, v
U , q; : c, �1 : [G/vA] : �2) then

{{(�, G,q; : c, �1 [G/vA]�2)}} = {{� (�,G,q; :c,�1 [G/vA ]�2 ) }}〈G〉

= ({{�1 [G/v
A]�2}}〈{{�}}〈{{q

; : c}}〉〉)〈G〉
= (({{�2}}〈^{{�1 [G/v

A]}}〉)〈{{�}}〈{{q; : c}}〉〉)〈G〉
= ({{�2}}〈{{�}}〈{{q

; : c}}〉{{�1 [G/vA]}}〉)〈G〉

= ({{�2}}〈{{�}}〈{{c}}〈^{{q
; }}〉〉{{�1 [G/v

A]}}〉)〈G〉

= {{�2}}〈{{�}}〈{{c}}〈G {{q
; }}〉〉{{�1 [G/v

A]}}〉
N

−→lsv,∅,fv(C0 ), 6@ (★)

{{�2}}〈{{�}}〈{{c}}〈C {{q
; }}〉〉{{�1 [G/v

A]}}〉

= ({{�2}}〈{{�}}〈{{c}}〈^{{q
; }}〉〉{{�1 [G/v

A]}}〉)〈C〉

= ({{�2}}〈{{�}}〈{{q
; : c}}〉{{�1 [G/vA]}}〉)〈C〉

= ({{�2}}〈^{{�1 [G/v
A]}}〉〈{{�}}〈{{q; : c}}〉〉)〈C〉

= ({{�1 [G/v
A]�2}}〈{{�}}〈{{q

; : c}}〉〉)〈C〉
= {{� (�,vU ,q; :c,�1 [G/vA ]�2 )

}}〈C〉

= {{(�, tU , q; : c, �1 [G/vA]�2)}}

The step (★) holds since {{�2}}〈{{�}}〈{{c}}〈G {{q; }}〉〉{{�1 [G/vA]}}〉 ∈ Stable∅,fv(C0 ) by item 1 of Lemma D.18. So applying
congruence reduction rules and rule lsv• accordingly to reach the redex G {{q; }}, we can reduce this subterm with

rule appL•, so that the reduction G {{q; }}
N

−→sub(G,E) ,∅
{{�1�2}}∪{G },fv(C0 ) {{�1�2}},`

E {{q; }}, is derived from applying rule sub•:

G
N

−→sub(G,E) ,∅
{{�1�2}}∪{G },fv(C0 ) {{�1�2}},@ E .

3. If (�, t u, c, �) {c1 (� : (t, c), u, n, �) then {{(�, t u, c, �)}} = {{(� : (t, c), u, n, �)}}, is proved as in case {c1 in
Lemma D.18.

4. If (� : (t, c), _G . u, n, �) {c2 (�, t, (_G. u)
A : c, �) then {{(� : (t, c), _G . u, n, �)}} = {{(�, t, (_G. u)A : c, �)}}, is proved as

in case{c2 in Lemma D.18.
5. If (� : (t, c), G, c ′, �) {c3 (�, t, (G, c

′)S : c, �), with G ∉ dom(�), then {{(� : (t, c), G, c ′, �)}} = {{(�, t, (G, c ′)S : c, �)}},
is proved as in case{c3 in Lemma D.18.

6. If (� : (t, c), G, c ′, �1 : [G/qS] : �2) {c4 (�, t, (G, c
′)S : c, �1 : [G/qS] : �2) then {{(� : (t, c), G, c ′, �1 [G/qS]�2)}} =

{{(�, t, (G, c ′)S : c, �1 [G/qS]�2)}} is proved as in case{c4 in Lemma D.18.
7. If (� : (t, c), G, n, �1 : [G/uA] : �2) {c5 (�, t, G

A : c, �1 : [G/uA] : �2) then {{(� : (t, c), G, n, �1 [G/uA]�2)}} = {{(�, t, GA :
c, �1 [G/u

A]�2)}} is proved as in case{c5 in Lemma D.18.

�

We are now ready to give the main results of this section. On the first hand, we have the high-level implementation result,
stating the following:

Theorem 6.3 (High-level implementation). Let C be a pure term (without ESs) and S = fv(C). If C →=
V5
C ′ then there exists

B such that C
N

−→
:
B where B⇓ = C ′ and : ∈ $ (|C | · (=2 + 1)).

Proof. Let C →=
V5
C ′. By Thm. 8, Thm. 9 and Coro. 1 in [2], there is a sequence of ? transitions B {? B′ in the GLAMoUr,

where B is an initial state such that {{B}} = C and ? ∈ $ (|C | · (=2 + 1)). By Lemmas 6.1 and 6.2 there exists a term C ′′ such that

C = {{B}}
N

−→
:
C ′′ ≡ {{B′}} where : ≤ ? , so : ∈ $ (|C | · (=2 + 1)). To conclude, we are left to show that C ′′⇓ = C ′. It is easy to see

that C ′′ ≡ {{B′}} implies C ′′⇓ = {{B′}}⇓ , so it suffices to show that {{B′}}⇓ = C ′. This is a consequence of Thm. 3, Def. 1, and Thm. 8
in [2]. �

Next we move on the low-level implementation part, which expresses:

Theorem 6.4 (Low-level implementation). Let C be a pure term (without ESs). If C
N

−→
=
C ′ with C ′ in normal form and B is

an initial state such that {{B}} = C then B {: B′ where {{B′}} is structurally equivalent to C ′ and : ∈ $ (|C | · (= + 1)).

Proof. First we claim that the GLAMoUr terminates when starting from the initial state B . Indeed,{ can be written as the
union of{um,ue and{c1,..,c5 . The relation{c1,..,c5 is known to be terminating from [2], so an infinite reduction B {{ . . .must
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contain an infinite number of{um,ue steps. By Lemmas 6.1 and 6.2 this means that there must exist an infinite
N

−→ reduction

starting from {{B}} = C . This is impossible because C is known to have a normal form and
N

−→ has the diamond property.
Now let B {: B′ be a reduction to normal form in the GLAMoUr containing < multiplicative, 4 exponential, and 2 ad-

ministrative steps, so : = < + 4 + 2 . By Lemmas 6.1 and 6.2 we have C = {{B}}
N

−→
< + 4

C ′′ ≡ {{B′}}. Moreover C
N

−→
=
C ′ by

hypothesis. Since B′ is {-normal, we know by Lemma 6.1 that {{B′}} is
N

−→-normal, so C ′′ is also
N

−→-normal. But
N

−→ has the
diamond property, so C ′ = C ′′ and = = < + 4 . To conclude, we are left to show that : ∈ $ (|C | (= + 1)). By Lemma 6 in [2] we
know that 2 ∈ $ (|C | (4 + 1)). Since = =< + 4 , finally we have that : =< + 4 + 2 ∈ $ (|C | (= + 1)). �

E PROOFS OF SECTION 7 “A QUANTITATIVE INTERPRETATION”

In this section we show the results concerning the typing systemU. We start with general lemmas and remarks used through
this section, and then we show soundness and completeness in Appendix E.1 and Appendix E.2 respectively.

Lemma 7.1 (Relevance). If Γ ⊢(<,4 ) C : T then rv(C) ⊆ dom(Γ) ⊆ fv(C).

Proof. By induction on the derivation of the judgment Γ ⊢(<,4 ) C : T .

1. var. Then G : T ⊢(0,ta(T) ) G : T , where Γ = G : T and< = 0 and 4 = ta(T ) and C = G . Therefore dom(G : T) = {G} =
rv(G) = fv(G).

2. abs. Then
(Γ8 ; G : S?

8 ⊢
(<8 ,48 ) B : R8)8∈�

abs
+8∈�Γ8 ⊢

(+8∈�<8 ,+8∈� 48 ) _G. B : [S?
8 → R8 ]8∈�

where Γ = +8∈�Γ8 and< = +8∈�<8 and 4 = +8∈�48 and C = _G. B and T = [S?
8 → R8]8∈� . We can apply i.h. on B , yielding

rv(B) ⊆ dom(Γ8 ; G : S?
8 ) ⊆ fv(B) for all 8 ∈ � . We need to separate in cases, for each 8 ∈ � , depending on whetherS?

8 =⊥ or
not. Since both cases are analogous, we only focus on the case in whichS?

≠⊥. So we have
⋃
8∈� rv(B) ⊆

⋃
8∈� dom(Γ8 ; G :

S?
8 ) ⊆

⋃
8∈� dom(Γ8 ) ∪ {G} ⊆ fv(B). By removing G from the inequalities, we obtain:

rv(_G. B) = ∅ ⊆ dom(+8∈�Γ8) =
⋃
8∈�

dom(Γ8) ⊆ fv(B) \ {G} = fv(_G. B)

3. appP. Then
Γ1 ⊢

(<1,41 ) B : s Γ2 ⊢
(<2,42 ) D : t

appP
Γ1 + Γ2 ⊢

(<1+<2,41+42 ) B D : s

where Γ = Γ1 + Γ2 and < = <1 +<2 and 4 = 41 + 42 and C = B D and T = s. By i.h. on both B and D we have that
rv(B) ⊆ dom(Γ1) ⊆ fv(B) and rv(D) ⊆ dom(Γ2) ⊆ fv(D) respectively. We conclude that rv(B D) ⊆ dom(Γ1 + Γ2) =

dom(Γ1) ∪ dom(Γ2) ⊆ fv(B D).
4. appC. Analogous to the previous case.
5. es. Then

Γ1; G : S? ⊢(<1,41 ) B : T S?
⊳ S Γ2 ⊢

(<2,42 ) D : S
es

Γ1 + Γ2 ⊢
(<1+<2,41+42 ) B [G/D] : T

where Γ = Γ1 + Γ2 and < = <1 +<2 and 4 = 41 + 42 and C = B [G/D]. By i.h. on both B and D we have that rv(B) ⊆
dom(Γ1; G : S?) ⊆ fv(B) and rv(D) ⊆ dom(Γ2) ⊆ fv(D) respectively. By removing G from the inequations we obtain
rv(B) \ {G} ⊆ dom(Γ1) ⊆ fv(B) \ {G}, so we conclude rv(B [G/D]) = (rv(B) \ {G}) ∪ rv(D) ⊆ dom(Γ1 + Γ2) = dom(Γ1) ∪

dom(Γ2) ⊆ (fv(B) \ {G}) ∪ fv(D) = fv(B [G/D]).

�

Some (simple) properties of the notion of appropriateness, defined in Section 7, are the following:

Remark E.1.

1. If appropriateA (G : T ) and T ?
⊳ T then appropriateA (G : T ?).

2. If appropriateA (Γ) and for all G ∈ A′, G ∉ dom(Γ) then appropriateA∪A′ (Γ).
3. If appropriateA (Γ) and appropriateA (Δ) then appropriateA (Γ + Δ).

Lemma E.2 (Types of hereditary abstractions). Let Γ ⊢(<,4 ) C : T where C ∈ HAA and appropriateA (Γ). Then T ≠ s.

Proof. By induction on the derivation of Γ ⊢(<,4 ) C : T .
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1. var. Let G : T ⊢(0,=) G : T , with = = ta(T ). Moreover, G ∈ HAA and appropriateA (G : T). By the premise of rule
h-var, we know that G ∈ A, and thus T ≠ s by definition of appropriateA (G : T).

2. abs. This case is immediate since the judgment is +8∈�Γ8 ⊢(+8∈�<8 ,+8∈� 48 ) _G. C : [T ?
8 → S8 ]8∈� , whose type is not equal to

s.
3. appP. This case is not possible, since the term is of the form B D, and the hypothesis B D ∈ HAA does not hold.
4. appC. Analogous to the previous case.
5. es. Then

Γ1; G : S? ⊢(<1,41 ) B : T S?
⊳ S Γ2 ⊢

(<2,42 ) D : S
es

Γ1 + Γ2 ⊢
(<1+<2,41+42 ) B [G/D] : T

where Γ = Γ1 + Γ2,< = <1 +<2, 4 = 41 + 42 and C = B [G/D]. Moreover, B [G/D] ∈ HAA , which can be derived either by
rule h-sub1 or rule h-sub2:

5.1 h-sub1. Then B ∈ HAA and G ∉ A. Given that Γ = Γ1 + Γ2, then appropriateA (Γ1; G : S?). We can apply i.h. on B ,
yielding T ≠ s.

5.2 h-sub2. Then B ∈ HAA∪{G }, G ∉ A and D ∈ HAA . Given that Γ = Γ1 + Γ2, then appropriateA (Γ2). We can apply i.h.

on D, yielding S ≠ s. Since S?
⊳S, we can conclude that S?

≠ s so appropriateA∪{G } (Γ1; G : S?) holds. By i.h. on B ,
we have T ≠ s.

�

Lemma E.3 (Splitting / Merging). Let T1,T2 be two types such that their sum T1 + T2 is well-defined. Then the following are

equivalent:

1. Γ ⊢(<,4 ) E : T1 + T2
2. There exist Γ1, Γ2,<1, 41,<2, 42 such that:

(a) Γ1 ⊢
(<1,41 ) E : T1

(b) Γ2 ⊢
(<2,42 ) E : T2

(c) Γ = Γ1 + Γ2 and< =<1 +<2 and 4 = 41 + 42.

Proof. We first show that (1⇒ 2). The judgment can be derived using rule var or rule abs:

• var. Then Γ ⊢(0,4 ) G : T1 + T2, with 4 = ta(T1 + T2). Since the sum of the types is well defined, there are two subcases:
1. T1 = T2 = s so that T1 + T2 = s, hence ta(T1 + T2) = 0. Taking Γ1 = G : s, Γ2 = G : s,<1 = 0,<2 = 0, 41 = 0, 42 = 0, it’s

easy to check that the three conditions hold.
2. T1 = M1 and T2 = M2 so that T1 + T2 = M1 ⊎ M2. We can write ta(M1 + M2) as ta(M1) + ta(M2). Taking

Γ1 = G : M1, Γ2 = G : M2,<1 = 0,<2 = 0, 41 = ta(M1), 42 = ta(M2), it’s easy to check the that three conditions
hold.

• abs. Then

D :=

(
(Γ8 ; G : R?

8 ⊢
(<8 ,48 ) C : S8 )8∈�

abs
+8∈�Γ8 ⊢

(+8∈�<8 ,+8∈� 48 ) _G. C : [R?
8 → S8 ]8∈�

)

with [R?
8 → S8 ]8∈� = T1 + T2. Since the sum of types is well defined, there are two subcases:

1. T1 = T2 = s so that T1 + T2 = s. This case is not possible because the term has the non-idempotent type [R?
8 → S8 ]8∈� .

2. T1 = M1 and T2 = M2 so that T1 + T2 = M1 ⊎ M2. Then we can write � as � = � ⊎  , in such a way that T1 =

M1 = [R
?
9 → S9 ] 9∈ � and T2 =M2 = [R

?
:
→ S: ]:∈ . In particular, [R?

8 → S8 ]8∈� = [R
?
9 → S9 ] 9∈ � + [R

?
:
→ S: ]:∈ .

Taking Γ1 = +9∈ � Γ9 , Γ2 = +:∈ Γ: ,<1 = +9∈ �< 9 ,<2 = +:∈ <: , 41 = +9∈ � 4 9 , 42 = +:∈ 4: , we can check that the three
conditions hold:

(a) +9∈ � Γ9 ⊢(+9 ∈ �< 9 ,+9 ∈ � 4 9 ) _G. C : [R?
9 → S9 ] 9∈ � by abs rule, since (Γ9 ; G : T ?

9 ⊢
(< 9 ,4 9 ) C : S9 ) 9∈ � holds, as they are 9

premises of D
(b) +:∈ Γ: ⊢(+:∈ <: ,+:∈ 4: ) _G. C : [R?

:
→ S: ]:∈ by abs rule, since (Γ: ; G : T ?

:
⊢(<: ,4: ) C : S: ):∈ holds, as they are :

premises of D
(c) Γ = +8∈�Γ8 = +9∈ � Γ9+:∈ Γ: = Γ1+Γ2 and< =<8∈� = +9∈ �< 9+:∈ <: =<1+<2 and 4 = 48∈� = +9∈ � 4 9 +:∈ 4: = 41+42

Now we can show that (2⇒ 1). First, note that E is either a variable or an abstraction, so both judgments are derived using
rule var or rule abs.

1. var. Then G : T1 ⊢(0,41 ) G : T1, with 41 = ta(T1) and we also have G : T2 ⊢(0,42 ) G : T2, with 42 = ta(T2). Using the third
condition, we can conclude G : T1+T2 ⊢(0,41+42 ) G : T1+T2 by applying rule var, since 41+42 = ta(T1)+ta(T2) = ta(T1+T2).

59



Barenbaum, Kesner, and Milicich

2. abs. The following conditions hold:
(a)

D1 :=

(
(Γ9 ; G : R?

9 ⊢
(< 9 ,4 9 ) C : S9 ) 9∈ �

abs
+9∈ � Γ9 ⊢

(+9 ∈ �< 9 ,+9 ∈ � 4 9 ) _G. C : [R?
9 → S9 ] 9∈ �

)

with T1 = [R?
9 → S9 ] 9∈ � ,<1 = +9∈ �< 9 , 41 = +9∈ � 4 9

(b)

D2 :=

(
(Γ: ; G : R?

: ⊢
(<: ,4: ) C : S: ):∈ 

abs
+:∈ Γ: ⊢

(+:∈ <: ,+:∈ 4: ) _G. C : [R?
: → S: ]:∈ 

)

with T2 = [R?
:
→ S: ]:∈ ,<2 = +:∈ <: , 42 = +:∈ 4: .

(c) Γ = Γ1 + Γ2 = +9∈ � Γ9 +:∈ Γ: and< =<1 +<2 = +9∈ �< 9 +:∈ <: and 4 = 41 + 42 = +9∈ � 4 9 +:∈ 4: .
We can conclude Γ ⊢(<,4 ) _G. C : T1 + T2 by applying rule abs, using the derivations D1 and D2 as premises.

�

Definition E.4 (Typing of substitution contexts). We extend the type system for typing substitution contexts, writing the
typing judgments for substitution contexts as Γ 
(<,4 ) L ⊲ Δ, and the new typing rules are:

emptySubsCtx
∅ 
(0,0) ^ ⊲ ∅

Γ1; G : T ?
1 


(<1,41 ) L ⊲ Δ T ?
1 + T

?
2 ⊳ T Γ2 ⊢

(<2,42 ) C : T
addSubsCtx

Γ1 + Γ2 

(<1+<2,41+42 ) L[G/C] ⊲ Δ; G : T ?

2

Example E.5. Let C = G [G/~] with ~ : T ⊢(0,ta(T) ) ~ : T :

emptySubsCtx
G :⊥
(0,0) ^ ⊲ ∅

⊥ +T ⊳ T var
~ : T ⊢(0,ta(T) ) ~ : T

addSubsCtx
~ : T 
(0,ta(T) ) [G/~] ⊲ G : T

Example E.6. Let C = I [G/~] with ~ : t ⊢(0,0) ~ : t:

emptySubsCtx
G :⊥
(0,0) ^ ⊲ ∅

⊥ + ⊥ ⊳t var
~ : t ⊢(0,0) ~ : t

addSubsCtx
~ : t 
(0,0) [G/~] ⊲ G :⊥

Lemma E.7 (Relevance for typing of substitution contexts). If Γ 
(<,4 ) L ⊲ Δ then dom(Γ) ⊆ fv(L) and dom(Δ) ⊆

dom(L).

Proof. By induction on the derivation of the judgment Γ 
(<,4 ) L ⊲ Δ.

1. emptySubsCtx. The judgment is ∅ 
(0,0) ^⊲∅, where Γ = Δ = ∅ and< = 4 = 0 and L = ^. Then dom(∅) = ∅ = fv(^)

and dom(∅) = ∅ = dom(^).
2. addSubsCtx. Then

Γ1; G : T ?
1 


(<1,41 ) L
′
⊲ Δ

′ T ?
1 + T

?
2 ⊳ T Γ2 ⊢

(<2,42 ) C : T
addSubsCtx

Γ1 + Γ2 

(<1+<2,41+42 ) L′ [G/C] ⊲ Δ

′; G : T ?
2

where Γ = Γ1 + Γ2 and Δ = Δ
′; G : T ?

2 and < = <1 +<2 and 4 = 41 + 42 and L = L′ [G/C]. On the one hand, we have
dom(Γ1; G : T ?

1 ) ⊆ fv(L′) by i.h.. Removing G from the inequation we obtain dom(Γ1; G : T ?
1 ) \ {G} = dom(Γ1) ⊆

fv(L′) \ {G}, hence having:

dom(Γ1) ∪ dom(Γ2) ⊆ (fv(L′) \ {G}) ∪ dom(Γ2)

⊆ (fv(L′) \ {G}) ∪ fv(C) (By Lemma 7.1)
= fv(L′ [G/C])
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On the other hand
dom(Δ′; G : T ?

2 ) ⊆ dom(Δ′) ∪ {G}

⊆ dom(L′) ∪ {G} (By i.h.)
= dom(L′ [G/C])

and we are done.

�

Lemma E.8 (Composition / decomposition). The following are equivalent:

1. Γ ⊢(<,4 ) CL : T
2. There exist ΓC , ΓL,Δ,<C , 4C ,<L, 4L such that:

(a) ΓL 

(<L,4L ) L ⊲ Δ

(b) ΓC ;Δ ⊢(<C ,4C ) C : T
(c) Γ = ΓL + ΓC and< =<L +<C and 4 = 4L + 4C .

Furthermore, in the (1⇒ 2) direction, if inv(A,S, CL) holds, then appropriateA (Γ) implies appropriateAL (Δ).

Proof. Both directions of the proof are by induction on L.
(1⇒ 2)

• L = ^. The judgment is of the form Γ ⊢(<,4 ) C : T . Taking ΓC = Γ, ΓL = ∅, Δ = ∅,<C = <, 4C = 4 ,<L = 0 and 4L = 0 we
obtain the following statements:

(a) ∅ 
(0,0) ^ ⊲ ∅, by rule emptySubsCtx
(b) Γ ⊢(<,4 ) C : T , by hypothesis
(c) Γ = ∅ + Γ and< = 0 +< and 4 = 0 + 4
Furthermore, it is immediate to conclude that appropriateA (∅) holds, so we are done.
• L = L′ [G/B]. The judgment is of the form Γ ⊢(<,4 ) CL′ [G/B] : T , which can only be derived using rule es:

Γ1; G : S? ⊢(<1,41 ) CL′ : T S?
⊳ S Γ2 ⊢

(<2,42 ) B : S
es

Γ1 + Γ2 ⊢
(<1+<2,41+42 ) CL′ [G/B] : T

where Γ = Γ1 + Γ2 and< = <1 +<2 and 4 = 41 + 42 and L = L′ [G/B]. By i.h. on L′, there exist ΓC , Γ′L′ , Δ,<C , 4C ,<L′ and
4L′ such that:

(a’) Γ′
L′


(<L′ ,4L′ ) L′ ⊲ Δ

(b’) ΓC ;Δ ⊢(<C ,4C ) C : T
(c’) Γ1; G : S?

= Γ
′
L′
+ ΓC and<1 =<L′ +<C and 41 = 4L′ + 4C .

Furthermore, inv(A,S, CL′ [G/B]) implies inv(Ã, S̃, CL′) with Ã = A∪{G} and S̃ = S as well as Ã = A and S̃ = S∪{G},
so that appropriateÃ (Γ1; G : S?) implies appropriateÃL′ (Δ). By statement (c’), we can write S? as S?

L′
+ S?

C , so that
Γ
′
L′
= ΓL′ ; G : S?

L′
and ΓC = Γ

′
C ; G : S?

C . Moreover, S?
L′
+ S?

C ⊳ S. We then have Γ1 = ΓL′ + Γ
′
C . Taking ΓL = ΓL′ + Γ2, ΓC , Δ,<C ,

4C ,<L =<L′ +<2 and 4L = 4L′ + 42 we have:
(a) Applying rule addSubsCtx, we obtain

ΓL′ ; G : S?
L′ 


(<L′ ,4L′ ) L′ ⊲ Δ S?
L′ + S

?
C ⊳ S Γ2 ⊢

(<2,42 ) B : S
addSubsCtx

ΓL′ + Γ2 

(<L′+<2,4L′+42 ) L

′ [G/B] ⊲ Δ; G : S?
C

(b) ΓC ;Δ ⊢(<C ,4C ) C : T , by condition (b’)
(c) Γ = Γ1 + Γ2 = ΓC + ΓL′ + Γ2 = ΓL + ΓC and

< =<1 +<2 =<L′ +<C +<2 =<L +<C and
4 = 41 + 42 = 4L′ + 4C + 42 = 4L + 4C

Assume inv(A,S, CL′ [G/B]) holds. Then we want to show that appropriateA (Γ) implies appropriateAL′ [G/B ] (Δ),
knowing already that appropriateAL′ (Δ) holds by the i.h. We consider two cases:
1. AL′ [G/B ]

= AL′∪{G}. This means B ∈ HAA . Moreover, appropriateA (Γ2) holds, as appropriateA (Γ) and Γ = Γ1+Γ2.
Then S ≠ s by Lemma E.2. Therefore S?

L′
+ S?

C ⊳ S implies S?
L′
≠ s, and we can conclude appropriateAL′ [G/B ] (Δ).

2. AL′ [G/B ]
= AL′ . Immediate by i.h.

(2⇒ 1)

• L = ^. Then there exist ΓC , Γ̂ ,Δ,<C , 4C ,<^, 4^ such that:
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(a) Γ̂ 
(<^,4^ ) ^ ⊲ Δ
(b) ΓC ;Δ ⊢(<C ,4C ) C : T
(c) Γ = Γ̂ + ΓC and< =<^ +<C and 4 = 4^ + 4C .
The judgment from condition (a) can only be derived by rule emptySubsCtx, hence Γ̂ = Δ = ∅, and<^ = 4^ = 0. By
condition (b) and (c) it is immediate to conclude Γ ⊢(<,4 ) C : T .
• L = L′ [G/B]. Then there exist ΓC , ΓL,Δ,<C , 4C ,<L, 4L such that:
(a) ΓL 
(<L,4L ) L′ [G/B] ⊲ Δ

(b) ΓC ;Δ ⊢(<C ,4C ) C : T
(c) Γ = ΓL + ΓC and< =<L +<C and 4 = 4L + 4C .
The judgment from condition (a) can only be derived by rule addSubsCtx so

ΓL′ ; G : S?
1 

(<L′ ,4L′ ) L

′
⊲ Δ

′ S?
1 + S

?
2 ⊳ S ΓB ⊢

(<B ,4B ) B : S
addSubsCtx

ΓL′ + ΓB 

(<L′+<B ,4L′+<B ) L′ [G/B] ⊲ Δ′; G : S?

2

where ΓL = ΓL′ + ΓB , Δ = Δ
′; G : S?

2 ,<L =<L′ +<2, 4L = 4L′ + 42.
Then there exist ΣC = ΓC ; G : S?

2 , ΣL′ = ΓL′ ; G : S?
1 ,Δ
′,<C , 4C ,<L′ , 4L′ such that:

(a’) ΣL′ 

(<L′ ,4L′ ) L′ ⊲ Δ′

(b’) ΣC ;Δ′ ⊢(<C ,4C ) C : T
(c’) Σ = ΣL′ + ΣC and<′ =<L′ +<C and 4′ = 4L′ + 4C .
We can apply i.h. on L′, yielding Σ ⊢(<

′,4′ ) CL′ : T . Finally, we apply rule es and obtain

ΓL′ + ΓC ; G : (S?
1 + S

?
2 ) ⊢

(<L′+<C ,4L′+4C ) CL′ : T S?
1 + S

?
2 ⊳ S ΓB ⊢

(<B ,4B ) B : S
es

Γ ⊢(<,4 ) CL′ [G/B] : T

�

Definition E.9. Let - be a finite set of variables. We say that a context Γ is -−tight if for all G ∈ - , Γ(G) =⊥ or Γ(G) = t.

Lemma E.10. Let inv(A,S, C). If Γ ⊢(<,4 ) C : T , where Γ is S-tight and C ∈ StS . Then T must be tight.

Proof. By induction on the derivation of C ∈ StS .

1. s-var. Then C = G and G ∈ S by premise of the rule s-var. The judgment Γ ⊢(<,4 ) G : T can only be derived by rule var,
so Γ is of the form G : T . The context G : T is S−tight by hypothesis, and we already know that G ∈ S, hence Γ(G)
must be tight, and so we are done.

2. s-app. Then C = B D and B ∈ StS by premise of the rule s-app. The judgment Γ ⊢(<,4 ) B D : T can be derived either by
rule appP or rule appC:

2.1 appP. Then
Γ1 ⊢

(<1,41 ) B : s Γ2 ⊢
(<2,42 ) D : t

appP
Γ1 + Γ2 ⊢

(<1+<2,41+42 ) B D : s

where Γ = Γ1 + Γ2,< =<1 +<2, 4 = 41 + 42 and T = s which is tight, so we are done.
2.2 appC. Then

Γ1 ⊢
(<1,41 ) B : [S? → T] S?

⊳ S Γ2 ⊢
(<2,42 ) D : S

appC
Γ1 + Γ2 ⊢

(1+<1+<2,41+42 ) B D : T

where Γ = Γ1 + Γ2,< = 1 +<1 +<2 and 4 = 41 + 42. Moreover inv(A,S, B D) implies inv(A,S, B), and Γ1 is S−tight
since Γ is S−tight and Γ = Γ1 + Γ2. We have that [S? → T] must be tight by i.h. on B , which is impossible and yields
to a contradiction. Hence this case is not possible.

3. s-sub1. Then C = B [G/D], and
B ∈ StS G ∉ S

s-sub1
B [G/D] ∈ StS

The judgment Γ ⊢(<,4 ) B [G/D] : T can only be derived by rule es, so

Γ1; G : S? ⊢(<1,41 ) B : T S?
⊳ S Γ2 ⊢

(<2,42 ) D : S
es

Γ1 + Γ2 ⊢
(<1+<2,41+42 ) B [G/D] : T
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where Γ = Γ1 + Γ2,< =<1 +<2 and 4 = 41 + 42. Moreover inv(A,S, B [G/D]) implies inv(A ∪ {G},S, B), and Γ1; G : S? is
S−tight since (1) Γ is S−tight and Γ = Γ1 + Γ2, and (2) G ∉ S by premise of rule s-sub1. And B ∈ StS holds by premise
of rule s-sub1. Applying i.h. on B , we conclude that T is tight, so we are done.

4. s-sub2. Then C = B [G/D], and
B ∈ StS∪{G } G ∉ S D ∈ StS

s-sub2
B [G/D] ∈ StS

The judgment Γ ⊢(<,4 ) B [G/D] : T can only be derived by rule es, so

Γ1; G : S? ⊢(<1,41 ) B : T S?
⊳ S Γ2 ⊢

(<2,42 ) D : S
es

Γ1 + Γ2 ⊢
(<1+<2,41+42 ) B [G/D] : T

where Γ = Γ1 + Γ2,< =<1 +<2 and 4 = 41 + 42.
By Barendregt’s convention we may assume G ∉ A ∪ S. Moreover, inv(A,S, B [G/D]) implies inv(A,S,D). Also Γ2 is
S−tight since Γ is S−tight and Γ = Γ1 + Γ2. By premise of rule s-sub2, D ∈ StS holds. We apply i.h. on D, yielding that
S is tight. On the other hand, inv(A,S, B [G/D]) implies inv(A,S ∪ {G}, B), and Γ1; G : S? is (S ∪ {G})−tight since (1) S
is tight and S?

⊳ S by premise of rule es, so S? must be either ⊥ or t, and (2) Γ is (S ∪ {G})−tight and Γ = Γ1 + Γ2. By
premise of rule s-sub2, D ∈ StS ⊆ StS∪{G } holds. Applying i.h. on B we conclude that T is tight, so we are done.

�

Lemma E.11. Let inv(A,S, C). Suppose that the following holds:

1. Γ;Δ ⊢(<,4 ) C : t

2. appropriateA (Γ), with Γ tight

3. Δ ≠ ∅

4. dom(Δ) ⊆ A

5. For all G ∈ dom(Δ), we have that Δ(G) is a non-empty multiset.

Then C ∉ NF•
A,S,`

.

Proof. By induction on the derivation of the judgment Γ;Δ ⊢(<,4 ) C : t. �

Lemma E.12. Let inv(A,S, C) and suppose the following hypothesis hold: (1) C ∈ NF•
A,S,`

; (2) Γ ⊢(<,4 ) C : t is tight; (3)

appropriateA (Γ); (4) If ` = @ then t = s. Then (<,4) = (0, 0).

Proof. By induction on the derivation of C ∈ NF•
A,S,`

. �

E.1 Soundness ofU

This subsection aims to give the main results regarding the soundness of the type systemU with respect to the uocbv• strat-
egy. In order to prove this result, stated in Theorem 7.4, we need to show that the subject reduction property (Proposition 7.3)
holds. For doing that, we start by presenting the substitution lemma forU in Lemma E.13.

Lemma E.13 (Substitution). Suppose that the following conditions hold:

(a) C •−→sub(G,E) ,A∪{G },S,` C
′

(b) Γ; G : T ? ⊢(<,4 ) C : S

(c) appropriateA∪{G } (Γ; G : T ?)

(d) If ` = @ then either S = s or S is a singleton, i.e. of the form [U].

Then there exist U and T ?
2 such that T ?

= [U] + T ?
2 and such that, whenever Δ ⊢(<

′,4′ ) E : [U], we have that 4 > 0 and

Γ + Δ; G : T ?
2 ⊢

(<+<′,4+4′−1) C ′ : S.

Proof. By induction on the derivation of C •−→sub(G,E) ,A∪{G },S,` C
′.

1. sub•. The following conditions hold:
(a) G •−→sub(G,E) ,A∪{G },S,@ E

(b) Γ; G : T ? ⊢(<,4 ) G : S

(c) appropriateA∪{G } (Γ; G : T ?)

(d) Since ` = @, either S = s or S is a singleton
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The judgment of condition (b) can only be derived by the rule var, hence T ?
= S, Γ = ∅, < = 0 and 4 = ta(S).

Furthermore, S ≠ s, since appropriateA∪{G } (G : S) holds. This implies by hypothesis that S is a singleton [U] for

some type U . Thus 4 = 1. Taking such U and T ?
2 =⊥, whenever Δ ⊢(<

′,4′ ) E : [U], we can conclude that∅+Δ ⊢(0+<
′,1+4′−1)

E : [U].
2. appL•. The following conditions hold:
(a) B D •−→sub(G,E) ,A∪{G },S,` B

′ D, with B •−→sub(G,E) ,A∪{G },S,@ B′.

(b) Γ; G : T ? ⊢(<,4 ) B D : S

(c) appropriateA∪{G } (Γ; G : T ?)

(d) If ` = @ then either S = s or S is a singleton
The judgment Γ; G : T ? ⊢(<,4 ) B D : S can be derived either by rule appP or rule appC:

2.1 appP. Then

D :=

(
ΓB ; G : T ?

B ⊢
(<B ,4B ) B : s ΓD ; G : T ?

D ⊢
(<D ,4D ) D : t

appP
ΓB + ΓD ; G : (T ?

B + T
?
D ) ⊢

(<B+<D ,4B+4D ) B D : s

)

with Γ = ΓB + ΓD , T ?
= T ?

B + T
?
D ,< =<B +<D and 4 = 4B + 4D . The following holds:

(a’) B •−→sub(G,E) ,A∪{G },S,`B B
′, with `B = @ by condition (a)

(b’) ΓB ; G : T ?
B ⊢

(<B ,4B ) B : s, by condition (b)
(c’) appropriateA∪{G } (ΓB ; G : T ?

B ), since appropriateA∪{G } (Γ; G : T ?) holds, and Γ = ΓB + ΓD , T ?
= T ?

B + T
?
D , and by

condition (c)
(d’) Here `B = @ and the type of B is s.
We can apply i.h. on B , yielding U and T ?

B2 such that T ?
B = [U] + T ?

B2 and such that, whenever Δ ⊢(<
′,4′ ) E : [U], we have

that 4B > 0 and ΓB + Δ; G : T ?
B2 ⊢

(<B+<
′,4B+4

′−1) B′ : s. Then, taking this judgment and the second premise of D, we can
apply rule appP, yielding Γ + Δ; G : (T ?

B2 + T
?
D ) ⊢

(<+<′,4+4′−1) B′D : s, with 4 > 0 because 4 = 4B + 4D , and 4B > 0 by i.h.

We take T ?
2 = T ?

B2 + T
?
D , and we can conclude that T ?

= [U] + T ?
2 holds.

2.2 appC. Then

D :=

(
ΓB ; G : T ?

B ⊢
(<B ,4B ) B : [R? → S] R?

⊳ R ΓD ; G : T ?
D ⊢

(<D ,4D ) D : R
appC

ΓB + ΓD ; G : (T ?
B + T

?
D ) ⊢

(1+<B+<D ,4B+4D ) B D : S

)

with Γ = ΓB + ΓD , T ?
= T ?

B + T
?
D ,< = 1 +<B +<D and 4 = 4B + 4D . The following holds:

(a’) B •−→sub(G,E) ,A∪{G },S,`B B
′ with `B = @ by condition (a)

(b’) ΓB ; G : T ?
B ⊢

(<B ,4B ) B : [R? → S], by condition (b)
(c’) appropriateA∪{G } (ΓB ; G : T ?

B ), since appropriateA∪{G } (Γ; G : T ?) holds, and Γ = ΓB + ΓD , and by condition (c)
T ?

= T ?
B + T

?
D

(d’) We have `B = @ and the type of B is the singleton [R? → S].
We cann apply i.h. on B , yielding U and T ?

B2 such that T ?
B = [U] + T ?

B2 and such that, whenever Δ ⊢(<
′,4′ ) E : [U], we

have that 4B > 0 and ΓB +Δ; G : T ?
B2 ⊢

(<B+<
′,4B+4

′−1) B′ : [R? → S]. Then, taking this judgment and the second premise
ofD, we can apply rule appC, yielding Γ +Δ; G : (T ?

B2 + T
?
D ) ⊢

(<+<′,4+4′−1) B′D : S, with 4 > 0 because 4 = 4B + 4D , and
4B > 0 by i.h. We take T ?

2 = T ?
B2 + T

?
D , and we can conclude T ?

= [U] + T ?
2 holds.

3. The remaining cases are similar.

�

Proposition 7.3 (Subject Reduction). Let C •−→d,A,S,` C
′ where d ∈ {db, lsv} and Γ ⊢(<,4 ) C : T and appropriateA (Γ).

Suppose moreover that, if ` = @ then either T = s or T is a singleton, i.e. of the form [U]. Then Γ ⊢(<
′,4′ ) C ′ : T , where, if d = db

we have that< > 0 and (<′, 4′) = (< − 1, 4), and if d = lsv we have that 4 > 0 and (<′, 4′) = (<,4 − 1).

Proof. By induction on the derivation of C •−→d,A,S,` C
′.

1. db•. The following conditions hold:
(a) (_G. B)LD •−→db,A,S,` B [G/D]L

(b) Γ ⊢(<,4 ) (_G. B)LD : T

(c) appropriateA (Γ)
(d) If ` = @ then either T = s or T is a singleton, i.e. of the form [U].
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The judgment of condition (b) can be derived either by rule appP or rule appC.
1.1 appP. Then

Γ1 ⊢
(<1,41 ) (_G. B)L : s Γ2 ⊢

(<2,42 ) D : t
appP

Γ1 + Γ2 ⊢
(<1+<2,41+42 ) (_G. B)LD : s

where Γ = Γ1+Γ2,< =<1+<2, 4 = 41+42, C = (_G. B)LD andT = s. By LemmaE.8, there exist Γ11, Γ12,Δ,<11, 411,<12, 412
such that Γ12 
(<12,412 ) L ⊲ Δ and Γ11;Δ ⊢

(<11,411 ) _G. B : s. This leads to a contradiction, since an abstraction cannot
have type s. Then this case is not possible.

1.2 appC. Then
Γ1 ⊢

(<1,41 ) (_G. B)L : [S? → T] S?
⊳ S Γ2 ⊢

(<2,42 ) D : S
appC

Γ1 + Γ2 ⊢
(1+<1+<2,41+42 ) (_G. B)LD : T

where Γ = Γ1 + Γ2,< = 1+<1 +<2, 4 = 41 + 42, and C = (_G. B)LD. By Lemma E.8, there exist Γ11, Γ12,Δ,<11, 411,<12, 412
such that Γ11;Δ ⊢(<11,411 ) _G. B : [S? → T] and Γ12 
(<12,412 ) L⊲Δ, with Γ1 = Γ11 +Γ12,<1 =<11+<12 and 41 = 411 +412.
The judgment for the term _G. B can only be derived by rule abs:

Γ11;Δ; G : S? ⊢(<11,411 ) B : T
abs

Γ11;Δ ⊢
(<11,411 ) _G. B : [S? → T]

Then we build the following derivation:

Γ11;Δ; G : S? ⊢(<11,411 ) B : T S?
⊳ S Γ2 ⊢

(<2,42 ) D : S
es

Γ11 + Γ2;Δ ⊢
(<11+<2,411+42 ) B [G/D] : T

By applying Lemma E.8 again, we can conclude that Γ1 + Γ2 ⊢(<1+<2,41+42 ) B [G/D]L : T . In this case d = db, and with
< > 0, and (<′, 4′) = (<1 +<2, 41 + 42) = (< − 1, 4).

2. lsv•. The following conditions hold:
(a)

B •−→sub(G,E) ,A∪{G },S,` B
′ G ∉ A ∪S EL ∈ HAA

lsv•

B [G/EL] •−→lsv,A,S,` B
′ [G/E]L

(b) Γ ⊢(<,4 ) B [G/EL] : T
(c) appropriateA (Γ)
(d) If ` = @ then either T = s or T is a singleton, i.e. of the form [U].
The judgment of condition (b) can only be derived by the rule es, so

Γ1; G : S? ⊢(<1,41 ) B : T S?
⊳ S Γ2 ⊢

(<2,42 ) EL : S
es

Γ1 + Γ2 ⊢
(<1+<2,41+42 ) B [G/EL] : T

where Γ = Γ1 + Γ2,< =<1 +<2, 4 = 41 + 42, and C = B [G/EL]. By Lemma E.8, there exist Γ21, Γ22,Δ,<21, 421,<22, 422 such
that Γ21;Δ ⊢(<21,421 ) E : S and Γ22 


(<22,422 ) L ⊲ Δ, with Γ2 = Γ21 + Γ22,<2 =<21 +<22 and 42 = 421 + 422.
Moreover, we can assume G ∉ dom(Γ) by U-conversion so that appropriateA∪{G } (Γ) also holds. Therefore
appropriateA∪{G } (Γ1; G : S?) holds since (1): appropriateA∪{G } (Γ) and Γ1 is part of Γ, and (2): EL ∈ HAA by condi-
tion (a), so S ≠ s by Lemma E.2 and then S?

⊳ S in condition (b) implies S?
≠ s. Then, we have all the conditions to

apply Lemma E.13, yielding U and S?
2 such that S?

= [U] + S?
2 , hence S

?
= S, thus S = [U] + S?

2 . We have two cases,
depending on whether S?

2 is ⊥ or not:
2.1 S?

2 =⊥. Then, S = [U] + S?
2 = [U] = [U] + [ ]. Recall that Γ21;Δ ⊢(<21,421 ) E : [U] holds and note that moreover

∅ ⊢(0,0) E : [ ]. By Lemma E.13 we have that 41 > 0 and Γ1 + (Γ21;Δ); G :⊥⊢(<1+<21,41+421−1) B′ : T . Then we build the
following derivation:

Γ1 + (Γ21;Δ); G :⊥⊢(<1+<21,41+421−1) B′ : T ⊥ ⊳[ ] ∅ ⊢(0,0) E : [ ]
es

Γ1 + Γ21;Δ ⊢
(<1+<21,41+421−1) B′ [G/E] : T

2.2 S?
2 ≠⊥. Then S?

2 = S2 so we can write S = [U] + S2. Hence we have Γ21;Δ ⊢
(<21,421 ) E : [U] + S2. We can apply

Lemma E.3, so that there exists Γ′211 = Γ211;Δ1, Γ
′
212 = Γ212;Δ2,<211,<212, 4211, 4212 such that Γ′211 ⊢

(<211,4211 ) E : [U] and
Γ
′
212 ⊢

(<212,4212 ) E : S2, with Γ21 = Γ211+Γ212 and Δ = Δ1+Δ2, and<21 =<211+<212 and 421 = 4211+4212. So by LemmaE.13,
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whenever Γ211;Δ1 ⊢
(<211,4211 ) E : [U], we have that 41 > 0 and Γ1 + (Γ211;Δ1); G : S2 ⊢

(<1+<211,41+4211−1) B′ : T . Then we
build the following derivation:

Γ1 + (Γ211;Δ1); G : S2 ⊢
(<1+<211,41+4211−1) B′ : T S2 ⊳ S2 Γ212;Δ2 ⊢

(<212,4212 ) E : S2
es

Γ1 + Γ21;Δ ⊢
(<1+<21,41+421−1) B′ [G/E] : T

We can now apply Lemma E.8 using the judgments Γ22 
(<22,422 ) L ⊲ Δ and Γ1 + Γ21;Δ ⊢
(<1+<21,41+421−1) B′ [G/E] : T ,

yielding Γ ⊢(<,4−1) B′ [G/E]L : T . In this case d = lsv and it holds that 4 > 0 since 41 > 0 and 4 = 41 + 42. Moreover,
(<′, 4′) = (<,4 − 1), so we are done.

3. The congruence cases are uninteresting and are omitted here.

�

Theorem 7.4 (Soundness of U). Let S = fv(C) and let Γ ⊢(<,4 ) C : T be a tight derivation. Then there exists a •−→top,S-

irreducible term B such that C •−→
<+4
top,S B where< and 4 are respectively the number of db and lsv steps in the reduction.

Proof. By induction on< + 4 , separating in cases depending if either C ∈ NF•
∅,fv(C ), 6@ or not:

1. If C ∈ NF•
∅,fv(C ), 6@, we also have that the judgment Γ ⊢(<,4 ) C : T is tight, appropriate∅(Γ), and ` = 6@. We can apply

Lemma E.12, yielding< = 0, 4 = 0. Then we conclude with B := C .
2. If C ∉ NF•

∅,fv(C ), 6@, then by Corollary B.11 there exist a term C ′ and a rule name d such that C •−→d,∅,fv(C ), 6@ C ′. By Subject

reduction (Proposition 7.3), we have that Γ ⊢(<
′,4′ ) C ′ : T , with< > 0 and (<′, 4′) = (< − 1, 4) if d = db, and if d = lsv

then 4 > 0 and (<′, 4′) = (<,4 − 1). Since the judgment is tight, we can apply i.h., so there exists a term B ∈ NF•
∅,fv(C ′ ), 6@

such that C ′ •−→d1,∅,fv(C ′ ), 6@ . . . •−→d=,∅,fv(C ′ ), 6@ B , where = =< + 4 − 1 and

<′ = #{8 | 1 ≤ 8 ≤ =, d8 = db} 4′ = #{8 | 1 ≤ 8 ≤ =, d8 = lsv}

Then we have a reduction sequence. If we rename d by d=+1, we can conclude that

C •−→d=+1,∅,fv(C ), 6@ C ′ •−→d1,∅,fv(C ), 6@ . . . •−→d=,∅,fv(C ), 6@ B

where 1 + = =< + 4 and if
• d=+1 = db:

< = (< − 1) + 1

= <′ + 1

= #{8 | 1 ≤ 8 ≤ 1, d8 = db} + 1

= #{8 | 1 ≤ 8 ≤ 1 + =, d8 = db}

4 = 4′

= #{8 | 1 ≤ 8 ≤ =, d8 = lsv}

= #{8 | 1 ≤ 8 ≤ 1 + =, d8 = lsv}

• d=+1 = lsv:

< = <′

= #{8 | 1 ≤ 8 ≤ =, d8 = db}

= #{8 | 1 ≤ 8 ≤ 1 + =, d8 = db}

4 = (4 − 1) + 1

= 4′ + 1

= #{8 | 1 ≤ 8 ≤ =, d8 = lsv} + 1

= #{8 | 1 ≤ 8 ≤ 1 + =, d8 = lsv}

�

E.2 Completeness ofU

In this subsection we give the main results regarding the completeness of the type system U with respect to the uocbv•

strategy. In order to prove this result, stated in Theorem 7.7, we need to show that the subject expansion property (Proposi-
tion 7.6) holds. For doing that, we start by presenting the anti-substitution lemma forU in Lemma E.14. Moreover, given that
we are working with a tight typing system, we also need to show that normal forms of uocbv• are tight typable, as stated in
Proposition 7.5.

Proposition 7.5 (Normal forms are tight typable). Let C be a term such that C ∈ NF•
A,S,`

and inv(A,S, C). Then there

exists a tight type t such that TEnv(A,S, C) ⊢(0,0) C : t. Moreover, if C ∈ HAA then t = [ ], and if C ∈ StS then t = s.

Proof. By induction on the derivation of C ∈ NF•
A,S,`

.
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1. NF-var• . Then
G ∈ A ⇒ ` = 6@

NF-var•

G ∈ NF•A,S,`

There are two possible cases depending on whether G ∈ A or G ∈ S.
1.1 G ∈ A. By definition TEnv(A,S, G) (G) = [ ], since G ∈ A ∩ rv(G) and TEnv(A,S, G) (~) =⊥ for any other variable ~.

Having ta( [ ]) = 0, we apply rule var, yielding G : [ ] ⊢(0,0) G : [ ], with G ∈ HAA by rule h-var.
1.2 G ∈ S. By definition TEnv(A,S, G) (G) = s, since G ∈ S ∩ rv(G) and TEnv(A,S, G) (~) =⊥ for any other variable ~.

Having ta( s) = 0, we apply rule var, yielding G : s ⊢(0,0) G : s, with G ∈ StS by rule s-var.
2. NF-lam•. Then

NF-lam•

_G. B ∈ NF•A,S, 6@

For any variable ~, we have TEnv(A,S, _G . B) (~) =⊥ since rv(_G. B) = ∅. We apply rule abs, yielding ⊢(0,0) _G. B : [],
with _G. B ∈ HAA by rule h-lam.

3. NF-app•. Then
B ∈ NF•A,S,@ D ∈ NF•A,S, 6@

NF-app•

B D ∈ NF•A,S,`

Since inv(A,S, B D) implies inv(A,S, B) and inv(A,S,D), then by i.h. on B and D there exist tight types t1 and t2 such
that TEnv(A,S, B) ⊢(0,0) B : t1 and TEnv(A,S, D) ⊢(0,0) D : t2. Moreover, B ∈ StS by Lemma B.4, so t1 = s. We apply
rule appP, yielding TEnv(A,S, B) +TEnv(A,S, D) ⊢(0,0) B D : s, with B D ∈ StS by rule s-app. Notice that TEnv(A,S, B) +
TEnv(A,S,D) = TEnv(A,S, B D), so we are done.

4. NF-esA•. Then
B ∈ NF•A∪{G },S,` D ∈ NF•A,S, 6@ D ∈ HAA

NF-esA•

B [G/D] ∈ NF•A,S,`

Since inv(A,S, B [G/D]) implies inv(A ∪ {G},S, B) and inv(A,S, D), then by i.h. on B and D there exist tight types t1

and t2 such that TEnv(A ∪ {G},S, B) ⊢(0,0) B : t1 and TEnv(A,S,D) ⊢(0,0) D : t2. Moreover, t2 = [ ] since D ∈ HAA .
Notice that TEnv(A ∪ {G},S, B) = TEnv(A,S, B); G : TEnv(A ∪ {G},S, B) (G). Moreover, TEnv(A ∪ {G},S, B) (G) is [ ] if
G ∈ rv(B), and ⊥ otherwise. We build the following derivation:

(By i.h.)

TEnv(A,S, B); G : TEnv(A ∪ {G},S, B) (G) ⊢(0,0) B : t1

(By i.h.)

TEnv(A,S, D) ⊢(0,0) D : [ ]
es

TEnv(A,S, B) + TEnv(A,S,D) ⊢(0,0) B [G/D] : t1

where TEnv(A∪{G},S, B) (G)⊳ [ ] necessarily holds since TEnv(A∪{G},S, B) (G) is⊥ or [ ]. Notice that TEnv(A,S, B) +
TEnv(A,S,D) = TEnv(A,S, B [G/D]), so we are done.

5. NF-esS•. Then
B ∈ NF•A,S∪{G },` D ∈ NF•A,S, 6@ D ∈ StS

NF-esS•

B [G/D] ∈ NF•A,S,`

Since inv(A,S, B [G/D]) implies inv(A,S ∪ {G}, B) and inv(A,S,D), then by i.h. on B and D there exist tight types t1 and
t2 such that TEnv(A,S ∪ {G}, B) ⊢(0,0) B : t1 and TEnv(A,S, D) ⊢(0,0) D : t2. Moreover, t2 = s since D ∈ StS . Notice that
TEnv(A,S ∪ {G}, B) = TEnv(A,S, B); G : TEnv(A,S ∪ {G}, B) (G). Moreover, TEnv(A ∪ {G},S, B) (G) is s if G ∈ rv(B)

and ⊥ otherwise. We build the following derivation:

(By i.h.)

TEnv(A,S, B); G : TEnv(A ∪ {G},S, B) (G) ⊢(0,0) B : t1

(By i.h.)

TEnv(A,S, D) ⊢(0,0) D : s
es

TEnv(A,S, B) + TEnv(A,S,D) ⊢(0,0) B [G/D] : t1

where TEnv(A ∪ {G},S, B) (G) ⊳ s necessarily holds since TEnv(A ∪ {G},S, B) (G) is ⊥ or s. Notice that TEnv(A,S, B) +
TEnv(A,S,D) = TEnv(A,S, B [G/D]), so we are done.

�

Lemma E.14 (Anti-substitution). Let inv(A ∪ {G},S, C). Consider a subsetA0 ⊆ A and let B be a set of variables disjoint

from A. Suppose also that the following conditions hold:
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(a) C •−→sub(G,E) ,A∪{G },S,` C
′

(b) Γ; G : T ? ⊢(<,4 ) C ′ : S

(c) appropriateA∪B∪{G }(Γ; G : T ?)

(d) If ` = @ then either S = s or S is a singleton, i.e. of the form [U].
(e) E ∈ HAA0∪B

Then there exist ΓC , ΓE, U,<C , 4C ,<E, 4E such that Γ = ΓC + ΓE and< =<C +<E and 4 = 4C + 4E ; ΓC ; G : T ? + [U] ⊢(<C ,4C+1) C : S; and

ΓE ⊢
(<E ,4E ) E : [U].

Proof. By induction on the derivation of C •−→sub(G,E) ,A∪{G },S,` C
′.

1. sub•. Then the following conditions hold:
(a) G •−→sub(G,E) ,A∪{G },S,@ E , where C = G, ` = @ and C ′ = E

(b) Γ; G : T ? ⊢(<,4 ) E : S

(c) appropriateA∪B∪{G }(Γ; G : T ?)

(d) Since ` = @, so either S = s or S is of the form [U].
(e) E ∈ HAA0∪B

Recall that G ∉ fv(E) by the grammar of rule names. We analyze by cases the form of E :
1.1 E = ~. Then G ≠ ~. The judgment of condition (b) can be derived only by the rule var, so it is of the form ~ :

S ⊢(0,ta(S) ) ~ : S, with Γ = ~ : S,< = 0 and 4 = ta(S). Moreover, T ? must be ⊥. And ~ ∈ A0 ∪ B, since
the judgment of condition (e) can only be derived by the rule h-var. Then (~ : S)(~) ≠ s by condition (c), as
A0 ∪ B ∪ {G} ⊆ A ∪ B ∪ {G}. Therefore S = [U] for some type U , and thus ta( [U]) = 1 necessarily holds. Taking
ΓC = ∅, ΓE = ~ : [U], U,<C = 0, 4C = 0,<E = 0, 4E = 1 the following statements hold:
• Γ = ~ : [U] = ΓC + ΓE and< = 0 =<C +<E and 4 = 1 = 4C + 4E
• G : [U] ⊢(0,1) G : [U], by rule var
• ~ : [U] ⊢(0,1) ~ : [U], by condition (b).

1.2 E = _~. B . The judgment of condition (b) can be derived only by the rule abs. Moreover, we can derive the judgment
_~. B ∈ HAA∪B∪{G } by rule h-lam, and along with condition (c) we conclude S ≠ s by Lemma E.2. Then the only
possible case is when S is of the form [U] for some U = R? → Q. Since G ∉ fv(_~. B) it must be the case that
G ∉ dom(Γ; G : T ?), by Lemma 7.1, that is, T ?

=⊥. Then the following derivation is for the judgment of condition (b):

Γ;~ : R? ⊢(<,4 ) B : Q
abs

Γ ⊢(<,4 ) _~. B : [R? → Q]

Taking ΓC = ∅, ΓE = Γ, U = R? → Q,<C = 0, 4C = 0,<E =<,4E = 4 the following statements hold:
• Γ = ΓC + ΓE and< =<C +<E and 4 = 4C + 4E
• G : [R? → Q] ⊢(0,1) G : [R? → Q], by rule var
• ΓE ⊢

(0,1) _~. B : [R? → Q], by condition (b).
2. appL•. Then the following conditions hold:
(a)

B •−→sub(G,E) ,A∪{G },S,@ B′

appL•

B D •−→sub(G,E) ,A∪{G },S,` B
′ D

where C = B D and C ′ = B′D
(b) Γ; G : T ? ⊢(<,4 ) B′D : S

(c) appropriateA∪B∪{G }(Γ; G : T ?)

(d) If ` = @ then either S = s or S is of the form [U].
(e) E ∈ HAA0∪B

Since inv(A ∪ {G},S, B D) then in particular inv(A ∪ {G},S, B). The judgment of condition (b) can be derived either by
rule appP or by rule appC:

2.1 appP. Then
Γ1; G : T ?

1 ⊢
(<1,41 ) B′ : s Γ2; G : T ?

2 ⊢
(<2,42 ) D : t

appP
Γ1 + Γ2; G : T ?

1 + T
?
2 ⊢

(<1+<2,41+42 ) B′D : s

where Γ = Γ1 + Γ2,T
?
= T ?

1 + T
?
2 ,< =<1 +<2, 4 = 41 + 42 and S = s. The following conditions hold:
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(a’) B •−→sub(G,E) ,A∪{G },S,@ B′, by condition (a)

(b’) Γ1; G : T ?
1 ⊢

(<1,41 ) B′ : s, by condition (b)
(c’) appropriateA∪B∪{G }(Γ1; G : T ?

1 ), since Γ = Γ1 + Γ2 and T ?
= T ?

1 + T
?
2 , and by condition (c)

(d’) Here ` = @ and the term is typed with s.
(e’) E ∈ HAA0∪B , by condition (e)
Then we can apply i.h. on B′, yielding ΓB , ΓE , U ,<B , 4B ,<E , 4E such that
◦ Γ1 = ΓB + ΓE and<1 =<B +<E and 41 = 4B + 4E
◦ ΓB ; G : T ?

1 + [U] ⊢
(<B ,4B+1) B : s

◦ ΓE ⊢
(<E ,4E ) E : [U]

Taking ΓC = ΓB + Γ2, ΓE, U,<C =<B +<2, 4C = 4B + 42,<E, 4E the following statements hold:
• Γ = Γ1 + Γ2 = ΓB + ΓE + Γ2 = ΓC + ΓE and< =<1 +<2 =<B +<E +<2 =<C +<E and 4 = 41 + 42 = 4B + 4E + 42 = 4C + 4E
•

ΓB ; G : T ?
1 + [U] ⊢

(<B ,4B+1) B : s Γ2; G : T ?
2 ⊢

(<2,42 ) D : t
appP

ΓB + Γ2; G : (T ?
1 + [U] + T

?
2 ) ⊢

(<B+<2,4B+1+42 ) B D : s

• ΓE ⊢
(<E ,4E ) E : [U]

2.2 appC. Then
Γ1; G : T ?

1 ⊢
(<1,41 ) B′ : [R? → S] R?

⊳ R Γ2; G : T ?
2 ⊢

(<2,42 ) D : R
appC

Γ1 + Γ2; G : T ?
1 + T

?
2 ⊢

(1+<1+<2,41+42 ) B′D : S

where Γ = Γ1 + Γ2,T
?
= T ?

1 + T
?
2 ,< = 1 +<1 +<2 and 4 = 41 + 42. The following conditions hold:

(a’) B •−→sub(G,E) ,A∪{G },S,@ B′, by condition (a)

(b’) Γ1; G : T ?
1 ⊢

(<1,41 ) B′ : [R? → S], by condition (b)
(c’) appropriateA∪B∪{G }(Γ1; G : T ?

1 ), since Γ = Γ1 + Γ2 and T ?
= T ?

1 + T
?
2 , and by condition (c)

(d’) Here ` = @ and the term is the singleton [R? → S].
(e’) E ∈ HAA0∪B , by condition (e)
Then we can apply i.h. on B′, yielding ΓB , ΓE , U ,<B , 4B ,<E , 4E such that
◦ Γ1 = ΓB + ΓE and<1 =<B +<E and 41 = 4B + 4E
◦ ΓB ; G : T ?

1 + [U] ⊢
(<B ,4B+1) B : [R? → S]

◦ ΓE ⊢
(<E ,4E ) E : [U]

Taking ΓC = ΓB + Γ2, ΓE, U,<C = 1 +<B +<2, 4C = 4B + 42,<E, 4E the following statements hold:
• Γ = Γ1+Γ2 = ΓB +ΓE+Γ2 = ΓC +ΓE and< = 1+<1+<2 = 1+<B +<E+<2 =<C +<E and 4 = 41+42 = 4B +4E +42 = 4C +4E
•

ΓB ; G : T ?
1 + [U] ⊢

(<B ,4B+1) B : [R? → S] R?
⊳ R Γ2; G : T ?

2 ⊢
(<2,42 ) D : R

appC
ΓB + Γ2; G : (T ?

1 + [U] + T
?
2 ) ⊢

(1+<B+<2,4B+1+42 ) B D : S

• ΓE ⊢
(<E ,4E ) E : [U]

3. The remaining cases are similar.

�

Proposition 7.6 (Subject Expansion). Let inv(A,S, C), and let C •−→d,A,S,` C
′ where d ∈ {db, lsv} and Γ ⊢(<

′,4′ ) C ′ : T and

appropriateA (Γ). Suppose moreover that if ` = @ then either T = s or T is a singleton, i.e. of the form [U]. Then Γ ⊢(<,4 ) C : T ,
where, if d = db we have that (<, 4) = (<′ + 1, 4′), and if d = lsv we have that (<,4) = (<′, 4′ + 1).

Proof. By induction on the derivation of C •−→d,A,S,` C
′.

1. db•. The following conditions hold:
(a) (_G. B)LD •−→db,A,S,` B [G/D]L

(b) Γ ⊢(<
′,4′ ) B [G/D]L : T

(c) appropriateA (Γ)
(d) If ` = @ then either T = s or T is a singleton, i.e. of the form [U].
By Lemma E.8 there exist ΓB [G/D ], ΓL,Δ,<

′
B [G/D ]

, 4′
B [G/D ]

,<′
L
and 4′

L
such that:

1. ΓL 
(<
′
L
,4′
L
) L ⊲ Δ

2. ΓB [G/D ] ;Δ ⊢
(<′

B [G/D ]
,4′
B [G/D ]

)
B [G/D] : T
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3. Γ = ΓL + ΓB [G/D ] , and<
′
=<′

L
+<′

B [G/D ]
, and 4′ = 4′

L
+ 4′

B [G/D ]

The judgment of statement 2. can be derived only by rule es:

Σ1;Δ1; G : S? ⊢(=1,51 ) B : T S?
⊳ S Σ2;Δ2 ⊢

(=2,52 ) D : S
es

Σ1 + Σ2;Δ1 + Δ2 ⊢
(=1+=2,51+52 ) B [G/D] : T

where ΓB [G/D ] = Σ1 + Σ2,Δ = Δ1 + Δ2,<
′
B [G/D ]

= =1 + =2 and 4′B [G/D ] = 51 + 52. By U−conversion we may assume that

the bound variables in (_G. B)L don’t occur free in D. Since dom(Δ) = dom(Δ1 + Δ2) = dom(Δ1) ∪ dom(Δ2) is a subset
of dom(L) by Lemma E.7, we may assume that dom(Δ) ∩ fv(D) = ∅, so in particular dom(Δ2) ∩ fv(D) = ∅. We have
dom(Σ2) ∪ dom(Δ2) = dom(Σ2;Δ2) ⊆ fv(D) by Lemma 7.1. Therefore Δ2 = ∅, with Δ = Δ1. We apply rule abs to the
judgment derivation Σ1;Δ1; G : S? ⊢(=1,51 ) B : T , yielding Σ1;Δ ⊢

(=1,51 ) _G. B : [S? → T]. By Lemma E.8, we compose
this judgment with the one in statement 1., yielding ΓL +Σ1 ⊢

(<′
L
+=1,4

′
L
+51 ) (_G. B)L : [S? → T]. Now we apply rule appC,

taking this judgment and Σ2;Δ2 ⊢
(=2,52 ) D : S as premises:

ΓL + Σ1 ⊢
(<′

L
+=1,4

′
L
+51 ) (_G. B)L : [S? → T] S?

⊳ S Σ2 ⊢
(=2,52 ) D : S

appC
ΓL + Σ1 + Σ2 ⊢

(1+<′
L
+=1+=2,4

′
L
+51+52 ) (_G. B)LD : T

where ΓL + Σ1 + Σ2 = ΓL + ΓB [G/D ] = Γ. Moreover since d = db, we have that (<,4) = (1 +<′
L
+ =1 + =2, 4

′
L
+ 51 + 52) =

(1 +<′
L
+<′

B [G/D ]
, 4′

L
+ 4′

B [G/D ]
) = (<′ + 1, 4′).

2. lsv•. The following conditions hold:
(a)

B •−→sub(G,E) ,A∪{G },S,` B
′ G ∉ A ∪S EL ∈ HAA

lsv•

B [G/EL] •−→lsv,A,S,` B
′ [G/E]L

(b) Γ ⊢(<
′,4′ ) B′ [G/E]L : T

(c) appropriateA (Γ)
(d) If ` = @ then either T = s or T is a singleton, i.e. of the form [U].
By Lemma E.8 there exist ΓB′ [G/E ], ΓL,Δ,<

′
B′ [G/E ]

, 4′
B′ [G/E ]

,<′
L
and 4′

L
such that:

1. ΓL 
(<
′
L
,4′
L
) L ⊲ Δ

2. ΓB′ [G/E ];Δ ⊢
(<′

B′ [G/E ]
,4′
B′ [G/E ]

)
B′ [G/E] : T

3. Γ = ΓL + ΓB′ [G/E ] , and<
′
=<′

L
+<′

B′ [G/E ]
, and 4′ = 4′

L
+ 4′

B′ [G/E ]
.

Furthermore, appropriateA (Γ) by condition (c), and note that inv(A,S, B [G/EL]) implies inv(A,S, B′ [G/E]L), since
A # S and fv(B′ [G/E]L) = fv(B [G/EL]) ⊆ A ∪ S. Therefore appropriateAL (Δ). The judgment of statement (b) can
only be derived by rule es:

Σ1;Δ1; G : S? ⊢(=1,51 ) B′ : T S?
⊳ S Σ2;Δ2 ⊢

(=2,52 ) E : S
es

Σ1 + Σ2;Δ1 + Δ2 ⊢
(=1+=2,51+52 ) B′ [G/E] : T

where ΓB′ [G/E ] = Σ1 + Σ2,Δ = Δ1 + Δ2,<
′
B′ [G/E ]

= =1 + =2 and 4′B′ [G/E ] = 51 + 52. Moreover, inv(A,S, B [G/EL]) implies

inv(A ∪ {G},S, B). The following conditions hold:
(a’) B •−→sub(G,E) ,A∪{G },S,` B

′, by condition (a)

(b’) (Σ1;Δ1); G : S? ⊢(=1,51 ) B′ : T , by premise of the rule in condition (b)
(c’) appropriateAL∪{G } ((Σ1;Δ1); G : S?) since

(1) appropriateA (Σ1), as Γ = ΓL + Σ1 + Σ2, and appropriateA (Γ) by condition (c). We conclude by Remark E.1 that
appropriateAL∪{G } (Σ1).

(2) appropriateAL (Δ1), as Δ = Δ1 + Δ2, and appropriateAL (Δ), justified before. We conclude by Remark E.1 that
appropriateAL∪{G } (Δ1).

(3) appropriate{G } (G : S?). Indeed, E ∈ HAAL by Lemma B.19, and appropriateAL (Σ2;Δ2), since (3.1):
appropriateAL (Σ2), given that Γ = ΓL + Σ1 + Σ2, and appropriateA (Γ) by condition (c); and (3.2):
appropriateAL (Δ2), given appropriateAL (Δ) mentioned before and Δ = Δ1+Δ2. Hence we can apply Lemma E.2
yielding S ≠ s. Then S?

⊳ S implies S?
≠ s. By Remark E.1, we conclude that appropriateAL∪{G } (G : S?).

(d’) If ` = @ then either T = s or T is a singleton, i.e. of the form [U], by condition (d).
(e’) E ∈ HAAL , by Lemma B.19
Therefore by Lemma E.14, we have that there exist ΘB ,ΘE, U, =B , 5B , =E and 5E such that:
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1’. Σ1;Δ1 = ΘB + ΘE and =1 = =B + =E and 51 = 5B + 5E
2’. ΘB ; G : S? + [U] ⊢(=B ,5B+1) B : T

3’. ΘE ⊢(=E,5E ) E : [U]
By statement 1’. we can write ΘB as Σ11;Δ11 and ΘE as Σ12;Δ12 with Σ1 = Σ11 + Σ12 and Δ1 = Δ11 + Δ12. By
U−conversion the bound variables in EL don’t occur free in B; in particular dom(L) ∩ fv(B) = ∅. Since dom(Δ) =

dom(Δ1 + Δ2) = dom(Δ1) ∪ dom(Δ2) is a subset of dom(L) by Lemma E.7, then dom(Δ) ∩ fv(B) = ∅, so in particu-
lar dom(Δ2) ∩ fv(B) = ∅. We have dom(ΘB ; G : S? + [U]) ⊆ fv(B) by Lemma 7.1. Therefore Δ11 = ∅, with Δ1 = Δ12.
We apply Lemma E.3, merging the judgment of statement 3’. and the judgment Σ2;Δ2 ⊢

(=2,52 ) E : S, so that we obtain
(Σ12;Δ1) + (Σ2;Δ2) ⊢

(=E+=2,5E+52 ) E : [U] +S. We compose this result with the judgment from statement 1, by Lemma E.8,
yielding ΓL + Σ12 + Σ2 ⊢

(<′
L
+=E+=2,4

′
L
+5E+52 ) EL : [U] + S. We apply rule es:

Σ11; G : S? + [U] ⊢(=B ,5B+1) B : T S?
⊳ S ΓL + Σ12 + Σ2 ⊢

(<′
L
+=E+=2,4

′
L
+5E+52 ) EL : [U] + S

es
Σ11 + ΓL + Σ12 + Σ2 ⊢

(=B+<
′
L
+=E+=2,5B+1+4

′
L
+5E+52 ) B [G/EL] : T

where Σ11 + ΓL + Σ12 + Σ2 = Σ1 + ΓL + Σ2 = ΓB′ [G/E ] + ΓL = Γ. Moreover, since d = lsv, we have that (<,4) = (=B +<′L +=E +
=2, 5B + 1 + 4

′
L
+ 5E + 52) = (<

′
L
+ =1 + =2, 51 + 52 + 4

′
L
+ 1) = (<′

L
+<′

B′ [G/E ]
, 4′
B′ [G/E ]

+ 4′
L
+ 1) = (<′, 4′ + 1), so we are done.

3. The congruence cases are uninteresting and are omitted here.

�

Theorem 7.7 (Completeness ofU). LetS = fv(C) and consider a reduction sequence C •−→=
top,S B where B is

•−→top,S-irreducible.

Let= =<+4 where< and 4 are respectively are the number of db and lsv steps in the sequence. Then there exists a tight environment

Γ and a tight type t such that Γ ⊢(<,4 ) C : t.

Proof. By induction on =:

1. = = 0. Then C ∈ NF•
∅,fv(C ), 6@, and< = 4 = 0 by definition of< and 4 . By Proposition 7.5, there exists a tight type t such

that TEnv(∅, fv(C), C) ⊢(0,0) C : t, with TEnv(∅, fv(C), C) a tight environment, so we are done.
2. = = =′ + 1. Then C ∉ NF•

∅,fv(C ), 6@. The reduction sequence is then of the form:

C •−→d1,∅,fv(C ), 6@ C ′ •−→d2,∅,fv(C ), 6@ . . . •−→d=′+1,∅,fv(C ), 6@ B

where =′ =<′ + 4′ and

<′ = #{8 | 2 ≤ 8 ≤ =′, d8 = db} 4′ = #{8 | 2 ≤ 8 ≤ =′, d8 = lsv}

Since fv(C) = fv(C ′), since the reduction is non-erasing when d1 ∈ {db, lsv}, then we can apply i.h., yielding that there
exists a tight environment Γ and a tight type t such that Γ ⊢(<

′,4′ ) C ′ : t. By Subject Expansion, it holds that Γ ⊢(<,4 ) C : t,
where if d = db then (<,4) = (<′ + 1, 4′) and if d = lsv then (<,4) = (<′, 4′ + 1), so we are done.

�
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