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Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
(Dated: April 30, 2024)

Fragmentation of an interacting Bose gas refers to the macroscopic occupation of a finite set of
single-particle eigenstates. This phenomenon is related to the notion of particle-number squeezing
in quantum optics, an exquisite property of quantum states that can offer metrological gain. So
far, fragmentation has only been partially achieved in experiments involving a large number N of
bosons in few modes. Here, we introduce a practical and efficient scheme to prepare fragmented
states in systems realizing the L-mode Bose-Hubbard model. We demonstrate how a large energy
detuning between the modes can be used as a practical control parameter to successfully fragment
a Bose gas over an extremely short preparation time. Applying an optimal-control approach within
realistic experimental constraints, we obtain total fragmentation at a high filling factor, realizing
|N/L, ..., N/L⟩ Fock states with hundreds of bosons in very few modes over a few tunneling times.

Bose-Einstein condensation (BEC) refers to the macro-
scopic bosonic occupation of a single-particle ground
state [1–3]. Interestingly, when the single-particle ground
state is degenerate, a rich competition occurs between
the different states in which to condense. In such a sce-
nario, if the order of degeneracy D is much smaller than
the total number of particles N , the system can form a
fragmented BEC [4–6] which is characterized by a macro-
scopic occupation N/D of the degenerate states.
Ground state degeneracy, stemming from the single-

particle Hamiltonian’s invariance under a symmetry
transformation, is generally lifted, in practice, by ar-
bitrarily small perturbations (e.g. an external magnetic
field) which break the relevant symmetries [7]. In prac-
tice, this strongly complicates the experimental real-
ization of fragmented BECs with a large N/D ratio.
Nonetheless, strong interactions among the particles,
with an energy scale larger than symmetry-breaking per-
turbations, can stabilize these elusive phases; this was re-
cently observed in the three-fold degenerate ground state
of a spin-1 atomic gas [8]. However, the resulting state
was far from exhibiting complete fragmentation, as quan-
tified by the “fragmentation entropy”, i.e. the von Neu-
mann entanglement entropy computed from the eigen-
values of the one-body density matrix. In a L-mode sys-
tem, this entropy is maximized by the L-tuple Fock state
|N/L⟩ ≡

⊗L
i=1 |N/L⟩i, evenly distributing the bosons in

each mode.
A tight-binding lattice model, as realized by cold atoms

in optical lattices [3], naturally offers a set of L or-
bitals. By activating hopping processes between the sites,
the degeneracy of the single-particle spectrum is lifted
through the formation of a band structure. As a con-
sequence, bosons condense in the lowest-energy Bloch
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state, forming a superfluid state over the lattice. Ramp-
ing up strong interactions can then fragment the super-
fluid state, reaching the maximally fragmented Fock state
|N/L⟩ in the strongly-correlated limit [3, 9]. However,
this transition from the superfluid to the Mott insula-
tor [10] has only been realized for limited filling factors
N/L∼1 [3, 11–14].

Considering the case L=2, the twin-Fock state |N/2⟩ is
the most resourceful Fock state for quantum sensing and
metrology [15–21]. A multitude of approaches have been
proposed and implemented to perform number squeez-
ing around |N/2⟩ (either in true two-mode systems, or
in a sub-manifold of spinor gases), such as feedback on
non-demolition measurements [22, 23], parametric am-
plification [18, 24], adiabatic and quasi-adiabatic trans-
formations [8, 25–35], shortcuts to adiabaticity [36, 37],
optimal control [38, 39], reinforcement learning [40] and
more [41–43]. Nevertheless, the preparation of a pure
twin Fock state in a two-mode system has not yet been
achieved.

In this Letter, we explore and compare schemes for
fragmenting an ensemble of bosons in a L-mode Bose-
Hubbard system. We first discuss an adiabatic approach,
which consists in slowly ramping up the ratio between
Hubbard interactions and hopping amplitude, either di-
rectly [5, 11] or effectively using a Floquet drive [44, 45].
We then introduce a large energy detuning (or “tilt”) be-
tween the modes, which effectively annihilates the hop-
ping. On the onset of that regime, we use quantum op-
timal control [46–49] to steer the ground state of the
unbiased system towards the L-tuple Fock state. Our
results are illustrated for L = 2 modes; see [50] for the
L=3 case. With this practical approach, we achieve ex-
treme fragmentation at high filling, two to three orders
of magnitude faster than adiabatic methods, and with
significant robustness to parameter fluctuations, opening
up the prospect of experimental realization.
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FIG. 1. Fragmentation in a two-mode Bose-Hubbard system. (a) Schematics of the double-well Hamiltonian (2),
with hopping J , 2-body contact interactions U and no tilt δ=0. (b) Many-body spectrum for N=32 bosons as a function of
U/J (grey lines), with En the eigenenergy of eigenstate |ϕn⟩. The projection of |N/2⟩ onto |ϕn⟩ is encoded in shades of blue
on En. (c-e) Husimi representations [20, 51–53] of the states identified in (b) (blue areas, with colorscale ranging from 0 to
the maximum value of the distribution) and corresponding MF trajectories (black lines). (f-j) same as (a-e) as a function of
the tilt δ/J with U/J=1.

The system. We consider a fixed number N of bosons
in a two-mode system, such as the double well illustrated
in Fig. 1(a). Under the low-energy single-band approxi-
mation, we describe the system by the two-mode Bose-
Hubbard model:

Ĥ(t) =− J
(
â†1â2 + â†2â1

)
+
U

2

(
â†1â

†
1â1â1 + â†2â

†
2â2â2

)
+ δ

(
â†1â1 − â†2â2

)
, (1)

where â†i , âi are the bosonic creation and annihila-
tion operators in mode i, J is the particle hopping
strength, U quantifies the onsite two-body interaction
and δ is an eventual tilt between the modes. Us-
ing the Schwinger (angular-momentum) representation,

Ĵx = (â†1â2 + â†2â1)/2, Ĵy = (â†1â2 − â†2â1)/2i, Ĵz =

(â†1â1 − â†2â2)/2, Hamiltonian (1) is rewritten as

Ĥ(t) = UĴ2
z − 2JĴx + 2δĴz, (2)

up to the constant term UN̂(N̂ − 2)/4 (with N̂ =

â†1â1 + â†2â2), describing our system as an effective spin-
1/2 quantum gas on the Bloch sphere. For a sufficiently
large N , intuition can be built on the quantum dynamics
governed by Eq. (2) by taking the semiclassical, mean-
field (MF) limit âi →

√
nie

−iθi , yielding the MF Hamil-
tonian

H(φ, z) =
Λ

2
z2 −

√
1− z2 cos (φ) +

δ

J
z, (3)

where Λ = NU/2J , and where we have introduced the
two canonically conjugate Bloch-sphere variables: the rel-
ative phase φ = θ1 − θ2 and population z = (n1 −
n2)/N [54, 55].

To quantify the fragmentation of an arbitrary state |ψ⟩,
we define the following three metrics: (i) The fragmen-
tation (von Neumann) entropy SF =

∑
i−λi log λi [56],

with λi the normalized eigenvalues of the reduced one-
body density matrix with elements ρ̂i,j = ⟨ψ| â†i âj |ψ⟩.
In a L-mode system, SF is maximized to ln(L) by the
L-tuple Fock state |N/L⟩. (ii) The number squeez-
ing parameter ξ2N = ∆Ĵ2

z,ψ/∆Ĵ
2
z,ref, quantifying the

suppression of particle-number fluctuations with respect
to the uncorrelated, binomial distribution of variance
∆Ĵ2

z,ref = N/4 for L = 2 [20, 50]. (iii) The quantum fi-

delity to the twin Fock state F = | ⟨N/2|ψ⟩ |2.

Adiabatic approach. We first consider the preparation
of |N/2⟩ by adiabatically increasing U/J , as traditionally
performed to induce a superfluid to Mott-insulator tran-
sition [10, 11]. In Fig. 1(b), we show the many-body
spectrum of the Hamiltonian in Eq. (2) for N = 32 and
δ = 0 as a function of U/J . The physics is that of the
standard bosonic Josephson junction [57, 58]: Starting
from U/J ≪ 1, the ground state |ϕ0⟩ is a superfluid co-
herent spin state [20, 52], pointing along (φ, z) = (0, 0)
on the Bloch sphere [Fig. 1(c)]; as one increases interac-
tions, this state asymptotically tends towards |N/2⟩ in
the limit U/J → ∞ [Fig. 1(d,e)]. Crucially, very large
values of U/J are needed to achieve high ground-state
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fragmentation: considering N = 32 bosons, we find that
reaching a fidelity F > 0.99 requires U/J ≳ 230, while
SF/ ln(2) > 0.99 is reached for U/J ≳ 285.
When adiabatically following the states (c) to (e) in

Fig. 1(b), we find that the narrowest energy gap that
could trigger Landau-Zener transitions is ∆E = 4J at
U/J=0, after which ∆E keeps increasing monotonically;
this observation does not depend on the number of bosons
N . An adiabatic preparation of the target state thus
requires a preparation time tf ≫ ℏ/J [50].

As previously noted, total fragmentation requires
U/J → ∞, which, in practice, would correspond to pro-
gressively annihilating the hopping strength, e.g. by in-
creasing the distance between the sites. In an experi-
ment, this could be hard to achieve without exciting mo-
tional degrees of freedom [32, 35, 38, 59]. Alternatively,
J could be effectively suppressed by means of Floquet
engineering, using a fast modulation of the tilt δ [44, 45].
We discuss the adiabatic preparation of the |N/2⟩ state
using this Floquet approach in [50]; we demonstrate the
applicability of this method deep in the high-frequency
regime, which is found to be only accessible for limited
number of bosons N , due to the interacting nature of this
periodically-driven system [50].

Adding a tilt. To overcome the severe limitations of
the adiabatic approach, we now add a strong tilt δ to
the system [Fig. 1(f)]; for the sake of illustration, we
henceforth fix the ratio U/J to a realistic value of 1.
In the limit δ ≫ J, U , the tilt effectively annihilates
the hopping term, as one can deduce by moving to a
rotating frame generated by the unitary transformation
R̂ = exp{i2δĴzt/ℏ}; see Refs. [26, 50]. In this frame, the
eigenstates of the Hamiltonian (2) become the Fock states
|n1⟩ ≡ |n1, N − n1⟩, i.e. the eigenstates of Ĵz, with the
intuitive lab-frame ground state |0, N⟩ due to the large
tilt. In Fig. 1(g), we show the many-body spectrum as-
sociated with the Hamiltonian (2) as a function of δ, for
N = 32 bosons, identifying the projection of the target
twin Fock state |N/2 = 16⟩. We see that for δ/J ∼ 1,
the twin Fock state is projected onto many eigenstates
of the system, while it indeed becomes an eigenstate for
δ/J ≫ 1. As δ increases, the MF fixed-point of lowest
energy migrates towards the South pole z = −1 [Fig 1(h-
i)]. The remaining trajectories wraps around the Bloch
sphere, as do the eigenstates, turning into Fock states of
definite relative population ⟨Ĵz⟩.
From this brief study, summarized in Fig. 1, one ap-

prehends how difficult it is to adiabatically connect the
eigenstates of panels (h) to (j), hence suggesting the de-
velopment of a more sophisticated approach.

Optimal control. We now consider optimal control
as a promising alternative to prepare twin Fock states
|N/2⟩, through an arbitrary variation of the tilt δ(t)
between the wells. To obtain the optimal δ(t) that
steers the ground state |ϕ0⟩ of (2) (taken at δ = 0) to-
wards |N/2⟩ in a control duration tf (fixed beforehand,

see below), we employ a first-order gradient-based algo-
rithm [48, 60–64]. This approach amounts to performing
a gradient ascent on a state-preparation metric, which we
choose here to be the fidelity F to the target Fock state
|N/2⟩ [50]. The quality of the optimal control fields (in
terms of e.g. fidelity maximization, robustness to noise
and experimental feasibility) yielded by such numerical
approaches strongly depends on the initial guess provided
as input. For our purposes, we find that a rather large,
constant tilt δ0/J ∼ Λ/2 = NU/4J is an efficacious ini-
tial guess, as it amounts to a quench into a configuration
where both the initial state and the target Fock state are
projected into the same restricted subspace consisting of
only a few quasi-Fock eigenstates [see the blue states in
Fig. 1(g)], effectively reducing the Hilbert space dimen-
sion into which the optimization takes place. In the large
δ0 limit, the spacing between two successive Fock eigen-
states |n1⟩ , |n1 + 1⟩ is ∆E ∼ U(2n1−N +1)+2δ0 ∼ 2δ0
for n1 = N/2 [50]. The period T0 at which a non-
steady state evolves in the vicinity of |N/2⟩ in Hilbert
space is therefore T0 ∼ h/2δ0; this establishes a lower
bound on the time associated with state alteration near
the equator of the Bloch sphere in the strongly tilted
system. Here, we typically opt for a control duration
tf ∼ 10T0 ∼ 20h/NU [65]. This favorable scaling with
N stems from the large tilt δ0 ∼ NU/4 used in our ap-
proach. In a tight-binding framework, relevant to optical
lattices [66], this would ultimately limit the maximum
number of bosons N that one can consider.

Numerical results for the preparation of the twin Fock
state, using optimal control of the tilt, are shown in Fig. 2
for N = 32 and U/J = 1. Panel (a) shows the optimal
δ(t), displaying a fast, non-trivial oscillation around δ0.
This is a general trend observed for different N values,
and a Fourier analysis of δ(t) [inset of Fig. 2(a)] reveals
that its main non-zero frequencies are grouped around
the transition frequency ∆E/h = 1/T0 between two adja-
cent equatorial Fock states in the large δ0 limit. The algo-
rithm thus naturally converges on a quasi-periodic modu-
lation that hybridizes neighboring quasi-Fock eigenstates,
in order to then maximize the projection onto the tar-
geted Fock state. The resulting fidelity F , fragmentation
entropy SF and number squeezing ξ2N over the prepara-
tion are plotted on Fig. 2(b), while (c) features the Fock-
space projection of the prepared state. For those param-
eters, our metrics finally reach F = 0.999 (breaking con-
dition of the iterative algorithm), SF/ ln(2) = 0.9998 and
ξ2N = 1.33 ·10−3 = −28.8 dB, i.e. number-difference fluc-
tuations suppressed by nearly 3 orders of magnitude com-
pared with coherent spin states lying on the equator of
the Bloch sphere [20]. One observes how, for this strongly
non-adiabatic scheme, the fidelity to the most fragmented
state |N/2⟩ is a much more fragile figure of merit for frag-
mentation than the fragmentation entropy. This can be
appreciated by considering, for instance, that the very
next Fock states |N/2± 1⟩ have high fragmentation en-
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FIG. 2. Twin Fock state preparation by optimal con-
trol. (a) Optimal control tilt as a function of time (solid
black line) to drive the ground state of Eq. (2) with U/J = 1
and N = 32 (taken at δ/J = 0) towards the twin Fock state
|N/2 = 16⟩, and initial guess δ(t) = δ0 (dashed grey line). In-
set: norm of the Fourier transform of δ(t) (solid black line,
y-axis going from 0 to 1J) and ±1/T0 (dashed red lines, see
text). (b) Fidelity F to |N/2 = 16⟩ (blue solid line), frag-
mentation entropy SF (divided by ln(2), orange dashed) and
number squeezing parameter ξ2N (dB scale, black dash-dotted)
as a function of time. See Table I for details. (c) Fock space
projection during the preparation.

tropy but zero fidelity to |N/2⟩. Results from N = 4
to 512 are compiled in Table I. Apart from the fidelity,
which decreases appreciably as N increases, we see that
optimal control allows to reach high fragmentation en-
tropy and number squeezing up to substantially large N .
It should be noted that, as U/J is fixed in this study, the
ground state of the unbiased Hamiltonian (2) gets inher-
ently number squeezed as N increases [67] (see Table I;
the number-squeezing gain due to optimal control being
the difference between the last two rows). Overall, we see
that optimal control combined with a strong average tilt
δ0 is a promising method to produce the maximally frag-
mented Fock states |N/2⟩ in a two-mode Bose-Hubbard
system; see [50] for similar results on the L = 3 case.
Moreover, one achieves drastic number squeezing, two to
three orders of magnitudes faster than (quasi-)adiabatic
methods; see Refs. [25–28, 31, 33, 34] and [50].

The full quantum dynamics depends on the details
of the instantaneous many-body spectra, over the entire
control duration. A priori, a limitation of this approach,
as compared to adiabatic schemes, is that it requires a

N 4 8 16 32 64 128 256 512
δ0(J) 2.80 4.40 7.20 12.8 24.0 41.6 64.0 89.6
tf (ℏ/J) 5.05 3.43 2.77 2.02 1.47 0.925 0.702 0.500

F 0.999 0.987 0.951 0.923 0.888
SF/ ln(2) > 0.999 0.994 0.980 0.959 0.950
ξ2N
(dB)

(
ψf

ϕ0

)
-26.0 -22.6 -21.6 -28.8 -19.0 -14.7 -15.2 -19.3
-2.30 -3.52 -4.84 -6.23 -7.66 -9.12 -10.6 -12.1

TABLE I. Twin Fock state preparation by optimal
control (U/J = 1) for increasing number of bosons N , with
guess tilt δ0, control duration tf, final fidelity F to |N/2⟩,
fragmentation entropy SF and number squeezing parameter
of prepared and initial states (|ψf⟩ and |ϕ0⟩ resp.).

precise knowledge of the number of bosons N . Quite
generically, optimal control lacks robustness against pa-
rameter fluctuations, especially those associated with the
particle number N [49]. However, we find that in this
large-average-tilt configuration (where the eigenenergy
spacing between successive quasi-Fock eigenstates loses
its dependence on the average number of particles in said
eigenstates), an optimal δ(t) computed for a given N re-
mains efficient to fragment the Bose gas for a close but
different N ′ = N + 2k (keeping commensurability with
k ∈ Z∗), and can be used as a solid initial guess for an-
other optimization with the correct N ′ [50].

In Fig. 3, we further interpret the algorithm’s “strat-
egy” in performing number squeezing around |N/2⟩
in this biased two-mode system by drawing a paral-
lel with spin-squeezing performed by one-axis twisting
(OAT) [20, 68, 69]. Through OAT, a coherent spin state
initially pointing along n⃗ on the Bloch sphere’s equator
undergoes spin-squeezing through an evolution governed
by the interaction Hamiltonian UĴ2

z , due to MF trajec-
tories flowing in opposite directions on each Bloch hemi-
sphere (dφ/dt ∝ z). The resulting spin squeezing, oc-
curring along a tangential direction s⃗ to the average spin
direction n⃗, can be quantified by the squeezing parame-
ter ξ2R = N(∆Ĵs⃗)

2/⟨Ĵn⃗⟩2 [20, 70], assessing the metrolog-
ical usefulness of the anisotropy of quantum fluctuations
around n⃗. OAT spin-squeezes an equatorial coherent spin
state for t ≲ N−1/2ℏ/U , while for longer times, it gets
over-squeezed as it wraps around the Bloch sphere, re-
sulting in ξ2R > 1 [20, 68] [Fig. 3(a,c)]. A salient symp-
tom of over-squeezing is the constellation of zeros riddling
the Husimi function [Fig. 3(a)], which are Majorana anti-
stars, antipodes of the N individual 1/2-spins into which
the state can be factored according to the Majorana stel-
lar representation [71–74]. However, OAT never number
squeezes, having Fock states as its eigenstates [Fig. 3(c)].
In the case of optimal control [Fig. 3(b)], the large tilt
yields MF trajectories similar to OAT near the equator,
resulting in a slight short-term spin squeezing (panel (c)).
The control on δ(t) then constrains the state towards the
equator while it wraps around the Bloch sphere, grad-
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FIG. 3. Optimized axis twisting (N = 32). (a,b)
Husimi state representations (colored area), their zeros (Ma-
jorana anti-stars, red crosses) and instantaneous MF trajec-
tories (solid black lines) on the Bloch sphere. (a) correspond
to standard one-axis twisting of a coherent spin state, with
initial condition (left), maximum spin-squeezing time (mid-
dle) and oversqueezing at a longer time (right). (b) is the
optimal preparation of |N/2⟩ featured in Fig. 2 for three dif-
ferent increasing times (left to right). (c) Number squeezing
ξ2N (solid lines) and spin squeezing ξ2R (dashed lines) of (a,b)
(resp. orange, blue) over the protocols (of independent dura-

tion tf = 2N−1/2ℏ/U (a) and tf = 2.02 ℏ/J (b)).

ually sending the Majorana anti-stars to its poles. Our
optimal control approach, operating around a large tilt
value, can thus be viewed as number squeezing through
optimized axis twisting.

Conclusion. In this work, we introduced a practi-
cal and efficient approach to achieve total fragmenta-
tion of a Bose gas in the L-mode Bose-Hubbard model,
i.e. to prepare the evenly distributed L-tuple Fock state
|N/L, ..., N/L⟩ with N bosons. We illustrated our re-
sults for systems with L = 2 and 3 modes. We first
considered the conventional adiabatic ramping of the ra-
tio between interaction U and hopping J (either directly
varied, or effectively via Floquet engineering), finding
strong limitations and constraints: long preparation time,
low particle number and high Floquet frequency. We
then applied quantum optimal control with the energy
bias δ between the modes as our control parameter. We
found that by operating around a large tilt δ ≈ NU/4,
one is able to diabatically prepare the twin Fock state
in a duration tf ≈ 20 ℏ/NU , with appreciable robust-
ness against atom number fluctuations [50]. This work
offers realistic approaches to experimentally achieve L-

tuple Fock state preparation, the most resourceful num-
ber state for metrological purposes [20]. We emphasize
that our scheme relies on modulating the tilt (or detuning
between the modes) around a large mean value. This can
be advantageous for certain physical settings that can-
not operate close to resonance (e.g. schemes using two
coupled internal states operating in the large-detuning
regime).
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icke, and I. Bloch, Phase Coherence of an Atomic Mott
Insulator, Phys. Rev. Lett. 95, 050404 (2005).

[10] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and
P. Zoller, Cold Bosonic Atoms in Optical Lattices, Phys.
Rev. Lett. 81, 3108 (1998).

[11] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and
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[18] B. Lücke, M. Scherer, J. Kruse, L. Pezzé, F. Deuret-
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[36] B. Juliá-Dı́az, E. Torrontegui, J. Martorell, J. G. Muga,
and A. Polls, Fast generation of spin-squeezed states in
bosonic Josephson junctions, Phys. Rev. A 86, 063623
(2012).
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sion 19, only considering the basis Fock states |n1⟩ with
55 ≤ n1 ≤ 73.
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Supplementary Material

A. FRAGMENTATION FROM ADIABATIC GROUND-STATE FOLLOWING

We consider the fragmentation of the many-body ground state in the L-mode Bose-Hubbard Hamiltonian

Ĥ = −J
L−1∑
ℓ=1

(
â†ℓ âℓ+1 + â†ℓ+1âℓ

)
+
U

2

L∑
ℓ=1

â†ℓ â
†
ℓ âℓâℓ, (S1)

as one tunes the ratio U/J ; see Fig. 1 of the main text. In this work, we focus on the two-mode (L = 2) and
three-mode (L = 3) cases.

First for L=2, one can rewrite the Hamiltonian Ĥ = UĴ2
z−2JĴx with Ĵx = (â†1â2+â

†
2â1)/2 and Ĵz = (â†1â1−â

†
2â2)/2.

Considering N bosons, we denote E
(U/J)
n and |ϕ(U/J)n ⟩ the N + 1 eigenenergies and eigenstates of (S1) as a function

of U/J . Starting from U/J ≪ 1, the hopping term dominates, and we have

−2JĴx = −J(â†1â2 + â†2â1)

= −J(â†+â+ − â†−â−), (S2)

with â± = (â1 ± â2)/
√
2. In the limit U = 0, the eigenstates are thus of the form

∣∣∣ϕ(0)n 〉 =

(
â†+

)N−n

√
(N − n)!

(
â†−

)n
√
(n)!

|∅⟩ , (S3)

with E
(0)
n = J(2n−N) and where |∅⟩ is the vacuum state. The total Hamiltonian (hopping terms and interactions) is

invariant under the swapping of modes 1 ↔ 2, which is associated with the parity operator P̂ acting as P̂ â± = ±â±.
From Eq. (S3), we see that the eigenstates of Ĵx are directly sorted in subspaces of opposite parity, through the parity

of n: P̂ |ϕ(U/J)n ⟩ = (−1)n|ϕ(U/J)n ⟩. Starting from |ϕ(0)0 ⟩ and given that Ĥ does not couple the two subspaces of opposite

parity ∀U/J , the first possible excitation at U/J = 0 is towards |ϕ(0)2 ⟩, with energy ∆E(0) = E
(0)
2 − E

(0)
0 = 4J

(Fig. S1(a)). This gap enlarges as U/J increases, up to ∆E ∼ U between |ϕ0⟩ = |N/2⟩ and |ϕ2⟩ = (|N/2 + 1⟩ +
|N/2− 1⟩)/

√
2 in the strongly interacting regime U/J ≫ 1 (with the notation |n1⟩ ≡ |n1⟩1 ⊗ |N − n1⟩2).

4 100 200
E2 − E0 (J)

0.0 0.5 1.0

(U/J)/(U/J)f

2

8

14

20

26

32

N

(a)

0.50 0.75 1.00
F0

0.001 0.2 0.4 0.6 0.8 1.0

1/tf (J/h̄)

(b)

FIG. S1. Adiabatic ground state following as U/J increases. (a) Energy gap between the ground state and the
first accessible excited state as a function of U/J ∈ [0, (U/J)f] (see text) and N ∈ [2, 32] (only considering even integers for

commensurability). (b) Final fidelity F0 = |⟨ϕ(U/J)f
0 |ψ(tf)⟩|2 (see text) after a linear ramping of U/J from 0 to (U/J)f and as

a function of the ramping rate 1/tf and N . The initial state is |ϕ(0)
0 ⟩.



10

0 1|〈N/3|ψ〉|2

10−3 100 103

U/J

0.0

2.5

(E
n
−
E

0
)/
J

×102

b c d

(a)

0 vmax|〈n1, n2, n3|ψ〉|2

0

0

0

3

3

3

6 6

6

9

9

9

n2

n3

n1

(b)

0

0

0

3

3

3

6 6

6

9

9

9

n2

n3

n1

(c)

0

0

0

3

3

3

6 6

6

9

9

9

n2

n3

n1

(d)

0 1|〈N/3|ψ〉|2

0 10 20
δ/J

0.0

2.5

(E
n
−
E

0
)/
J

×102

f

g

h

(e)

0 vmax|〈n1, n2, n3|ψ〉|2

0

0

0

3

3

3

6 6

6

9

9

9

n2

n3

n1

(f)

0

0

0

3

3

3

6 6

6

9

9

9

n2

n3

n1

(g)

0

0

0

3

3

3

6 6

6

9

9

9

n2

n3

n1

(h)

FIG. S2. Fragmentation in a three-mode Bose-Hubbard system. (a) Many-body spectrum for N = 9 bosons as a
function of U/J (grey lines), with En the eigenenergy of eigenstate |ϕn⟩. The projection of |N/3⟩ onto |ϕn⟩ is encoded in
shades of blue on En. (b-d) Fock state projection of the states identified in (a) (blue areas, with independent maximum values
vmax = 0.0514 (b), 0.177 (c) and 0.999 (d)). (e-h) same as (a-d) as a function of the tilt δ/J with U/J=1, and vmax = 0.177
(b), 0.592 (c) and 0.884 (d).

The maximally fragmented state |N/2⟩ can be reached from |ϕ(0)0 ⟩ through adiabatic ground-state following by slowly
ramping-up U/J . The adiabaticity condition on the ramping time can be estimated in first approximation by the
inverse of the frequency associated with the narrowest gap in the spectrum, i.e. tf ≫ h/4J . To go beyond this estimate,
we perform simulation of adiabatic ground state following as a function of the ramping time tf and N . Starting

from |ϕ(0)0 ⟩, we linearly ramp up U/J until a value (U/J)f (increasing with N) such that |⟨N/2|ϕ(U/J)f0 ⟩|2 ≈ 0.99.

Figure S1(b) shows the ground state fidelity F0 = |⟨ϕ(U/J)f0 |ψ(tf)⟩|2 of the final state as a function of N and tf. While
the narrowest relevant gap in the spectrum is 4 J ∀N , we see that the minimum tf required to reach a satisfactory
fidelity F0 increases with N . This is due to the increasing number of levels in the spectrum that provide additional
channels towards which the evolved state can propagate. We see that the lowest ramping time to get F0 ≈ 1 is already
of the order or 103ℏ/J for N= 32.

Regarding the L=3 case: we display in Fig. S2 a plot analogous to Fig. 1 (main text for L = 2). Similarly to the case
L=2, adiabatically increasing U/J → ∞ allows one to reach the maximally fragmented state |N/3⟩ ≡ |N/3, N/3, N/3⟩
from the ground state of the system with finite interactions (panels (a-d). There, the scaling of the Hilbert space
dimension dH with N is quadratic: dH = (N + 1)(N + 2)/2, which, as discussed previously, is expected to hinder
adiabaticity, even more than for L=2. In panels (e-h), we show that, as for L=2, an additional constant tilt reveals
the target state in the spectrum. In Sec. D, we utilize this tilt as a parameter to prepare |N/3⟩ by optimal control.

B. FLOQUET CONTROL OF U/J

One can introduce a fast periodic modulation of the tilt around δ = 0 to dynamically control the effective tunneling
between the two modes [44]. In this way, one can drive a superfluid to Mott insulator transition [45] by slowly ramping
down the effective tunneling of the particles.

More precisely, we consider a strong sinusoidal modulation of the tilt δ(t) = A cos(ωt) and the Hamiltonian of the
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periodically driven system is written as

Ĥ(t) =− J

L−1∑
ℓ=1

(
â†ℓ âℓ+1 + â†ℓ+1âℓ

)
+
U

2

L∑
ℓ=1

â†ℓ â
†
ℓ âℓâℓ +A cos (ωt)

L∑
ℓ=1

ℓ â†ℓ âℓ, (S4)

Changing to a frame of reference rotating with the same frequency ω, generated by the unitary transformation

R̂ = exp

{
i
A

ℏ

∫ t

0

dt′ cos (ωt′)

L∑
ℓ=1

ℓ â†ℓ âℓ

}
, (S5)

we obtain a transformed Hamiltonian

H̃(t) = −J

(
exp

{
i
A

ℏω
sin (ωt)

} L−1∑
ℓ=1

â†ℓ âℓ+1 + h.c.

)
+
U

2

L∑
ℓ=1

â†ℓ â
†
ℓ âℓâℓ. (S6)

In the high-frequency approximation, the dynamics of the system can be captured at stroboscopic times — integer
multiples of the modulation period T — by a time-independent effective Hamiltonian Ĥeff , which can be perturbatively
approximated using an infinite series in powers of ω−1 based on the Magnus expansion [66, 75, 76]. At zeroth order
(in the energy frame moving with the periodic tilt [50]), the Hamiltonian sees its hopping strength renormalized
as [44, 45]:

Ĥ
(0)
eff =

1

T

∫ T

0

dt H̃(t) =
U

2

L∑
ℓ=1

â†ℓ â
†
ℓ âℓâℓ − JJ0

(
A

ℏω

) L−1∑
ℓ=1

(
â†ℓ âℓ+1 + â†ℓ+1âℓ

)
. (S7)

(S8)

The first order correction is given by

Ĥ
(1)
eff =

1

2T i

∫ T

0

dt1

∫ t1

0

dt2 [H̃(t1), H̃(t2)]

=
UJπ

2ℏω
H0

(
A

ℏω

) L−1∑
ℓ=1

(
â†ℓn̂ℓâℓ+1 − â†ℓn̂ℓ+1âℓ+1 + â†ℓ+1n̂ℓâℓ − â†ℓ+1n̂ℓ+1âℓ

)
+
J2π

ℏω
H0

(
A

ℏω

)
J0

(
A

ℏω

)(
â†1â1 − â†LâL

)
, (S9)

where J0(x) is the zeroth order Bessel function and H0(x) is the zeroth order Struve function. In the limit ℏω ≫ J, U ,

one can negelct the effect of the first (and higher) order term and approximate Ĥeff ≈ Ĥ
(0)
eff . Under such a scenario,

one can engineer a Floquet quasi-adiabatic [77, 78] state preparation scheme [44]: starting from the ground state of

Ĥ(t) = Ĥ
(0)
eff at A = 0, one slowly ramps up A/ℏω (at fixed ω) up to the first zero x0 ≈ 2.4 of J0(x). Following

the ground state of Ĥ
(0)
eff , the resulting state is the maximally fragmented state |N/L⟩, ground state of the purely

interacting Hamiltonian.
Numerical results for U/J = 1 and L = 2 and 3 are shown in Fig. S3. The protocol is drawn in panel (a), showing

δ(t) with frequency ω = 30 J/ℏ, and envelope A(t) = mt with slope m = 0.2J2/ℏ, reaching A(t) = x0 at time
tf ≈ 2.4 ℏω/m = 360 ℏ/J . Upon reaching its target value, the amplitude is maintained to observe the realization. The
second row features results of numerical simulations for N = 18 and 30 at L = 2 (Panel (b)) and L = 3 (Panel (c)). We
show, as a function of time, the fragmentation entropy SF of the state propagated with the exact Hamiltonian (S4),
as well as two fidelities to |N/L⟩: the fidelity Fex of the state |ψ(t)⟩ propagated according to the exact Hamiltonian,

and the fidelity Feff of the ground state of Ĥ
(0)
eff (S7) (expected to reach 1 ∀N). For N = 18, we achieve exact

preparation of |N/2 = 9⟩, maximizing the final values of Fex and SF. For N = 30 however, while the fragmentation
entropy reaches almost ln(2), the final exact fidelity is not maximized which indicates a breakdown of the effective
Hamiltonian approximation.

To understand the reason behind the failure of the effective model, we plot the instantaneous Floquet quasi-energy
spectra [66] of (S4) as a function of t (and thus A) for L = 2 and N = 30 in panel (a) of Fig. S4 . Following how
the prepared state projects in the spectrum, we see that the failure of the effective Hamiltonian to model the exact
dynamics corresponds to a leakage towards other, untargeted Floquet states [see purple eigenenergies in Panel (a)].
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FIG. S3. Fragmented state preparation by fast modulation of the tilt, starting from the ground state of (S4) with
A = 0 and U/J = 1. (a) Tilt δ(t) = A(t) cos (ωt) (grey line, ω = 30J/ℏ) with A(t) = mt (blue envelope, m = 0.2J2/ℏ) until
tf ≈ 2.4 ℏω/m and constant thereafter. J0(x) (green line) with x = A/ℏω. (b) Fidelities to the twin Fock state of |ψ(t)⟩ (Feff,
solid line) and of the ground state of (S7) (dotted line), and fragmentation entropy SF of |ψ(t)⟩ for N = 16 (blue) and 32 (red).

Indeed, many narrow avoided crossings are to be seen, resulting from the Floquet folding of the static spectrum (a
realistic necessity considering the width of the many body spectrum [66, 78]). Hence, as we consider more bosons,
the Hilbert space dimension increases (linearly for L = 2), and with it the number of fortuitous avoided crossings
that the prepared state has to cross diabatically [66]. To achieve better fidelity in many-body “adiabatic” Floquet
engineering [77, 78], one must embrace diabaticity and moderately increase the slope of parameter variation to favor
Landau-Zener transitions through the inevitable narrow crossings. One can see in Fig. S3(b) that there exists an
optimum fidelity achievable with this quasi-adiabatic Floquet driving, however quite limited in N at fixed ω.

We finally study the requirement on ω as a function of N (at fixed slope m and L = 2). In Fig. S3(c), one can see
that the driving frequency ω required to maintain a high fidelity (i.e. proficiency of the high frequency approximation)
scales almost linearly with N . This scaling puts a limit on the maximum number of atoms that one can use to create
a fragmented state in a realistic cold-atom setup using this method. Indeed, for experimentally realistic parameters,

FIG. S4. (a) Instantaneous Floquet quasi-energy spectrum εn as a function of the ramping time t of the modulation amplitude
(black dots) and quasi-energy of the Floquet state maximizing the overlap with |N/2⟩ (red dashed line) for N = 32. The
projection of |ψ(t)⟩ on the instantaneous Floquet states is encoded in the radius and colorbar shade. (b) Final exact fidelity
Fex as a function of the ramp duration tf for different N at ℏω = 30J . (c) Fex as a function of ω for a fixed ramp slope
m = 0.2J2/ℏ
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the single-band Bose-Hubbard model is valid for typical energy scales E ≪ 100J [66, 79]; since the maximum ω is
limited to around 30J before the driving strength A(tf) = 2.4ℏω (zero of the Bessel function) reaches 100J , limiting
N to approximately 32 atoms.

C. NEGATING THE HOPPING BY A LARGE CONSTANT TILT

We show how a strong tilt between the modes of the Bose-Hubbard model effectively annihilates the hopping,
detailing the derivation for L = 2 and L = 3 modes.

a. L = 2

We consider the Hamiltonian

Ĥ = UĴ2
z − 2JĴx + 2δĴz, (S10)

in the rotating frame accessed by the unitary transformation |ψ̃(t)⟩ = R̂|ψ(t)⟩ with R̂ = exp{i2δĴzt/ℏ}. In this frame,
the Hamiltonian reads

ˆ̃
H(t) = R̂ĤR̂† − iℏR̂

dR̂†

dt

= UĴ2
z − 2J ei2δĴzt/ℏĴx e

−i2δĴzt/ℏ

= UĴ2
z − 2J cos

(
2δt

ℏ

)
Ĵx + 2J sin

(
2δt

ℏ

)
Ĵy, (S11)

using the algebra [Ĵi, Ĵj ] = iϵijkĴk. If δ ≫ U, J , the Hamiltonian
ˆ̃
H can be approximated by its Magnus expansion at

zeroth order, namely its average over one period
ˆ̃
H ≈ ˆ̃

H
(0)

eff = UĴ2
z . Finally, going back to the initial frame gives

Ĥ = R̂† ˆ̃HR̂− iℏR̂† dR̂

dt

≈ UĴ2
z + 2δĴz, (S12)

whose eigenstates are the Fock states, among which the maximally fragmented state |N/2⟩; see Fig. 1 of the main
text.

b. L = 3

We consider the titled Bose-Hubbard Hamiltonian,

Ĥ(t) = −J
2∑
ℓ=1

(
â†ℓ âℓ+1 + â†ℓ+1âℓ

)
+
U

2

3∑
ℓ=1

â†ℓ â
†
ℓ âℓâℓ + δ

(
â†1â1 − â†3â3

)
. (S13)

Again, moving to a frame rotating with angular frequency δ/ℏ using the unitary operator R̂ = exp{iδt(â†1â1−â
†
3â3)/ℏ},

we get the transformed Hamiltonian

ˆ̃
H(t) = J

2∑
ℓ=1

(
eiδt/ℏ â†ℓ âℓ+1 − e−iδt/ℏ â†ℓ+1âℓ

)
+
U

2

3∑
ℓ=1

â†ℓ â
†
ℓ âℓâℓ. (S14)

Using a similar procedure as for L= 2 for δ ≫ U, J , one can write an effective Hamiltonian which till the second order
of Magnus expansion is given as

ˆ̃
Heff ≈

(
U

2
− J2U

δ2

) 3∑
ℓ=1

â†ℓ â
†
ℓ âℓâℓ −

J2U

δ2
â†2â

†
2â2â2 +

4J2U

δ2

2∑
ℓ=1

â†ℓ âℓâ
†
ℓ+1âℓ+1 −

J2U

δ2

(
â†1â

†
3â2â2 + h.c.

)
+
J2

δ

(
â†1â1 − â†3â3

)
. (S15)
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As a matter of fact, the terms obtained here resemble the Hamiltonian describing rotationally invariant spin-1 gases
[8, 80],

ĤS=1

Us
= 2N̂ + â†1â

†
1â1â1 + â†3â

†
3â3â3 + 2

(
â†1â

†
2â1â2 + â†2â

†
3â2â3 − â†1â

†
3â1â3

)
+ 2

(
â†1â

†
3â2â2 + h.c.

)
, (S16)

with Us the spin interaction energy. However, a one-to-one mapping between the two Hamiltonians does not exist,
as U, J and δ in Eq. (S15) cannot be tuned to match the corresponding terms in Eq. (S16); in this sense, the 3-mode
tilted Bose-Hubbard model is not a direct analogue of spin-1 Bose gases.

D. QUANTUM OPTIMAL CONTROL OF L-TUPLE FOCK STATES

Given a dynamical system described by the state vector x⃗(t) (0 ≤ t ≤ tf), and whose evolution is parameterized
by control parameters u⃗(t), optimal control [81–84] is the mathematical formalism that allows to determine u⃗(t) in
order to optimally control x⃗(t). In the framework of optimal control, optimality is captured by a cost function C to be
minimized. By virtue of the Pontryagin Maximum Principle, the optimal control u⃗(t) is the one that maximizes the
Pontryagin Hamiltonian HP(t), ∀t ∈ [0, tf] (see below, and Refs. [48, 81, 82, 84]). Quantum optimal control [46–48, 62]
is the application of optimal control theory to quantum systems, with typically x⃗(t) → |ψ(t)⟩.

a. Implementation

In this work, we use the energy bias δ(t) between the L-modes of a Bose-Hubbard system as our control parameter
to optimally steer the ground state of the system (taken at δ = 0 with U/J fixed) towards the L-tuple Fock state
|N/L⟩ in a fixed time tf. We do not place any constraint on δ(t). The cost function that we minimize is C = 1− F ,
with F = | ⟨N/L|ψ(tf)⟩ |2, leading to the following definition of the Pontryagin Hamiltonian [63, 84, 85]:

HP(t) = Re

{
⟨χ(t)| ∂

∂t
|ψ(t)⟩

}
=

1

ℏ
Im
{
⟨χ(t)| Ĥ(δ(t)) |ψ(t)⟩

}
, (S17)

using Schrödinger equation with the Hamiltonian Ĥ given in Eqs. (S10) and (S13) for L = 2 and 3 respectively.
In Eq. (S17), |ψ(t)⟩ is state during its preparation and |χ(t)⟩ is a non-normalized adjoint state, also solution of
Schrödinger equation and defined by the final condition:

⟨un|χ(tf)⟩ =
∂F

∂ (⟨ψ(tf)|un⟩)
, (S18)

in any basis {|un⟩}, giving |χ(tf)⟩ = ⟨N/L|ψ(tf)⟩ |N/L⟩. Given an non-optimal control δ(t), the first-order correction
∆δ(t) required to increase HP (and thus F) is proportional to the derivative of HP with respect to the control
parameter [48, 62, 63], that is

∆δ(t) =
ϵ

ℏ
Im

{
⟨χ(t)| ∂Ĥ(δ(t))

∂(δ(t))
|ψ(t)⟩

}
, (S19)

with ϵ a small adjustable line-search parameter [48, 62]. We iteratively correct δ(t) → δ(t) +∆δ(t) until we reach the
desired fidelity, following the algorithm given in Refs. [48, 62, 63].

As discussed in the main text, working around a large average tilt allows to restrict the quantum dynamics of the
evolved state to a narrow subset of Hilbert space. We use it to our advantage by first computing an approach control
field in a Hilbert space strongly truncated “around” |N/L⟩ [86]. We then use this first control field as a strong guess
for a second optimization in the complete Hilbert space.

b. Details of the controls featured in the main text

We detail in Fig. S5 the twin Fock state preparations presented in Table 1 of the main text, i.e. as a function of
N . For each number of bosons considered, we show the optimal-control tilt δ, the three metrics of state preparation
considered in the main text (namely the fidelity F to the twin Fock state, the fragmentation entropy SF and the
number squeezing parameter ξ2N ), and the projection over the Fock basis as a function of the preparation time. In
particular, panel (d), with N = 32, corresponds to Fig. 2 of the main text.
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N 3 6 9 15 21 27
δ0(J) 2.63 7.50 13.5 22.5 26.3 40.5
tf (ℏ/J) 15.3 11.8 5.93 4.12 4.25 2.99

F 0.999 0.990 0.980 0.971 0.962 0.937
SF/ ln(3) > 0.999 0.996 0.997 0.999 0.987
ξ2N
(dB)

(
ψf

ϕ0

)
-26.9 14.4 -14.8 -15.7 -14.9 -14.9
-0.994 -2.21 -2.97 -3.99 -4.68 -5.20

TABLE S1. Triple Fock state preparations by optimal control (U/J = 1) for increasing number of bosons N , with
guess tilt δ0, control duration tf, final fidelity F to |N/3⟩, fragmentation entropy SF (divided by ln(3)) and number squeezing
parameter of prepared and initial states (|ψf⟩ and |ϕ0⟩ resp.).

c. Robustness to number fluctuations

To demonstrate the significant robustness of our optimal-control scheme to number fluctuations, which results from
inducing fragmentation around a large tilt (see main text), we now apply the control fields that were optimized for a
given N0 to other settings with N ̸= N0. Figure S6 shows those results for N0 = 16, 32, 64 and 128, corresponding
to the controls of Fig. S5(c-f). The fidelity remains above 90% of its maximum over the large interval N ∈ [10, 18]
for N0 = 16, N ∈ [20, 46] for N0 = 32, N ∈ [44, 80] for N0 = 64 and N ∈ [96, 160] for N0 = 128. Figure S6 further
illustrates that the fidelity is a fragile metric compared to the fragmentation entropy, which remains very high around
N0, furthermore over a larger interval as N increases.

We mention that dedicated approaches exist to enhance robustness in optimal control theory (see [48] and references
therein), however these go beyond the scope of this study.

d. Quantum optimal preparations of triple Fock states

Figure S7 shows results of triple Fock state preparation by optimal control for N = 3, 6, 9, 15, 21 and 27 bosons.
Our approach is the same as for L=2 (see main text and previous sections). Details of the preparations are given in
Table S1.

E. NUMBER FLUCTUATIONS OF REFERENCE

We derive, for L=2 and 3, the uncorrelated number fluctuations ∆Ĵ2
z,ref used as the reference value when computing

the number squeezing parameter ξ2N (ψ) = ∆Ĵ2
z,ψ/∆Ĵ

2
z,ref. In each case considered, the reference state that is taken

corresponds to the ground state of the hopping Hamiltonian with N bosons.

a. Uncorrelated number fluctuations for L=2

The reference state is the coherent spin state given in Eq. (S3) for n = 0, explicitly

∣∣∣ϕ(0)0

〉
=

(
â†1 + â†2

)N
2N/2

√
N !

|0, 0⟩ . (S20)
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Number fluctuations for that state are given by the variance on Ĵz: ∆Ĵ2
z,ref = ⟨Ĵ2

z ⟩ref − ⟨Ĵz⟩2ref, with Ĵz = (â†1â1 −
â†2â2)/2. As the reference state lies symmetrically on the equator of the Bloch sphere, the first moment of Ĵz is zero:

⟨Ĵz⟩ref =
1

2N+1N !
⟨0, 0| (â1 + â2)

N
(
â†1â1 − â†2â2

)(
â†1 + â†2

)N
|0, 0⟩

=
1

2N+1N !

(
N∑
n=0

(
N

n

)√
(N − n)!n! ⟨N − n, n|

)(
â†1â1 − â†2â2

)( N∑
m=0

(
N

m

)√
(N −m)!m! |N −m,m⟩

)

=
1

2N+1

N∑
n=0

(
N

n

)
(N − 2n) = 0, (S21)

where the last equality is evaluated using the following identities on the sum of the binomial coefficients:

N∑
n=0

(
N

n

)
= 2N and

N∑
n=0

n

(
N

n

)
= 2N−1N. (S22)

Number fluctuations are thus given by the second moment of Ĵz, that is

∆Ĵ2
z,ref = ⟨Ĵ2

z ⟩ref =
1

2N+2

N∑
n=0

(
N

n

)
(N − 2n)2 =

N

4
, (S23)

using Eqs. S22 and

N∑
n=0

n2
(
N

n

)
= 2N−2N(N + 1). (S24)

The result in Eq. (S23) is well known, see e.g. Refs. [5, 68]

b. Uncorrelated number fluctuations for L=3

For L = 3, we evaluate the number fluctuations partially, via the variance of the population imbalance between
modes 1 and 3: Ĵz = â†1â1 − â†3â3 [6, 20]. The hopping Hamiltonian (without coupling between modes 1 and 3) is

Ĥ = −J
(
â†1â2 + â†2â3 + â†2â1 + â†3â2

)
= −

√
2J
(
â†+â+ − â†−â−

)
, (S25)

with â± = (â1 ±
√
2â2 + â3)/2. The reference state for number fluctuations is the ground state of Hamiltonian (S25),

namely

∣∣∣ϕ(0)〉 =

(
â†1 ±

√
2â†2 + â†3

)N
2N

√
N !

|0, 0, 0⟩

=
1

2N
√
N !

N∑
n=0

(
N

n

)
2(N−n)/2

√
(N − n)!

n∑
r=0

(
n

r

)√
(n− r)!r! |n− r,N − n, r⟩ , (S26)

which is not a coherent spin state in the absence of coupling between modes 1 and 3. For that state (having equal
populations in modes 1 and 3), the first moment of Ĵz is zero:

⟨Ĵz⟩ref =
1

2N

N∑
n=0

(
N

n

)
1

2n

n∑
r=0

(
n

r

)
(n− 2r) = 0, (S27)

as the second sum is null from Eqs. (S22). The variance of Ĵz is thus

∆Ĵ2
z,ref = ⟨Ĵ2

z ⟩ref =
1

2N

N∑
n=0

(
N

n

)
1

2n

n∑
r=0

(
n

r

)
(n− 2r)2 =

N

2
, (S28)
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using Eqs. (S22) and (S24).
For completeness, we give that the uncorrelated number fluctuations for L = 3 with coupling between modes 1

and 3 (i.e. considering a coherent spin state, e.g. the ground state of a ring of three spatial sites) are given by
∆Ĵ2

z,ref = 2N/3.



18

0

2

4

δ
(J

)
(a)

0

1

F,
S

F

0 1 2 3 4 5

0

2

4

n
1

3

5

7

δ
(J

)

(b)

0

1

F,
S

F

0 1 2 3

0

4

8

n
1

7

10

13

δ
(J

)

(c)

0

1

F,
S

F

0.0 0.5 1.0 1.5 2.0 2.5

2

8

14

n
1

10

20

δ
(J

)

(d)

0

1

F,
S

F

0.0 0.5 1.0 1.5 2.0

4

16

28

n
1

20

30

δ
(J

)

(e)

0

1

F,
S

F

0.00 0.25 0.50 0.75 1.00 1.25

24

32

40

n
1

30

40

50

δ
(J

)

(f)

0

1

F,
S

F

0.0 0.2 0.4 0.6 0.8

56

64

72

n
1

60

80

δ
(J

)

(g)

0

1

F,
S

F

0.0 0.2 0.4 0.6

t (h̄/J)

120

128

136

n
1

75

100

δ
(J

)

(h)

0

1

F,
S

F

0.0 0.1 0.2 0.3 0.4

t (h̄/J)

248

256

264

n
1

0

1

|〈n
1
|ψ
〉|2

0

1

|〈n
1
|ψ
〉|2

0

1
|〈n

1
|ψ
〉|2

0

1

|〈n
1
|ψ
〉|2

0

1

|〈n
1
|ψ
〉|2

0

1

|〈n
1
|ψ
〉|2

0

1

|〈n
1
|ψ
〉|2

0

1

|〈n
1
|ψ
〉|2

−20

0

ξ2 N
(d

B
)

−20

0

ξ2 N
(d

B
)

−20

−10

ξ2 N
(d

B
)

−20

−10

ξ2 N
(d

B
)

−15

−10

ξ2 N
(d

B
)

−15

−10

ξ2 N
(d

B
)

−15

−10

ξ2 N
(d

B
)

−20

−10

ξ2 N
(d

B
)

FIG. S5. Details of twin Fock state preparation by optimal control. (a) Top row: Optimal control tilt as a function
of time (solid black line) to drive the ground state of the unbiased system with U/J = 1 and N = 4 towards the twin Fock
state |N/2⟩, and initial guess δ(t) = δ0 (dashed grey line). Middle row: Fidelity F to |N/2⟩ (blue solid line), fragmentation
entropy SF (divided by ln(2), orange dashed) and number squeezing parameter ξ2N (dB scale, black dash-dotted) as a function
of time. Bottom row: Fock space projection during the preparation. (b-h) Same as (a) for N = 8, 16, 32, 64, 128, 256, 512
respectively. For (e-h), the displayed evolution in Fock space is cropped over n1 = N/2± 10 (bottom rows).
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plotted in Fig. S5(c-f).
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FIG. S7. Triple Fock state preparations by optimal control. (a) Top row: Optimal control tilt as a function of time
(solid black line) to drive the ground state of the unbiased system with U/J = 1 and N = 3 towards the triple Fock state
|N/3⟩, and initial guess δ(t) = δ0 (dashed grey line). Bottom row: Fidelity F to |N/3⟩ (blue solid line), fragmentation entropy
SF (divided by ln(3), orange dashed) and number squeezing parameter ξ2N (dB scale, black dash-dotted) as a function of time.
(b-f) Same as (a) for N = 6, 9, 15, 21, 27 respectively. See Table S1 for details.
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