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Abstract
Differential privacy is the gold standard in the problem of privacy preserving data analysis, which
is crucial in a wide range of disciplines. Vertex colouring is one of the most fundamental graph
problems. In this paper, we study the vertex colouring problem in the differentially private setting.

To be edge-differentially private, a colouring algorithm needs to be defective: a colouring is
d-defective if a vertex can share a colour with at most d of its neighbours. Without defectiveness, any
differentially private colouring algorithm needs to assign n different colours to the n different vertices.
We show the following lower bound for the defectiveness: a differentially private c-edge colouring
algorithm of a graph of maximum degree ∆ > 0 has defectiveness at least d = Ω

( log n
log c+log ∆

)
.

We complement our lower bound by presenting an ϵ-differentially private algorithm for O
(

∆
log n

+ 1
ϵ

)
-

colouring a graph with defectiveness at most O (log n).
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2 Private graph colouring with limited defectiveness

1 Introduction and related work

Graph colouring is a family of fundamental problems with many applications in computer
science, including scheduling, routing, register allocation, visualisation, network analysis and
clustering problems. The vertex colouring problem is the following: one wants to assign each
vertex a colour such that no two neighbours have the same colour, that is, each colour class is
an independent set. In most applications of colouring, the edges of the graph represent some
kind of conflict: the two adjacent vertices cannot be scheduled at the same time, cannot be
visualised with the same colour, or cannot be in the same cluster or team. In this paper, we
consider the hypothesis that a conflict is sensitive information, and ask whether it is possible
to somehow approximately colour the vertices, without revealing their exact conflicts. Is it
possible to group the vertices of the graph so that each vertex is only grouped with a limited
number of vertices with whom it has a conflict? This notion of ‘approximately’ colouring the
graph is that of defective colouring: a colouring is (c, d)-defective if it uses a colour palette of
size c and any vertex can share colour with at most d of its neighbours. In other words, we
want to partition the set of vertices V (G) into sets V1, . . . , Vk such that for every i ∈ [k], each
vertex in Vi share at most d neighbours in Vi. There has been a lot of interesting work on the
defective colouring of graphs [1, 6, 11, 16, 19, 22, 26, 31, 41, 38, 45, 46], also in distributed
graph algorithms [3, 33, 4, 23].

There is a large body of work studying graphs under differential privacy, including
estimating subgraph counts [5, 8, 32, 47, 44, 28, 21, 29, 30, 17], the degree distribution of the
graph [25, 12, 39, 48, 21], and the densest subgraph [35, 20, 14], as well as approximating
the minimum spanning tree and computing clusterings [36, 37, 27, 43, 34, 9, 21, 10, 14] and
cuts and shortest paths [24, 40, 2, 18, 42, 7, 13].

When studying differentially privacy, the hope is to give algorithms that disclose some
information or analysis of the whole data set (in this case, the graph), while keeping the
individual data points (in this case, the edges) private. A graph colouring, and especially one
with few colours, gives significant insight into the graph structure, which should intuitively
reveal much of the private information. We formalise this intuition by giving a lower bound
on the defectiveness of a differentially private colouring.

1.1 Roadmap

In section 2, we prove the following lower bound: a c-edge colouring algorithm for the class of
graphs of n nodes of degree at most ∆ must have a defectiveness at least d = Ω

(
log n

log c+log ∆

)
.

The proof builds on the following idea: Given a valid (c, d)-defective colouring on a graph G,
if there exist d + 2 nodes of the same colour, then there is a (d + 1)-neighbouring graph to G

on which this colouring is invalid: namely, connecting these d + 2 nodes into a star. This can
be used to upper-bound the probability of any colouring producing d + 2 nodes of the same
colour. However, if c < n

d+1 , then for any valid (c, d)-defective colouring there must exist
d + 2 nodes of the same colour. Combining these two observations yields our lower bound.

In section 3, we propose a simple colouring algorithm. With Chernoff bounds and a
random colouring, we can get defectiveness Ω(log n), so we minimise the number of colours
used, which results in a ϵ-edge differentially private

(
O
(

∆
log n + 1

ϵ

)
, O (log n)

)
colouring.

1.2 Definitions and notations

We recall some basic definitions and lemmas regarding differential privacy in graphs.
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▶ Definition 1 (Edge-neighbouring graphs [25]). Let n ∈ N. Let G = (V, E) and G′ = (V, E′)
be two graphs on n nodes. We say that G and G′ are k-edge-neighbouring if the cardinality of
the symmetric difference of E and E′ is k. In particular, we say that G is an edge-neighbouring
graph of G′ if they differ by exactly one edge.

In this work, we only consider edge-neighbouring (as opposed to node-neighbouring, see [25]).
We will thus refer to edge-neighbouring graphs as simply neighbouring graphs.

▶ Definition 2 (Differential privacy [15]). A randomised algorithm A is (ϵ, δ)-differentially
private if for all neighbouring inputs x, y and for all possible sets of outputs S ⊆ range(A):

Pr(A(x) ∈ S) ≤ eϵ Pr(A(y) ∈ S) + δ.

A randomised algorithm is ϵ-differentially private if it is (ϵ, 0)-differentially private.

In this work, we focus on ϵ-edge differential privacy.

▶ Definition 3 (Edge differential privacy). A randomised algorithm A is ϵ-edge differentially
private if for all edge-neighbouring graphs G and G′ and for all possible sets of outputs
S ⊆ range(A):

Pr(A(G) ∈ S) ≤ eϵ Pr(A(G′) ∈ S).

Next, we recall the Laplace mechanism and its properties.

▶ Definition 4 (Laplace distribution). The Laplace Distribution (centred at 0) with scale b is
the distribution with probability density function:

Lap(x|b) = 1
2b

exp
(

−|x|
b

)
▶ Lemma 5 (Laplace Tailbound). If Y ∼ Lap(b), then: P (|Y | ≥ t · b) = e−t.

In the following, we denote the data universe by χ. For example, χ can be the set of all
graphs with n vertices.

▶ Definition 6 (L1-sensitivity). Let f : χ → Rk. The L1-sensitivity of f is given by
maxx,y neighbouring ||f(x) − f(y)||1.

▶ Definition 7 (Laplace Mechanism). Given f : χ → Rk with L1-sensitivity S1, the Laplace
mechanism is defined as:

ML(x, f, ϵ) = f(x) + (Y1, ..., Yk),

where Yi are i.i.d random variables drawn from Lap(S1/ϵ).

▶ Lemma 8 ([15]). The Laplace mechanism preserves ϵ-differential privacy.

We will use the following Chernoff bound:

▶ Lemma 9 (Additive Chernoff bound). Let X1, . . . , Xm be independent random variables s.t.
0 ≤ Xi ≤ 1. Let S denote their sum and µ = E(S). Then for any η ≥ 0:

P (S ≥ (1 + η)µ) ≤ e− η2µ
2+η

Therefore for any 0 ≤ η ≤ 1:

P (S ≥ (1 + η)µ) ≤ e− η2µ
3
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2 A lower bound on the defectiveness of private colouring

In the following, we state our main observation, which is a lower bound on the defectiveness
d for any colouring with less than n colours.

▶ Theorem 10. Let c, d, ∆, n ∈ N with c < n and d < ∆, and let ϵ > 0 be a constant.
Consider an ϵ-differentially private algorithm that with high probability returns a (c, d)-
defective colouring of any n-node graph with maximum degree at most ∆. It must be that:

d = Ω
(

log n

log c + log ∆

)
Proof. If c(d + 1) ≥ n, then log n

log c+log(d+1) = O(1), in which case it holds that d = Ω(1) =

Ω
(

log n
log c+log(d+1)

)
= Ω

(
log n

log c+log ∆

)
. Note that d cannot be 0 as otherwise, c ≥ n in contra-

diction to our assumption.
In the following, we consider the case where c(d + 1) < n. Assume the algorithm returns

a valid (c, d)-defective colouring with probability at least 1 − 1
nα for any graph of degree

at most ∆, for some constant α > 0. Define n0 = c(d + 1) + 1. Any valid (c, d)-defective
colouring has to have the following property: In any subset V0 of size n0, there has to exist a
colour such that at least d + 2 nodes have that colour. Since our algorithm returns a valid
(c, d)-defective colouring with high probability on any graph G with maximum degree ∆, it
has to fulfil for any subgraph V0 of n0 nodes:

P (∄(d + 2) nodes in V0 with the same colour in G) ≤ 1
nα

. (1)

Consider the empty graph G with n nodes. Pick any subset V0 with n0 nodes. Pick any
set U ⊆ V0 with d + 2 nodes. We can find a d + 1-neighbouring graph G′ such that any valid
(c, d)-defective colouring needs at least 2 colours within U : We can add (d + 1) edges to
form a star with d + 1 leaves. Since the center can have at most d neighbours of the same
colour, we need at least two colours to colour the star. Since our algorithm returns a valid
(c, d)-defective colouring with high probability on G′, it has to fulfill:

P (all nodes in U have the same colour in G′) ≤ 1
nα

and by group privacy,

P (all nodes in U have the same colour in G) ≤ eϵ(d+1) 1
nα

.

There are
(

n0
d+2
)

ways of choosing U ⊆ V0, therefore, by the union bound:

P (∃(d + 2) nodes in V0 with the same colour in G) ≤
(

n0

d + 2

)
eϵ(d+1) 1

nα

Combined with (1), this gives:

1
nα

≥ P (∄(d + 2) nodes in V0 with the same colour in G) ≥ 1−
(

n0

d + 2

)
eϵ(d+1) 1

nα

and further:
1

nα
≥ 1−

(
n0

d + 2

)
eϵ(d+1) 1

nα

≥ 1−
(

n0

d + 2

)
eϵ(d+2) 1

nα
.
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We multiply with nα and use the following upper bound on binomial coefficients:
(

n0
d+2
)

≤(
n0e
d+2

)d+2
. This gives

nα ≤ 1 +
(

n0

d + 2

)
eϵ(d+2)

≤ 1 +
(

n0eϵ+1

d + 2

)d+2

≤ 1 +
(
n0eϵ+1)d+2

Taking the logarithm, we get

α log n = O ((d + 2)(log(n0) + ϵ + 1)
= O ((d + 2)(log(n0))

Therefore:

d = Ω
(

log n

log n0

)
= Ω

(
log n

log c + log(d + 1)

)
= Ω

(
log n

log c + log ∆

)
which concludes the proof. ◀

In particular, if c = O(∆), we have d = Ω
(

log n
log ∆

)
.

Note that if c ≥ n we could use a different colour for each vertex, and if d ≥ ∆ we could
colour the entire graph with one colour, therefore the assumption c < n and d < ∆ is sound.

3 An ϵ-edge differentially private
(
O
(

∆
log n

+ 1
ϵ

)
, O (log n)

)
colouring

algorithm

▶ Theorem 11. Let n, ∆ ∈ N. There is an ϵ-edge differentially private algorithm that, for
any input graph G on n vertices, outputs an assignment of colours to the vertices, such that if
G has maximum degree ∆, the colour assignment is an

(
O
(

∆
log n + 1

ϵ

)
, O (log n)

)
-defective

colouring with high probability.

Proof. Given a graph G, we first augment G such that every node in our graph has degree
approximately ∆ with high probability. We augment G in the following way: First, we
compute an ϵ-differentially private estimate of the maximum degree by ∆̃ = ∆ + Lap(1/ϵ) +
α log n

ϵ . Since the L1-sensitivity of the maximum degree is 1, computing ∆̃ fulfills ϵ-differential
privacy by Lemma 7. By Lemma 5, the additive error is bounded by α log n

ϵ with probability
at least 1 − n−α. Thus, we get ∆ + 2α log n

ϵ ≥ ∆̃ ≥ ∆ with high probability. We then
add ∆̃ dummy nodes to our graph and from every v ∈ V , we add ∆̃ edges from v to the
dummy nodes. In this augmented graph G′, we have degG′(v) = degG(v) + ∆̃, and thus with
probability at least 1 − n−α, every vertex v in G fulfills degG′(v) ∈ [∆̃, 2∆̃].

We now colour the resulting graph as follows: Let η ≤ 1 be a constant and 0 ≤ β ≤ 1.
We consider a palette S of size:

|S| = η2∆̃
3 log 1

β

.
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Then, all vertices pick a colour u.a.r from S. Our colouring of G is now given by this colouring
restricted to the vertices in G.

The algorithm fulfills ϵ-differential privacy, since the only time we use information about
the edges is to estimate the maximum degree, which we do privately using the Laplace
mechanism.

To analyse accuracy, we condition on ∆ + 2α log n
ϵ ≥ ∆̃ ≥ ∆, which is true with probability

1 − n−α. Then for every node v in the original graph G, we analyse the expected number
of neighbours in the augmented graph which are assigned the same colour as v, which we
denote by dGconflict

(v). The expectation of dGconflict
(v) is given by the degree of v divided

by the number of available colours:

E
(
dGconflict

(v)
)

= degG′(v)
|S|

We have

E(dGconflict
(v)) =

3degG′(v) log 1
β

∆̃η2
≥

3 log 1
β

η2

and

E(dGconflict
(v)) =

3degG′(v) log 1
β

∆̃η2
≤

6 log 1
β

η2

We can show via Chernoff bound that the resulting colouring is
(

6 (1+η) log(1/β)
η2

)
-defective

with probability β. Since η ≤ 1, the Chernoff bound Lemma 9 gives:

P
(
dGconflict

(v) ≥ (1 + η)µ
)

≤ exp
(

− η2

2 + η
µ

)
≤ exp

(
−η2

3 µ

)
Plugging in the upper and lower bounds on µ gives

P

(
dGconflict

(v) ≥
(

6(1 + η) log(1/β)
η2

))
≤ exp

(
−η2

3
3 log 1

β

η2

)
≤ β

This means that with probability at least 1−β, we have defectiveness at most
(

6 (1+η) log(1/β)
η2

)
.

Setting β = n−α, we get with probability 1 − 2n−α a colouring with a palette of size
η2

3 · ∆̃
α log n ≤ η2

3 ·
(

∆
α log n + 2

ϵ

)
and defectiveness O(log n). ◀

4 Conclusion

In this paper, we show that to be ϵ-edge differentially private, a colouring algorithm needs to
be defective with defectiveness d = Ω

(
log n

log c+log ∆

)
and we propose an ϵ-edge differentially

private algorithm using O
(

∆
log n + 1

ϵ

)
colours and defectiveness O(log n). For any constant ϵ

and defectiveness Ω(log n), the number of colours is asymptotically tight, and our lower bound
shows that we cannot hope for a much smaller defectiveness unless c or ∆ are very large. In
particular, we leave as an open question an algorithm which achieves better defectiveness at
the cost of using polynomially many colours in n.
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