2404.18681v1 [cs.DB] 29 Apr 2024

arxXiv

LLMClean: Context-Aware Tabular
Data Cleaning via LLM-Generated OFDs

Fabian Biester
st108056 @stud.uni-stuttgart.de
University of Stuttgart
Stuttgart, Germany

ABSTRACT

Machine learning’s influence is expanding rapidly, now integral to
decision-making processes from corporate strategy to the advance-
ments in Industry 4.0. The efficacy of Artificial Intelligence broadly
hinges on the caliber of data used during its training phase; opti-
mal performance is tied to exceptional data quality. Data cleaning
tools, particularly those that exploit functional dependencies within
ontological frameworks or context models, are instrumental in aug-
menting data quality. Nevertheless, crafting these context models
is a demanding task, both in terms of resources and expertise, often
necessitating specialized knowledge from domain experts.

In light of these challenges, this paper introduces an innova-
tive approach, called LLMClean?, for the automated generation of
context models, utilizing Large Language Models to analyze and
understand various datasets. LLMClean encompasses a sequence
of actions, starting with categorizing the dataset, extracting or
mapping relevant models, and ultimately synthesizing the context
model. To demonstrate its potential, we have developed and tested
a prototype that applies our approach to three distinct datasets
from the Internet of Things, healthcare, and Industry 4.0 sectors.
The results of our evaluation indicate that our automated approach
can achieve data cleaning efficacy comparable with that of context
models crafted by human experts.

CCS CONCEPTS

« Do Not Use This Code — Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS

Do, Not, Us, This, Code, Put, the, Correct, Terms, for, Your, Paper
ACM Reference Format:
Fabian Biester, Mohamed Abdelaal, and Daniel Del Gaudio. 2018. LLMClean:

Context-Aware Tabular Data Cleaning via LLM-Generated OFDs. In Pro-
ceedings of Make sure to enter the correct conference title from your rights

ISource code is available at https://github.com/asdfthefourth/LLMClean

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference acronym XX, June 03-05, 2018, Woodstock, NY

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

Mohamed Abdelaal
Software AG
Darmstadt, Germany
Mohamed.Abdelaal @softwareag.com

Daniel Del Gaudio
University of Stuttgart
Stuttgart, Germany

confirmation emai (Conference acronym °XX). ACM, New York, NY, USA,
13 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Data Quality Problems. The data landscape is undergoing a mas-
sive expansion due to the proliferation of the Internet of Things
(IoT), which is connecting an ever-growing network of data-gathering
devices. This growth is supported by the declining costs of data ac-
quisition technologies and the widespread availability of affordable
internet, enabling devices to seamlessly integrate and communicate
globally [5]. Enterprises are increasingly harnessing this data to
drive strategic business decisions and maintain a competitive edge,
emphasizing the need for high-quality data. The escalating reliance
on Machine Learning (ML) across diverse industries demands high-
quality training data, where deficiencies in this data can lead to
biased, inaccurate, or suboptimal ML outcomes [1]. Unfortunately,
real-world data often contains various inaccuracies, e.g., duplica-
tions, null entries, anomalies, rule violations, and inconsistencies
within or between data instances, all of which can substantially
degrade the quality of the data.

Context Awareness. To address data quality issues, a range of
automated data cleaning tools have been developed, utilizing static
signals like business rules, data constraints, or metadata to identify
and rectify errors in data [8, 12, 14]. Despite their utility, these tools
often lack incorporation of the context in which data is collected, a
factor crucial for effectively cleaning data within ML workflows.
Such context information provides insight into the data’s meaning,
relevance, and relationships, thereby ensuring that the cleaned data
aligns accurately with the real-world phenomena it is intended to
represent. To fill this gap, a suite of context-aware data cleaning
tools, such as [7, 19] have recently leveraged Ontological Functional
Dependencies (OFDs) extracted from context models. In contrast to
conventional functional dependencies, OFDs provide an advanced
mechanism for capturing semantic relationships between attributes,
which can significantly reduce the incidence of false positives while
cleaning data (cf. Section 3 for more details).

Challenges. OFD-based cleaning tools have demonstrated their
efficacy in enhancing the precision of both error detection and cor-
rection. Nevertheless, the manual construction of context models
for extracting OFDs is an inherently inefficient and impractical
approach, particularly for real-time applications. This inefficiency
stems from the need for extensive domain expertise to accurately
interpret multifaceted and evolving data interrelationships, com-
pounded by the overwhelming volume of data to be analyzed and
the need for the models to rapidly adapt to environmental changes.
Manual methods are further disadvantaged by their susceptibility to

https://orcid.org/1234-5678-9012
https://github.com/asdfthefourth/LLMClean
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

human error and limited scalability as system complexities increase.
Moreover, ensuring consistency throughout the context model dur-
ing updates presents an additional layer of difficulty. Therefore, the
automation of this process is indispensable, not only to preserve
the precision and trustworthiness of the context models but also to
facilitate their scalability and flexibility amidst the swiftly changing
data landscapes.

Proposed Solution. In this paper, we introduce a novel method,
designated as LLMClean, which automatically generates context
models from real-world data without requiring supplementary
meta-information. LLMClean leverages the powerful capabilities
of Large Language Models (LLMs) to seamlessly adapt to dynamic
data patterns. Specifically, LLMClean includes several steps, includ-
ing the classification of the dataset, the extraction or mapping of
models, and the final generation of the context model. Thanks to
the automatically generated OFDs, LLMClean facilitates a robust
data cleaning and analytical framework, addressing the challenges
posed by the vast and evolving nature of real-world data, e.g., IoT
datasets. Moreover, LLMClean introduces a set of dependencies,
namely Sensor Capability Dependencies and Device-Link Depen-
dencies, pivotal for the precise detection of errors. Our evaluation
shows that LLMClean not only mirrors the data cleaning efficacy
of manually curated context models but does so with enhanced
efficiency and scalability.

Summary of Contributions. The paper provides the following
contributions: (1) We introduce a novel three-stage architectural
framework to identify erroneous instances in tabular data. This
framework encompasses a comprehensive approach that combines
the power of LLM models, context models, and data-cleaning tools.
By leveraging this combined approach, our framework achieves
significant improvements in both the effectiveness and efficiency of
error detection compared to traditional tools, together with enhanc-
ing LLMClean’s ability to handle diverse and complex error patterns
present in tabular data. (2) We present an innovative method that
utilizes LLM models, such as Llama-2, GPT-3.5, and GPT-4, to au-
tonomously generate context models directly from real-world data.
(3) We propose an innovative prompt ensembling technique de-
signed to enhance the stability of LLM models. (4) We develop an
error detection tool that enforces a suite of OFD dependencies ex-
tracted from the automatically generated context models. (5) We
conduct extensive experimental evaluation, comparing the perfor-
mance of LLMClean against a range of baseline methods using three
real-world datasets from different domains, including IoT, Industry
4.0, and healthcare. To the best of our knowledge, LLMClean is the
first method that effectively leverages LLM models to enhance data
cleaning tools through automatically generated context models.

Paper Structure. The remainder of this paper is structured as fol-
lows. Section 2 provides an overview of the LLMClean method, out-
lining its key elements. Section 3 introduces the proposed method
for automating the context model generation using LLM models.
Section 4 presents our prompt ensembling method to enhance the
stability of LLM models. In Section 5, we provide an overview of
the error detection method developed to enforce the extracted OFD
rules. Section 6 presents the experimental evaluation, including a
discussion of results on standardized datasets and comparisons to

Biester and Abdelaal, et al.

¢

o O —]

== Errors .

B g e Repaired <«—— Error Correctlon®
2a [—]

3 g

ol T

Dirty Dataset

OFDs-Based @
Error Detection

%
2

OFDs Extraction

e Context Model

©
LLM-Based
Context Model Generation

Figure 1: Architecture of LLMClean

baseline techniques. Section 7 reviews related work on traditional
data cleaning tools and distinguishes LLMClean’s novel formula-
tion. Finally, Section 8 concludes and discusses potential directions
for future extension.

2 OVERVIEW

In this section, we introduce the architecture of LLMClean together
with relevant preliminaries. Figure 1 shows that the input to the data
cleaning pipeline is a dirty dataset, which may contain a heteroge-
nous error profile, e.g., inaccuracies, inconsistencies, and missing
entries. The data-cleaning process starts by generating a context
model from this dirty dataset, which essentially maps out the crit-
ical relationships and attributes inherent within it. This model
lays the foundation for the cleaning process ahead. Following the
context model generation, LLMClean identifies OFDs within the
model—key indicators that signal potential data irregularities. LLM-
Clean leverages these OFDs to validate the input data. Data that
pass this step are deemed valid, while the invalid data instances
are flagged for further processing. Such information about the data
being valid or not is later used as input to error correction tools,
such as Baran[12] and HoloClean[14], to generate repair candidates.

By focusing on the erroneous instances identified by the OFDs,
the error correction tools can systematically rectify errors, signifi-
cantly boosting the dataset’s overall quality. This seamless integra-
tion of automated tools and critical evaluations within the pipeline
ensures the production of a dataset that is not only cleaner but also
prepared for more reliable applications in various domains. Before
delving into the automated generation of context models using
LLMs, it is crucial to establish a clear understanding of the various
types of OFD dependencies and how we categorize the input data
as either IoT data or non-IoT relational data.

2.1 OFD Dependencies

In general, OFDs represent a subset of Functional Dependencies
(FDs) derived from an underlying Ontology, which provides the
semantic framework necessary for establishing these dependencies.
Ontologies serve as a formal representation of knowledge within a
specific domain, providing a rich framework for defining the enti-
ties, relationships, and constraints that govern the data. This section
introduces seven distinct types of OFDs that LLMClean addresses,
including denial dependency, matching dependency, device-link

LLMClean: Context-Aware Tabular
Data Cleaning via LLM-Generated OFDs

dependency, temporal dependency, location dependency, monitor-
ing dependency, and capability dependency. Denial dependencies
represent a broad category of integrity constraints that can express
conditions disallowing certain data combinations, and this category
includes the capability to represent constraints similar to func-
tional dependencies (FDs) and conditional functional dependencies
(CFDs) [14]. Formally, a denial dependency (DD) over a relation
R is a constraint that denies the existence of certain tuples within
an instance of R. A denial dependency is expressed as a condition
involving attributes of R that cannot hold simultaneously. For in-
stance, a denial dependency D can be symbolically represented
as =(X; A Xa A ... A Xp), where each X; is a predicate over the
attributes of R. An instance I of R satisfies the denial dependency
D if there are no tuples t1,t2,.. ., tn € I for which all predicates X;
are true simultaneously. If such a combination of tuples is found in
I, the involved tuples can be flagged as erroneous [7].

A Matching Dependency (MD) over a relation R is a constraint
used to assess the correctness of data by evaluating the similarity
between attribute values. An MD is denoted as A — B, where A
and B are attributes within R. The MD asserts that for every pair of
tuples t1, t2 € I, a certain degree of similarity between t1[A] and
t2[A] should imply a similarity between ¢1[B] and t2[B], accord-
ing to a predefined similarity function. An instance I of R satisfies
the matching dependency M if for every pair of tuples t1,:2 € I,
the condition t1[A] = t2[A] implies that t1[B] =~ t2[B], where
~ denotes the similarity operator based on a specified similarity
metric [7]. Aside from matching dependencies, a Device-Link De-
pendency L is defined by a mapping ¥ such that ¥ : X — Y, where
X denotes the collection of sensors, and Y represents the ensemble
of IoT devices. The dependency A — B, where A€ X andBe Y, is
established if and only if sensor A is directly interfaced with device
B. This linkage enforces an exclusive read capability, meaning that
data from sensor A can only be accessed through its linked device
B [7]. Whereas, temporal dependencies T describe the sequencing
of data transmission between devices A and B.

A temporal dependency A — B signifies that device A precedes
device B in time regarding data flow. Specifically, if a message m
is timestamped at t4 when processed by A, and subsequently at
tg by B, then t4 < tg must hold, reflecting the non-zero latency
of transmission. A Location Dependency L is characterized by a
mapping I' : Device — Location, which associates sensing devices
with their physical locations. Given a device A and location B, such
as a specific room, the dependency A — B is established when A
is positioned within B, leading to I'(A) = B. Consequently, data
collected by device A are indicative of the environmental conditions
at location B. Similarly, a Monitoring Dependency M describes
the association between a device A and its monitoring entity B.
Within the IoT context, B tracks and records real-time health metrics
of A, such as CPU utilization and network connectivity. These
measurements are captured and stored continuously as the system
runs. A Capability Dependency C defines the relationship between
a sensor A and its associated set of capabilities B. Each capability is
encapsulated as a metadata object linked to the sensor, specifying
the type—like resolution or minimum measurable value—and the
corresponding value for that type.

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

ssn:System

hasSubsystem

n hasTimest
i xsd:dateTime
A2 ot- ‘
n Device [«-"*SUSEM 1 ssn:Device 1+ hasMeasurement hasValue|
xsd:double
T iot-context:MonitoringComponent

isActed

iot-lite:Attribute Devices ||_asDepoyment |

|_hasLocation |

ssn:Deployment iot-lite:Location

A
hasSensingDevice
1:1

Legende -

| Denial Dependency

ssn:Sensor : DLocation Dependency

T Device-Link Dependency
hasMetadata

(Capability Dependency

: Dremporalnependency
: DMonitoring Dependency

iot-lite:Metadata

Figure 2: Metamodel of the context model for all IoT datasets

2.2 Datasets Categorization

In LLMClean, datasets serve as the primary input and are envisioned
as collections of data points. These datasets should be structured in
a single table format, complete with column headers. We categorize
data into two principal classes, namely IoT datasets and non-IoT
relational datasets, each with distinct requirements for the context
model. Non-IoT datasets do not generally adhere to most OFDs as
these dependencies are tailored to the architectural patterns of IoT
sensors. Instead, only Matching and Denial dependencies are perti-
nent to non-IoT data. Conversely, IoT datasets comprise data from a
network of interconnected sensors. For such datasets, dependencies
unique to [oT, like Device-Link, Temporal, Locality, Monitoring, and
Capability Dependencies, are relevant. These dependencies, which
imply certain relationships within the data, inform the structure of
the context model. Figure 2 presents the meta-context model for
ToT datasets, which consists of various concepts and their relation-
ships. The colored boxes represent different dependencies and the
associated concepts.

The ssn:System entity encapsulates the entire data-generating
system, incorporating numerous ssn:device entities that represent
its subsystems. An ssn:device may be a device such as a Raspberry
Pi, a high-performance computer, or a standard PC, functioning
in roles like actuator, sensor, or monitor. Monitoring components
track system health metrics, such as CPU or network loads, en-
capsulated within iot-context:measurement entities, each with a
timestamp and value. Actuators integrate data across connected
devices, while sensors are tied to ssn:device entities and are de-
ployed at specific locations. A single location can host multiple
deployments, permitting several sensors within the same room but
at distinct points. Sensors, which gather environmental data, are
uniquely associated with a single sensing device and carry meta-
data detailing their operating range if such data is available. The
Device-Link entity establishes the relationship between a sensor
and its device through the sensing device. Similarly, the Capability
Dependency links sensor metadata (like minimum and maximum
operational values) to the sensor. Lastly, the Locality Dependency

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

Column Names
Column Names

Extraction : LLM Tasks
l : D User Interaction
e : Data
Dirty Data Tz e
. dentification
loT Datasets Non-loT Datasets
\ 4 \ 4
Column Relationships
Mapping Extraction
T Batasel TN T ; v

iTransformation Sensors

Splitting Relationships

Context Model Generation

' Column Column
' Renaming Generation | !

Automatic Sensor
Information Extraction

Context Model Generation

fManueI Sensor Information !
! Extraction (Optional) !

Context Model

Figure 3: Automated generation of context model

associates the sensing device with its deployment and physical
location.

3 AUTOMATED CONTEXT MODELING

In this section, we present a systematic approach for the automated
generation of context models leveraging LLM models. Figure 3
depicts the workflow that encompasses a sequence of steps tailored
for both IoT and non-IoT relational datasets. The steps delineated
in green signify the tasks where LLM models are employed to yield
specific outcomes. The procedure commences with a dirty dataset,
from which column names are extracted. These column names form
the basis for the classification of the input dataset into respective
types. Below, we elaborate on the steps specifically designed for
each type of dataset.

3.1 Handling IoT Datasets

The workflow of IoT datasets initiates with column mapping. In
this step, associations between the dataset’s columns and the corre-
sponding entities within the meta-context model (cf. Figure 2) are
established. This mapping, critical for the subsequent generation of
a context model, is executed via exploiting LLM models. The desig-
nated LLM model undertakes a systematic review of the predefined
concepts, such as ssn:System, ssn:Device, ssn:SensingDevices, ssn:
Sensor,iot-lite:Location,iot-lite:Attribute, ssn:ActuatingDevice
, iot-context:Measurement, and iot-list:Metadata, to determine
their relevance to the columns at hand. In instances where a concept
lacks a corresponding column, synthetic generation is employed
to ensure completeness. Following successful column-to-concept

Biester and Abdelaal, et al.

correlation within the meta-model, the dataset undergoes a trans-
formation phase to facilitate the creation of an actionable context
model compatible with data-cleaning tools. This step is partitioned
into three sub-steps, including sensor splitting, column renaming,
and column generation.

Sensor Splitting. This sub-step is initiated upon the identification
of multiple sensor readings within a single row in the input dataset
during the column mapping step. In this sub-step, a composite
dataset with multiple sensor readings per row is restructured into a
singularized format. To illustrate, consider an initial dataset where
each row is a tuple composed of temperature (T), CO2 concentration
(C), location (L), and timestamp (t). The outcome of the sensor
splitting sub-step is a dataset where each tuple’s sensor readings
are disaggregated into distinct rows. For instance, a row (T1, C1,
L1, t1) in the original dataset is divided into two separate rows
in the transformed dataset: one for temperature, (Temp, T1, L1,
t1), and another for CO2 concentration, (CO2, C1, L1, t1). The
location and timestamp for each sensor reading are replicated to
maintain the integrity of the data, ensuring that each sensor value
is contextualized by its original spatial and temporal information.

Column Generation. During the mapping step, there is a possi-
bility that certain concepts may not be present in the input dataset
or might not be recognized in the previous step. Such missing data
may include parameters like the minimum and maximum sensor
values, indicative of Capability Dependency, or data relating to the
system’s structural components, such as the device and sensor net-
work details. The column generation phase is designed to resolve
these gaps by introducing the requisite columns and populating
them with synthetically derived values. However, it is pertinent to
note that not all concepts or dependencies can be synthetically gen-
erated, leading to the potential exclusion of some concepts during
this phase. Consider an example where the input dataset comprises
only columns for “value”, “location”, and “timestamp”. Here, if “Sys-
tem”, “Device”, “SensingDevice”, and “Sensor” are requisite entities
within the meta-context model, the absence of these columns ne-
cessitates their creation. Synthetic values are then assigned to these
new columns to simulate system configuration. Moreover, to meet
the requirements of Capability Dependency, additional columns
like “MinValue” and “MaxValue” might be introduced, with default
or synthetic ranges specified for sensor capacities.

Column Renaming. Upon successful assignment of columns to
each concept, a validation is performed to ascertain whether the
column titles align with the naming conventions requisite for the
OFD generation phase. Discrepancies in column titles are recti-
fied through a systematic renaming process, adhering to a pre-
established schema. For instance, original column identifiers such
as “Sensor_name”, “temperature”, “place”, and “time” are systemat-
ically converted to “sensor”, “value”, “location”, and “timestamp”,
respectively. This standardization of terminology facilitates seam-
less integration with the OFD extraction process, thereby sidestep-
ping potential errors associated with inconsistent naming during
subsequent data-cleaning operations.

After transforming the dataset, the automatic sensor information
extraction step aims to identify the types of sensors employed and
to establish the capability dependency within the context model by

LLMClean: Context-Aware Tabular
Data Cleaning via LLM-Generated OFDs

specifying the minimum and maximum operational values for each
sensor. To accomplish this, queries are dispatched to resources such
as LLM models, Wikipedia, and Wikidata. Additionally, LLMClean
provides an interface for end-users to optionally contribute sensor
information directly to the context model, thereby enhancing its
accuracy and comprehensiveness. This collaborative approach en-
sures that the context model remains robust and reflects the most
current sensor capabilities. The workflow’s final phase involves
generating a concrete instance of the context model. To ensure
data integrity, initial data-cleaning employs statistical methods to
rectify potential errors, yielding sanitized entities. Subsequently,
this refined dataset is structured into an RDF graph. Here, each
dataset row manifests as a network of RDF triples, capturing the
complex relationships and properties of sensor data in a semantic
construct. This transformation process semantically augments the
raw sensor data, enhancing its utility for applications dependent
on semantically-enriched, high-quality datasets.

3.2 Handling Non-IoT Datasets

Constructing context models from non-IoT relational datasets ne-
cessitates a distinct approach from that employed for IoT data, uti-
lizing only Matching and Denial dependencies. In this context, the
workflow comprises three steps. First, all possible pairs of column
names within the dataset are extracted. These pairs are subjected
to analysis by LLM models to ascertain the presence of semantic
relationships between the columns. Second, if a relationship be-
tween two columns is identified, the concept of the two columns
is determined. Finally, LLMClean assesses whether either column
functions as an attribute of the other or stands as an independent
concept. This critical evaluation serves to clarify the relationship
between the columns, distinguishing whether they form part of a
hierarchical arrangement or represent distinct concepts. Leveraging
the data extracted from relationship extraction and concept map-
ping, the process stores column names as discrete concepts within
the RDF graph. Relationships are then methodically established,
linking less-encompassing concepts to more comprehensive ones.
This approach facilitates the clear definition of hierarchical struc-
tures among the concepts, ensuring an organized and semantically
meaningful RDF graph representation.

4 PROMPT ENSEMBLING

In this section, we elaborate on the prompt engineering setup for
querying LLM models. As discussed in Section 3, LLM models are
exploited in multiple steps during the generation of context models
due to their powerful reasoning capabilities. However, LLM models
often tend to generate “hallucinated” or misleading results. To
improve the outcomes of LLM models, LLMClean leverages the
concept of Prompt Ensembling. The objective of prompt ensembling
is to determine which combination of prompts yields the most
accurate results when combined, as determined by a consensus
method under various thresholds. To this end, the input dataset
is divided into two distinct subsets: a training set, employed to
identify a collection of ensembles with high accuracy, as reflected by
evaluation metrics like the F1 score, and their respective consensus
thresholds; and a validation set, utilized to determine the optimal
ensemble and its most effective threshold.

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

- Prompts Generation e

@

LLM Model

C) coampis @
xampesl Prompt Enhancement |
Train Data

Baseline Prompt

Generated Prompts

Best Ensemble

Ensembles

Figure 4: Prompt ensembling method

Figure 4 shows the steps of our prompt ensembling approach.
Initially, we craft a baseline prompt to guide an LLM model in pro-
ducing a variety of prompts. The generated prompts are enhanced
by adding carefully chosen examples from the training dataset,
leveraging few-shot learning to better familiarize the LLM model
with the expected response format. For instance, Listing 1 illus-
trates a prompt for dataset type identification, comprising three
elements: (1) few-shot examples, (2) a task description with in-
put placeholders, and (3) a response format indicating whether a
boolean or string answer is required. Algorithm 1 introduces the
ensemble generation and the best ensemble selection procedures.
At the outset, LLMClean evaluates each prompt on the training and
validation datasets and then explores all possible prompt combina-
tions to form ensembles (lines 1, 2). For each threshold value within
a certain range, LLMClean assesses every ensemble by aggregating
the results of its constituent prompts.

(1) Here are column names from an IoT dataset: {
iot_names}.

(2) Do these names {col_names} suggest an IoT dataset?

(3) Answer with only yes or no.

Listing 1: Prompt for data type identification

LLMClean then applies a function (introduced in Algorithm 2)
to find a consensus among these results, considering the current
threshold, and computes the F1 score for the ensemble on the train-
ing data (lines 5-7). Configurations that yield an F1 score at least as
high as the best evaluation score recorded are retained as potential
candidates (lines 8-9). After exhaustively evaluating all thresholds,
the algorithm proceeds to test these top-performing configurations
against the validation dataset. It appends those configurations that
maintain or surpass the best evaluation score to a list of the best
validation configurations (lines 10-15). The final output is this list,
representing the ensemble configurations with the highest F1 scores
on the validation data.

Algorithm 2 provides a mechanism to achieve a consensus among
results obtained from the ensemble. It requires a list of results and a
threshold as inputs. The algorithm counts the occurrences of each
result and compiles a consensus list. Through a voting mechanism, it
identifies results that appear with a frequency that meets or exceeds
the threshold, interpreting these as consensus results. These results

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

Algorithm 1 Find Best Ensemble Configuration

Require: train_df,val_df, prompts, tr_range
Ensure: best_val_config
1: Compute prompt evaluations for train_df and val_df
2: Generate ensembles as all combinations of prompts
3: for each threshold from 0 to tr_range do
4. for each ensemble in ensembles do

5 Collect prompt_results for prompts in ensemble

6: Calculate ensemble_result using find_consens with
prompt_results and threshold

7 Find f1 score for ensemble_result on train_df

8 if f1 > best_eval then

9: Append (threshold, ensemble) to best_configs

10: for each config in best_configs do

1. Collect prompt_results for prompts in config[1]

122 Calculate ensemble_result using find_consens with
prompt_results and config[0]

13: Find f1 score for ensemble_result on val_df

14 if f1 > best_eval then

15: Append config to best_val_config

16: return best_val_config

Algorithm 2 Finding Consensus Among Results

Require: results, threshold
Ensure: consens
1: Initialize result_count using a counter overall results
2: Initialize consens as an empty list
3: for each obj, count in result_count do
4. if count > threshold then
5 Append obj to consens
6: return consens

are then compiled into a list that represents the collective decision
of the ensemble. Together, these algorithms synergize to fine-tune
the combination of prompts for better prediction accuracy and
ensure that the results are robust by establishing a consensus based
on a given threshold.

5 DATA CLEANING WITH LLMCLEAN

In this section, we elaborate on how to leverage LLMClean to detect
errors in tabular data. As aforementioned, the generated context
model is used to create a set of OFD rules. The core of our data-
cleaning method lies in identifying two principal data quality issues:
missing values and violations of functional dependencies within
the data. The first aspect of the data-cleaning algorithm focuses on
the ubiquitous issue of missing values, a commonly encountered
rule in data management. Missing values are often represented
by a variety of placeholders, e.g., “N/A”, “nan”, “none”, “null” or
empty strings, that are not inherently recognized by standard data
processing tools.

LLMClean addresses this challenge through exemplary rules
such as t1&EQ(t1.System, “”), which signifies a constraint where
the “System” field in table “t1” should not contain empty strings.

Biester and Abdelaal, et al.

LLMClean translates this rule into an actionable check by inter-
nally mapping these placeholders to NaN, thereby unifying all rep-
resentations of missing data. This preliminary step is crucial for
establishing a consistent ground truth from which missing data can
be accurately identified. Subsequently, the algorithm iterates over
the dataset to locate and record each occurrence of missing data,
ensuring that no such instance escapes detection.

Furthermore, LLMClean excels at identifying more complex
rule violations that involve functional dependencies between mul-
tiple fields across the dataset. Specifically, the value of one at-
tribute (i.e., dependent) is supposed to be functionally deter-
mined by another attribute (i.e., determinant). Consider the rule
t1&t2&EQ(t1.SensingDevice, t2.SensingDevice)&IQ(t1.De-
vice, t2.Device). which asserts that for any pair of rows in tables
“t1” and “t2”2, whenever the “SensingDevice” fields are equivalent,
the “Device” fields must also be identical. Our algorithm enforces
these constraints by first segmenting the dataset based on the de-
terminant column. It then employs a statistical method to ascertain
the modal value—the most frequently occurring dependent value
within each group. This modal value is deemed the standard or
legitimate value for a given determinant. Any deviation from this
established norm is flagged as an anomaly.

By adopting this approach, our algorithm efficiently isolates
and identifies instances where less common dependent values are
present, which are likely indicative of data inconsistencies or errors.
Through the intelligent application of these methods, we ensure
that our algorithm effectively identifies violations of data integrity
with precision. The error indices output by LLMClean offers a clear
and actionable guide for data practitioners to rectify the identified
issues. Consequently, this approach significantly enhances the data-
cleaning workflow, paving the way for more accurate and reliable
data analyses.

6 PERFORMANCE EVALUATION

In this section, we present an extensive evaluation of LLMClean
in different scenarios. Through a series of carefully designed ex-
periments, we aim to address the following key questions: (1) How
effective is the proposed prompt ensemble technique at achieving its
intended outcomes? (2) To what extent does fine-tuning the Llama
model enhance the efficacy of our prompt ensemble technique? and
(4) How does the performance of LLMClean, in terms of error de-
tection and repair accuracy, compare to baseline methods? and By
addressing these questions, we shed light on the effectiveness and
potential advantages of LLMClean in the context of data cleaning.
We first describe the setup of our evaluations, before discussing the
results and the lessons learned throughout this study.

6.1 Experimental Setup

In this section, we introduce our experimental setup used while
evaluating LLMClean. We conducted our experiments on an Ubuntu
20.04 LTS machine, equipped with 256 cores @ 2.45 GHz, 1 TB RAM,
and four Nvidia A100 GPUs with 40GB VRAM each. However, the
minimum requirement is at least one GPU with 40GB of memory.

2In this context, “t1” and “t2” represent the same table.

LLMClean: Context-Aware Tabular
Data Cleaning via LLM-Generated OFDs

Table 1: Samples of the extracted OFD rules

IoT Hospital

Device — System, HospitalName — HospitalOwner,
ZipCode — City

ProviderNumber;s, — PhoneNumberysy,

OFD: Denial . ! .
SensingDevice — Device

OFD: Matchin -
€ Stateavgyss, — MeasureCodeysy,

OFD: Device-Link ds18b20_1 — device_in_1 NA
ds18b20_1 — MaxValue,

OFD: Capability ~ ©° 02— axvaiue NA
ds18b20_1 — MinValue
ds18b20_1 — Rooml1,

OFD: Locality NA
ds18b20_2 — Room1

OFD: Temporal device_in_1 — device_main NA

LLM Models. Several LLM models have been utilized in the
evaluations. GPT4-turbo, the preview version, was selected for
its enhanced performance and cost efficiency over GPT4. We
also included GPT4, representing the series’ fourth iteration, and
GPT3.5, which was preferred in the development phase for its cost-
effectiveness. These models provided a baseline for comparison.
Additionally, we tested various Llama2 configurations—70b, 13b,
7b—to leverage its open-source accessibility and parameter-driven
versatility for local execution tailored to specific computational
needs. To enable faster inference time, quantization has been ap-
plied to the weights of Llama2-70b from 16 bits to 4 bits [11]. To
manage expenses, initial testing was conducted using GPT models
on limited data samples, while comprehensive evaluations were pre-
dominantly performed using various versions of the Llama model.

Datasets. In the evaluations, we utilized three real-world datasets,
namely IoT, Hospital, and CONTEXT datasets, all provided as ref-
erence data with intentional errors to assess the data cleaning
method’s efficacy. Additionally, we utilize the LMKBC dataset for
evaluating the prompt ensembling method. In previous work [7],
we gathered the IoT dataset, which includes context information.
This dataset involved deploying three temperature sensors within
a residential setting: two DS18B20 sensors in Room 1, one WSD-
CGQ11LM sensor in Room 2, and another WSDCGQ11LM sensor
outside. The dataset consists of 1,000 entries, each organized into
eight distinct columns: “System,” “Device,” “SensingDevice,” “Sensor,”
“Name,” “Value,” “Timestamp,” and “Location.” To evaluate system ro-
bustness, we introduced 13% numerical outliers and missing values,
yielding 1041 erroneous instances.

The CONTEXT dataset, sourced from a smart factory manufac-
turing electrical relays, encompasses data from five key stations:
Inspection, Press, Robot, Transport Shuttle, and Storage [9]. Each
station features an array of sensors tracking diverse process pa-
rameters, resulting in a dataset with around 99,300 data entries,
each organized into 22 columns. It also catalogs process errors,
with a deliberate injection of a 0.05% artificial error rate to simulate
faults, resulting in 1219 erroneous instances. The Hospital dataset
exemplifies a non-10T, relational dataset depicting a U.S. hospital’s
operational data [14]. It includes 1,000 rows across 19 columns and
features a 2.6% error rate through intentional data manipulation
(resulting in 509 erroneous instances), serving as a robust dataset
for evaluating LLMClean. Table 1 provides samples of the OFD
rules extracted from the Hospital and IoT datasets.

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

In addition to the above datasets, we incorporated the LM-KBC
dataset [16] as a benchmark for evaluating the efficacy of our pro-
posed prompt ensembling algorithm. This particular dataset pro-
vides a rich variety of 21 distinct relations, each encompassing a
different set of subject entities, coupled with a complete list of corre-
sponding ground truth object entities for each subject-relation pair.
The ML task associated with this dataset is to predict the object
entities for each relation given a certain subject entity. The scope
of the LM-KBC dataset is noteworthy, with relations spanning a
multitude of domains such as chemistry, geography, and popular
culture, among others. These relations are structured in a triple
format: subject-predicate-object. To illustrate, within the chemistry
domain, an example of such a relation is “CompoundHasParts,” con-
necting the subject entities “potassium, hydrogen, oxygen” with
the object entity “Potassium Hydroxide.” In the context of our study,
the training subset of the LM-KBC dataset is utilized for the initial
few-shot training phase, while the validation subset plays a cru-
cial role in determining the most effective configuration for our
ensembling approach.

Evaluation Metrics. Our evaluations hinge on a carefully curated
set of metrics to systematically assess data cleaning efficacy. For
error detection, we leverage detection precision, recall, F1 score,
and runtime to evaluate the effectiveness and efficiency. In this
context, the precision denotes the fraction of relevant instances,
e.g., actual erroneous cells, among the detected instances. The de-
tection recall is defined as the fraction of erroneous instances that
are detected. The detection F1 score denotes the harmonic mean
of precision and recall. The runtime refers to the time taken to
navigate through the dataset for error detection. It is pertinent
to note that this figure excludes pre-processing activities for all
tools, such as time spent generating OFDs for LLMClean, setting up
configurations for RAHA, and arranging FDs rules for HoloClean.
This approach ensures a focused comparison of each tool’s direct
detection capabilities.

For the repairs, we differentiate between the numerical and the
categorical attributes. For the former type, we employ the root mean
square error (RMSE) as a distance measure between the repaired
values and their ground truth. For the latter data type, we employ
precision, recall, and F1 measures. In this context, precision reveals
the proportion of successful repairs against the aggregate of repair
actions undertaken. In tandem, Recall captures the fraction of these
correct repairs to the overall errors present in the data. Finally, the
“Repairing F1 Score” emerges as a balanced metric, harmonizing
precision with repairing recall, offering an analog to the traditional
F1 Score but with a particular focus on the quality of the repair
process.

6.2 Results

In this section, we begin with evaluating the prompt ensembling
algorithm, before presenting the evaluation results of LLMClean in
three scenarios, namely (S1) the Context Change scenario, (S2) the
Context Model scenario, and (S3) the Sensor Capabilities scenario.

6.2.1 Prompt Ensembling.

Few-Shot Learning. In this experiment, we explore the effects of
varying the number of examples utilized within the prompt on the

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

overall performance. We conducted a series of experiments, each
involving a random selection of few-shot examples from the train-
ing dataset for each relation. A careful selection process has been
employed to ensure that the chosen few-shot examples spanned a
comprehensive range, including those with the largest and small-
est answer sets, as well as considering the possibility of empty
sets where permissible. These examples have been then incorpo-
rated into either the best prompt (BP) or the best ensemble (BE) for
evaluation.

Figure 5 illustrates the outcomes of these experiments, specifi-
cally highlighting the variations in prediction accuracy as gauged
by the F1-score with increasing example counts. The figure depicts
a substantial enhancement in performance with the addition of
examples to the prompts; the F1 score approximately doubles with
the inclusion of merely two examples. Subsequent increments in
the number of examples lead to more modest improvements in the
F1-score. Furthermore, the figure highlights a consistently higher
F1 score achieved through utilizing the best ensemble, surpassing
the best prompt’s performance by an average of 11.2%. These find-
ings not only demonstrate the value of increasing the number of
few-shot examples for improving model accuracy but also under-
score the superiority of using the best ensemble in leveraging these
examples to achieve optimal results.

Model Selection. In this set of experiments, we explored the per-
formance of the Llama2 model across various configurations, exam-
ining editions with 7 billion, 13 billion, and 70 billion parameters. In
addition to these, we compared the outcomes of a non-fine-tuned
model against those of a version that had undergone fine-tuning
specifically for chat completion tasks. As depicted in Figure 6, our
comparison focused on the differential impact of model size and
the scenarios of using the best prompt and the best ensemble. The
results from this figure indicate a clear trend: as the number of
parameters in the Llama2 model increases, so does its performance.
Notably, the 70 billion parameter variant, when combined with the
best ensemble method, yields the highest F1 score. Another inter-
esting insight from the figure is the fact that the 7 billion parameter
model, when utilized in conjunction with the best ensemble, out-
performs the 13 billion parameter model that employs only the best
prompt. This observation suggests that the integration of the best
ensemble technique can significantly elevate a model’s effective-
ness, to the extent that a less complex model can surpass a more
complex one that does not utilize this optimization. These findings
serve to emphasize the multifaceted nature of model performance,
which hinges not only on the sheer scale of parameters but also
critically on the strategic enhancements applied to the model’s
deployment.

Figure 7 depicts a comparative analysis between fine-tuned (FT)
and non-fine-tuned (Non-FT) versions of the Llama2 model, each
assessed using both the best prompt and the best ensemble. The
depicted results highlight a significant finding, where the Non-FT
model leveraging the best ensemble approach outperforms all other
configurations in terms of F1 score. In a detailed breakdown of the
performance metrics, the Non-FT model with the best ensemble
(Non-FT-BE) surpasses the FT model employing the best prompt
(FT-BP) by a margin of 11.2%. It also outperforms the FT model
paired with the best ensemble (FT-BE) by 4.6% and shows a 7.67%

Biester and Abdelaal, et al.

le-1

0]

BE
BP

F1-Score
N w H [9,]

=

Figure 5: Impact of few-shot learning, where BE denotes the
best ensemble and BP denotes the best prompt

7 O le-1
Precision
6.5 Recall
F1-Score
© 6.0
o
A
5.5
5.0

13b-BE 13b-BP 70b-BE 70b-BP 7b-BE 7b-BP
Model Version

Figure 6: Comparisons of the Llama2 model with different
parameter sizes, each with the best prompt or the best en-
semble

improvement over the Non-FT model that uses the best prompt. For
development, the 13 billion parameter Non-FT model was selected.
This choice was motivated by the model’s computational efficiency,
which provides a pragmatic balance between performance and
resource expenditure. However, for the final iteration of our results,
we capitalized on the superior capacity of the 70 billion parameter
Non-FT version. The selection of this model was predicated on
its enhanced capability to encode and process complex patterns,
thereby optimizing the outcome of our data-cleaning task.

Table 2 presents the outcomes of our validation dataset experi-
ments, with a particular focus on measuring precision, recall, and
the F1 score. The prompt ensemble method exhibited commendable
performance, achieving an average F1-score of 62.53% across all
evaluated relations. A closer examination of the results reveals a
notable discrepancy in the predictive success across various rela-
tion types. Specifically, the method demonstrated its lowest efficacy
on the PersonHasEmployer relation, with an F1-score of 34.97%,
whereas it achieved its highest accuracy on the PersonHasNobel-
Prize relation, boasting an impressive F1-score of 98.00%. This varia-
tion in performance is likely attributable to the intrinsic differences

LLMClean: Context-Aware Tabular
Data Cleaning via LLM-Generated OFDs

6.50 le-1

6.25 Precision

Recall
6.00 F1-Score
5.75
g
95.50
)
5.25
5.00
4.75
4.50

FT-BE FT-BP Non-FT-BE
Model Version

Non-FT-BP

Figure 7: Comparisons of the fine-tuned (FT) and the non-
fine-tuned (Non-FT) Llama2 model, each with the best
prompt (BP) or the best ensemble (BE)

in the datasets and the distinctive training methodologies applied
to the language model (LLM). Relations such as winning a Nobel
Prize or establishing a chemical connection represent more distinc-
tive events compared to the commonality of employment relations,
which may account for the observed disparity in prediction accu-
racy. This suggests that the LLM’s training may have been more
attuned to identifying unique, significant occurrences over more
mundane or frequent ones.

Table 2: Performance of the prompt ensemble algorithm on
multiple relations from the validation set

Relation Precision Recall F1-Score
BandHasMember 0.6156 0.6414 0.5920
CityLocatedAtRiver 0.6900 0.6048 0.6099
CompanyHasParentOrganisation 0.8700 0.6150 0.5867
CompoundHasParts 0.9780 0.9755 0.9747
CountryBordersCountry 0.8248 0.8402 0.8038
CountryHasOfficialLanguage 0.8949 0.8346 0.8413
CountryHasStates 0.5770 0.7115 0.6214
FootballerPlaysPosition 0.6050 0.7433 0.6413
PersonCauseOfDeath 0.7000 0.7433 0.6950
PersonHasEmployer 0.4163 0.3777 0.3497
PersonHasNoblePrize 0.9900 0.9900 0.9800
PersonHasSpouse 0.6800 0.6600 0.6633
PersonSpeaksLanguage 0.9008 0.7702 0.7856
RiverBasinsCountry 0.8123 0.8529 0.7803

6.2.2 Error Detection Results. Figure 8 depicts the accuracy of LLM-
Clean and the compared baseline tools—in terms of the detection
precision, recall, and F-Score—while detecting errors in three real-
world datasets. For the IoT datasets, Figure 8a shows that LLMClean
demonstrates superior performance in terms of the F1-score when
compared to various baseline tools. It notably surpasses HoloClean,
ED2, Pandas’ Missing Value Detector (MVD), and Raha with sub-
stantial margins of improvement-53%, 5.4%, 21.3%, and 28.7% re-
spectively. Further underlining its efficiency, LLMClean identified

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

868 cells as containing errors, significantly lower than the 1222,
1131, and 3316 instances flagged by ED2, Raha, and HoloClean,
respectively. These figures not only highlight the precision of LLM-
Clean but also its effectiveness in accurately detecting erroneous
data within a dataset.

For the Hospital dataset, LLMClean demonstrates superior per-
formance over conventional baseline tools when it comes to the
detection F1-score. To illustrate, LLMClean surpasses ED2, RAHA,
and dBoost by substantial margins of 22.7%, 23.2%, and 34.7%, respec-
tively. A closer look at the results reveals that LLMClean identified
404 cells as erroneous, which represents a significant increase in de-
tection over the 253, 247, and 328 cells flagged by RAHA, ED2, and
dBoost, respectively. Interestingly, even when operating under the
same number of FD rules as HoloClean, LLMClean vastly overshad-
ows its performance. HoloClean detected 13,044 cells, a number
which, due to its magnitude, severely diminished its F1-score to
less than 1%, highlighting the precision and efficiency of LLMClean.
For the CONTEXT dataset, ML-based tools, such as RAHA and
ED2, encountered operational challenges, specifically, they were
unable to complete execution due to the dataset’s extensive size. Yet
again, LLMClean stands out, outstripping all baseline tools with an
F1-score that is 6.2% higher in comparison to both MVD and Holo-
Clean. This consistent outperformance across different datasets
underscores the robustness of LLMClean.

Figure 9 presents the runtime analysis of LLMClean in compar-
ison with baseline tools. From the figure, it is evident that LLM-
Clean’s runtime is marginally higher than that of the most competi-
tive baselines. The reason for this could be attributed to LLMClean’s
thorough approach, which involves checking and validating nu-
merous combinations of column pairs. Additionally, the runtime
for LLMClean is largely influenced by the quantity of generated
OFD rules. For instance, in the case of the IoT dataset, LLMClean
takes approximately 0.98 minutes to apply two OFD rules. However,
when applying 21 OFD rules to the Hospital dataset, the runtime
extends to approximately 10.56 minutes. A similar pattern is ob-
served with the CONTEXT dataset, where LLMClean spends 6.8
minutes to thoroughly examine the data. This contrasts with the
5.6 minutes taken by dBoost and a swift 1.6 minutes by the MVD
detector. These runtime variances highlight the complexity and
depth of analysis conducted by LLMClean, particularly concerning
the number of OFD rules it enforces.

6.2.3 Error Repair Results. While LLMClean is primarily deployed
for error detection within datasets, assessing the effectiveness of
its detection in conjunction with subsequent repair processes is
essential. This section provides an analysis of the combined perfor-
mance of error detection and repair, utilizing LLMClean and various
baseline tools alongside three SOTA repair tools: Baran, standard
statistical imputation, and ML-based imputation. For statistical im-
putation, we apply mean-value imputation for numerical attributes
and mode-value imputation for categorical ones. The ML-based
imputation employs a K-Nearest Neighbors (KNN) regressor for nu-
merical attributes and MissForest for categorical attributes. An ex-
amination of the evaluation results for the IoT and Hospital datasets,
presented in Figure 10, reveals noteworthy outcomes®. Specifically,

3The CONTEXT dataset analysis is omitted here for conciseness.

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

1.0 1.0

Biester and Abdelaal, et al.

1.0

Precision Precision Precision
0.8 Recall 0.8 Recall 08 Recall
: F1 Score ! F1 Score ’ F1 Score
206 006 v 0.6
5] 9] IS
& & &
0.4 0.4 0.4
0.2 0.2 0.2
0.0 0.0 0.0
(Vo S e QA0 X Lo & a4 o N S oo & o N Q & >
Q & S PV & > X P Q Z NS > AN S S 2 Q & 'l
C & 2 Y T CF T TN (P S IO A RO S
O & NS = S O N~ S
€ > ® > ® >
(a) IoT dataset (b) Hospital dataset (c) Context dataset
Figure 8: Accuracy of error detection comparing LLMClean to the baselines
102
S S 102 =3
3. S 3 102
=10 = =
[} Q [}
£ £ 101 £
= =] =
C c C
= = =
£ 150 & «
10° 10!
) S e A0 + o0 &) S @ S & Qe & N N Q * >
QY & 2 A & A P Q & XN 2 & > X P > > Q <& &
C @ 8 NI e o0 CF O TN (P v & N S5
Ny W DS & O & & RS N S
\2\0 \y \2\0 \2\0 \>/
(a) IoT dataset (b) Hospital dataset (c) Context dataset
Figure 9: Runtime of error detection comparing LLMClean to the baselines
le-1 le-1
8
1.0 Baran Baran
8 0
Baran ML-Impute 10 Baran ML-Impute
ML-Impute MLl t
0.8 M Mean-Mode mpute 6 Mean-Mode
ean-Mode L6 510 Mean-Mode =~
o o
I 2 S 3
= 0.6 u = u
3 s & 10-2 Ta
- 4 s 10 c
304 © 4 s
s [c Q
= s =
2 2107 2
0.2
0.0 0 10 0
S S @ SIS v S L SO & L 5 s S+ @ s v S SR e &
Q RS K\ Q 2 2 Q X o~ Q 2 2 X
P \0‘9 @@ @O@ & éobe & S \ooe, é’@ Q\OQ/ K3 $’§>® P S \oozfo “\Oz’o 5 & Sboo < \Ooz é\Oe/ & & §,oo
© > € > R O
(a) Numerical IoT (b) Categorical IoT (c) Numerical Hospital (d) Categorical Hospital

Figure 10: Accuracy of error repair comparing LLMClean to the baselines

Figure 10a indicates that LLMClean consistently achieves the low-
est RMSE of 0.22 across numerical attributes, independent of the
repair mechanism employed. This performance is comparable to
the results of other tools, such as HoloClean, MVD, and Nadeef.
Focusing on the categorical attributes of the IoT dataset, as shown
in Figure 10b, the combination of LLMClean and Baran attains the

highest F1-score at 85%. This marginally surpasses the 84% F1-
score observed with ED2 and Baran, and significantly outperforms
the 67% F1-score seen with MVD and Baran. For the numerical
attributes of the Hospital dataset, as depicted in Figure 10c, the
pairing of LLMClean with Baran again yields the most favorable
RMSE value (8.44E-05). It is important to note that the vertical axis
of this figure is in a logarithmic scale to appropriately represent

LLMClean: Context-Aware Tabular
Data Cleaning via LLM-Generated OFDs

the notably small values achieved by this combination. Lastly, Fig-
ure 10d demonstrates that for the Hospital dataset’s categorical
attributes, LLMClean used with ML-based imputation (ML-Impute)
secures the highest F1-score of 78.7%. This result outdoes the 73%
F1-score obtained with LLMClean and Baran, as well as the 66.7%
achieved by combining ED2 with Baran. To sum up, these find-
ings underscore the superior error detection and repair capabilities
of LLMClean, particularly when combined with advanced repair
methodologies across both numerical and categorical data domains.

6.3 Discussion

Context Generation: The evaluation revealed that the process
of automatically generating context models for tabular datasets is
highly effective. In IoT datasets, the data is often generated by sen-
sors and devices with known and fixed schemas, which means that
the context is well-defined and the types of possible dependencies
(like Sensor Capability Dependencies and Device-Link Dependen-
cies) can be anticipated and modeled accordingly. This makes the
automatic generation of context models more straightforward be-
cause LLM models can be trained to recognize these regular patterns
and dependencies with high accuracy. For non-IoT datasets, it can
become challenging for LLM models to generate context models
since they can come from a multitude of sources with less structured
and more heterogeneous contexts. However, the evaluation of the
Hospital dataset (Figures 8b,10c, and 10d) indicates that LLMClean
sustains its effectiveness in both error detection and repair tasks
within this category of datasets.

Contextual Changes: To evaluate LLMClean’s adaptability
to contextual changes, we compared F1 scores before and after a
simulated context change in the IoT dataset, where “Room2” is re-
named to “Room3” and the associated device and sensor labels are
updated accordingly. We found that LLMClean maintains similar
performance in error detection and repair despite the contextual al-
terations. Accordingly, we can conclude that if the context changes
are limited to a single sensor rather than a series of sensors, or if
they are not distributed across a more extended period, this could
influence the adaptability and the necessity for modifications to the
context model. Consequently, a restricted scope of alterations or
a lack of frequent, diverse changes over time leads to a decreased
need for model adaptation.

OFD Dependencies: In the absence of these Capability Depen-
dencies, LLMClean may overlook specific interrelations or depen-
dencies among data instances, which can lead to a decline in the
accuracy of identifying errors. The generation process of such de-
pendencies is markedly more effective when the sensor’s name is
explicitly mentioned in the dataset, enabling the system to harness
additional information, such as technical specifications, from online
resources. The explicit mention of the sensor name is a key enabler
for accurately aligning sensor capabilities with their respective
data instances. However, the approach’s reliance on the availability
of technical specifications online casts light on its dependency on
external data sources, with the quality and precision of the automat-
ically generated sensor capabilities being directly proportional to
the richness and accuracy of information available on the Internet.
Remarkably, our findings suggest that the lack of Temporal and
Monitoring Dependencies within the context model seemingly does

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

not compromise the results, a phenomenon that could be related to
the unique characteristics of the dataset at hand.

Prompt Engineering: The evaluation of our prompt engineer-
ing approach for the LM-KBC dataset shows that larger parameter
sizes, more few-shot examples, and the application of Prompt En-
sembling lead to better results. Despite its advantages, the LLM
approach also has some drawbacks. In particular, it is not very sta-
ble, which means that the results can vary between different runs
or in different scenarios. This instability could be due to various
factors, such as the model’s sensitivity to small changes in the in-
put data or dependence on certain parameter settings. To improve
the stability of the results, the method of prompt ensembling in
combination with sampling is used. By applying sampling, random
variations in the training data can be simulated, which can improve
model generalization. The combination of prompt ensembling and
sampling thus represents an approach to increase the stability of the
LLM and achieve more consistent results, particularly in situations
where the LLM model shows weaknesses in terms of stability.

7 RELATED WORK

In this section, we provide an overview of the literature in the realm
of automated data cleaning and the generation of OFD rules. We
explore recent advancements together with highlighting the unique
contributions that LLMClean offers data quality and integrity.

7.1 Context Model Generation

The field of context model generation is characterized by a diverse
array of approaches that can be broadly categorized into two groups:
ML-agnostic and ML-based solutions.

ML-agnostic Solutions are those that do not utilize ML algo-
rithms. Instead, they rely on other computational methods such as
rule mining or heuristic algorithms to interpret and structure data.
For instance, Sateli et al. [15] proposed a method for constructing
knowledge bases by leveraging the semantic content of scholarly
publications. This discipline is dedicated to enhancing the accessi-
bility of scientific literature, ensuring that it is interpretable not only
by human readers but also by machines. The particular challenge
addressed by Sateli et al. is the extraction of relevant information
from academic journal articles. The information extracted from
these articles is systematically organized into an RDF graph. Such
a method does not rely on machine learning techniques but on
rule mining. The extraction process is methodically broken down
into three primary stages: syntactic processing, semantic process-
ing, and the subsequent exportation of annotations. In the initial
syntactic processing phase, the text document is transformed into
discrete elements known as tokens. These tokens then undergo a
comparative analysis during the semantic processing stage against
a pre-compiled list of tokens. This list is curated, containing tokens
that are specifically designed to align with the information being
sought. Subsequently, through the employment of rule transducers,
the target information is extracted from the sentences.

Similarly, Kertkeidkachorn et al. [10] introduce an approach
for the automatic generation of knowledge graphs from natural
language texts. A key component of their approach is the “Predicate
Mapping” process, which involves aligning predicates found within
the text to their corresponding entities within a knowledge graph.

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

This method is a hybrid one, combining rule-based mechanisms
with similarity-based techniques. This fusion is designed to enhance
the enrichment of triples—which consist of subject, predicate, and
object—from the text to be integrated into an extant knowledge
graph. By doing so, the method aims to capture knowledge with
higher precision and effectively incorporate it into the knowledge
graph. By effectively mapping natural language predicates to their
knowledge graph counterparts, the process ensures a more seamless
and coherent integration of information, enriching the existing
graph with new and relevant data.

While ML-agnostic solutions can be useful in certain scenarios,
they have several limitations. Such tools are usually rule-based
and lack the flexibility of ML models that can learn and adapt
from data over time. This makes them less capable of handling
new, unforeseen scenarios that fall outside their predefined rules.
Creating and maintaining such rules requires expert knowledge
and can be time-consuming. This also means that the quality of
the context model is highly dependent on the expertise of the rule
creators. Moreover, if the rules are incorrectly defined, errors can
propagate throughout the system, leading to inaccurate context
models. Finally, such solutions may struggle with complex data
relationships that are not easily defined by straightforward rules.

ML-based solutions, On the other hand, employ ML techniques
to derive context models from raw data. For example, Carta et al. [6]
presented a new iterative zero-shot technique that stands out by
not relying on external knowledge bases, instead it harnesses the
intrinsic capabilities of LLM models through a series of refined
prompts. Each iteration builds upon the last, negating the need for
example-driven guidance and streamlining the path to accurate
component extraction. Along a similar line, Trajanoska et al. [17]
delve into the capabilities of foundational models like GPT and
specialized models such as Rebel for generating Knowledge Graphs
from unstructured sustainability texts. They assess the efficacy
of these models in two key areas: the extraction of relationships
between concepts, and the integration of new concepts into an
existing ontology.

The comparative study unfolds across three experimental setups
to provide a comprehensive analysis. First, Rebel is tasked with
relation extraction and DBpedia with entity linking, establishing a
benchmark for specialized model performance. Second, ChatGPT
is employed for relation extraction, maintaining consistent entity
linking with DBpedia to ensure a direct comparison. This allows
for an evaluation of how a conversational Al fares in a specialized
task. Lastly, GPT is challenged to build an entire ontology, starting
from basic sustainability concepts, where ChatGPT further enriches
this ontology. The study determined that the Knowledge Graph
developed through the second setup, i.e., the ChatGPT approach,
surpasses the quality of the other two Knowledge Bases.

7.2 Automated Data Cleaning

This section provides an overview of the advancements in automat-
ing the cleansing of tabular datasets. To facilitate a structured dis-
cussion, the solutions are clustered into two primary categories:
rule-based cleaning tools and ML-based cleaning tools.

Biester and Abdelaal, et al.

Rule-Based Cleaning Tools rely on predefined rules and logic
to identify and rectify inconsistencies, errors, or anomalies in tab-
ular data. For instance, Zheng et al. [19] explored the use of OFD
dependencies for enhancing data-cleaning processes. They recog-
nize that real-world data often contain complex, domain-specific
relationships that simple syntactic rules cannot capture, such as the
presence of synonyms and other semantic connections. To leverage
these semantic relationships, the authors turn to ontologies, which
offer structured models of dataset semantics. They introduced an
approach where OFDs are defined in terms of synonym relation-
ships derived from an ontology. Zheng et al. present an innovative
algorithm designed to discover these OFDs by mining the ontology
for synonymous terms. The subsequent data cleaning algorithm,
OFDClean, utilizes the discovered OFDs to determine the most ac-
curate interpretation for a group of tuples considered semantically
equivalent.

Zheng et al. note that the effectiveness of OFDs in identifying
errors varies across different types of datasets. In the context of IoT
environments, where data is predominantly numerical, semantic
synonyms are less relevant for error detection. Since numerical
values do not typically have synonyms or semantic equivalence
classes, the application of OFDs is somewhat limited. To address
the gap in IoT data cleaning, LLMClean incorporates contextual
information from ontologies into predominantly numerical datasets.
These proposed concepts aim to extend the utility of OFDs, allowing
them to play a more significant role in identifying and correcting
errors in various types of datasets, not just those that are text-based.

In [7], we introduced RTClean, a novel data-cleaning method
that takes into account the context in which data is collected and
adapts to the dynamic nature of deployment environments. By
utilizing a live context model tailored to the application’s needs,
RTClean captures essential OFD dependencies to inform its clean-
ing process. What sets RTClean apart is its capacity to incorporate
real-time environmental changes through continuous integration
of live data from monitoring systems and sensors. This ensures that
the context model remains current, reflecting the ever-changing
landscape of available devices and sensors, and thereby maintain-
ing the relevance and accuracy of data cleaning efforts. Aside from
OFDs, Rekatsinas et al. [14] introduced HoloClean, a system that in-
tegrates integrity constraints, external datasets, and statistical meth-
ods to identify and rectify errors in structured data. It constructs
a probabilistic model that encapsulates the uncertainty within the
dataset’s tuples. This model transforms signals into features that
define the data’s probabilistic characteristics. For error correction,
HoloClean employs statistical learning and inference, leveraging
the probabilistic model to detect and repair inaccuracies.

ML-Based Cleaning Tools, on the other hand, employ ML mod-
els to learn from the data itself [1-3, 8, 12]. For instance, SAGED
is a meta-learning tool crafted for detecting errors in tabular data.
This tool leverages meta-learning techniques, which utilize insights
from previously trained models on related tasks to improve learning
in new tasks or domains, especially when labeled data is scarce.
SAGED’s design draws on the knowledge of pre-cleaned histor-
ical datasets, allowing it to perform error detection swiftly and
accurately. Similarly, RAHA [12] is a configuration-free error de-
tection tool that exploits semi-supervised learning to train a set
of detection classifiers. Recently, several efforts have been exerted

LLMClean: Context-Aware Tabular
Data Cleaning via LLM-Generated OFDs

to leverage LLM models in data engineering tasks. For instance,
Narayan et al. [13] successfully applied a prompting strategy that
incorporates examples, i.e., a few-shot approach, to improve the
performance of LLMs, surpassing traditional ML-based tools. Com-
plementarily, Vos et al. [18] explored prefix-tuning as a lightweight
alternative to the more resource-heavy fine-tuning for adapting
LLMs to data-wrangling tasks. Furthering this innovation, RetClean
[4] was developed to refine ChatGPT’s outputs using data from a
specified data lake. While LLMs show promise for data management,
their practical application is nascent and fraught with challenges,
including the need for domain-specific adaptations, data privacy
issues, and substantial computational demands.

8 CONCLUSION & FUTURE WORK

This paper introduces a novel method leveraging LLM models to
autonomously extract context models from datasets, requiring no
supplementary dataset information. The necessity for automated
context model generation arises from the labor-intensive nature of
manual creation. These context models are crucial for data cleaning,
and preparing the data for subsequent Al applications, and OFD
dependencies play a supportive role in this process. Our approach,
LLMClean, streamlines the creation of context models for inte-
gration into data-cleaning workflows. We categorized two dataset
types, emphasizing IoT datasets replete with sensor data, while
the second deals with non-IoT data in relational databases. Our
evaluation shows that the context models generated by LLMClean
are effective in cleansing both dataset types. Several avenues for
future research hold considerable potential. Enhancing table-to-
knowledge graph conversions by incorporating knowledge graph
embeddings could significantly refine the accuracy and semantic
richness of these transformations. Exploring embeddings for non-
IoT relational data presents another interesting prospect; these
embeddings could more accurately represent semantic interconnec-
tions between entities, thereby elevating model precision.

ACKNOWLEDGMENTS

This research was funded by the German Federal Ministry of Edu-
cation and Research (BMBF) through grants 011517051 (Software
Campus program), 02L19C155, and 01I1S21021A (ITEA project num-
ber 20219).

REFERENCES

[1] Mohamed Abdelaal, Christian Hammacher, and Harald Schoening. 2023. REIN:
A Comprehensive Benchmark Framework for Data Cleaning Methods in ML
Pipelines. In 26th International Conference on Extending Database Technology
(EDBT). https://arxiv.org/abs/2302.04702

Mohamed Abdelaal, Rashmi Koparde, and Harald Schoening. 2023. AutoCure:

Automated Tabular Data Curation Technique for ML Pipelines. In Proceedings of

the Sixth International Workshop on Exploiting Artificial Intelligence Techniques

for Data Management in conjunction with SIGMOD 2023. 1-11.

[3] Mohamed Abdelaal, Tim Ktitarev, Daniel Stidtler, and Harald Schoning. 2024.
SAGED: Few-Shot Meta Learning for Tabular Data Error Detection. In 27th
International Conference on Extending Database Technology (EDBT).

[4] Mohammad Shahmeer Ahmad, Zan Ahmad Naeem, Mohamed Eltabakh, Mourad
Ouzzani, and Nan Tang. 2023. RetClean: Retrieval-Based Data Cleaning Using
Foundation Models and Data Lakes. arXiv preprint arXiv:2303.16909 (2023).

[5] Maggi Bansal, Inderveer Chana, and Siobhan Clarke. 2020. A Survey on IoT Big

Data: Current Status, 13 v’s Challenges, and Future Directions. ACM Computing

Surveys (CSUR) 53, 6 (2020), 1-59.

Salvatore Carta, Alessandro Giuliani, Leonardo Piano, Alessandro Sebastian

Podda, Livio Pompianu, and Sandro Gabriele Tiddia. 2023. Iterative zero-shot llm

[2

[

=

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

prompting for knowledge graph construction. arXiv preprint arXiv:2307.01128
(2023).

[7] Daniel Del Gaudio, Tim Schubert, and Mohamed Abdelaal. 2023. RTClean:
Context-aware Tabular Data Cleaning using Real-time OFDs. In 2023 IEEE In-
ternational Conference on Pervasive Computing and Communications Workshops
and other Affiliated Events (PerCom Workshops). IEEE. https://arxiv.org/abs/2302.
04726

[8] Alireza Heidari, Joshua McGrath, Thab F Ilyas, and Theodoros Rekatsinas. 2019.
Holodetect: Few-shot learning for error detection. In Proceedings of the 2019
International Conference on Management of Data. 829-846.

[9] Lukas Kaupp, Heiko Webert, Kawa Nazemi, Bernhard Humm, and Stephan Si-

mons. 2021. CONTEXT: An industry 4.0 dataset of contextual faults in a smart

factory. Procedia Computer Science 180 (2021), 492-501.

Natthawut Kertkeidkachorn and Ryutaro Ichise. 2018. An automatic knowledge

graph creation framework from natural language text. IEICE TRANSACTIONS on

Information and Systems 101, 1 (2018), 90-98.

[11] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han.
2023. AWQ: Activation-aware Weight Quantization for LLM Compression and
Acceleration. arXiv preprint arXiv:2306.00978 (2023).

[12] Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Mad-

den, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2019. Raha: A

configuration-free error detection system. In Proceedings of the 2019 Interna-

tional Conference on Management of Data. 865-882.

Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, and Christopher Ré.

2022. Can foundation models wrangle your data? arXiv preprint arXiv:2205.09911

(2022).

Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. 2017. Holoclean:

Holistic data repairs with probabilistic inference. arXiv preprint arXiv:1702.00820

(2017).

Bahar Sateli and René Witte. 2015. Automatic construction of a semantic knowl-

edge base from CEUR workshop proceedings. In Semantic Web Evaluation Chal-

lenges: Second SemWebEval Challenge at ESWC 2015, Portoroz, Slovenia, May

31-June 4, 2015, Revised Selected Papers. Springer, 129-141.

Sneha Singhania, Jan-Christoph Kalo, Simon Razniewski, and Jeff Z. Pan. 2023.

LM-KBC: Knowledge base construction from pre-trained language models, Se-

mantic Web Challenge. CEUR-WS (2023). https://lm-kbc.github.io/challenge2023/

Milena Trajanoska, Riste Stojanov, and Dimitar Trajanov. 2023. Enhancing

Knowledge Graph Construction Using Large Language Models. arXiv preprint

arXiv:2305.04676 (2023).

David Vos, Till D6hmen, and Sebastian Schelter. 2022. Towards Parameter-

Efficient Automation of Data Wrangling Tasks with Prefix-Tuning. In NeurIPS

2022 First Table Representation Workshop.

Zheng Zheng, Longtao Zheng, Morteza Alipour Langouri, Fei Chiang, Lukasz

Golab, and Jaroslaw Szlichta. 2021. Discovery and contextual data cleaning with

ontology functional dependencies. arXiv preprint arXiv:2105.08105 (2021).

[10

(13

=
ot

[15

[16

(17

[18

[19

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://arxiv.org/abs/2302.04702
https://arxiv.org/abs/2302.04726
https://arxiv.org/abs/2302.04726
https://lm-kbc.github.io/challenge2023/

	Abstract
	1 Introduction
	2 Overview
	2.1 OFD Dependencies
	2.2 Datasets Categorization

	3 Automated Context Modeling
	3.1 Handling IoT Datasets
	3.2 Handling Non-IoT Datasets

	4 Prompt Ensembling
	5 Data Cleaning with LLMClean
	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Results
	6.3 Discussion

	7 Related Work
	7.1 Context Model Generation
	7.2 Automated Data Cleaning

	8 Conclusion & Future Work
	Acknowledgments
	References

