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Abstract—Game economy design significantly shapes the
player experience and progression speed. Modern game
economies are becoming increasingly complex and can be very
sensitive to even minor numerical adjustments, which may
have an unexpected impact on the overall gaming experience.
Consequently, thorough manual testing and fine-tuning during
development are essential. Unlike existing works that address
algorithmic balancing for specific games or genres, this work
adopts a more abstract approach, focusing on game balancing
through its economy, detached from a specific game.

We propose GEEvo (Game Economy Evolution), a framework
to generate graph-based game economies and balancing both,
newly generated or existing economies. GEEvo uses a two-
step approach where evolutionary algorithms are used to first
generate an economy and then balance it based on specified
objectives, such as generated resources or damage dealt over
time. We define different objectives by differently parameterizing
the fitness function using data from multiple simulation runs
of the economy. To support this, we define a lightweight and
flexible game economy simulation framework. Our method is
tested and benchmarked with various balancing objectives on
a generated dataset, and we conduct a case study evaluating
damage balancing for two fictional economies of two popular
game character classes.

Index Terms—game economies, evolutionary algorithms, game
balancing, simulation

I. INTRODUCTION

Games, whether analog or video games, that feel unbalanced
are unsatisfactory to players, leading to boredom or frustration,
and players will stop playing. [1]. A game’s balance is
thereby heavily influenced by the design and configuration
of its internal economy which defines how virtual resources
are created and can be transitioned to other resources. A
well-designed economy is a powerful system, incentivizing
players to engage in certain behaviors to increase their virtual
progress and to keep playing the game [2], [3]. This concept
is present in many game genres such as in simulation games
like Catan or Factorio (transitions of resources like wood or
iron), first person shooters (health points and their relation to
weapon damage), role playing games like The Legend of Zelda
or World of Warcraft (e.g., mana and ability cool downs),
or in general: the players’ most valuable resource - their
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Fig. 1: The process of GEEvo is two-step: First, a game
designer models an existing game economy using our sim-
ulation framework or creates one with the generator. Second,
the designer sets an objective based on which the balancer then
optimizes the economy graph’s weights. In an iterative process
the designer evaluates the weights found and, if needed, may
reconfigure the balancer. This may involve specifying static
weights for e.g., a particular narrative context or enhancing
the influence of probabilistic elements within the economy.

time. Configuring the generation or requirement of resources
for each transition significantly influences the entire system,
making it challenging to achieve overall balance. Even a small
change can have large and sometimes unforeseen effects on the
overall economic behavior and therefore on the entire playing
experience. This is particularly the case when it comes to
probabilistic mechanisms within the economic system, such
as the type and amount of resource creation based on e.g.,
a dice roll. For these reasons, the design and balancing of
game economies requires a lot of manual work, testing and
fine-tuning in the development process [2].

To support game designers in this important but time-
consuming process, this work explores the algorithmic opti-
mization of existing or generated game economies to meet
various balancing objectives (e.g., character damage dealing).
Existing works focus on specific games or genres to address
game balancing [4]–[8], whereas this research takes a different
approach by modeling graph-based game economies at a more
abstract level.

Therefore, we propose GEEvo (Game Economy Evolu-
tion, Figure 1), a framework to generate and balance graph-
based game economies simulation-driven. By splitting up the
generation and balancing into distinct units, we address the
procedural content generation (PCG) and balancing problem
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separately. Little work has been presented on the generation of
game economies itself in literature. Rogers et al. [9] introduce
an evolutionary algorithm (EA) to generate graph-based game
economies of different complexities for a simulation game.
In this work, however, we address more complex economies
including probabilistics for instance. Hence, we create the
generator — a controllable EA designed to generate ran-
dom but valid economies. Simulations are conducted using
a lightweight framework inspired by Machinations1, which
leverages the domain-specific language introduced in [10].
With this approach, an economy can be flexibly modeled as
a graph with nodes representing functional components. The
balancer, a second EA, then optimizes the resource flow by
adjusting edge weights in the economy graph. With GEEvo,
a designer e.g., has the capability to model, simulate, and
balance the pace at which players progress towards a particular
achievement, like crafting the mighty sword. To assess our
method, we evaluate the general performance on a set of
generated economies and conduct a case study in balancing
the damage output of fictitious economies of a mage and an
archer. The Python code for GEEvo can be found on GitHub2.
Our contributions are:

• The generator: An evolutionary algorithm for creating
random but valid game economy graphs that are control-
lable in terms of output size and components.

• The balancer: An evolutionary algorithm to balance
graph-based game economies simulation-driven by op-
timizing its weights towards different objectives.

• A lightweight and extendable framework to simulate
game economies.

• A study to evaluate the balancing of generated economies
with respect to different balancing objectives. In it, we
demonstrate balancing using an example setting of dam-
age dealing for a mage and an archer.

The paper is structured as follows: We give an overview
of related work in Section II and the method in Section III.
The latter includes the description of the economy sim-
ulation framework (III-A), the generator (III-B) and bal-
ancer (III-C). Experiments and results are described in Sec-
tion IV, the discussion and limitations in V, and the conclusion
and future work in VI.

II. RELATED WORK

Game economies have been studied in depth in the basic
books [2] and [3]. A game’s economy massively contributes
to the overall game experience including its balancing and how
fast players progress in the game. Especially through balancing
the progress, free-to-play games use players’ impatience for
monetization [11]. Klint et al. [10] introduce a domain specific
language to flexibly model game economies as a graph which
has been adapted further in [12]. The authors introduce differ-
ent node types which create and transition resources. Based
on the proposed design, we implement a more lightweight

1https://machinations.io/
2https://github.com/FlorianRupp/GEEvo-game-economies

implementation to explore its compatibility with EAs in terms
of generation and balancing.

In the area of games research, EAs are used extensively e.g.,
for game balancing [4], [5], [7], [13], playing a game [14],
PCG tasks such as levels [15]–[17], scenarios [18], narra-
tives [19], rules [20], or textures [21] (cf. search-based PCG).
A comprehensive and up-to-date survey about the usage of
EAs for games is given by Togelius et al. in [22].

Whereas this work aims at balancing a game through its
economy from a more abstract perspective, many works focus
on a single game or genre to adjust game unit parameters or
create new units using an EA. Volz et al. create balanced decks
for a card game using an evolutionary multi-object optimiza-
tion strategy [4]. To estimate a deck’s win rate, the authors
also use a simulation-driven approach, but supported by a
statistical surrogate model. De Mesentier Silva et al. present an
EA to balance card attributes for the game Hearthstone [8].
Gravina et al. [7] introduce the Constraint Surprise Search,
a divergent evolutionary search method, to generate sets of
diverse and balanced weapons for first person shooter (FPS)
games. Morosan et al. [13] use an EA to balance a real time
strategy game (RTS) and Sorochan et al. [5] to generate new
and balanced units for an RTS game. Another approach to
balancing a game is through the procedural generation of the
game map as shown for FPS games [23], [24]. Automated
game balancing, however, is not limited to EAs. Pfau et al.
introduce data-driven deep player behavior models to replicate
human behavior to adapt game parameters [6]. Furthermore,
reinforcement learning is also popular e.g., for difficulty
balancing [25] or the generation of balanced levels [26]. We
build on the idea presented in [26] of splitting the generation
and balancing step into two separate units and calculating the
fitness in a simulation-driven manner.

Little work has been presented on the automated generation
or balancing of game economies itself. Rogers et al. generate
graph-based game economies using an EA [9]. The authors
thereby focus on the generation of economies with different
perceived complexity levels and proof their results alongside
with a user study. In their implementation the economy is
represented by a tree structure where each resource is always
forwarded to a resource conversion. In contrast to this work,
we focus on the balancing of the economy and allow for more
complex economies including probabilities or supporting loops
within in the graph.

Besides balancing, EAs in the context of games are applied
for PCG tasks [27] such as the generation of levels. A taxon-
omy and survey is given by Togelius et al. [15]. In another
work, Togelius et al. propose an EA to generate levels for
an RTS game using a controllable multi-object approach [16].
Search-based methods like EAs, however, have a high depen-
dency on randomness and are also computationally intensive at
inference. Therefore, Khalifa et al. introduce mutation models
that combine evolution with machine learning to enable faster
generation of game levels [28]. Taking an alternative approach,
Khalifa et al. employ reinforcement learning for level gener-
ation, highlighting the advantage of fast inference once the
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model has been trained [29].

III. THE GEEVO FRAMEWORK

The two-fold process of GEEvo is shown in Figure 1. We
use two EAs, one for the constraint-based generation of game
economies and a second one for the balancing of an econ-
omy’s weights according to a given balancing objective. As
applied in [26], we also separate the generation and balancing
processes into two separated units for better performances of
both. Additionally, the encapsulation allows the application of
the balancer to already existing economies. The generator is
controllable in terms of the economy’s graph’s size and the
distinct number of each node type. The balancer optimizes an
economy’s weights toward a balancing objective by simulating
the economy to calculate the fitness of its current weights.

Before we describe both algorithms in detail in Sec-
tions III-B and III-C including an overview of the different
fitness functions, we present our economy simulation frame-
work and its application.

A. Game Economy Simulation Framework

A game economy can be considered as a directed graph
which defines how resources of different types are generated
and transitioned to other resource types. We only deal with
fixed economic systems, where all resources come from the
economy itself. In this context, nodes in that graph repre-
sent different functional components such as the creation of
resources or conversion to different types. Weights on the
edges describe how many resources flow from one node to
the adjacent one. Depending on the node type, the weights
are absolute values or probabilities.

Our framework defines five different node types. To create
valid and executable economy graphs, we establish constraints
for each node type, specifying the permissible connections to
other node types (Table I). The values for maximum (max)
and minimum (min) output sizes are each chosen to keep
the economies more manageable. However, these values could
also be changed to allow for more complex economies (e.g.,
increase max output).

a) Source: Sources are entry points creating resources
and adding them to the economy.

b) Random gate: A random gate distributes incoming
resources based on the probabilistic weights of its outgoing
edges. It must be ensured that the sum of the weights of all
outgoing edges equals one. This can be used to model e.g.,
critical attacks or random drops.

c) Pools and fixed Pools: Pool nodes have an intern
memory to store incoming resources. They serve as buffers for
outputs from sources, random gates, or converters or as end
points of the economy. For the analysis of the economy, we
can monitor the fluctuations of the resources within pools over
time. Fixed pools, a subform of a pool buffer a maximum of
the number of resources equal to the highest outgoing weight.
This is particularly useful when modeling ability cooldowns.

d) Converter: A converter transitions one or multiple
incoming resources to one outgoing resource.

e) Drain: Drains permanently remove resources from the
economy. As with pools, drains can be monitored.

An example of how to model an existing economy from the
sandbox game Minecraft [30] is given in Figure 2a. It shows
the torch crafting process in an automation setting where
specific amounts of resources are added to the economy via
sources per time step. Using pool and converter nodes we can
define this economy for torches from wood and coal sources.
While coal can be directly used for crafting torches, the wood
resource must first be converted into sticks. According to the
original implementation3, the conversion to sticks yields four
sticks per two wood entities. In this example, other resources
such as the time to collect resources or the need for a crafting
table for resource conversion are neglected.

Execution of Game Economy Simulations: The directed
graph G of a game economy can be denoted as G = (V,E),
where V are its vertices (nodes) and E are the edges connect-
ing vertices. For each vertex vi ∈ V a subset Avi ⊂ E exists
containing all outgoing edges. The types of all allowed node
types (such as source or pool) are described in the set T (cf.
Table I). The execution of the graph economy is then done
recursively. For each vi all edges ej ∈ Avi are executed by a
function hτ (vi, ej), τ ∈ T , hτ respectively to the type τ of
vi.

We plot two example courses of simulations with different
weights of the economy in Figure 2a in the Figures 2b and 2c.
For this example, we assume both resources, wood and coal,
to create one of each per time step. By changing the needed
amount X for coal to converse coal and sticks to torches, this
example demonstrates how small changes to a single weight
can impact the whole economy. While e.g., for X = 1 the
number of torches grows linearly per time step; for X = 2 it
is gradual. Also, the curve progressions of available wood and
coal is different.

B. Evolutionary Generation of Game Economies

The generator creates valid game economy graphs within
the framework outlined in Section III-A. A valid economy
graph must be weakly connected and adhere to the constraints
in Table I. The generator’s task thereby is to connect nodes
with edges, meeting all constraints. It operates by defining
a population of individuals and iteratively optimizing them
through mutations over multiple generations. The generator
is designed for controllability, allowing users to specify the
number and types of vertices in the generated graph. For
instance, it can generate an economy with three sources, two
random gates, one converter, and four pools. The execution
of the algorithm stops if a valid graph has been found or a
maximum of allowed steps is exceeded.

1) Initialization and Population: During initialization, all
vertices defined in the external configuration are initialized
depending on their type. The population consists of a con-
figurable number of individuals, with a single individual
representing the edge list of the graph. After initialization,

3https://www.minecraft-crafting.net/
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TABLE I: Overview of the different node types and their constraints to create valid game economies.

Node types T Max in Max out Min out Min in Allowed inputs Allowed outputs Color

Source 0 3 1 0 - Pool, Random Gate green
Random Gate 1 3 2 1 Source, Converter Pool, Converter red
Pool 2 3 0 1 Source, Random Gate, Converter Converter, Drain blue
Converter 3 1 1 1 Pool, Random Gate Pool, Random Gate yellow
Drain 2 0 0 1 Pool - orange

(a) Example economy from the game Minecraft for crafting
torches from basic wood and coal resources.

(b) Simulation 1: X = 1 (original value).

(c) Simulation 2: X = 2 (value for demonstration).

Fig. 2: Example of a game economy using the proposed framework and two simulations of it, each with a different configuration.
The graph (a) shows the economy from the game Minecraft to craft torches from wood and coal in an automation setting. (b)
and (c) show the monitoring of the pool nodes simulating the economy in (a). By only changing the amount of coal needed
to craft torches, the entire economy behaves differently.

the edge lists of all individuals are empty and will be filled
iteratively in the execution.

2) Mutations: Mutations are the driving force to evolve the
graph. Since the performance is satisfying (cf. Section III-B),
we abstain the implementation of a crossover. In each gener-
ation, for each individual, two vertices are randomly selected
to add an edge. If this edge is allowed according to the
constraints, it is added to the individual, otherwise it is not.
This simple and greedy approach may get stuck, since at some
point the graph is still not valid and no valid edges are allowed
anymore. To address this shortcoming, a second mutation, may
in each generation, remove a previously created edge from a
random individual with a certain probability.

3) Fitness function: The fitness function (Eq. 1) embeds
the constraints to ensure the validity of the graph G with its
vertices V . It creates the graph based on the created edges
and sums up the number of dissatisfied constraints for each
vertex v ∈ V . This is done using the auxiliary function
validate(v). The function is defined in the interval [0,∞),
where 0 represents the maximum fitness of an individual; to
achieve best fitness the function must therefore be minimized.

fitness(G) =
∑
v ∈V

validate(v) (1)

C. Evolutionary Balancing of Game Economies

The balancer optimizes the weights of one or multiple
economies towards a balancing objective which is expressed

Fig. 3: The structure of the balancer in detail: The balancer
iteratively optimizes an economy’s weights toward a balancing
objective x. Therefore, it adjusts the weights based on the
fitness ft per time step t in relation to x through crossovers and
mutations. ft is calculated based on the result st of multiple
simulation runs of the economy.

by parameterizing its fitness function. An overview of the
balancer’s internal structure is given in Figure 3. Utilizing
crossovers and mutations, the balancer optimizes its popula-
tion, consisting of multiple individuals. Following crossover
and mutations, the population undergoes sorting based on
fitness, retaining only individuals up to the population size
for the subsequent generation. The algorithm terminates either
when the fitness is at its best for a single individual, or
the maximum number of generations is exceeded. In some
narrative settings, a designer wants to keep specific values.
Therefore, the balancer can be set up with static weights that
remain unalterable throughout the balancing process. An ex-
ample on the application is given in the case in Section IV-B2.
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1) Individuals and population: A population consists of n
individuals where each represents all weights of an economy.
It can be thought of as a list where each weight’s index is
mapped to the same index of the graph’s edge list. In case
of balancing two economies at once, an individual consists
of the two weights lists of the respective economies. At the
initialization of an individual, its weights are set randomly
where all values must be greater than 0.

2) Crossover: In each generation all individuals of the
current population are paired randomly for crossover. For
each pair, we iterate over both individuals’ k and l weights
wki, wli simultaneously and apply one of four randomly
selected operations, each with equal probability. The four
operations for the new weight at index i are choose wki or
wli directly, wki + wli or, wki − wli. After crossover, two
individuals each produce a new child individual.

3) Mutations: For each mutation a random individual is
selected from the population and a random weight is chosen.
This weight is then modified by either adding or subtracting
the random number by 0.5 each. If subtracting would yield a
value < 0 it is set to 1.

4) Fitness functions: With the fitness function we define
the goal towards which an economy should be balanced. All
fitness is computed by observing the state s

pj

t (the amount
of contained resources) of one or multiple pool nodes pj ∈
P, P ⊂ V at a selected time step t, t ≤ n within the [1, n]
steps of a simulated economy. To mitigate randomness, we
run each simulation with the same weights m-times (see
Section III-C4b).

a) Balancing a resource to an absolute value: This
function (Eq. 2) is motivated by adapting the weights of an
economy so that a selected pj equals a given value x after
a fixed number of time steps n. One possible use case is to
balance the economy to be capable of producing a distinct
amount (x) of a resource (pj) within a given time period
(n). Such a resource can e.g., be coal or damage points,
depending on the setting. Since s

pj

t is based on stochastic
simulations, we add an additional parameter α as a threshold
value to the average so that the algorithm can also terminate at
values close to the maximum fitness. As we will later explore
(cf. Section IV-B2), the configuration of this parameter is
further important to control the influence of randomness in
an economy when balancing. Eq. 2 is defined in the interval
[0, 1 + α], where 1 + α represents the maximum fitness of an
individual. The auxiliary function prop (Eq. 3) computes the
proportion of x and s

pj

t .

f1(s
pj

t , x) = α+
1

m

m∑
i=1

prop(s
pj

ti , x), pj ∈ P (2)

prop(s
pj

t , x) =


s
pj

t ·
1

x
, x > 0 if x > s

pj

t

x ·
1

s
pj

t

, s
pj

t > 0 if x ≤ s
pj

t

(3)

To balance two resources s
pj

t and spk
t within the same

economy instead of a single absolute value we can use Eq. 2,
but with a different parametrization: f1(s

pj

t , spk
t ), pj , pk ∈ P .

b) Balancing two resources of different economies to the
same value: Function f2 parameterizes Eq. 2 to balance two
resources of two different economies θ and ϕ. We apply this
function in the case study in Section IV-B2 to balance the
dealt damage of a mage and an archer class within the same
time period:

f2(s
pj

t , spk
t ) = f1(s

pj

t , spk
t ), pj ∈ Pθ, pk ∈ Pϕ (4)

IV. EXPERIMENTS AND RESULTS

The evaluation is twofold: First, we investigate on the
general performance of the generator and second, on the
balancer including a case study.

A. Evaluation of Game Economy Generation

To evaluate the generator, we create a set of 200 economy
graphs with a number of nodes in the range of 5 to 20.
Also, the distribution of different node types is randomly
varied. Within 50k iterations, the algorithm could generate
valid graphs according to the constraints and the external
configuration in 97% of cases. The generated dataset therefore
consists of 194 graphs. The median number of iterations
required to complete is 641 (90% quantile: 9354), the median
running time is 25 ms (90% quantile: 296 ms)4.

We use this set of economy graphs for the evaluation of the
balancer with different balancing objectives.

B. Evaluation of Game Economy Balancing

1) General Performance with different balancing objec-
tives: To assess the balancer’s overall performance, we apply
it to the previously generated dataset, focusing on balancing a
randomly selected pool of an economy to a specific value after
a defined number of simulation steps. To test the algorithm’s
adaptability to varied values, both the number of simulation
steps and the specific target value are randomly chosen within
the intervals [10, 30] and [20, 100], respectively. An example
would be balancing the pool for torches in Figure 2a to a
value of 28 after 16 simulation steps. Therefore, we employ
the fitness function (Eq. 2) introduced earlier. Given the
probabilistic nature of random gates, achieving maximum
fitness is often impossible; hence, we compare the results for
different values of α. The timeout for the algorithm to stop
is set to 500 iterations. The size of the population is set to
20 and we run ten simulations with the same weights each
generation for each individual. This results in 300 simulation
runs per generation alone. The computational effort involved
in carrying out the simulation is acceptable. Conducting ten
simulations per economy and generation consistently results
in a computing time of less than 284 ms.

4We use for all experiments an AMD EPYC family 23 model 1 processor
with 2.6 GHz. One core is assigned per execution of a single graph.



Accepted at the IEEE Congress on Evolutionary Computation 2024 (IEEE CEC)

(a) The mage’s economy graph. Seven values can be balanced
accordingly: the cooldowns (CD), mana costs (Cost A1, A2),
and damage values (Dmg.) for both abilities (A1 and A2); as
well as the overall amount of mana regenerated (Regen.) per
time step.

(b) The archer’s economy graph. Five values can be balanced
accordingly: the overall attack speed, the probabilities (Prob.)
to perform a normal or critical attack and the the damage values
for each.

Fig. 4: Economy graphs for the case study to balance the damage dealing of a mage (a) and an archer (b). The values to be
balanced are the weights on the edges. Fixed values are represented by absolute values.

TABLE II: Results for balancing the generated dataset of
economy graphs using fitness function 1 (Eq. 2) towards
different values of α.

α = 0.05 α = 0.01 α = 0.0

Balanced (%) 93.3 83 58.8
Improved (%) 77.3 88.7 94.8
Initial balanced (%) 27.3 8.8 2.5
Median generations 1 7 196
Median execution time (s) 18,4 66 703.2

Table II presents the results, indicating a significant vari-
ation in the proportion of balanced economies based on α.
As the threshold α increases, so does the proportion of bal-
anced economies, including those that were initially balanced.
Additionally, the median execution times and generations are
dependent on α, with higher values of α leading to solutions
being found in fewer generations, thereby reducing overall
computation time.

2) Case study: Balancing a Mage with an Archer: Many
game genres (e.g., MOBA: Multiplayer Online Battle Arena)
offer players the opportunity to choose from different charac-
ters, each assigned to specific classes. While each character
has a unique game design, characters of the same class have a
similar play style. The different character designs offer players
various strategies to win the game. However, in order for a
game to be balanced, it is necessary to ensure that different
strategies, if played well, are viable to win the game [2].

In this case study, we examine GEEvo for its ability to
balance two different economies, using two popular classes as
an example: a mage and an archer. For each class, our goal
is to achieve a comparable maximum damage output within a
specified time frame. Therefore, we use Eq. 4. Both economy
graphs are shown in Figure 4. The mage’s game design is
based on casting two different abilities (Fig. 4a). Each ability
has a specific mana cost, a cooldown, and a value for the
damage it deals. Mana is generated at each time step. So, there

TABLE III: Results after balancing attributes for the mage and
archer economy compared for two different values of α with
the goal to deal the same damage within a given period of
time.

Result α=0.05 Result α=0.01

Mage w Archer w Mage w Archer w

M. Reg. 3 A-Speed 2 M. Reg. 2 A-Speed 1
A1 CD 1 A1 Prob. 0.88 A1 CD 1 A1 Prob. 0.76
A1 M. 3 A1 Dmg. 1 A1 M. 3 A1 Dmg. 2
A1 Dmg. 3 A2 Prob. 0.12 A1 Dmg. 3 A2 Prob. 0.24
A2 CD 3 A2 Dmg. 3 A2 CD 2 A2 Dmg. 2
A2 M. 2 A2 M. 2
A2 Dmg. 3 A2 Dmg. 3∑

Dmg. 55 53.8±4.8 60 60±0

Fitness 0.95 + α 1.0 + α

are seven values which need to be balanced accordingly: the
cooldowns, mana costs, and damage values for both abilities;
as well as the overall amount of mana regenerated per time
step. In contrast, the archer is designed to perform attacks that
have a cooldown based on its attack speed (Fig. 4b). Each
attack has a chance to deal additional damage (cf. critical
damage). In this economy five values can be adjusted for
balancing: the probabilities for a normal attack and critical
damage, the damage values for both, and the attack speed.
Given the narrative context during the cooldown modeling for
both economies, we establish these weights as static, allowing
us to manually set the value to one (cf. Section III-C).

We experiment with two different values for the fitness
threshold α, each time with the same seed. To mitigate ran-
domness, we run ten simulations with a length of 30 time steps
per generation and a population size of ten. The algorithm
terminates after two generations with a total computation time
of 1.4 seconds for α = 0.05. For α = 0.01 the algorithm
terminates after six generations in 16.6 seconds.
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Results of the found attributes (weights) are displayed in
Table III. For both runs, the balancer finds a solution and
terminates within the permitted number of generations. The
weights found for the mage are both comparable, whereas
those for the archer differ mainly for the probabilistic values
for a critical hit. With α = 0.05, a critical hit (A2) with a
change of 12% would cause three damage, a normal attack
only one damage. For α = 0.01, the probabilities for a critical
hit are irrelevant, as the balancer has equalized the damage for
both cases. We discuss this in detail in combination with the
influence of the parameter α in Section V.

V. DISCUSSION AND LIMITATIONS

The results of our experiments showed that the generation
and value optimization for balancing of graph-based game
economies with the proposed framework is feasible. There are,
however, several points that need to be discussed.

The generator is controllable in terms of the number and
types of nodes and generated valid graphs in terms of the
given constraints, showing an average validity of 97%. A
median execution time of 25 ms indicates fast performance.
In comparison to [9], our implementation is also able to
construct game economy graphs that do not only represent tree
structures and therefore allow loops or contain probabilistics,
for instance. This allows for greater precision and flexibility
in modeling economies [2], [10]. So far we only focused on
the validity of generated graphs in relation to the node types.
One approach for future work is therefore to focus on creating
interesting or differently complex economies.

We investigated on the general performance of the balancer
by applying it to each economy in the generated dataset to a
randomly chosen target value with a randomly chosen simu-
lation length. The results (Table II) vary greatly dependent on
the value of α. The best-balanced proportion yields α = 0.05
with a share of 93.3%. α = 0.0 allows no margin for the
simulated target values, thus its results are worse. Also, the
execution time and needed number of generations differ per
α. Since the permissible margin of α = 0.05 allows for greater
scatter, the target balance can be achieved faster and therefore
its median generation and execution time are much faster
compared to smaller α. However, there is no setting where
all economy graphs could be balanced. In cases where the
balancer improved overall, but could not achieve the expected
quality, the algorithm may have gotten stuck in local optima.

Another problem is the challenge of balancing randomly
selected combinations of pools and values in combination
with the distribution and networking of different node types.
For instance, there are cases in which a certain target value
cannot be mathematically achieved within the randomly cho-
sen simulation length. This could be addressed by interpreting
the balancing constraint as a value range. In particular this is
beneficial for use cases where the actual value is not important,
but the perfect balance is.

With the case study of two fictional economies (mage and
archer class), we delve into how the balancer optimizes both

to ensure equal damage output in the same time frame, ad-
dressing the objective in game balancing for diverse strategies
and preventing a single dominant strategy from consistently
prevailing. We compare the results of two runs with two
different values of α, representing the threshold for values
to consider as balanced. For both configurations, the balancer
could find a solution within a short number of generations.
A key finding here is that for a low value of α (0.01), the
algorithm tries to minimize the fluctuation of values caused
through the stochastic simulation. While the probabilities for
normal and critical hits still differ, it equalizes the damage
for both hits and thereby mitigates the randomness. At the
one hand, it fits the balancing criteria, at the other it might
not be a desirable solution since now the intention of the
economy design is obsolete. To address this shortcoming, we
recommend using low values of alpha only if randomness
should have no or little impact. In other words, α can be used
not only to configure the precision to a specific value but also
to modulate the stochastic impact.

Another solution for a game designer is to use static weights
for e.g., one of the damage values to prevent the balancer from
adjusting it. For this case study we used the parametrization of
the fitness function in Eq. 4 to balance two economies at once
to a same value. In many cases, however, new game entities are
to be integrated into an existing game ecosystem. Therefore,
to not adjust the whole existing system, Eq. 2 can be used
directly to balance the newly introduced content to a value
which fits into the ecosystem. Another point to mention is
that, due to the recursive execution of the economy framework,
the mage’s economy implements the play style of a spammer,
using an ability whenever its cooldown is ready and enough
mana available. Human players would also use other strategies,
such as waiting for an ability that deals more damage even
though another one is available. A future approach is thus the
implementation of small bots, each with different strategies
for a same economy.

It was shown that the economy simulation framework is
able to implement basic concepts of game economics on
examples from the game Minecraft and two fictitious character
classes. However, it lacks components to e.g., influence edge
weights based on values of pools as implemented in [10],
[12]. This would open further opportunities to study more
complex economies and other balancing objectives such as
the counteracting of positive feedback loops.

Another limitation is that this research is based on simula-
tions on an abstract game. Since by design no real game is
implemented and no humans for testing are involved, playtests
are still required. It still depends on human players whether the
generated economies with the computed weights are actually
fun to play within the narrative setting chosen by the designer.
Therefore, this research is intended to support the early
stages of game design to find an interesting economy through
generation and balancing initial values for the first player
tests. Lastly, evolutionary computing has a high dependency
on randomness, especially in combination with probabilistics
within the simulations. Hence, we attempt to mitigate this by
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evaluating GEEvo on a large sample of economies with a wide
range of configuration values.

VI. CONCLUSION AND FUTURE WORK

We have proposed GEEvo (Game Economy Evolution), a
framework for generating and balancing graph-based game
economies in a two-step process using evolutionary algorithms
and simulations. In addition to a lightweight framework for
simulating the economies for balancing, we presented a fitness
function that can be parameterized differently to balance
economies towards various objectives. The results show that
the balancer can optimize the weights of the economies to arbi-
trary values and simulation lengths in most cases. We further
evaluated GEEvo in a case study using fictional economies
of two popular game character classes. By considering game
economies from an abstract perspective, GEEvo is independent
of a specific game or genre and is intended to support designers
in the early stages of development.

In future work, we aim to extend the balancer to be able
to handle multi-object evolution to meet multiple balancing
goals for an economy simultaneously and expand its usage
with further fitness functions. In addition, we want to extend
the simulation framework to handle more complex economies,
e.g., to influence an edge’s weight depending on the value of
a pool. This would open new opportunities to investigate how
positive feedback loops could be counteracted by the balancer.
Furthermore, an investigation into the automated naming of
an economy’s nodes based on a given narrative context is
of interest through recent advances in large language models
(LLMs).
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[24] Raúl Lara-Cabrera, Carlos Cotta, and Antonio J. Fernández-Leiva. On
balance and dynamism in procedural content generation with self-
adaptive evolutionary algorithms. Natural Computing, 13:157–168,
2014.

[25] Simão Reis, Rita Novais, Luı́s Paulo Reis, and Nuno Lau. Automatic
Difficulty Balance in Two-Player Games with Deep Reinforcement
Learning. In 2023 IEEE Conference on Games (CoG), pages 1–8,
August 2023. ISSN: 2325-4289.

[26] Florian Rupp, Manuel Eberhardinger, and Kai Eckert. Balancing of
competitive two-player Game Levels with Reinforcement Learning. In
2023 IEEE Conference on Games (CoG), August 2023. ISSN: 2325-
4289.

[27] Noor Shaker, Julian Togelius, and Mark J. Nelson. Procedural Content
Generation in Games. Computational Synthesis and Creative Systems.
Springer International Publishing, Cham, 2016.

[28] Ahmed Khalifa, Julian Togelius, and Michael Cerny Green. Mutation
Models: Learning to Generate Levels by Imitating Evolution. In
FDG ’22: Proceedings of the 17th International Conference on the
Foundations of Digital Games. ACM, 2022.

[29] Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius.
Pcgrl: Procedural content generation via reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 16, pages 95–101, 2020.

[30] Mojang. Minecraft. Mojang and Microsoft Studios, 2011.


	Introduction
	Related Work
	The GEEvo Framework
	Game Economy Simulation Framework
	Evolutionary Generation of Game Economies
	Initialization and Population
	Mutations
	Fitness function

	Evolutionary Balancing of Game Economies
	Individuals and population
	Crossover
	Mutations
	Fitness functions


	Experiments and Results
	Evaluation of Game Economy Generation
	Evaluation of Game Economy Balancing
	General Performance with different balancing objectives
	Case study: Balancing a Mage with an Archer


	Discussion and Limitations
	Conclusion and Future Work
	References

