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ABSTRACT
Event-based sensors are well suited for real-time processing due to

their fast response times and encoding of the sensory data as succes-

sive temporal differences. These and other valuable properties, such

as a high dynamic range, are suppressed when the data is converted

to a frame-based format. However, most current methods either

collapse events into frames or cannot scale up when processing the

event data directly event-by-event. In this work, we address the

key challenges of scaling up event-by-event modeling of the long

event streams emitted by such sensors, which is a particularly rele-

vant problem for neuromorphic computing. While prior methods

can process up to a few thousand time steps, our model, based on

modern recurrent deep state-space models, scales to event streams

of millions of events for both training and inference. We leverage

their stable parameterization for learning long-range dependencies,

parallelizability along the sequence dimension, and their ability to

integrate asynchronous events effectively to scale them up to long

event streams. We further augment these with novel event-centric

techniques enabling our model to match or beat the state-of-the-art

performance on several event stream benchmarks. In the Spiking

Speech Commands task, we improve state-of-the-art by a large

margin of 6.6% to 87.1%. On the DVS128-Gestures dataset, we

achieve competitive results without using frames or convolutional

neural networks. Our work demonstrates, for the first time, that it is

possible to use fully event-based processing with purely recurrent

networks to achieve state-of-the-art task performance in several

event-based benchmarks.

CCS CONCEPTS
• Computing methodologies→Machine learning algorithms.

KEYWORDS
Event-stream modeling, state-space models, event-based vision,
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1 INTRODUCTION
Inspired by the sensory systems in biology, neuromorphic sensors

implement an asynchronous and event-based encoding of local

environmental changes [Caviglia et al. 2017; Chan et al. 2007; Licht-

steiner et al. 2008; Perot et al. 2020a; Posch et al. 2011]. This sens-

ing paradigm promises several advantages over classical sensors,

including energy efficiency, low latency, increased temporal resolu-

tion, and dynamic range. For example, systems subject to rapidly

changing environments or lighting conditions, such as autonomous

robots, benefit from the high dynamic range and low latency of

event-based vision sensors. Subsequent processing stages such as

machine learning systems, must be compatible with the sensors’

asynchronous and temporally sparse event-streams to fully leverage

the neuromorphic sensing paradigm.

However, machine learning methods struggle to effectively han-

dle event-streams asynchronously in an event-by-event processing

setting. This is due to three key challenges of working with neuro-

morphic event-streams: (1) Integrating neuromorphic signals event-

by-event requires learning interactions between events far apart

in time and/or spatial dimensions. This is the well-known problem

of learning long-range dependencies that has been extensively stud-

ied in the recurrent neural networks literature [Bengio et al. 1994;

Hochreiter 1991]. (2) Neuromorphic sensors can emit large numbers

of events per second, generated in parallel from up to a million

asynchronous input channels [Perot et al. 2020a]. Effectively pro-

cessing very long sequences from neuromorphic sensors requires

parallelization to use sparsity and asynchrony effectively. The vast

advances of highly parallel hardware accelerators favor sequence

modeling methods that allow parallelization along the sequence

length. (3) Asynchronous processing. Neuromorphic sensors produce

events in irregular time intervals from many asynchronous sensor

channels. Most modern machine learning algorithms require a fixed

step size to process sequences effectively. Continuous-time meth-

ods have been developed to handle irregular sequences [Schirmer

et al. 2022], but struggle with very long sequences due to a lim-

ited ability to learn long-range dependencies. Ultimately, machine

learning systems that use event-based sensors today often collapse

events into frames and thus lose many of the advantages of direct

event-based processing.

This work demonstrates the first scalable machine learning

method to effectively learn event-based representations directly

from high-dimensional asynchronous event-streams. Our method
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uses linear state-space models (SSMs), a class of machine learning

models that have successfully modeled complex sequential data [Gu,

Goel, and Ré 2022]. They are a type of recurrent neural network

that can be efficiently parallelized along the sequence dimension

(challenge 2). Together with their ability to model long-range depen-

dencies (challenge 1), this property allows significant improvements

on tasks like sequential image processing [Gu, Goel, and Ré 2022;

J. T. Smith et al. 2023] and raw-audio processing [Goel et al. 2022].

However, asynchronous integration of inputs (challenge 3) has not

been addressed by the literature. Furthermore, the machine learn-

ing tasks covered by the literature require modeling sequences of a

few thousand up to a hundred thousand steps, while neuromorphic

sensory signals pose examples of even longer sequences ranging up

to millions of events. This work addresses modeling of long asyn-

chronous time-series (challenge 3), while maintaining long-range

dependency learning and parallelization as introduced by the SSM

literature. We propose several novel techniques on top of SSMs and

apply them directly to process neuromorphic sensor signals event

by event. We demonstrate that this effectively mitigates all three

challenges of (1) long-range dependencies, (2) parallelization, and

(3) asynchronous processing. Remarkably, the state-space model

extracts spatio-temporal features from event-based vision streams

without any convolutional layers.

To our knowledge, this is the first scalable event-by-event pro-

cessing method for neuromorphic event-streams that achieves com-

pelling results compared to previous frame-based approaches.

2 RELATEDWORK
Learning representations from neuromorphic event-streams re-

quires methods that handle very long sequences and sequences

with events that are irregularly sampled in time from a set of

asynchronous sources. Existing methods represent event-streams

as time-frames and learn these representations either end-to-end

[Gehrig et al. 2019], or construct them manually [Barchid et al.

2022; Innocenti et al. 2021; Lagorce et al. 2017; Liu et al. 2022].

The time-frame representation allows the processing of the data

with convolutional neural networks (CNNs) as well as recurrent

neural networks (RNNs) and their spiking variants (SNNs). Given

a particular time-frame representation, events can be integrated

into the frame representation asynchronously [Cordone et al. 2021;

Messikommer et al. 2020]. Zubić et al. [2024] apply state-space

models to frames extracted from an event-based vision sensor to

speed up training. An exception from the frame-based paradigm

is Martin-Turrero et al. [2024], who collect a set of events into a

learned tensor representation that can be updated asynchronously

to allow asynchronous inference on event-streams. However, we

significantly outperform their asynchronous method on DVS128-

Gestures and even outperform their synchronous method, while

using much fewer parameters. To the best of our knowledge, ours

is the first work that operates fully asynchronously on the event-

stream and at the same time scales to state-of-the-art performance

on standard neuromorphic benchmarks.

Spiking neural networks. Spiking neural networks are often for-

mulated as continuous-time models and discretized for simulation,

much like state-spacemodels. The continuous-time formulation the-

oretically allows asynchronous event-based simulations. In practice,

however, most researchers discretize on relatively coarse-grained

equidistant time grids. For example, the spiking audio models of

Bittar and Garner [2022] and Hammouamri et al. [2024] use simula-

tion steps of Δ𝑡 = 25ms and Δ𝑡 = 10ms respectively. Vision models

even use simulation steps of up to Δ𝑡 = 100ms [Liu et al. 2022]

or just simulate a total of 4 steps on a single sample [Fang et al.

2023]. In contrast, our method integrates every single event asyn-

chronously with arbitrary resolution without sacrificing simulation

scalability.

Long sequences. The problem of modeling long sequences has

been addressed by recent developments in linear state-space mod-

els (SSMs). SSM-like models were first proposed and shown to

have long-range memory in Voelker et al. [2019] and have since

been developed to be highly effective scalable models [Gu, Goel,

and Ré 2022] via structured linear transformations that efficiently

parallelize on modern accelerators. SSMs have successfully been

scaled to very long sequences such as raw-audio processing of up

to 128 000 steps [Goel et al. 2022], and for autoregressive DNA mod-

eling consisting of over a over a million steps using a time-variant

SSM [Gu and Dao 2023]. Time-variant diagonal SSMs have recently

demonstrated exceptional performance on large-scale language

modeling [De et al. 2024; Gu and Dao 2023]. The parallelization

property of linear SSMs has since been applied to parallelize train-

ing of neuromorphic systems that operate on time-frames [Fang

et al. 2023; Yarga and Wood 2023].

Irregular sequences. Conventional deep learning models are un-

suitable for long, irregular time series. They either lack effective

time-coding paradigms, such as CNNs or RNNs, or suffer from un-

favorable time complexity, such as self-attention-based models. An

early attempt to learn long-range dependencies in irregular time

series, such as neuromorphic event-streams, was presented by Neil

et al. [2016]. They added a new gating mechanism to recurrent

architectures that allowed the model to attend to specific frequen-

cies in the data. Ansari et al. [2023] and Schirmer et al. [2022]

leveraged continuous-time state-space models driven by stochastic

differential equations that integrate discrete observations in a prob-

abilistic manner. J. T. Smith et al. [2023] show that deterministic

state-space models can solve the single source pendulum toy task,

which was already used by Schirmer et al. [2022] while maintaining

the favorable properties of SSMs discussed above. Neuromorphic

event-streams are at an entirely different scale than the benchmarks

used in deep learning papers. They feature up to a million asyn-

chronous source channels and can sample millions of events per

second [Perot et al. 2020b]. We refine the work of J. T. Smith et al.

[2023] to handle asynchronous irregular time series of this scale

and show promising results on neuromorphic benchmark datasets.

3 SCALABLE EVENT-STREAMMODELING
WITH DEEP STATE-SPACE MODELS

We focus on the simplified state-space layer (S5) [J. T. Smith et al.

2023] due to its favorable trade-off between simplicity and efficiency

for the set of tasks of interest to us. In sec. 3.1, we review the S5

model, and in sec. 3.2, we show how it can be used for efficient,

scalable event-stream modeling. In sec. 2 we briefly review other

related state-space model architectures.
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Figure 1: In real-time, our model evolves a linear time-invariant state-space in continuous time and integrates the delta-coded
event-stream along the way. The strength of our model stems from its duality with a linear time-variant recurrence relation
discretized over the event times. This allows the simulation to leverage the associative scan primitive to parallelize the dynamical
system over time.

3.1 Deep State-Space Models
A linear time-invariant state-space model (SSM) in continuous time

is given by the linear system

¤x(𝑡) = Ax(𝑡) + Bu(𝑡) (1)

y(𝑡) = Cx(𝑡) + Du(𝑡) , (2)

where x ∈ R𝐻 is the state-space vector and ¤x is its time deriva-

tive, y ∈ R𝑁 is the output vector, u ∈ R𝑁 is the input signal, and

A ∈ R𝐻×𝐻
, B ∈ R𝐻×𝑁

, C ∈ R𝑁×𝐻
, D ∈ R𝑁×𝑁

are the learnable

parameters of the system. Effectively modeling event-streams re-

quires learning dependencies between distant events and irregu-

larly sampled events. Both requirements can be addressed with

the above continuous-time model. The extensive theory on linear

time-invariant systems allows us to reason efficiently about the

system’s long-term stability. The continuous-time dynamics can

also be discretized on any set of timestamps for irregular sequence

modeling. We will elaborate on both features below.

Long-range dependencies. Recurrent sequence models, such as

recurrent neural networks, fundamentally suffer from a trade-off

between long-term memory and vanishing gradients [Bengio et al.

1994; Hochreiter 1991]. SSMs mitigate this problem by avoiding

non-linear recurrence. In contrast to most non-linear dynamics,

the linear system in eq. (1) can be carefully tuned for effective

long-range dependency modeling.

The set of real matrices that are diagonalizable over the complex

numbers are dense in the space of real matrices, i.e. a randomly

initialized state-space model is diagonalizable almost certainly over

the complex numbers. In this case, there exists a diagonal matrix

Λ ∈ C𝐻×𝐻
and an invertible projection P ∈ C𝐻×𝐻

, such that

A = PΛP−1
. Hence, there is an equivalent diagonalized SSM with

state space variable x̃ such that x(𝑡) = P−1x̃(𝑡). We summarize that

the class of state-space models defined by

¤x(𝑡) = Λx(𝑡) + Bu(𝑡) (3)

y(𝑡) = ℜ𝔢 (Cx (𝑡)) + Du(𝑡) (4)

covers the same dynamics as eqs. (1) and (2), where ℜ𝔢(z) denotes
the real part of a complex variable z, Λ ∈ C𝐻×𝐻

is diagonal and

B ∈ C𝐻×𝑁
, C ∈ C𝑁×𝐻

, D ∈ R𝑁×𝑁
.

The diagonalized system comes with computational and concep-

tual advantages. While applying the recurrent operator A requires

O
(
𝐻2

)
operations per step, the diagonal operator Λ requires only

O (𝐻 ) operations per step. Furthermore, the 𝐻 learnable parame-

ters of the state-to-state operator Λ are precisely its spectrum. Since

the spectrum defines the system’s long-term behavior, we can effec-

tively control its long-term behavior by carefully parameterizing

Λ.
Long-range dependencies in x(𝑡) can be modeled effectively if

the entries of Λ have negative real part, i.e. they reside on the left

half-plane of C. Gu, Goel, Gupta, et al. [2022], Orvieto, S. L. Smith,

et al. [2023], and J. T. Smith et al. [2023] enforce the left-half plane

condition on the spectrum by parameterizing Λ = − exp(Φ) + 𝑖Θ,

with potentially diagonal matrices Φ,Θ ∈ R𝐻×𝐻
. While any posi-

tive activation function could force the real part of the eigenvalues

to be negative, the exponential function is used throughout the

literature.

Discretization.Most prior works discretize the continuous system

in eqs. (3) and (4) on a regular grid 𝑡0, . . . , 𝑡𝑀 with 𝑡𝑚 − 𝑡𝑚−1 ≡ Δ > 0.

J. T. Smith et al. [2023] discretize S5with the zero-order holdmethod,

which yields a discrete-time system

x𝑘 = Λx𝑘−1 + Bu𝑘 (5)

y𝑘 = ℜ𝔢

(
Cx𝑘

)
+ Du𝑘 , (6)

where x𝑘 = x(𝑡𝑘 ), u𝑘 = u(𝑡𝑘 ), Δ is the step size and

Λ = 𝑒ΛΔ , B = Λ−1
(
Λ − 1

)
B , C = C , D = D . (7)

This discretization method yields two properties that were later

found essential for long-range modeling by Orvieto, S. L. Smith,

et al. [2023]. Firstly, the state-to-state operator Λ is parameterized

by an exponential, which enhances stability in conjunction with the

half-plane parameterization described above. Secondly, the input
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to the state-space Bu𝑘 is modulated by a coefficient that depends

on the spectrum of the Λ. This coefficient balances the magnitudes

of the different components of x𝑘 taking their respective effec-

tive time scales into account, which leads to more stable learning

dynamics on very long sequences. We elaborate an extension for

asynchronous sensors in sec. 3.2.

Simplified state-space layers. The S5 model [J. T. Smith et al.

2023] is a stack of simplified state-space layers, depicted in fig. 2.

The S5 layer consists of the linear state-space model as described

in eqs. (5) and (6) and a non-linear multiplicative transformation.

According to eq. (7), Λ = 𝑒 (−𝑒Φ+𝑖Θ)Δ
and B = Λ−1

(
Λ − 1

)
B. The

learnable parameters are Φ,Θ ∈ R𝐻×𝐻
, B ∈ C𝐻×𝑁

, C ∈ C𝑁×𝐻
,

D ∈ R𝑁×𝑁
, where Φ,Θ, 𝐷 are diagonal matrices. A non-linear mul-

tiplicative interaction similar to the GLU activation [Dauphin et al.

2017] is applied to the SSM output

v𝑘 = GeLU (y𝑘 ) (8)

z𝑘 = y𝑘 ⊙ sigmoid (Wv𝑘 ) . (9)

In addition, skip connections and normalization layers are used in

S5, which is in line with most modern deep learning models.

Parallelization. Parallelization is a critical component of modern

deep learning systems. Non-linear recurrent neural networks such

as LSTMs or biologically plausible spiking neural networks lack

parallelization along the sequence lengths. Such models have sig-

nificantly restricted throughput on highly parallel processors such

as GPUs. Therefore, training them has been limited to small models

or datasets, posing a major drawback in the modern era of scalable

deep learning.

Whereas the linear recurrence of eq. (5) allows for efficient par-

allelization along the sequence in addition to training stability.

Therefore, variants of linear state-space models such as S5 learn

long-range dependencies in sequences, and scale computationally

to very long sequences up to a hundred thousand time steps [Goel

et al. 2022]. A comprehensive treatment of the parallelization of

linear recurrence equations based on prefix sums of associative

operators can be found in Blelloch [1990]. Consider the first-order

recurrence relation similar to eq. (5)

x𝑘 =

{
Bu0 𝑖 = 0

Λ · x𝑘−1 + Bu𝑘 0 < 𝑖 ≤ 𝑇
. (10)

Let c𝑘 = (a𝑘 , b𝑘 ). As shown in Blelloch [1990], the operation in

eq. (10) can be reduced to an associative operator

c𝑘 ⊗ c𝑙 = (a𝑘a𝑙 , a𝑘b𝑙 + b𝑘 ) . (11)

Hence, the associative scan primitive resolves a recurrence of length

𝑀 in O (log𝑀) time given sufficiently many parallel processors.

3.2 Scalable Event-stream Modeling
In this subsection, we show that these advantageous properties

of S5 are also useful in the case of asynchronous event-streams.

An event-stream is an ordered set 𝐸 = {(𝑡𝑚, 𝑗𝑚) |𝑚 = 0, . . . , 𝑀} of
event times 𝑡0 < · · · < 𝑡𝑀 ∈ R and corresponding event source

channels 𝑗𝑚 ∈ {1, . . . , 𝐽 }. As we will see in the following, our event-

based SSM operates efficiently on the differences Δ𝑚 = 𝑡𝑚 − 𝑡𝑚−1
instead of the timestamps themselves. A linear projection translates

the integer representation of event sources 𝑗𝑚 to the model’s vector

representation via u𝑚 = E · onehot( 𝑗𝑚) for𝑚 ∈ {0, . . . , 𝑀}. This
operation can be efficiently implemented as a look-up table that

queries the 𝑗𝑚-th column from the projection matrix E ∈ R𝐽 ×𝑁 , a

common practice in language modeling.

Discretization on irregular event-streams. Consider a set of 𝐽
asynchronous channels. In continuous time, an event-stream can

then be represented as a sum of dirac deltas

u(𝑡) =
𝑀∑︁

𝑚=0

𝛿 (𝑡 − 𝑡𝑚) u𝑚 . (12)

The general analytical solution of the ODE in eq. (3) with initial

conditions x (𝑡0) = 0 for the delta coded input as in eq. (12) is

x(𝑡𝑘 ) =
∫ 𝑡𝑘

𝑡0

𝑒Λ(𝑡𝑘−𝑠 )Bu(𝑠)d𝑠 =
𝑀∑︁

𝑚=0

𝑒Λ(𝑡𝑘−𝑡𝑚 )Bu𝑚 . (13)

This solution admits a recursive formulation

x𝑘 = x(𝑡𝑘 ) =
𝑀∑︁

𝑚=0

𝑒Λ(𝑡𝑘−𝑡𝑚 )Bu𝑚

= 𝑒Λ(𝑡𝑘−𝑡𝑘−1 )
(
𝑀−1∑︁
𝑚=0

𝑒Λ(𝑡𝑘−1−𝑡𝑚 )Bu𝑚

)
+ Bu𝑘

= 𝑒ΛΔ𝑘 x𝑘−1 + Bu𝑘 , (14)

where Δ𝑘 = 𝑡𝑘 − 𝑡𝑘−1. We obtain a formalism to process the irregu-

larly sampled event-stream with a discrete (linear) recurrent neural

network, whose state update depends on both the event times via

Δ𝑘 and the input values u𝑘 . Notably, this RNN can be simulated

fully event-based in the discrete time domain for both inference

and learning. Since the RNN state is just a linear combination of the

input events, there is no need for advanced event-timing dependent

gradient computation methods such as EventProp [Wunderlich and

Pehle 2021].

Input normalization of asynchronous events. In sec. 3.1, we

discuss the benefits of the input normalization factor Λ−1
(
Λ − 1

)
that emerges from the zero-order hold discretization for stable

learning. Since the normalization factor depends on the time step

Δ through Λ, the inputs are effectively weighted w.r.t. their timing

relative to other inputs. In contrast, we argue that asynchronous

events should be independently integrated into the state-space. The

normalization factor of an event should not depend on the relative

timings of other asynchronous events. Therefore, we disentangle

the Δ in (7) as Δ = 𝛿Δ𝑘 , where 𝛿 is a new learnable parameter and

Δ𝑘 = 𝑡𝑘 − 𝑡𝑘−1 are the actual differences of time steps. Compared

to eq. (7), we obtain our asynchronous discretization method with

an event time independent normalization factor

x𝑘 = Λ𝑘x𝑘−1 + Bu𝑘 (15)

y𝑘 = ℜ𝔢

(
Cx𝑘

)
+ Du𝑘 , (16)

with

Λ𝑘 = 𝑒Λ𝛿Δ𝑘 , B = Λ−1
(
𝑒Λ𝛿 − 1

)
B , C = C , D = D . (17)

The inputs are therefore normalized by the units’ individual time

scales 𝜏 = 1

𝛿
, but not by the event-timing dependent Δ𝑘 . We provide

evidence supporting this strategy in tab. 5
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Norm + ++

Figure 2: Our modified simplified state-space layer consists of an SSM followed by a non-linear multiplicative transformation.
A skip connection and a normalization layer complete the block. The information about event timings is passed to the model
via the differences Δ𝑖 = 𝑡𝑖 − 𝑡𝑖−1.

Note that the trainable parameters are𝛿 ∈ R𝐻×𝐻
+ ,Φ,Θ ∈ R𝐻×𝐻 ,B ∈

C𝐻×𝑁 ,C ∈ C𝑁×𝐻 ,D ∈ R𝑁×𝑁
, where again Φ,Θ,D and 𝛿 are di-

agonal matrices.

Parallelization. With the parameterization in eq. (17), the system

described by eq. (5) and eq. (6) becomes a linear time-variant system.

The associative scan is still a valid parallelization primitive, since

Λ (Δ𝑘 ) · Λ (Δ𝑙 ) = 𝑒Λ𝛿Δ𝑘 𝑒Λ𝛿Δ𝑙

= 𝑒Λ𝛿 (Δ𝑘+Δ𝑙 ) = Λ (Δ𝑘 + Δ𝑙 ) . (18)

Therefore, the operator

c𝑘 ⊗ c𝑙 =
(
Λ(Δ𝑘 ), b𝑘

)
⊗

(
Λ(Δ𝑙 ), b𝑙

)
=

(
Λ(Δ𝑘 + Δ𝑙 ), Λ(Δ𝑘 )b𝑙 + b𝑘

)
(19)

acting on c𝑘 =

(
Λ(Δ𝑘 ), b𝑘

)
is associative as well, and can be used

to parallelize the recurrent system described by eqs. (15) and (16)

with parameterization as in eq. (17).

Event-pooling architecture. Event-by-event processing becomes

expensive when the model size and the sequence length are scaled

up. Although the recurrent operations are cheap in the case of diago-

nal SSMs, every processed event propagates through the network’s

numerous dense feed-forward transformations. Furthermore, sav-

ing the activations of every event for backpropagation through time

causes accelerators to run out of memory when training on long

sequences. We mitigate this issue by introducing an event-pooling

mechanism that, by subsampling the sequence, can drastically re-

duce the required compute and memory. Subsampling architectures

are widely used in visionmodels andwere proposed for recurrent ar-

chitectures in Graves and Schmidhuber [2008]. They have also been

used in state-space models (e.g. [Goel et al. 2022]). A sequence of

lengths𝑀 with vectors of dimension𝐻 is compressed to a sequence

of length𝑀/𝑝 . Oftentimes, the vector dimension is increased upon

sequence subsampling to 𝐻𝑞. Since linear recurrences effectively

compress information [Orvieto, De, et al. 2023], we decided to apply

event-pooling after each state-space layer. Hence,𝑀 inputs u𝑚 are

integrated into the state-space x, but only a subsampled sequence

of length𝑀/𝑝 is forwarded to the linear transformation Cx.

Similar to frame-based methods, our subsampling architecture

reduces the computational overhead by pooling a set of events. In

the context of continous-time state-space models, subsampling is

equivalent to averaging over the spatio-temporal representation

computed by the state-space eq. (15) for 𝑝 consecutive events. While

converting events into frames is a preprocessing step, subsampling

can be applied in multiple layers of the model to form hierarchical

representations as common practice in audio and vision models.

4 EXPERIMENTS
We evaluate our method, Event-SSM, on three event-based datasets

that are popularly used in the neuromorphic community. The

datasets are provided as raw event-streams, which we process di-

rectly without preprocessing into frames. The Spiking Heidelberg

Digits (SHD) and Spiking Speech Commands (SSC) datasets were

proposed to standardize the evaluation of neuromorphic models

[Cramer et al. 2022], both consisting of spike trains that were con-

verted from microphone recordings. DVS128 Gestures (DVS) is a

small-scale action recognition dataset [Amir et al. 2017] consisting

of a set of 11 gestures recorded with a dynamic vision sensor in

128 × 128 pixels resolution. While the number of samples in SSC

exceeds the other two datasets by an order of magnitude, the num-

ber of events per sample in the DVS dataset exceeds the two audio

datasets by more than an order of magnitude. An overview of the

statistics of the three datasets is presented in tab. 1.

All models presented in this work feature six simplified state-

space layers as depicted in fig. 2, with state sizes of either 𝐻 =

64 or 𝐻 = 128. To improve generalization, we implemented an

event-based variant of CutMix data augmentation [Yun et al. 2019].

Additional samples were generated by randomly mixing existing

ones, i.e. a contiguous stream of events was randomly mixed into

another sample of the same batch. Labels were mixed according to

the relative number of events from both samples. We implement our

model in JAX [Bradbury et al. 2018]. The efficient parallelism of our

method allows us to train on the larger SSC (600M events per epoch)

and DVS (390M events per epoch) datasets in 2 – 10 h on a single
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Dataset Classes

Training Median number

samples of events

Spiking Heidelberg Digits 20 8 200 8 000

Spiking Speech Commands 35 75 500 8 100

DVS128 Gestures 11 1 100 300 000

Table 1: The datasets used to evaluate our event-stream mod-
eling method differ in the number of samples present in
the dataset as well as the number of events per sample per
dataset. All values are given to two significant digits.

Figure 3: Distribution of the number of events per class in
the DVS128-Gesture dataset. The median number of events
per sample is about 300,000, and the maximum number of
events per sample is about 1.5 million.

A100GPU. For implementation details and precise hyperparameters,

we refer the reader to our published code repository
1
.

By reviewing the code of published papers included in our base-

lines in tab. 2 and tab. 4, we found that it is common practice to

pick the best model based on the test set instead of a separate vali-

dation set. We did the same for a fair comparison with the baseline

methods, even though we believe that this procedure does not align

with best practice.

4.1 Spiking audio processing
We present a new state-of-the-art classification result on both spik-

ing audio datasets. These results show that the exact integration

of spike timings can, in fact, improve the performance of spiking

audio models. A combination of time-jitter, channel-jitter, random

noise, drop-event, and cut-mix data augmentations was applied

to improve generalization. Tab. 2 shows our results on the SHD

dataset. We note that model performance is almost saturated on this

dataset. Furthermore, we observed a larger variance with different

random seeds compared to the larger SSC dataset.

1
To be published upon acceptance

Spiking Heidelberg Async. Test Num

Digits events accuracy params

Bittar and Garner [2022] ✗ 93.1 % 0.1M

Bittar and Garner [2022] ✗ 94.6 % 3.9M

Hammouamri et al. [2024] ✗ 95.1 % 0.2M

Event-SSM ✓ 95.5% 0.4M

Table 2: Comparison of our Event-SSM to the state-of-the-art
on the Spiking Heidelberg Digits dataset [Cramer et al. 2022].

Spiking Speech Async. Test Num

Commands events accuracy params

Bittar and Garner [2022] ✗ 71.7 % 0.1M

Bittar and Garner [2022] ✗ 77.4 % 3.9M

Hammouamri et al. [2024] ✗ 79.8 % 0.7M

Hammouamri et al. [2024] ✗ 80.7 % 2.5M

Event-SSM ✓ 85.3 % 0.1M

Event-SSM ✓ 87.1% 0.6M

Table 3: Comparison of our Event-SSM to the state-of-the-
art on the Spiking Speech Commands dataset [Cramer et al.
2022].

This leads us to the conclusion that the much less saturated

and larger scale SSC dataset is more appropriate for evaluating

state-of-the-art methods.

Results for SSC are shown in tab. 3. Our method significantly

outperforms the state-of-the-art set recently by Hammouamri et

al. [2024] by a margin of almost 6.6%, while using much fewer

parameters.

4.2 Event-based vision processing
The DVS128 Gestures dataset was recorded with a dynamic vi-

sion sensor of 128 × 128 resolution [Lichtsteiner et al. 2008]. Each

pixel is represented by two channels, encoding the two event po-

larities, resulting in 𝐶 = 128 × 128 × 2 = 32768 asynchronous

channels for the DVS128 Gestures dataset. The large number of

asynchronous channels results in a very large number of events per

second. An overview of the distribution of the number of events

per sample across the classes of the DVS dataset can be obtained

from fig. 3. Consequently, learning representations for event-based

vision is one of the largest scale benchmarks for event-based pro-

cessing systems. The previous best-performing baseline models

collected events into a 4-d tensor representation which was then

processed by convolutional neural networks composed of artificial

or spiking neurons. Doing this mitigates the computational over-

head of processing every event individually, and circumvents the

need to process very long sequences of irregularly sampled events.

In contrast, our event-based state-space model directly processes

the event-stream recorded from the dynamic vision sensor with

a recurrent neural network, without using spatial convolutions.

Spatio-temporal representations are solely learned from the linear
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DVS128 Async. Test Num

Gesture events accuracy params

Yousefzadeh et al. [2019] ✗ 95.2 % 1.2M

Xiao et al. [2022] ✗ 96.9 % -

Subramoney et al. [2023] ✗ 97.8 % 4.8M

She et al. [2022] ✗ 98.0 % 1.1M

Liu et al. [2022] ✗ 98.8% -

Martin-Turrero et al. [2024] ✗ 96.2 % 14M

Martin-Turrero et al. [2024] ✓ 94.1 % 14M

CNN + S5 (time-frames) ✗ 97.8 % 6.8M

CNN + S5 (event-frames) ✗ 97.3 % 6.8M

Event-SSM ✓ 97.7 % 0.8M + 4.2M

Table 4: Comparison of our Event-SSM to the state-of-the-art
on the DVS128-Gesture dataset [Amir et al. 2017]. We report
our model’s number of parameters as the parameters of the
SSM + embedding look-up. Due to the sensor resolution, most
parameters are learned embedding vectors rather than SSM
parameters.

state-space model and non-linear feedforward transformations. De-

spite breaking with the pervasive convention of binning events into

time-frames and processingwith CNNs, our event-based state-space

model achieved competitive results as reported in tab. 4. To improve

generalization, a combination of data augmentation methods such

as spatial-jitter, time-jitter, random noise, drop-event, geometric

augmentations [Li et al. 2022], and cut-mix were applied.

Training recurrent networks with backpropagation through time

(BPTT) requires storing (or recomputing) the activations for every

step in the sequence. The large number of events per sample, there-

fore, quickly saturated GPU memory. To fit reasonable batch sizes

into the 40GB HBM memory of our A100s, we sliced the training

data into shorter sequences. Yet, evaluation was conducted on full

samples of up to 1.5M events. Surprisingly, we found that training

on slices of 32 768 events suffices to reach the baseline performance.

4.3 Ablation study
In sec. 3.2, we argued that naively applying the discretization meth-

ods of most SSM works to asynchronous event-streams is not ideal.

Tab. 5 compares our method as presented in eq. (17) with the pop-

ular zero-order hold (ZOH) method employed by J. T. Smith et al.

[2023], the naive integration of Dirac delta pulses in eq. (12), and

vanilla S5 without passing in the timestamps at all. Integrating

events according to eq. (17) clearly improves the performance over

the other methods. These results provide further evidence that

event timings can improve representations of event-based systems.

5 DISCUSSION
This work presents a scalable method for the modeling of irregular

event-stream data. Our method addresses the major challenges of

event-based processing — long-range dependencies, asynchronous

processing, and parallelization. The model operates directly on the

Model Accuracy

Event-SSM (86.9 ± 0.4) %
S5 with Dirac discretization (84.6 ± 0.4) %
S5 with ZOH discretization (74.4 ± 0.3) %
S5 with ZOH and Δ𝑘 ≡ 1 (80.8 ± 0.1) %

Table 5: A comparison of our proposed method (Event-SSM)
with the Dirac discretized S5 model (14) (Dirac), S5 with zero-
order hold discretization (ZOH), and S5 with all Δ𝑘 ≡ 1, i.e.
without parsing information about event timings. We report
means and standard deviations from 5 runs with random
seeds on the SSC dataset.

address event representation of the event-stream and, in contrast to

most related works, never uses 2D or 3D convolutions. The stable

state-space model parameterization allows asynchronous recurrent

training and inference on very long event-streams of more than a

million events, such as those given by event-based vision sensors.

Our ablation study shows that asynchronous event channels require

discretization methods that have not yet been used in the machine

learning literature. Furthermore, we observe a clear advantage of

integrating exact temporal information compared to binning events

into frames for the larger audio processing task SSC. This result also

highlights the need to establish high-quality, large-scale datasets

of event-streams for challenging machine learning tasks, that will

allow us to carefully scrutinize the advantages and disadvantages

of event-based machine learning.

Although our model and all its parts were carefully designed

to most effectively operate directly with events, there is no ex-

plicit event-generating mechanism in the neural network itself.

The event-based processing is solely driven by external events. On

the one hand, this result breaks with the commonly held belief that

event data is most effectively processed with event-based neural

networks. On the other hand, this observation provides an inter-

esting direction for future work to explore how the properties that

allow our model to scale to long event-streams can be joined with

the efficient processing paradigms of event-based networks.
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