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NO COMPACT SPLIT LIMIT RICCI FLOW OF TYPE II

FROM THE BLOW-DOWN

ZIYI Zhao† AND XIAOHUA Zhu‡

Abstract. By Perelman’s L-geodesic theory, we study the blow-down

solutions on a noncompact κ-noncollapsed steady gradient Ricci soliton

(Mn, g) (n ≥ 4) with nonnegative curvature operator and positive Ricci

curvature away from a compact set of M . We prove that any (n − 1)-

dimensional compact split ancient solution from the blow-down of (M, g)

is of type I. The result is a generalization of our previous work from n = 4

to any dimension.

0. Introduction

Let (Mn, g, f) (n ≥ 4) be a complete noncompact κ-noncollapsed steady

gradient Ricci soliton with curvature operator Rm ≥ 0 away from a compact

set K of M . Let g(·, t) = φ∗
t (g) (t ∈ (−∞,∞)) be an induced ancient Ricci

flow of (M,g), where φt is a family of transformations generated by the

gradient vector field −∇f . For any sequence of pi ∈ M (→ ∞), we consider

the (normally) rescaled Ricci flows (M,gpi(t); pi), where

gpi(t) = r−1
i g(·, rit),(0.1)

riR(pi) = 1. By a version of Perelman’s compactness theorem for ancient

κ-solutions [26, Proposition 1.3] (also see Proposition 1.1), we know that

(M,gpi(t); pi) converge subsequently to a splitting flow (N ×R, ḡ(t); p∞) in

the Cheeger-Gromov sense, where

ḡ(t) = h(t) + ds2, on N × R,(0.2)

and h(t) (t ∈ (−∞, 0]) is an ancient κ-solution on an (n−1)-dimensional N .

For simplicity, we call (N,h(t)) a split limit flow (arising from the blow-down

of (M,g)).
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Recall that an ancient κ-solution (N,h(t)) (t ∈ (−∞, 0]) is of type I if it

satisfies

sup
N×(−∞,0]

(−t)|R(x, t)| < ∞.

Otherwise, it is called type II, if it satisfies

sup
M×(−∞,0]

(−t)|R(x, t)| = ∞.

In this paper, we prove

Theorem 0.1. Let (Mn, g) (n ≥ 4) be a noncompact κ-noncollapsed steady

gradient Ricci soliton which satisfies

Rm ≥ 0 and Ric > 0 on M \K.(0.3)

Then any (n − 1)-dimensional compact split ancient solution (N,h(t)) in

(0.2) from the blow-down of (M,g) is of type I. In the other words, there is

no compact split ancient solution of type II from the blow-down of (M,g).

Since any compact ancient κ-solution of type I is a gradient shrinking

Ricci soliton, which has been classified in [10, Theorem 7.34] and [6, 20]

(also see [26, Proposition 4.1]), Theorem 0.1 actually gives a classification of

all (n − 1)-dimensional compact split blow-down solutions of (M,g), which

satisfies (0.3).

As an application of Theorem 0.1, we prove the following alternative

principle.

Corollary 0.2. Let (Mn, g) be a steady gradient Ricci soliton in Theorem

0.1. Then either all split blow-down solutions (N,h(t)) of (M,g) in (0.2)

are (n − 1)-dimensional compact ancient κ-solution of type I, or (n − 1)-

dimensional noncompact ancient κ-solution.

Corollary 0.2 confirms a conjecture [26, Conjecture 4.5] and is a general-

ization of [26, Theorem 0.2] hereby from n = 4 to any dimension. We would

like to mention that our previous proof in the case n = 4 depends highly on

a deep classification result for 3d compact κ-solutions of type II proved by

Brendle-Daskalopoulos-Sesum [5].

In order to follow the argument in [26] to prove Theorem 0.1, we use

Perelman’s L-geodesic theory in [22, Section 7, Section 9] to construct a

limit gradient shrinking Ricci soliton through a sequence of normally rescaled

Ricci flows (cf. Section 4, 5). Inspired by Bamler-Chan-Ma-Zhang in their

recent work [2], we are able to choose a suitable base point in each level set of

the potential function f such that the corresponding ℓ-length is uniformly

bounded (cf. Section 2). Unfortunately, we cannot use Perelman’s result

directly to get the gradient estimate for the (rescaled) reduced distance
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function ℓi(x, τ) since the nonnegative curvature condition just holds outside

a compact set of M (see Remark 4.3). We will do the curvature decay

estimates to overcome the difficulty (see Section 3).

To see some examples of steady gradient Ricci solitons (M,g) which satisfy

the condition (0.3) in Theorem 0.1, we refer the reader to [7, 1, 18], etc.

According to the proof of Theorem 0.1, we can get the following explicit

curvature decay estimate.

Theorem 0.3. Let (M,g) be a steady gradient Ricci soliton in Theorem 0.1.

Suppose that there exists a sequence of rescaled Ricci flows (M,gpi(t); pi),

which converges subsequently to a splitting Ricci flow (N × R, ḡ(t); p∞) as

in (0.2) for some compact ancient κ-solution (N,h(t)). Then the scalar

curvature of (M,g) decays to zero linearly. Namely, there exist two positive

constants C1 and C2 such that

C1

ρ(x)
≤ R(x) ≤ C2

ρ(x)
.(0.4)

Theorem 0.3 is an improvement of [26, Lemma 2.2]. We notice that com-

plete noncompact κ-noncollapsed steady gradient Ricci solitons with non-

negative curvature under the condition (0.4) have been classified by Deng-

Zhu [11, 13, 14].

The paper is organized as follows. In Section 1, we first review a compact-

ness theorem for normally rescaled Ricci flows of (M,g) in [26] (cf. Propo-

sition 1.1), then we recall the Perelman’s L-geodesic theory and translate it

for a steady gradient Ricci soliton. In Section 2, we use a method in [2] to

prove the existence of ℓ-centers in each level set of the potential function f .

In Section 3, we do the curvature estimates for ℓ-centers (cf. Lemma 3.2 and

Proposition 3.4). In Section 4, we get the gradient estimate for the (rescaled)

reduced distance function ℓi(x, τ) and then construct limit shrinking Ricci

solitons through the normally rescaled Ricci flows of (M,g) (cf. Proposition

4.2 and Proposition 4.4). Both of Theorem 0.1 and Theorem 0.3 will be

proved in Section 5.

Since 3d complete noncompact κ-noncollapsed steady gradient Ricci soli-

tons have been classified by Brendle motivated by a conjecture of Perelman

[3], we will always assume the dimension n ≥ 4 in this paper.

1. Preliminaries

A complete Riemannian metric g on M is called a gradient Ricci soliton

if there exists a smooth function f (which is called a potential function) on

M such that

(1.1) Rij(g) + ρgij = ∇i∇jf,
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where ρ ∈ R is a constant. The gradient Ricci soliton is called expanding,

steady and shrinking according to ρ >,=, < 0, respectively. These three

types of Ricci solitons correspond to three different blow-up solutions of

Ricci flow [16].

In the case of steady Ricci solitons, we can rewrite (1.1) as

2Ric(g) = LXg,(1.2)

where LX is the Lie operator along the gradient vector field (VF) X = ∇f

generalized by f . Let {φ∗
t }t∈(−∞,∞) be a 1-ps of transformations generated

by −X. Then g(t) = φ∗
t (g) (t ∈ (−∞,∞)) is a solution of Ricci flow.

Namely, g(t) satisfies

∂g

∂t
= −2Ric(g), g(0) = g.(1.3)

For simplicity, we call g(t) the soliton Ricci flow of (M,g).

By (1.2), we have

〈∇R,∇f〉 = −2Ric(∇f,∇f),(1.4)

where R is the scalar curvature of g. It follows

R+ |∇f |2 = Const.

Since R is alway positive ([25, 8]), the above equation can be normalized by

R+ |∇f |2 = 1.(1.5)

In this paper we always assume that (Mn, g) (n ≥ 4) is a noncompact

κ-noncollapsed steady gradient Ricci soliton with nonnegative curvature op-

erator Rm ≥ 0 away from a compact set K of M .

The following splitting theorem was proved in [26, Proposition 1.2], which

can be regarded as a version of Perelman’s compactness theorem for higher

dimensional ancient κ-solutions [22, 17].

Proposition 1.1. Let (Mn, g) (n ≥ 4) be a noncompact κ-noncollapsed

steady gradient Ricci soliton with Rm ≥ 0 on M \ K. Let pi → ∞ and

(M,gpi(t); pi) a sequence of rescaled flows with Rpi (pi, 0) = 1 as in (0.1) .

Then (M,gpi(t); pi) subsequently converge to a splitting flow (N ×R, ḡ(t) =

h(t)+ds2; p∞) as in (0.2), where (N, g(t)) is an (n−1)-dimensional ancient

κ-solution. Moreover, for n = 4, Rm ≥ 0 can be weakened to the sectional

curvature Km ≥ 0 on M \K.

By Proposition 1.1, we have the following Laplace estimate for the scalar

curvature of (M,g).
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Lemma 1.2. Let (M,g) be the κ-noncollapsed steady gradient Ricci soliton

with Rm ≥ 0 on M \K. Then there exists a uniform constant C > 0, such

that

|∆R(p, t)|
R2(p, t)

≤ C, ∀(p, t) ∈ M × (−∞, 0].(1.6)

Proof. On the contrary, if (1.6) is not true, there is a sequence of pi and ti
such that

|∆R(pi, ti)|
R2(pi, ti)

→ ∞.(1.7)

Then we consider rescaled flows (M,gi(t); pi), where

gi(t) = R(pi, ti)g(R
−1(pi, ti)t+ ti).

By the isometry (M,g(ti); pi) ∼= (M,g, φti (pi)), it is easy to see

(M,gi(t); pi) ∼= (M,gφti
(pi)(t);φti(pi)),(1.8)

where

gφti
(pi)(t) = Rg(φti(pi))g(R

−1
g (φti(pi))t).

We may assume that φti(pi) → ∞, otherwise,

|∆R(pi, ti)|
R2(pi, ti)

=
|∆gRg(φti(pi))|g

R2
g(φti(pi))

≤ C0,

which contradicts to (1.7).

By Proposition 1.1, the scaled Ricci flows (M,gφti
(pi)(t);φti (pi)) converge

in the Cheeger-Gromov sense. Thus
∣

∣

∣
Rm

(

q, gφti
(pi)(t)

)
∣

∣

∣
≤ C1,∀(q, t) ∈ B

(

φti(pi), 1; gφti
(pi)(−1)

)

× [−1, 0].

By the Shi’s estimate [24], we get

∣

∣

∣
∆R

(

q, gφti
(pi)(t)

)
∣

∣

∣
≤ C2,∀(q, t) ∈ B

(

φti(pi),
1

2
; gφti

(pi)(−1)

)

× [−1

2
, 0].

In particular,
∣

∣

∣
∆R

(

φti(pi), gφti
(pi)(0)

)
∣

∣

∣
=

|∆gRg(φti(pi))|g
R2

g(φti(pi))
=

|∆R(pi, ti)|
R2(pi, ti)

≤ C2,

which is a contradiction with (1.7). The lemma is proved. �

We note that an ancient κ-solution is a κ-noncollapsed solution of Ricci

flow (1.3) with Rm(·, t) ≥ 0 defined for any t ∈ (−∞, 0]. The purpose of

paper is to use Perelman’s L-geodesic theory to study the geometry of split

ancient κ-solution (N, g(t)) in Proposition 1.1.
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1.1. L-length and L-geodesic. Let (M, ĝ(t)) (t ∈ [0,∞)) be a backward

Ricci flow on M , namely, ĝ(t) satisfies

∂ĝ

∂t
= 2Ric(ĝ), ĝ(0) = g.(1.9)

For any τ > 0 and any piecewisely smooth curve Γ : [0, τ ] → M with

Γ(0) = o and Γ(τ) = p, L-length of Γ is defined by (cf. Perelman [22,

Section 7]),

L(Γ) :=
ˆ τ

0

√
s
(

Rĝs + |Γ̇|2ĝs
)

(Γ(s))ds.(1.10)

Then for any pair (x, τ), we define a function (called L-distance function)

by

L (x, τ) := inf
Γ

L(Γ),

The above infimum is taken for any piecewise smooth curve Γ : [0, τ ] → M

with Γ(0) = o and Γ(τ) = x. By Perelman [22, Section 7], the infimum can

be attained by a smooth curve which is called a minimal L-geodesic for the

pair (x, τ).

Set

ℓ(x, τ) :=
1

2
√
τ
L(x, τ),(1.11)

which is called the reduced distance of backward Ricci flow (M, ĝ(t)). By

[22, Section 7.1], we know that for any τ > 0, there exists a point x ∈ M

such that ℓ (x, τ) ≤ n/2. Any such point x is called an ℓ-center of (M, ĝ(t))

at time τ .

The following lemmas was proved in Perelman’s paper [22].

Lemma 1.3. ([22], also see [17, Section 18]) Let Γ(s) (s ∈ [0, τ ]) be a

minimal L-geodesic with Γ(0) = o and Γ(τ) = x on (M, ĝ(t)) (t ∈ [0,∞)).

Let Y (τ) = dΓ
ds (τ). Then we have

|∇L|2(x, τ) = 4τ |Y (τ)|2(x)
= −4τR(x,−τ) + 4τ(R(x,−τ) + |Y (τ)|2(x))(1.12)

and

τ
3

2

(

R(x,−τ) + |Y (τ)|2(x)
)

= −K(x, τ) +
1

2
L(x, τ),(1.13)

where

K(x, τ) =

ˆ τ

0
s

3

2 (−∂R

∂τ
− 2〈Y,∇R〉+ 2Ric(Y, Y )− 1

s
R)(Γ(s))ds.(1.14)
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Lemma 1.4. ([22], also see [21, Lemma 2.19])

∂ℓ

∂τ
− R

2
+

|∇ℓ|2
2

+
ℓ

2τ
= 0,(1.15)

∂ℓ

∂τ
−∆ℓ+ |∇ℓ|2 −R+

n

2τ
≥ 0,(1.16)

and

∆ℓ− |∇ℓ|2
2

+
R

2
+

ℓ− n

2τ
≤ 0.(1.17)

Moreover, (1.16) becomes an equality at a point if and only if (1.17) becomes

an equality at that point.

1.2. L-length associated to steady Ricci soliton. By a variable change

t = −τ , ĝ(τ) = g(−t) (t ∈ (−∞, 0]) becomes a backward Ricci flow on

[0,∞) ×M . Then the length L(Γ) and ℓ(x, τ) associated to (M, ĝ(τ)) can

be translated into ones for the soliton Ricci flow (M,g(t)). Actually, we

have

L(Γ) =
ˆ τ

0

√
s
(

Rg(−s) + |Γ̇|2g(−s)

)

(Γ(s))ds.(1.18)

Since the scalar curvature R(·) is always positive by a result of Chen [8], the

integral function in (1.18) is positive.

By the isometry (Γ(s), g(−s)) with (φ−s(Γ(s)), g = g(0)) for all s ∈ [0, τ ],

(1.18) becomes

L(Γ) =
ˆ τ

0

√
s
(

Rg + |(φ−s)∗(Γ̇(s))|2g
)

(φ−s(Γ(s)))ds.

Let γ(s) = φ−s(Γ(s)), then

γ̇(s) = ∇f |γ + (φ−s)∗(Γ̇(s)).

It follows

L(Γ) =
ˆ τ

0

√
s
(

Rg + |γ̇(s)−∇f |2g
)

(γ(s))ds.(1.19)

Hence, the integral function in (1.19) is just for γ(s)-curve in M with the

fixed soliton metric g. Without confusion, we also call γ(s) (s ∈ [0, τ ]) a

minimal L-geodesic with γ(0) = o and p = γ(τ) = φ−τ (Γ(τ)) as long as

(Γ(s), g(−s)) is a minimal L-geodesic with Γ(0) = o and x = Γ(τ).

As in [2], we write the reduced distance ℓ(x, τ) as

λ(p, τ) = ℓ(φτ (p), τ).(1.20)

Thus

λ(p, τ) = λ(φ−τ (x), τ) = ℓ(x, τ) ≤ n

2
,



8 ZIYI ZHAO AND XIAOHUA ZHU

if x is an ℓ-center at time −τ . In the following we always use λ(p, τ) (or

ℓ(x, τ)) to study the location of p instead of ℓ-center x. Without confusion,

we also call p a ℓ-center as long as

λ(p, τ) ≤ A0,(1.21)

where A0 ≥ n
2 is a fixed constant, which will be determined in next section.

By a parameter change u =
√
s, (1.19) can be also written as

L(Γ) :=
ˆ

√
τ

0

(

2u2R+
1

2
| ˙̄γ − 2u∇f |2

)

du,(1.22)

where γ̄(u) = γ(u2). (1.22) will be used often in next sections.

2. Location of ℓ-center

In this section, we study the location of ℓ-center pτ which satisfies (1.21)

by the method in [2]. From this section, we always assume that the potential

function f of steady Ricci soliton (M,g) satisfies

c1ρ(x) ≤ f(x) ≤ c2ρ(x),(2.1)

where c1 and c2 are two constants. Then we may further assume f(o) = 0

and f(p) ≥ 0 for any p ∈ M . For each τ > 0, we define a level set of f by

Στ = {p ∈ M | f(p) = τ}.
Clearly, Στ is compact. In the last section, we will verify the condition (2.1)

to prove the main results in Introduction 0.

We first observe

Lemma 2.1. λ(o, τ) ≥ τ
3 , for any τ > 0.

Proof. We note that all Γ-curves are loops at o associated to the length

λ(o, τ). Then by (1.22) together with (1.5), we get

ˆ τ

0

√
s
(

R+ |γ̇ −∇f |2
)

=

ˆ

√
τ

0

(

1

2
| ˙̃γ − 2u∇f |2 + 2u2R(γ̃(u))

)

du

=

ˆ

√
τ

0

(

1

2
| ˙̃γ|2 − 2u(f ◦ γ̃ − f(o))′ + 2u2

)

du

=
2

3
τ3/2 +

ˆ

√
τ

0

(

1

2
| ˙̃γ|2 + 2f ◦ γ̃(u)

)

du

≥ 2

3
τ3/2.(2.2)

Thus the lemma comes from (1.11) immediately. �

The following lemma is due to [2, Lemma 2.2 and Lemma 2.3].
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Lemma 2.2. There is a universal constant α ∈ (0, 1) such that for any

τ ≫ 1 and any p′ with λ(p′, τ) ≤ n
2 , it holds

distg(o, p
′) ≥ ατ.(2.3)

Proof. Let γ1 : [0, τ ] → M be a minimizing L-geodesic from o to p′, and
γ̃2 : [

√
τ , (1+ δ)

√
τ ] → M be a minimizing g-geodesic from p′ to o such that

| dds γ̃2|g = δ. Set γ2 :
[

τ, (1 + δ)2τ
]

→ M by γ2(s) = γ̃2(
√
s). Then γ1 ∪ γ2 is

a special loop at o with parameter s ∈ [0, (1 + δ)2τ ]. By (1.19) and (1.22),

we compute

L
(

o, (1 + δ)2τ
)

≤
ˆ τ

0

√
s
(

R+ |γ̇1 −∇f |2
)

ds +

ˆ (1+δ)2τ

τ

√
s
(

R+ |γ̇2 −∇f |2
)

ds

= L(p′, τ) +
ˆ (1+δ)

√
τ

√
τ

(

1

2

∣

∣ ˙̃γ2
∣

∣

2
+ 2u

∣

∣ ˙̃γ2
∣

∣ |∇f |+ 2u2
)

du

≤ L(p′, τ) +
ˆ (1+δ)

√
τ

√
τ

(

∣

∣ ˙̃γ2
∣

∣

2
+ 4u2

)

du

≤ L(p′, τ) +
dist2(o, p′)

δ
√
τ

+ 4
(1 + δ)3 − 1

3
τ3/2

≤ L(p′, τ) +
dist2(o, p′)

δ
√
τ

+ 10δτ3/2.

Note that λ(p′, τ) ≤ n
2 . Thus for τ ≫ 1, we get

λ(o, (1 + δ)2τ) ≤ 1

1 + δ
λ(p′, τ) +

dist2(o, p′)
2δ(1 + δ)τ

+ 5
δ

1 + δ
τ

≤ dist2(o, p′)
2δτ

+ 10δτ.(2.4)

By Lemma 2.1, it follows

(1 + δ)2τ

3
≤ λ(o, (1 + δ)2τ) ≤ dist2(o, p′)

2δτ
+ 10δτ.

Hence by taking δ ≪ 1, we obtain (2.3) for some small α. �

By Lemma 2.2, we give the following location estimate of ℓ-center pτ in

the level set Στ .

Proposition 2.3. For any τ ≫ 1, there is a pτ ∈ Στ , and τ0 ∈ [cτ, Cτ ]

such that λ(pτ , τ0) ≤ A0, where c, C and A0 are uniform constants.

Proof. Let c1 be the constant in (2.1). Let γ : [0, τ
c1α

] → M be a minimizing

L-geodesic from o to p = γ( τ
c1α

) such that

λ(p,
τ

c1α
) ≤ n

2
.
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Then by Lemma 2.2, we see that

f(p) ≥ c1 distg(p, o) ≥ τ.

Set

τ0 := sup{s ∈ [0,
τ

c1α
] : f(γ(s)) ≤ τ}, pτ := γ (τ0) .

Thus τ0 ≤ τ
c1α

= Cτ . We need to estimate the lower bound of τ0.

Define γ̃ : [0,
√

τ
c1α

] → M by γ̃(u) = γ
(

u2
)

. Then as is (2.2), we have

L(p,
τ

c1α
) ≥
ˆ

√
τ0

0

(

1

2
| ˙̃γ|2 − 2u(f ◦ γ̃ − f(o))′

)

du

=

ˆ

√
τ0

0

(

1

2
| ˙̃γ|2 − 2u

d

du
f(γ̃(u))

)

du

=

ˆ

√
τ0

0

(

1

2
| ˙̃γ|2 + 2f(γ̃(u))

)

du− 2
√
τ0τ

≥
ˆ

√
τ0

0

1

2
| ˙̃γ|2du− 2

√
τ0τ.

It follows

1

2

ˆ

√
τ0

0
| ˙̃γ|2 ≤ L(p,

τ

c1α
) + 2

√
τ0τ.

Consequently,

1

2

ˆ

√
τ0

0
| ˙̃γ|2 ≤ n

√

τ

c1α
+ 2

√
τ0τ.

Thus

c21
2
τ2 =

c21
2
f2(pτ )

≤ 1

2
dist (o, pτ )

2 ≤ 1

2

(

ˆ

√
τ0

0
| ˙̃γ|
)2

≤ 1

2

√
τ0

ˆ

√
τ0

0
| ˙̃γ|2

≤ n

√

τ0τ

c1α
+ 2τ0τ ≤ c21

4
τ2 + 2τ0τ.

This proves

τ0 ≥
c21
8
τ = cτ(2.5)

for some dimensional constant c > 0.

Note that γ : [0, τ0] → M is also a minimizing L-geodesic from o to pτ .

Thus, by (2.5), we get

λ (pτ , τ0) ≤
√

τ/c1α√
τ0

λ(p,
τ

c1α
) ≤ n

2
√
cc1α

= A0.
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�

3. Curvature estimates for ℓ-center

In this section, we give the curvature estimates for ℓ-center pr determined

in Proposition 2.3.

Let γ(s) : [0, τ0] → M be a minimal L-geodesic with γ(0) = o and γ(τ0) =

pτ , where pτ is an ℓ-center as in Proposition 2.3. Since pτ ∈ Στ , we see that

γ(s) ∩K 6= ∅ when τ ≫ 1. Set

τ ′ = inf{t|γ(s) ⊂ M \K,∀s > t}(3.1)

and o′τ = γ(τ ′). Then the restricting γ(s) on [τ ′, τ0], denoted by γ2(s), is a

minimal L-geodesic between o′τ and pτ . Thus it satisfies that Rm ≥ 0, in

particular Ric ≥ 0 on γ2(s). As in (1.20), we denote a λ-function starting

from o′τ by λo′τ .

Lemma 3.1. Let τ ′ and λo′τ defined as above for τ ′ ≫ 1. Then

τ ′

τ0
→ 0, as τ0 → ∞.(3.2)

and λo′τ (pτ , τ0 − τ ′) ≤ C0 for some uniform constant C0 > 0.

Proof. We first prove the first assertion (3.2). Suppose that (3.2) fails. Then

there exists a constant ǫ > 0 such that

τ ′ ≥ ǫτ0.(3.3)

Since λ(pτ , τ0) ≤ A0, by (1.19), we have

L(pτ , τ0) =

ˆ τ0

0

√
s
(

Rg + |γ̇(s)−∇f |2g
)

(γ(s))ds ≤ 2A0
√
τ0.

By (1.5), it follows

L(pτ , τ0) =

ˆ

√
τ0

0

(

2u2R+
1

2
| ˙̄γ − 2u∇f |2

)

du

=

ˆ

√
τ0

0

(

2u2 +
1

2
| ˙̄γ|2 − 2u

d

du
f(γ̄(u))

)

du

=

ˆ

√
τ0

0

(

2u2 +
1

2
| ˙̄γ|2 + 2f(γ̄(u))

)

du− 2
√
τ0f(pτ )

≤ 2A0
√
τ0.(3.4)

We divide γ(s) into two paths γ1 and γ2 such that γ1 : [0, τ
′] with γ1(0) = o

and γ1(τ
′) = σoτ ′ , and γ2 : [τ

′, τ0] with γ2(τ
′) = σ0τ ′ and γ2(τ0) = pτ . Then

L(pτ , τ0) = L(γ1) + L(γ2),
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where

L(γ1) =
ˆ

√
τ ′

0

(

2u2 +
1

2
| ˙̄γ|2 + 2f(γ̄(u))

)

du− 2
√
τ ′f(o′τ ),(3.5)

and

L(γ2) =
ˆ

√
τ0

√
τ ′

(

2u2 +
1

2
| ˙̄γ|2 + 2f(γ̄(u))

)

du+ 2
√
τ ′f(o′τ )− 2

√
τ0f(pτ ).

Since o′τ lies in ∂K, there exists a uniform constant C2 > 0, such that

f(o′τ ) ≤ C2. Thus by (3.4), we obtain

L(γ2) ≤ 2A0
√
τ0 − L(γ1)

= 2A0
√
τ0 −

ˆ

√
τ ′

0

(

2u2 +
1

2
| ˙̄γ|2 + 2f(γ̄(u))

)

du+ 2
√
τ ′f(o′τ )

≤ 2(A0 + C2)
√
τ0.(3.6)

By (3.5) and (3.3), we also have

L(γ1) ≥
ˆ

√
τ ′

0
2u2 − 2C2

√
τ0

≥ 2

3
τ ′

3

2 − 2C2
√
τ0

≥ 2

3
ǫ
3

2 τ
3

2

0 − 2C2
√
τ0.(3.7)

Note that

L(γ1) ≤ L(pτ , τ0) ≤ 2A0
√
τ0.(3.8)

Clearly, (3.7) is a contradiction with (3.8) when τ0 >> 1. Thus (3.2) must

be true.

By (3.6), we get

λo′τ (pτ , τ0 − τ ′) =
1

2
√
τ0 − τ ′

L(γ2)

=
2(A0 + C2)

√
τ0

2
√
τ0 − τ ′

.

By (3.2), it follows

λo′τ (pτ , τ0 − τ ′) ≤ 2(A0 + C2)

as long as τ0 ≫ 1. Thus we prove the lemma. �

By Lemma 3.1, we know that for any τ ≫ 1 there exists a o′τ ∈ ∂K and

τ ′0 = τ0 − τ ′, such that

λo′τ (pτ , τ
′
0) ≤ C0,(3.9)
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and
c

2
τ ≤ τ ′0 ≤ 2Cτ.(3.10)

By (3.9) and (3.10), we use the Perelman’s argument [22, Section 7] to

derive the upper bound estimate of curvature for the ℓ-center pτ in the

following. Namely, we prove

Lemma 3.2. Let pr be the ℓ-center determined in Proposition 2.3. Then

there exists a uniform constant C0 such that for any τ ≫ 1 it holds

R(pτ ) ≤
C0

τ
.(3.11)

Proof. Let Γ(s) : [0, τ0] be a minimal L-geodesic with Γ(τ0) = φτ0(pτ ) = xτ0
and Γ(0) = o. Let Y (s) = dΓ

ds and ℓ the corresponding reduced length. Then

by (1.12) and (1.13) in Lemma 1.3 (also see [17, Section 25]), for x = Γ(τ̂)

with τ̂ ∈ [0, τ0], we have

4τ̂ |∇ℓ|2(x, τ̂ ) = −4τR(x,−τ̂ ) + 4ℓ(x, τ̂ )− 4√
τ̂

ˆ τ̂

0
s

3

2H(Y (Γ(s)))ds

+
4√
τ̂

ˆ τ̂

0

√
sR(Γ(s),−s)ds,(3.12)

where

H(Y ) = −∂R

∂s
− 2〈Y,∇R〉+ 2Ric(Y, Y ).

By the isometry, (φ(−τ̂ )∗(Y ), g = g(0)) = (Y, g(−τ̂ )), we see

Rτ̂ (x,−τ̂) =
∂R

∂τ̂
(x,−τ̂) = 〈∇R,∇f〉g(φ−τ̂ (x)),

〈Y,∇R〉(x, τ̂ ) = 〈Y,∇R〉g(−τ̂ )(x) = 〈φ(−τ̂ )∗(Y ),∇R〉g(φ−τ̂ (x))

and

Ric(Y, Y )(x, τ̂ ) = Ricg(−τ̂ )(Y, Y )(x) = Ricg(φ(−τ̂ )∗(Y ), φ(−τ̂ )∗(Y ))(φ−τ̂ (x)).

Then

H(Y )(x, τ̂ ) =− 〈∇R,∇f〉g(φ−τ̂ (x))− 2〈φ(−τ̂ )∗(Y ),∇R〉g(φ−τ̂ (x))

+ 2Ric(φ(−τ̂ )∗(Y ), φ(−τ̂ )∗(Y ))(φ−τ̂ (x))

=2Ric(∇f,∇f)(φ−τ̂ (x)) + 4Ric(φ(−τ̂ )∗(Y ),∇f)(φ−τ̂ (x))

+ 2Ric(φ(−τ̂ )∗(Y ), φ(−τ̂ )∗(Y ))(φ−τ̂ (x))

=2Ric(φ(−τ̂ )∗(Y ) +∇f, φ(−τ̂)∗(Y ) +∇f)(φ−τ̂ (x)).

Moreover, by (1.20), we have

|∇ℓ|2g(−τ̂)(x, τ̂ ) = |∇λ|2g(φ−τ̂ (x), τ̂ ).(3.13)
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Thus by (3.12), we get

4τ̂ |∇λ|2(p, τ̂ ) = −4τ̂Rg(p) + 4λ(p, τ̂ )

− 8√
τ̂

ˆ τ̂

0
s

3

22Ricg(φ(−s)∗(Y ) +∇f, φ(−s)∗(Y ) +∇f)(γ(s))ds

+
4√
τ̂

ˆ τ̂

0

√
sRg(γ(s))ds,(3.14)

where p = φ−τ̂ (x) and γ(τ̂ ) = φ−τ̂ (Γ(τ̂)).

Recall that the minimal L-geodesic γ2(s) = φ−s(Γ(s)) (s ∈ [τ ′, τ0]) is

contained in M \K. Then

Ric(φ(−s)∗(Y ) +∇f, φ(−s)∗(Y ) +∇f)(γ2(s)) ≥ 0.(3.15)

Thus for the λ-function starting from o′τ = φ−τ ′(Γ(τ
′)), we get by (3.14),

4τ ′0|∇λo′τ |2(pτ , τ ′0) ≤− 4τ ′0Rg(pτ ) + 4λoτ ′ (pτ , τ
′
0)

+
4
√

τ ′0

ˆ τ ′
0

0

√
sRg(γ2(s))ds

≤− 4τ ′0Rg(pτ ) + 4λo′τ (pτ ) + 8λo′τ (pτ )

=− 4τ ′0Rg(pτ ) + 12λo′τ (pτ ),

where τ ′0 = τ0 − τ ′ and the second inequality comes from (1.19). It follows

R(pτ ) ≤
3λo′τ

τ ′0
.(3.16)

Hence, by (3.10), we obtain (3.11).

�

To get lower bound estimate of scalar curvature, we need

Lemma 3.3. Let (M,g) be a κ-noncollapsed steady gradient Ricci soliton

with Ric ≥ 0 on M \K. Suppose that (2.1) holds. Then there are compact

set K ′ with K ⊂ K ′ and constant c0 > 0 such that

1−R(x) ≥ c0 > 0, ∀ x ∈ M \K ′.(3.17)

Proof. On the contrary, we suppose that (3.17) fails. Then there exists a

sequence of points pi → ∞ such that

R(pi) ≥ 1− ǫ,

where ǫ > 0 is a small constant to be determined lately. Thus by (1.5), we

get

|∇f |(pi) ≤
√
ǫ.(3.18)
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Denote σi(t) to be the unit speed minimal geodesic with σi(0) = o and

σi(si) = pi. We may assume that pi ∈ M \K. Let

s′i = inf{t | σi(u) ⊂ M \K, ∀u > t}
and p′i = σi(s

′
i). Since K is compact, there exists a constant D > 0 such

that s′i ≤ D for all i and f(p′i) ≤ D for all i. Thus by (3.18), we get

〈∇f, σ′
i〉(pi) ≤ |∇f |(pi) ≤

√
ǫ.

Hence, for any t ∈ [s′i, si], we obtain

〈∇f, σ′
i〉(σi(t)) = 〈∇f, σ′

i〉(pi)−
ˆ si

t

d

du
〈∇f, σ′

i〉(σi(u))du

= 〈∇f, σ′
i〉(pi)−

ˆ si

t
Ric(σ′

i, σ
′
i)(σi(u))du

≤ 〈∇f, σ′
i〉(pi)

≤ √
ǫ.

Consequently,

f(pi) = f(p′i) +
ˆ si

s′
i

d

du
f(σi(u))du

= f(p′i) +
ˆ si

s′
i

〈∇f, σ′
i〉(σi(u))du

≤ D +
√
ǫ(si − s′i)

≤ 10
√
ǫρ(pi), ∀i ≫ 1.(3.19)

By choosing ǫ ≤ c2
1

10000 , (3.19) contradicts to (2.1). Therefore, we prove the

lemma.

�

By Lemma 3.3 and Lemma 1.2, we prove

Proposition 3.4. Let (M,g) be a κ-collapsed steady gradient Ricci soliton

with Rm ≥ 0 on M \ K. Suppose that (2.1) holds. Then there exists a

constant C > 0 such that

R(p) ≥ C

ρ(p)
(3.20)

for all ρ(p) > r0.

Proof. We use the argument in the proof of [12, Proposition 4.3]. By Lemma

3.3, we can choose two compact sets K̂ and K ′ of M with K ⊂ K ′ ⊂ K̂

such that

1−R(x) ≥ c0 > 0, ∀ x ∈ K̂ \K ′,(3.21)
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where c0 is a small constant. By a result of Chen [8], we may also assume

R(x) ≥ c0, ∀ x ∈ K̂ \K ′.(3.22)

For any p ∈ M \ K̂, we have

d

dt
R(φt(p)) = Ric(∇f,∇f) ≥ 0, ∀t ≤ 0.

It follows

0 ≤ R(φt(p)) ≤ R(p), ∀t ≤ 0.

Since

d

dt
f(φt(p)) = −|∇f |(φt(p)), ∀t ≤ 0,

by (1.5), we get

1−R(p) ≤ − d

dt
f(φt(p)) ≤ 1, ∀t ≤ 0.

Hence

(1−R(p))|t| ≤ f(p)− f(φt(p)) ≤ |t|, ∀t ≤ 0.(3.23)

By Lemma 1.2 and the evolution equation of scalar curvature, we have
∣

∣

∣

∣

∂

∂t
R−1(p, t)

∣

∣

∣

∣

≤ |∆R(p, t)|
R2(p, t)

+
2|Ric(p, t)|2
R2(p, t)

≤ C0 + 2,

and consequently,

R(p, t)|t| ≥ |t|
(C0 + 2)|t| +R(p, 0)−1

≥ 1

2(C0 + 2)
(3.24)

for all |t| ≫ 1. Since for any p ∈ M \ K̂, there exists xp ∈ K̂ \K ′ and tp < 0

such that φtp(xp) = p. Thus by the first inequality in (3.24) together with

the first inequality in (3.23), we get

R(p) ≥ 1

|tp|
· 1

(C0 + 2) + (R (xp) |tp|)−1

≥ 1−R(xp)

f(p)− f (xp)
· 1

(C0 + 2) + (R (xp) |tp|)−1

≥ 1−R (xp)

2(f(p)− f(o))
· 1

(C0 + 2) + (R (xp) |tp|)−1 .(3.25)

Note that f(xp) ≤ C ′
0 for xp ∈ K̂ \ K ′. Then by the second inequality in

(3.23) together with (3.22), we have

|tp| ≥ f(p)− f(xp) ≥ c0
f(p)− C ′

0

c0
≥ 1

R (xp)
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as long as ρ(p) >> 1. Hence, by inserting the above relation into (3.25)

together with (3.21), we obtain

R(p) ≥ c0
2c2(C0 + 3)ρ(p)

,

where c2 is the constant in (2.1).

�

4. Construction of shrinking Ricci solitons

In this section, we construct the shrinking Ricci soliton via the blow-down

around pτ by the estimates in Section 2, 3.

Let {pi} → ∞ be any sequence in M . Set τi = f(pi). Then by Proposition

2.3, there are qi ∈ Στi and τ ′i ∈ [cτi, Cτi] such that

λ(qi, τ
′
i) ≤ A0,(4.1)

where c, C and A0 are uniform constants. Equivalently, we have

ℓ(xi, τ
′
i) ≤ A0,(4.2)

where xi = φτ ′
i
(qi).

By Lemma 3.2 and Proposition 3.4, we apply Proposition 1.1 to prove

Lemma 4.1. Let xi, τ
′
i defined as above. Then the sequence of rescaled Ricci

flows (M, τ ′−1
i g(−τ ′i + τ ′it);xi) converges to (N ′ × R, g′∞ = h′(t) + ds2;x∞),

t ∈ (−∞, 0], where (N ′, h′(t)) is an non-flat ancient κ-solution.

Proof. By the isometry

(g(−τ ′i), xi)
φ−τ ′

i∼= (g = g(0), qi),(4.3)

the rescaled Ricci flow (M, τ ′−1
i g(−τ ′i+τ ′it);xi) is isometric to (M, τ ′−1

i g(τ ′i t); qi).
By Lemma 3.2 and Proposition 3.4, we see that there exists a constant C > 0

such that

C−1 ≤ τ ′iR(qi) ≤ C.(4.4)

Thus the limit of rescaled Ricci flows (M, τ ′−1
i g(τ ′i t); qi) is isometric to one

of (M,R(qi)g(R(qi)
−1t); qi). Moreover, by Proposition 1.1, the limit of

(M, τ ′−1
i g(−τ ′i+τ ′it);xi) is a split flow (g′∞ = h′(t)+ds2;x∞) onN ′×R. Since

Rg′∞(x∞) ≥ C−1 by (4.4), (N ′, h′(t)) is a non-flat ancient κ-solution. �

Let gi(t) = τ ′−1
i g(τ ′i t) and ℓi(x, τ) = ℓ(x, τ ′iτ), where τ = −t. Then

ℓi(x, τ) is the reduced distance from (o, 0) w.r.t. the backward flow ĝi(τ) =

gi(−τ). Moreover, by the scale invariant property and (4.2), we have

ℓi(xi, 1) = ℓo(xi, τ
′
i) ≤ A0.(4.5)
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On the other hand, by the convergence in Lemma 4.1, for any fixed radius

D > 0, we have

R(p, t) ≤ C(D),(4.6)

where (p, t) ∈ Bgi(−1)(xi,D)× [−10,−1] when i ≫ 1. By (4.5) and (4.6), we

do the derivative estimate of ℓi(x, τ) in the following.

Proposition 4.2. Let ℓi(x, τ) be a sequence of reduced distance functions

defined as above. Then for any fixed D > 0, there exists uniform constant

C̄(D) > 0 such that

0 ≤ ℓi(x, τ) ≤ C̄(D), ∀(τ, t) ∈ Bgi(−2)(xi,D)× [−10,−2](4.7)

and

|∂ℓi
∂τ

(x, τ)| + |∇ℓi(x, τ)| ≤ C̄(D), ∀(τ, t) ∈ Bgi(−2)(xi,D)× [−8,−2](4.8)

for all i ≫ 1, where τ = −t.

Proof. The nonnegativity of ℓi follows from the definition (1.10) and the

nonnegativity of scalar curvature for ancient solutions. In the following, we

always denote C, C̄, Ci to be uniform constants only depending on D.

Let Γi(τ) be the minimal L-geodesics between (o, 0) and (xi, 1). Then by

(4.5), we have

L(Γi(τ)) ≤ 2A0.

Since the Ricci curvature of gi(t) is nonnegative, by Harnack inequality, it

holds

Bgi(t)(xi,D) ⊆ Bgi(−1)(xi,D), ∀ t ≤ −1.(4.9)

On the other hand, by (4.6) and the distance distortion estimate we also

have

Bgi(−1)(xi,D) ⊆ Bgi(t)(xi, C0(D)), ∀ t ∈ [−10,−2].(4.10)

Now we fix τ ∈ [2, 10] and let σi(s), s ∈ [1, τ ], be the minimal geodesic

from xi to x w.r.t. gi(−τ), where x ∈ Bgi(−τ)(xi,D) ⊆ Bgi(−2)(xi,D) ⊆
Bgi(−1)(xi,D). Then σi(s) ⊆ Bgi(−1)(xi,D). Thus by (4.6) and the distance

distortion estimate, we obtain

|σ′
i(s)|2gi(−s) ≤ e2nC(D)|t||σ′

i(s)|2gi(−τ) ≤ C(D)|σ′
i(s)|2gi(t)
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for all s ∈ [1, τ ]. Consequently,

Li(x, τ) ≤ L(Γi) +

ˆ τ

1

√
s(Rgi(−s) + |σ′(s)|2gi(−s))ds

≤ L(Γi) +

ˆ τ

1

√
s(Rgi(−s) +C(D)|σ′(s)|2gi(−τ))ds

≤ 2A0 + 2
√
τC(D) +

2

3
C(D)

D2(τ
3

2 − 1)

(τ − 1)2

≤ 2A0 + C ′(D).(4.11)

Hence, (4.7) follows from (4.11) together with (4.10).

Next we prove (4.8). Let τ ∈ [2, 8] and Γ̄i(s) be a minimal L-geodesic
between (o, 0) and (x, τ), where x ∈ Bgi(−τ)(xi,D). Set

τ̄ ′i = inf{t| Γ̄i(s) ⊂ Bgi(−τ)(xi,D), ∀s > t}

and qi = Γ̄i(τ̄
′
i). By a change of variable u =

√
s, we write Γ̂i(u) = Γ̄i(u

2).

Then

L(Γ̂i(u)) =

ˆ

√
τ

0
2u2Rgi(−u2) +

1

2
|Γ̂′

i(u)|2gi(−u2)du.

It follows
ˆ

√
τ

√
τ̄ ′
i

1

2
|Γ̂′

i(u)|2gi(−u2)du ≤ L(Γ̂i(u)) = 2
√
τℓi(x, τ) ≤ C1(D),(4.12)

where the last inequality follows from (4.7). On the other hand, by the

distance distortion estimates, we have

D2 = d2gi(−τ)(x, qi) ≤ (

ˆ

√
τ

√
τ̄ ′
i

|Γ̂′
i(u)|gi(−τ)du)

2

≤ C(D)(

ˆ

√
τ

√
τ̄ ′
i

|Γ̂′
i(u)|gi(−u2)du)

2

≤ C(D)(
√
τ −

√

τ̄ ′i)
2

ˆ

√
τ

√
τ̄ ′
i

|Γ̂′
i(u)|2gi(−u2)du.

Thus by (4.12), we get

√
τ −

√

τ̄ ′i ≥ C3(D)(4.13)

for all x ∈ Bgi(−τ)(xi,D) and i ≫ 1.

We notice that Γ̂′
i(u) satisfies the minimal L-geodesic equation,

∇Γ̂′
i
(u)Γ̂

′
i(u)− 2u2∇R+ 4uRic(Γ̂′

i(u)) = 0,∀ u ∈ [
√

τ̄ ′i ,
√
τ ].
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Then by Shi’s estimates and the fact that Ric ≥ 0 on Bgi(−1)(xi,D) for all

i ≫ 1, we have

d

du
|Γ̂′

i(u)|2gi(−u2) = 4u2〈∇R, Γ̂′
i〉 − 4uRic(Γ̂′

i, Γ̂
′
i)

≤ 4u2|〈∇R, Γ̂′
i〉|gi(−u2)

≤ C4(D)|Γ̂′
i(u)|gi(−u2)

≤ 4C4(D)(1 + |Γ̂′
i(u)|2gi(−u2)).

Integrating the above inequality and by (4.12), we obtain

|Γ̂′
i(
√
τ)|2gi(−τ) − |Γ̂′

i(u)|2gi(−u2)

=

ˆ

√
τ

u

d

dv
|Γ̂′

i(v)|2gi(−v2)dv

≤ 4
√
τC4(D) + 8C4(D)

ˆ

√
τ

√
τ̄ ′
i

1

2
|Γ̂′

i(u)|2gi(−u2)du

≤ C5(D).

Consequently,

|Γ̂′
i(u)|2gi(−u2) ≥ |Γ̂′

i(
√
τ)|2gi(−τ) − C5(D), ∀u ∈ [

√

τ̄ ′i ,
√
τ ].(4.14)

By (4.13) and (4.14), we have

L(Γ̄i) ≥
ˆ

√
τ

√
τ ′
i

(
1

2
|Γ̂′

i(u)|2gi(−u2) + 2u2Rgi(−u2))du

≥
ˆ

√
τ

√
τ ′
i

1

2
|Γ̂′

i(u)|2gi(−u2)du

≥ C6(D)(
√
τ −

√

τ ′i)|Γ̂′
i(
√
τ)|2gi(−τ) − C6(D)C5(D)

≥ C7(D)|Γ̂′
i(
√
τ)|2gi(−τ) −C8(D).

On other hand, by (4.7), we have

L(Γ̄i) ≤ 2
√
τℓi(x, τ) ≤ 10C(D).

Thus combining above two inequalities, we obtain

|Γ̂′
i(
√
τ)|2gi(−τ) ≤ C9(D).

By (1.12), it follows

|∇ℓi(x, τ)|2 = |Γ̄′
i(τ)|2 =

|Γ̂′
i(
√
τ )|2

4τ
≤ C9(D)

8
.
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Moreover, by (1.15) and (4.7), we deduce

2| ∂
∂τ

ℓi(x, τ)| ≤ |∇ℓi(x, τ)|2 +R+
ℓi(x, τ)

τ
≤ C9(D)

8
+ C(D).

Hence, the above two relations give (4.8). The proposition is proved.

�

Remark 4.3. Since the Ricci curvature of (M,g) is just nonnegative outside

the compact set K, we cannot use the global Harnack inequality directly in

[22, Section 7] to get the gradient estimates for ℓi(x, τ)-function at any space-

time (x, τ). We shall restrict the corresponding minimal L-geodesic on M\K
and do the time length estimate for the restricted minimal L-geodesic, see
Lemma 3.1 and (4.13).

By Lemma 4.1 and Proposition 4.2, we are able to construct a limit non-

flat shrinking Ricci soliton via the rescaled Ricci flows of (M,g(t)) by fol-

lowing the strategy in [22, Section 9].

Proposition 4.4. Let xi, τ
′
i chosen as in Lemma 4.1. Then the sequence

of rescaled Ricci flows (M, τ ′−1
i g(τ ′i t);xi) converges to (N ′×R, g′∞ = h′(t)+

ds2;x∞), t ∈ (−∞,−1], where (N ′, h′(t)) is an non-flat shrinking Ricci

soliton.

Proof. By Lemma 4.1, we know that the sequence of rescaled Ricci flows

(M, τ ′−1
i g(τ ′i t);xi) converges to (M∞ = N ′ × R, h′(t) + ds2;x∞), (−∞,−1],

where (N ′, h′(t)) is an non-flat ancient κ-solution. We only need to show

(N ′, h′(t)) is indeed a shrinking Ricci soliton.

By Proposition 4.2, the sequence of functions {ℓi} converges subsequently

to a function ℓ∞ on M∞ × [2, 8] in the Cα
loc sense for any α ∈ (0, 1). Since

ℓ∞ is also locally Lipschitz, which is an element in W 1,2
loc (M∞ × [2, 8]), we

may assume that {ℓi} converges weakly in W 1,2
loc to ℓ∞. Moreover, according

to [19, Section 9], by the monotonicity of reduced volume, one can show

the inequalities (1.16) and (1.17) in Lemma 1.4 for ℓ∞ becomes equalities

simultaneously. Namely, ℓ∞ satisfies

2
∂l∞
∂τ

+ |∇l∞|2 −Rg′∞ +
l∞
τ

= 0

and

2∆g′∞ l∞ − |∇l∞|2 +Rg′∞ +
l∞ − n

τ
= 0(4.15)

in the distributional sense.

Let

u = (4πτ)
n
2 eℓ∞ > 0.
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Then u satisfies the conjugate heat equation

∂u

∂τ
−∆g′∞u+Rg′∞u = 0(4.16)

in the distributional sense. Thus the standard regularity theory gives smooth-

ness of ℓ∞. On the other hand, if we let

v =
(

τ
(

2∆g′∞l∞ − |∇l∞|2 +Rg′∞

)

+ l∞ − n
)

u,

then by (4.15), we have v = 0. Following the Perelman’s computation [22,

Proposition 9.1], we get by (4.16),
(

∂

∂τ
−∆g′∞ +Rg′∞

)

v = −2τ

∣

∣

∣

∣

Ricg′∞ +∇2l∞ − 1

2τ
g′∞(τ)

∣

∣

∣

∣

2

u

on M∞ × [2, 8]. Thus by u > 0, we obtain

Ricg′∞ +∇2l∞ − 1

2τ
g′∞(τ) = 0

on M∞× [2, 8]. This implies that (M∞, g′∞(t);x∞) (t ∈ [−8,−2]) is a shrink-

ing Ricci soliton. By the uniqueness of Ricci flow and the splitting structure

M∞ = N ′ × R, we prove the theorem immediately. �

By (4.3), we actually prove

Theorem 4.5. Let qi, τ ′i be the sequences chosen as in (4.1). Then the

sequence of rescaled Ricci flows (M,gqi(t); qi) converges to (N ′ × R, h′(t) +
ds2; q∞), t ∈ (−∞, 0] in the Cheeger-Gromov sense, where (N ′, h′(t)) is a

non-flat shrinking Ricci soliton.

5. Proofs of main theorems

In this section, we prove main results in Introduction 0 by following the

strategy in [26]. Let us first recall the following definition introduced by

Perelman (cf. [23, 18, 26], etc.).

Definition 5.1. For any ǫ > 0, we say a pointed Ricci flow (M1, g1(t); p1) , t ∈
[−T, 0] (T may be the infinity), is ǫ-close to another pointed Ricci flow

(M2, g2(t); p2) , t ∈ [−T, 0], if there is a diffeomorphism onto its image φ̄ :

Bg2(0)

(

p2, ǫ
−1
)

→ M1, such that φ̄ (p2) = p1 and
∥

∥φ̄∗g1(t)− g2(t)
∥

∥

C[ǫ−1] < ǫ

for all t ∈
[

−min
{

T, ǫ−1
}

, 0
]

, where the norms and derivatives are taken

with respect to g2(0).

By the compactness result for rescaled Ricci flows in Proposition 1.1, we

know that for any ǫ > 0, there exists a compact set D(ǫ) > 0, such that for

any p ∈ M\D, (M,gp(t); p) is ǫ-close to a splitting flow (hp(t)+ds2; p), where

hp(t) is an (n−1)-dimensional ancient κ-solution. Since the ǫ-close splitting
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flow (hp(t) + ds2; p) may not be unique for a point p, we may introduce a

function on M for each ǫ as in [18, 26],

Fǫ(p) = inf
hp

{Diam(hp(0)) ∈ (0,∞)}.(5.1)

For simplicity, we always omit the subscribe ǫ in the function Fǫ(p) below.

5.1. Proofs of Theorem 0.1 and Corollary 0.2. As in [26, Theorem

0.2], we use the argument by contradiction to prove Theorem 0.1. Suppose

that there exists a sequence of normally scaled Ricci flows (M,gpi(t); pi)

(pi → ∞), which converges to a limit Ricci flow (N × R, h(t) + ds2; p∞),

where (N,h(t), p∞) is a compact ancient κ-solution of type II. Then by [26,

Lemma 2.2] under the condition Rm ≥ 0 and Ric > 0 on M \K, the scalar

curvature of (M,g) decays to zero uniformly, i.e.

lim
x→∞

R(x) = 0.(5.2)

Thus by the normalization identity (1.5), it follows

|∇f(x)| → 1 as ρ(x) → ∞.(5.3)

Moreover, by [14, Lemma 2.2] (or [9, Theorem 2.1]), f satisfies (2.1). Thus

all results in the above sections 1-4 hold.

Proof of Theorem 0.1. Choose a sequence of tk → −∞. Then by [26, Lemma

4.3],

lim
k→∞

Diam(h(tk))R
1

2

h (p∞, tk) ≥ lim
k→∞

Diam(h(tk))R
1

2

h,min(tk) = ∞.(5.4)

Thus there is t0 ∈ {tk} for some k0 such that

Diam(h(t0))R
1

2

h (p∞, t0) > 100C0A,(5.5)

where the large constants C0 and A will be determined lately.

Set T = t0R
−1(pi) and choose ǫ < − 1

100t0
. Then (M,gpi(t); pi) is ǫ-close

to (N ×R, h(t) + ds2; p∞) when i >> 1. Thus by (5.5) and the convergence

of gpi(t), we get

Diam(ḡ(T ))R
1

2 (pi, T ) = Diam(ḡpi(t0))R
1

2

pi(pi, t0) > 90C0A,(5.6)

as long as i >> 1, where ḡ(T ) is the induced metric of g on f−1(f(φT (pi)))

and ḡpi(t) is the induced metric of gpi(t) on f−1(f(pi)), respectively. It

follows

Diam(R(φT (pi))ḡ(T )) = Diam(ḡ(T ))R
1

2 (φT (pi))

= Diam(ḡ(T ))R
1

2 (pi, T )

> 90C0A, i >> 1.(5.7)
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Let (Ñ , h̃(t)) be an (n− 1)-dimensional split ancient flow for the rescaled

flow (M,g(φT (pi))(t);φT (pi)) as in Proposition 1.1. Then as in the proof of

[26, Proposition 3.6], one can show that Diam(Ñ , h̃(0)) is closed to Diam(N,

Rh(p∞, t0)h(t0)), where Rh denote the scalar curvature of (N,h(x, t)). In

fact, it is a limit of hypersurfaces

(f−1(f(φT (pi))), R(φT (pi))ḡ(T );φT (pi)).

In particular, (Ñ , h̃(0)) is compact. Thus by (5.7), we get

Diam(Ñ , h̃(0)) ≥ 90C0A.

By the Definition 5.1, it follows

F (φT (pi)) > 50C0A, i >> 1.(5.8)

On the other hand, by Proposition 2.3, on each level set Σf(φT (pi)), there

exists qi ∈ Σf(φT (pi)) and τi ∈ [cf(φT (pi)), Cf(φT (pi))] such that λ(qi, τi) ≤
A0, where c, C and A0 are uniform constants in Proposition 2.3. Clearly,

τi → ∞ since f(φT (pi)) → ∞ when i → ∞. Thus we can apply Theorem 4.5

to see that the sequence of normally scaled flows (M,gqi(t); qi) converges to

a nonflat shrinking gradient Ricci soliton (N ′×R, h′(t)+ds2, q∞). It follows

that (N ′, h′(t)) is also a non-flat shrinking soliton with Rm ≥ 0. Further-

more, by [26, Lemma 2.6 and Remark 2.8], (N ′, h′(t)) is compact as same

as (Ñ , h̃(t)). Hence, by the classification result of compact κ-noncollapsed

shrinking Ricci solitons with Rm ≥ 0 (cf. [10, Theorem 7.34], [6], [20]), there

exists a large constant A such that

Diam(N ′, h′(0)) ≤ A,(5.9)

and

Rh′(0) ≡ 1.

By the convergence of (M,gqi(t); qi) and (5.9), we see

Diam(R(qi)ḡ(T )) = Diam(ḡ(T ))R
1

2 (qi) ≤ 2A.(5.10)

Then by [26, Lemma 1.3 and Lemma 2.6], there exists a large constant C0

such that
1

C0
R(x) ≤ R(qi) ≤ C0R(x), ∀x ∈ Σf(φT (pi))(5.11)

for all i ≫ 1. Thus combining (5.10) and (5.11), we get

Diam(R(φT (pi))ḡ(T )) = Diam(ḡ(T ))R
1

2 (φT (pi))

≤ C0Diam(ḡ(T ))R
1

2 (qi)

≤ 2C0A,(5.12)

which contradicts to (5.8). Hence, the theorem is proved. �
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Proof of Corollary 0.2. By Theorem 0.1, (n− 1)-dimensional compact split

limit ancient flow (N,h(t)) of type II cannot occur from the blow-down of

(M,g). Thus we need only to show that the compact split ancient flows of

type I and noncompact split ancient flows cannot occur simultaneously from

the blow-down of (M,g). In fact, the latter is true by [27, Theorem 1.2].

The corollary is proved. �

5.2. Proof of Theorem 0.3. As in Theorem 0.1, we see that (5.2), (5.3)

and (2.1) are all satisfied. Thus all results in the above sections 1-4 hold.

Proof of Theorem 0.3. The first inequality in (0.4) has been proved in Propo-

sition 3.4. We only need to prove the second inequality. Suppose that it is

not true, then there exists a sequence of points p′i → ∞ such that

R(p′i) ≥
i

ρ(p′i)
.(5.13)

Let si = f(p′i). Then by (2.1), there exists a uniform constant C1 > 0

such that

C−1
1 ρ(p′i) ≤ si ≤ C1ρ(p

′
i).(5.14)

By Proposition 2.3 Lemma 3.2, for each i ≫ 1 there exists qi ∈ Σsi such

that

R(qi) ≤
C2

si
(5.15)

for some uniform constant C2 > 0. On the other hand, by Corollary 0.2,

we know that (n− 1)-dimensional split limit solution (N ′, h′(t)) of rescaled
Ricci flows (M,gp′

i
(t); p′i) is a compact ancient κ-solution of type I. Thus as

in (5.9), we have

Diam(N ′, h′(0)) ≤ A.

It follows that there exists uniform constant C0 > 0 as in (5.11) such that

C−1
0 R(qi) ≤ R(p′i) ≤ C0R(qi), ∀ i ≫ 1.(5.16)

Hence, combining (5.14), (5.15) and (5.16), we obtain

R(p′i) ≤
C3

ρ(p′i)
(5.17)

for some uniform constant C3 > 0. But this is a contradiction with (5.13)

when i ≫ 1. The theorem is proved.

�
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