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We investigate the non-Abelian Thouless pumping in a disorder tunable Lieb chain with de-
generate flat bands. The results reveal that quasiperiodic disorder will cause a topological phase
transition from the trivial (without non-Abelian Thouless pumping) to the non-trivial (with non-
Abelian Thouless pumping) phase. The mechanism behind is that the monopole originally outside
the topological region can be driven into the topological region due to the introduction of quasiperi-
odic disorder. Moreover, since the corresponding monopole will turn into a nodal line to spread
beyond the boundaries of the topological region, the system with large disorder strength will result
in the disappearance of non-Abelian Thouless pumping. Furthermore, we numerically simulate the
Thouless pumping of non-Abelian systems, and the evolution results of center of mass’ displace-
ment are consistent with the Chern number. Finally, we discuss the localization properties of the
system and find that, similar to [PRL 130, 206401(2023)], the inverse Anderson transition does not
occur in the system with the increase of quasiperiodic strength, while the system still maintains the
coexistence of localized and extended states.

I. INTRODUCTION

Thouless pumping as the quantized transport of par-
ticles has attracted intensive interest since D. J. Thou-
less proposed it in 1983 [1]. In Thouless pumping, the
transport of charge is related to the Chern numbers and
shows the topological equivalence to the integer quan-
tum Hall effect in two dimensions [2–5]. Thouless pump-
ing have been realized using different platforms [6–25]
and the extension of the Thouless pumping includes spin
pumping [15, 26], nonlinear Thouless pumping [27–31],
interacting topological pumping [32–37], high-order topo-
logical pumping [38–40], and non-Hermitian topological
pumping [41–43]. Recently, Thouless pumping has been
extended to non-Abelian version [44–49]. With synthetic
non-Abelian gauge fields [50–55], non-Abelian version of
Thouless pumping has been constructed in theory [45]
and realized in acoustic and photonic waveguides [46, 47].
In non-Abelian Thouless pumping, the quantization of
the pumping is related to the Wilczek and Zee holonomy
which is the non-Abelian analog of Berry’s phase [56–67].

The competition between topology and disorder is an-
other important issue [68–75]. Thouless pumping is ro-
bust to disorders as long as the energy gap keeps open-
ing [6–8, 16, 21]. A strange disorder-induced topological
phase called topological Anderson insulators(TAIs) [71,
72] has been discovered and experimentally observed[76–
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78]. In recent years, TAIs have been extended to vari-
ous models, such as quasiperiodic SSH chains, Z2 TAIs,
long range SSH model, and non-Hermitian disordered
systems[79–82]. Recently, disorder-induced quantized
topological pumping have been demonstrated in nonin-
teracting and interacting systems with different disorders
which declares the existence of the topological Anderson
Thouless pump [83]. Based on the above previous stud-
ies, one can easily think of extending the study of the
interplay between topology and disorder to cases involv-
ing non-Abelian gauge fields.

Here we explore the interplay between non-Abelian
Thouless pumping and quasiperiodic disorder. Remark-
ably, a disorder-induced quantized non-Abelian topo-
logical pumping is proposed in noninteracting systems
with quasiperiodic disorders. First we show the ro-
bustness of non-Abelian Thouless pumping under disor-
ders, where topological pumping breaks for large disor-
der strength. Then we reveal a quantized non-Abelian
topological pumping induced by quasiperiodic disorders
from a trivial pump in the clean regime and explain the
mechanism of the disorder-induced non-Abelian Thou-
less pumping as a result of the shift of the monopole.
We further demonstrate that the disorder-induced non-
Abelian Thouless pumping can also be observed in op-
tical systems, similar to the topological pumping of
light in waveguide arrays [22, 27]. Eventually, we give
the inverse participation ratio (IPR) calculation of the
disorder-induced non-Abelian topological pumping sys-
tem to demonstrate a strange non-Abelian inverse An-
derson transition which shows huge differences from the
Anderson transition [84].

ar
X

iv
:2

40
4.

18
49

1v
1 

 [
co

nd
-m

at
.d

is
-n

n]
  2

9 
A

pr
 2

02
4

mailto:Corresponding author: yqzhuphy@hku.hk
mailto:Corresponding author: lizphys@m.scnu.edu.cn


The paper is organized as follows. In Sec. II we de-
scribe the non-Abelian Lieb chain model with quasiperi-
odic disorders. Then we show the robustness of non-
Abelian Thouless pumping with quasiperiodic disorders
which is similar to the Abelian case. We present the ex-
istence of disorder-induced non-Abelian Thouless pump-
ing in Sec. III and give a numerical simulation in optical
waveguides to observe the topological pumping. Then we
present numerical results of the IPR. Finally in Sec. IV
we make conclusions.

II. MODEL

Let’s start at a one dimensional non-Abelian quasiperi-
odic Lieb chain model, which has four sites per unit cell
as shown in Fig. 1(a) [45]. The corresponding Hamilto-
nian reads

H =
∑
j

(
J̃ja

†
jbj + J2a

†
jbj−1 + J3a

†
jcj + J4a

†
jdj +H.c.

)
,

(1)
where a†j(aj), b

†
j(bj), c

†
j(cj) and d†j(dj) denote the fermion

creation (annihilation) operators at sites A, B, C and
D, respectively. The corresponding intercell hopping
J̃j and intracell hopping J2,3,4 are marked in Fig. 1.
The disorder of the system is reflected in J̃j term, i.e.,
J̃j = J1 +W cos (2παj + β). W is the disorder strength.
α is an irrational number denoting the incommensu-
rate modulation. Without loss of generality, we set
α =

(√
5− 1

)
/2 in the following computation. β is a

phase shift. The Hamiltonian features two degenerate
flat bands which construct a synthetic non-Abelian gauge
field [45]. The corresponding energy spectrum is plotted
in the Appendix B. We consider noninteracting pumping
in the lattice of size 4L with particle number N = 3L,
this is to say, we do a 3/4 filling, which guarantee the
Fermi energy is higher than the degenerate flat bands.

One can use an adiabatic evolving loop to implement
topological pumping in disorder tunable non-Abelian sys-
tem [see red loop in Fig. 1(b)]. Similar methods have
been used in dicussing non-Abelian physics without dis-
order [45]. To be more specific, the corresponding ana-
lytic expressions for different hopping terms have been
provided in Appendix A. For convenience, we set the dis-
tance between an abitrary point of the loop and the origin
point equals to 1, in other words, max[J1, J2, J3, J4] = 1
as shown in Fig. 1(b). To describe the topology of the sys-
tem with Chern number under disorders, one can impose
the twisted periodic boundary condition by introducing
a twisted phase θ ∈ [0, 2π] to the hopping terms. Then,
one can obtain [3–5, 83, 85]

Hθ =
∑
j

(
J̃je

iθa†jbj + J2e
iθa†jbj−1 + J3e

iθa†jcj

+J4e
iθa†jdj +H.c.

)
.

(2)
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Figure 1. (a) The non-Abelian quasiperiodic Lieb chain. The
dashed box is the unit cell. The hopping strength and the lat-
tice spacing a are marked. (b) The corresponding adiabatic
evolution loop, which reduces to the case without disorder
for W = 0. The red arrows indicate the pumping direction
and the blue circle is the starting point. (c) Chern number
C as a function of W for L = 10 and β = 0. (d) The cor-
responding time evolution of the center of mass Xcom (t) for
the quasiperiodic disorder strengths W = 0, 0.5, 4.5, respec-
tively and L = 25. The results are averaged over 50 samples
with β valued from 0 ∼ 2π uniformly and T = 200. The four
hopping terms are evolving as shown in (b). Throughout, we
set a = 1.

Note that, in the thermodynamic limit (L → ∞), the
Hamiltonian with a twisted phase Hθ is topologically
equivalent to H in Eq. (1), so the two have the same
Chern number.

We next discuss the relation between the non-Abelian
Thouless pumping and the Chern number C of Hθ un-
der time-modulated parameters J̃j(t) and J2,3,4(t). As
we know that the shift of the center-of-mass of Wan-
nier state is guaranteed by the Chern number, i.e.,
∆Xcom = Xcom(T )−Xcom(0) = C[8, 12–14, 16, 21, 83].
Here the Wannier center for each unit cell in real space
is associated with the Zak phase or polarization, i.e.,
Xcom(t) = 1

2π tr γ(t), where γ denotes the non-Abelian
Zak phase (or Berry-Wilczek-Zee phase [56]) defined as

γ =

∫ 2π

0

dθAθ, (3)

with the non-Abelian Berry connection Aθ = ⟨ψ|i∂θ|ψ⟩
and its component Anm

θ = ⟨ψn|i∂θ|ψm⟩. Here |ψm⟩ indi-
cates the eigenstate of the degenerate flat bands with the
index ranging from L+ 1 to 3L[86]. Note that, only the
middle degenerate flat bands contribute to the non-trivial
Chern number in the non-Abelian Thouless pumping and
thus we mainly focus on the physics of these degenerate
flat bands hereafter. One can also find that the non-
Abelian Zak phase is a matrix instead of being a scalar
in the Abelian case.

By modulating the paremeters in one loop period T ,
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we have [8, 83]

∆Xcom =
1

2π
tr [γ (T )− γ (0)]

= tr

[∫ T

0

dt

2π
∂tγ

]
= C.

(4)

Furthermore, the Chern number C can be expressed
through the non-Abelian Berry curvature Fθt by apply-
ing the Stoke’s theorem in the second line of the above
equation, i.e.,

C = tr

[∫ T

0

dt

2π
∂tγ

]
=

∫ 2π

0

dθ

∫ T

0

dt tr [Fθt] , (5)

where Fθt = ∂θAt − ∂tAθ + i [At, Aθ] with At and Aθ

being the non-Abelian Berry connections defined below
Eq. (3). The above equation describes an integral over a
two-dimensional torus spanned by (θ, t). In numeric, the
corresponding non-Abelian Chern number reads [87]

C ≡ 1

2πi

∑
l

F (kl), (6)

where F (kl) is the field strength. In order to make the
numerical process of non-Abelian chern number (6) read-
ily understandable, we briefly summarize and give a step
by step calculation process here, which is essentially the
Wilson loop method.

In the first step, we discretized the two-dimensional
θ-t plane into Nθ × Nt grid points. Nθ and Nt denote
the total number of grid points on the discrete θ and
t axes, respectively. Each grid point is represented by
kl = (kjθ , kjt), where kjθ = 2πjθ/Nθ, kjt = Tjt/Nt. The
corresponding subscripts l = 1, ..., Nθ×Nt, jθ = 1, ..., Nθ

and jt = 1, ..., Nt.
In the second step, in order to compute Eq. (6),

one also need to know the exact expression of U(2L)-
link variable [87–89]. Let’s define the two displace-
ment vectors θ̂ = (2π/Nθ, 0) and t̂ = (0, T/Nt).
And then to compute the Chern number of the de-
generate bands one can consider a multiplet φ(kl) =
[|φ1 (kl)⟩ , ..., |φn (kl)⟩ , ..., |φ2L (kl)⟩], where |φn(kl)⟩ de-
notes the (L + n)-th eigenstates of Hamiltonian Hθ of
(2). Then, one can get U (2L)-link variables as

Uθ (kl) =
1

Nθ (kl)
det

[
φ† (kl)φ

(
kl + θ̂

)]
,

Ut (kl) =
1

Nt (kl)
det

[
φ† (kl)φ

(
kl + t̂

)]
,

(7)

with Nθ (kl) =
∣∣∣det [φ† (kl)φ

(
kl + θ̂

)]∣∣∣ and Nt (kl) =∣∣det [φ† (kl)φ
(
kl + t̂

)]∣∣ being the normalization con-
stants.

In the third step, one can construct F (kl) in terms of
U (2L)-link variables [87–89], i.e.,

F (kl) = ln
[
Uθ (kl)Ut

(
kl + θ̂

)
Uθ

(
kl + t̂

)−1
Ut (kl)

−1
]
.

(8)

Then, by performing a straightforward calculation, one
can obtain the non-Abelian Chern number of Eq. (6).
We have provided the code for calculating non-Abelian
Chern number in the Supplemental Material [90].

To show the competition between the non-Abelian
topology and the quasiperiodic disorder, one should first
confirm the robustness of the topological pumping. In
Fig. 1(b), one can see that the parameter loop makes a
non-Abelian topological pumping, which reduces to order
case for W = 0 [45]. As shown in Fig. 1(c), we numeri-
cally compute the Chern number as a function of disorder
strengthW . One can find that the quantized Chern num-
ber C = 1 preserves from the clean limit to weak disorder
regime. However, for strong disorder, the non-Abelian
topological pumping breaks down. This property is simi-
lar to the robustness of Abelian Thouless pumping under
quasiperiodic disorders or random disorders [83].

To further discuss the robustness of non-Abelian topo-
logical pumping under different disorders, we numer-
ically simulate the corresponding process of adiabatic
evolution. Experimentally, one can consider a excita-
tion in photonic waveguide array [45, 47]. By modulat-
ing their refraction index and relative parameters, the
non-Abelian quasiperiodic Hamiltonian and the evolu-
tion process can be realized. In numerical simulation,
we take |ψ (0)⟩ as the initial state, which is a localized
Wannier state of the degenerate band. This is the ex-
citation at the center of the waveguide arrays. Over a
full pumping loop, one can measure the center-of-mass
(COM) shift, i.e., ∆Xcom = Xcom (T )−Xcom (0), where
Xcom (t) =

∑
j j |ψj |2 with |ψj |2 as the density at site j.

The values of COM Xcom (t) are integer multiple of
the unit cell length (d = 2a). In addition to non-Abelian
Chern number, COM shift can also reflect the topolog-
ical properties of the system [45]. In Fig. 1(d), we plot
the COM over three loop periods for W = 0, 0.5, 4.5,
respectively. The results reveal that for W = 0 (order
case) and 0.5 (weak disorder) the COM shift after the
pumping loop ∆Xcom/d ≈ 3, while for W = 4.5 (strong
disorder), ∆Xcom/d ≈ 0. The result demonstrates the
robustness of the non-Abelian topological pumping with
nearly quantized COM shift for weak disorders.

III. DISORDER INDUCED NON-ABELIAN
TOPOLOGICAL PHASE TRANSITION

Now we discuss how to manipulate the non-Abelian
topological phase transition by tunning quasiperiodic dis-
orders. First, we define the monopole as the singular-
ity of the non-Abelian Berry curvature Fθt in the (θ, t)
space at typical parameters. For the Hamiltonian (2), the
monopole is located at (J1, J2, J3, J4) = (δ, 0, 0, 0). The
δ can be obtained by solving the following self-consistent
equation (9). When W = 0, we have δ = 0, which is
the original point in the Fig. 1(b). To have a pumping
with C = 0, we translate the parameter loop of Fig. 1(b)
along the J1 axis by −1.1 [see Fig. 2(a)]. The correspond-
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Figure 2. (a) A scheme to manipulate non-Abelian topological pumping by quasiperiodic disorders. Red points indicate the
monopole’s position and the dashed line means monopole becomes a nodal line. Four plots correspond to W = 0, 1.1, 1.5, 2.5,
respectively. Blue circles present the starting points. (b) Phase diagram in J1 − J2 plane. The corresponding Chern number
are marked. (c) The plot of Chern number C with L = 10 (solid line) and the COM shift ∆Xcom/d with (L = 251)(hollow
circle) versus W . (d) The monopole position parameter δ as a function of W for W < Wl ≈ 1.2. When W > Wl the monopole
becomes a nodal line. (e) One loop time evolutions of Xcom (t) /d for W = 0, 1.5, 2.5. The COM shift data in (c) and (e) are
averaged over 50 samples with β valued from 0 ∼ 2π and L = 251. The four hopping parameters are evolving as shown in
Figure (a).

ing analytic expressions for the new hopping terms have
been shown in Appendix A. After the shift of the param-
eter loop the monopole is out of the topological areas
and then the system reflects a topological trivial pump-
ing with C = 0 in the clean limit [see Figs. 2(a)(b)].
A quantized non-Abelian topological pumping requires
the monopole to stay in the topology non-trivial area of
Fig. 2(b). It is then natural to wonder whether quasiperi-
odic disorder can be used to bring the monopole back
into the topological region and thus induces topological
pumping. The relative results are shown in Fig. 2.

By increasing the disorder strength W , one can find
that the monopole moves along the J1 direction and en-
ters the topology non-trivial area, giving rise to a non-
Abelian topological pumping with C = 1. If one con-
tinues to increase the disorder strength, the monopole
becomes a nodal line, which is similar to the Abelian ver-
sion [83]. When the nodal line crosses the boundary of
the topological area, the non-Abelian topological pump-
ing breaks down and the corresponding C = 0. The pro-
cess of emergent non-Abelian topological pumping has
been shown in Fig. 2(a). Furthermore, we numerically
calculate the corresponding Chern number as the func-
tion of the disorder strength W [see Fig. 2(c)]. The re-
sults illustrate that weak W can induce the non-Abelian
topological pumping. However, such a disorder-induced
non-Abelian topological pumping is different from the
Anderson Thouless pumping where most of the adiabatic
eigenstates are localized. Later, we will show the cor-
responding IPR to prove that during the process of a

non-Abelian topological pumping localized and delocal-
ized eigenstates can coexist.

To analyze the mechanism of the emergence of the
disorder-induced non-Abelian Thouless pumping, we cal-
culate the disorder-induced shift of the monopole using
the self-consistent Born approximation [83]. For weak
and moderate disorder, it can be considered as the self
energy term Σ (W ) to renormalize the Hamiltonian un-
der the clean limit. Then, one can get the self-consistent
equation as

1

Ef −H0 (k)− Σ (W)
=

〈
1

Ef −Heff (k,W)

〉
q

, (9)

where Ef = 0 is the Fermi energy, and

H0 (k) =


0 J1 + J2e

ik J3 J4
J1 + J2e

−ik 0 0 0
J3 0 0 0
J4 0 0 0

 , (10)

is the Bloch Hamiltonian in the clean limit. Heff denotes
the effective Hamiltonian renormalized by the quasiperi-
odic disorder with index q = 1, 2, ..., Nq and ⟨· · · ⟩q de-
notes averaging over Nq samples. Heff can be written
as

Heff =


0 J + J2e

ik J3 J4
J + J2e

−ik 0 0 0
J3 0 0 0
J4 0 0 0

 , (11)
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where J = J1+W cos (2παq). By numerically solving the
Eq. (11), one can obtain the corresponding Σ (W) matrix.
Since the key shift is on J1, the (1, 2) and (2, 1) elements
of the matrix is the principle term. Then, one can get the
position of the monopole by the relation δ = − [Σ (W )]21,
where [Σ (W )]21 denotes the (2, 1) element of the matrix
[see Fig. 2(d)]. This proves that the monopole can be
gradually pulled in the topological region to finally be-
come a nodal line with an ever-increasing disorder.

Then, we show that the disorder-induced non-Abelian
topological pumping can be observed in optical sys-
tems. Similar to what we have done in Sec. II, we set
the localized Wannier state of the degenerate flat band
as the initial state and again calculate the evolution
and corresponding COM shift ∆Xcom. One can find
that the disorder-induced non-Abelian Thouless pump-
ing can be observed from the time evolution of the COM
as shown in Fig. 2(e). For a topological trivial case
[see the W = 0 line in Fig. 2(e)], the time evolution
of the COM is around the origin which demonstrates
that ∆Xcom/d ≈ 0. Furthermore, one can find that
∆Xcom/d ≈ 1 for W = 1.5, which is nearly quantized
and similar to the non-Abelian Thouless pumping with-
out disorders in Fig. 1(d). Continue to increase the dis-
order strength, one can find the breakdown of the topo-
logical pumping and the corresponding COM is again
around the origin with ∆Xcom/d ≈ 0 [see the W = 2.5
line in Fig. 2(e)]. The corresponding ∆Xcom as a func-
tion of W for the lattice L = 251 is shown in Fig. 2(c).
These phenomena indicate the emergence of the disorder-
induced non-Abelian Thouless pumping in the weak dis-
order strength area. The deviation of the quantization
mainly comes from the finite-size effect in our simula-
tions.

Finally, let’s explain why such a disorder-induced topo-
logical pumping can not be dubbed a topological Ander-
son Thouless pumping. To study the localization effect,
we study the IPR, which reads

I(n) =

4L∑
j=1

∣∣∣〈j | ψ(n)
〉∣∣∣4, (12)

where |j⟩ is a j-site localized state and
∣∣ψ(n)

〉
is n-th

eigenstate. When the system size is large enough (4L→
∞), one can differentiate between a localized eigenstate
and an extended eigenstate by the value of the IPR. The
localization criterion says that a eigenstate is localized
for I(n) ∼ O (1), while I(n) ∼ (4L)

−1 for an extended
eigenstate[16, 83].

We calculate the IPR for a originial C = 0 loop
with an increasing W . Without loss of generality, in
numerical computation, we choose two points in the
parameter loop shown in Fig. 2(a), for the four hop-
ping terms (J1, J2, J3, J4) =

(
−1.1,

√
2
2 ,

√
2
2 ,

√
2
2

)
and

(J1, J2, J3, J4) =
(√

2
2 − 1.1,

√
2
2 , 0, 0

)
, respectively. As

shown in Fig. 3(a) and (d), with increasing disorder
strength in the zone of flat bands (from L + 1 to 3L),
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Figure 3. (a) The IPR I(n) as functions of the eigenstate num-
ber and the quasiperiodic disorder strength W for L = 20.
(J1, J2, J3, J4) =

(
−1.1,

√
2

2
,
√
2
2
,
√
2

2

)
and β = 0. The right

two figures (b) and (c) show the localized and the extended
eigenstates indicated by the black and the red circles in (a).
ψ(n1) and ψ(n2) indicate the n1-th and n2-th eigenstates with
n1 = 15

4
L,W = 1.5 and n2 = L

4
,W = 0. (d) The IPR

I(n) as functions of the eigenstate number and the quasiperi-
odic disorder strength W for L = 20. (J1, J2, J3, J4) =(√

2
2

− 1.1,
√
2

2
, 0, 0

)
and β = 0. Two figures (e) and (f) show

the localized and the extended eigenstates indicated by the
black and the red circles in (d). ψ(n1) and ψ(n2) again indi-
cate the n1-th and n2-th eigenstates with n1 = 15

4
L,W = 1.5

and n2 = L
4
,W = 0.

the corresponding IPR exhibits the coexistence of local-
ized states and extended states, which origins from the
non-Abelian effect. Specifically, this phenomenon would
arise in systems where degenerate flat bands exist [84]. In
Figs. 3(b)(c), we plot localized and extended eigenstates
shown in Fig. 3(a), where the energy level index corre-
sponds to n1 = 15

4 L, n2 = L
4 and the disorder strength

for the two eigenstates are W = 1.5, 0, respectively. In
Figs. 3(e)(f), we also plot localized and extended eigen-
states shown in Fig. 3(d) and the energy level index again
corresponds to n1 = 15

4 L, n2 = L
4 . The disorder strength

for the two eigenstates are W = 1.5, 0, respectively. As
the Hamiltonian has degenerate flat bands, the localiza-
tion properties between the eigenstates of the flat bands
and of the non-flat bands are very different. For non-flat
bands, the eigenstates change from fully extended states
to localized states with an increasing W . However, for
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flat bands, the extended states and the localized states
coexist even with an increasingW . Furthermore, by com-
paring Fig. 3(a) and (d), one can find the influence of J3
and J4 on the localization properties. For the case of
J3 = J4 = 0 [see Fig. 3(d)], one can see that the IPR of
the middle part (about 1.5L-2.5L) of flat bands is obvi-
ously larger than that in Fig. 3(a), which corresponds to
more localized eigenstates. The mechanism behind this
is: when J3 and J4 = 0, in a unit cell, the channel con-
necting sites A and C as well as that connecting sites
A and D are closed [see Fig. 1(a)], thus the expansion
ability of the corresponding eigenstates of the flat bands
is reduced. On the other hand, compared with the pres-
ence of AC and AD channels, the closure of J3 and J4
makes hopping between sites A and B easier. Then, the
corresponding IPR of 1 ∼ L and 3L + 1 ∼ 4L levels in
(d) is lower than that in Fig. 3(a). The wave functions
of Fig. 3(b)(c) and (e)(f) are in complete agreement with
those predicted by IPR.

IV. CONCLUSION

In summary, we study non-Abelian Thouless pump-
ing in quasiperiodic disordered systems. Firstly, through
theoretical calculation, we show that the non-Abelian
Thouless pumping is robust to quasiperiodic disorder.
Then we find an emergent non-Abelian Thouless pump-
ing caused by quasiperiodic disorder, and introduce the
Chern number of twisted periodic boundary to character-
ize this phenomenon. The mechanism behind the phe-
nomenon is that the quasiperiodic disorder causes the
monopole to move from the topological trivial region into
the topological non-trivial region. Furthermore, we nu-
merically simulate such non-Abelian Thouless pumping,
and show that the numerical results of centroid evolu-
tion are consistent with the theoretical analysis on Chern
number. Finally, by calculating the system’s IPR, one
can find the non-Abelian inverse Anderson transition is
very different from that in the Abelian case, in other
words, instead of a clear Anderson transition point, the
coexistence of extended state and the localized state
emerged. The understanding of non-Abelian topological
system with disorder is thus deepened.
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Appendix A: Analytic expressions for the hopping
terms in different time slots

Since the results obtained by introducing disorder to
J1, J2 are similar, only the non-Abelian Thouless pump-
ing with disorder by reshaping the terms of J1 (→ J̃j) is

provided in this paper. In the main text, we constructed
two kinds of pumping loop as shown in Fig. 1(b) and
Fig. 2(a), respectively.

First, let’s discuss the case of Fig. 1(b). Analytic ex-
pressions for the hopping terms in Fig. 1(b) can be given
as follows, 

J1 = 0

J2 = cos
(
3π
2T t

)
J3 = sin

(
3π
2T t

)
J4 = J3

(A1)

for t ∈
[
0, T3

)
, 

J1 = sin
[
3π
2T

(
t− T

3

)]
J2 = 0

J3 = cos
[
3π
2T

(
t− T

3

)]
J4 = J3

(A2)

for t ∈
[
T
3 ,

2T
3

)
, and
J1 = cos

[
3π
2T

(
t− 2T

3

)]
J2 = sin

[
3π
2T

(
t− 2T

3

)]
J3 = 0

J4 = J3

(A3)

for t ∈
[
2T
3 , T

]
. Under such circumstance, W = 0 and

W = 0.5, the corresponding monopole falls into the topo-
logical region, so it exhibits quantized topological pump-
ing. However, for W = 4.5 the nodal line spread across
the topological region, so no topological pumping occurs.
The results are consistent with the conclusions given by
Chern number.

Then, let’s turn to discuss the case of Fig. 2(a). The
corresponding analytic expression of hopping terms in
different time slots reads,

J1 = −1.1

J2 = cos
(
3π
2T t

)
J3 = sin

(
3π
2T t

)
J4 = J3

. (A4)

for t ∈
[
0, T3

)
,
J1 = sin

[
3π
2T

(
t− T

3

)]
− 1.1

J2 = 0

J3 = cos
[
3π
2T

(
t− T

3

)]
J4 = J3

(A5)

for t ∈
[
T
3 ,

2T
3

)

J1 = cos

[
3π
2T

(
t− 2T

3

)]
− 1.1

J2 = sin
[
3π
2T

(
t− 2T

3

)]
J3 = 0

J4 = J3

(A6)
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for t ∈
[
2T
3 , T

]
.

This situation is equivalent to placing the monopole
outside the topology area at the beginning. Then, one
can adjust the value of the disorder (W ) to bring the
monopole back into the topology region. Experimentally,
the hopping strength can be easily controlled by varying
the distance between waveguides, which enables the con-
trol of the non-Abelian Thouless pumping [47].

t/T

E

t/T

E

(c) W=0.3
t/T t/T k

E E
(a) W=0 (b) W=0

(d) W=1.5

Figure 4. Energy spectrum of Hamiltonian (1). (a) The plot
of the energy spectrum with topological nontrivial phase and
without disorder. The four hopping terms are given in Ap-
pendix A, the first analytic expressions. (b) The bulk energy
spectrum as the function of time t and k without disorder
and four hopping terms are the same to (a). (c) The plot of
the energy spectrum with topological nontrivial phase and the
disorder strength W = 0.3. The four hopping terms are given
in Appendix A, the second analytic expressions. (d) The plot
of the energy spectrum with topological trivial phase and the
disorder strength W = 1.5. The four hopping terms are the
same to (c). L = 50, T = 200 and the data in (c) and (d) are
averaged over 50 samples with β valued from 0 ∼ 2π.

Appendix B: Energy spectrum of the non-Abelian
Hamiltonian

In order to visualize the band structure containing de-
generate flat bands, here we plot the energy spectrum of

the Hamiltonian in Eq. (1) as shown in Fig. 4. The en-
ergy spectrum of non-Abelian Thouless pumping without
disorder is shown in Fig. 4(a). The corresponding bulk
spectrum is plotted in Fig. 4(b). Both of them tell us that
there is degenerate flat band here and no bulk-boundary
correspondence. Furthermore, the spectrum with disor-
der for topolocial trivial case W = 0.3 (c) and non-trivial
case W = 1.5 (d) are given in Fig. 4(c) and (d), respec-
tively. This shows that even if disorder is introduced,
the band structure of the system will not be broken. In
other words, the non-Abelian systems discussed in this
paper, with or without disorder, have no bulk-boundary
correspondence.

Appendix C: Finite size scaling

Different from the numerical simulation of the evolu-
tion process of COM, the system size does not need to
be too large to ensure an accurate non-Abelian Chern
number. The condition L = 10 in main text is enough.
Here we conduct a finite-size scaling of Chern number C
and plot the Chern number as a function of different L
in Fig. 5. In the computation process, we fix W = 0, 1.5,
which correspond to C = 0, 1, respectively. One can find
that the corresponding Chern numbers preserve for var-
ious L.

C

L

W=1.5

W=0

Figure 5. Finite scaling of Chern number C for W = 0, 1.5.
The other parameters are the same as shown in Fig. 2(c)
except for L.
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