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Abstract. In this paper, we investigate the conditions for the Mal’cev—
Neumann series ring A = R((G; o; 1)) to be left fusible and an SA-ring.
Also, we show that: if G is a quasitotally ordered group and U a Z-compatible
semiprime ideal of R, then R((G; 0; 7)) is @ Xy ((s; ¢; 1))-ZIP ring if and only if

R isa Xy -zip ring.
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1. Introduction

Throughout this paper R denotes an associative ring with identity, 1z (X) the
right annihilator of X in R for any subset X of a ring R, nil(R) the set of all

nilpotent elements of R and for any two nonempty subsets U and V of R, let

(U:V)={x€R | Vx € U}. Itiseasy to see that if U and V' are two right ideals
of R, then (U:V) is an ideal of R and such ideal is usually called the quotient

of U by V. Section 2, is devoted to recall some background concerning the



structure of thering A = R((G; o; 7)) of Mal’cev—Neumann series. In section
3, we focus on a property of nonzero zero divisor elements related to the fact
that the sum of two zero-divisors need not be a zero-divisor. So, the set of left
zero-divisors in a ring R is not a left ideal. Therefore, there exists a left zero-
divisor which can be expressed as the sum of a left zero-divisor and a non-left
zero-divisor in R. This leads Ghashghaei & McGovern [7] to introduce a class
of rings in which every element can be written as the sum of a left zero-divisor
and left regular element. They called this class of rings left fusible. This leads
us to extend the left fusible property of R[x, o] and R[x, o] [7, Proposition
2.9] to the ring A = R((G; ;7)) of Mal’cev—Neumann series in Proposition
3.2.In section 4, we discuss a class of rings introduced by Birkenmeier et al [2]
called right SA-ring, it is exactly the class of rings for which the lattice of right
annihilator ideals is a sub lattice of the lattice of ideals. This class includes all
quasi-Baer (hence all Baer) rings and all right IN-rings (hence all right self
injective rings). They showed that this class is closed under direct products,
full and upper triangular matrix rings, certain polynomial rings, and two-sided
rings of quotients. This drives us to extend the SA property of R[x] [2, Theo-
rem 3.2] to the ring A = R((G; a; 7))of Mal’cev—Neumann series in Theorem
4.5. In section 5, we discuss the class of right zip rings introduced by Faith [6]
and its generalizations. A ring R is called right zip provided that if the right
annihilator rz(X) of a subset X of R is zero, then there exists a finite subset
Y € X such that rz (V) = 0. R is zip if it is both right and left zip. The concept
of zip rings was initiated by Zelmanowitz [18] and appeared in enormous pa-
pers [see,1, 4, 5, 6, 8 and 15] and references therein. Then Ouyang [13] gener-

alized this concept through the introduction of the notion of right weak zip



rings (i.e., rings provided that if the right weak annihilator of a subset X of
R, Nx(X) € nil(R), then there exists a finite subset X, € X such that
Nr(Xy) € nil(R), where Nr(X) ={a € R|xa € nil(R) for each x € X}.
Ouyang studied the transfer of the right (left) weak zip property between the
base ring R and some of its extensions such as the ring of upper triangular
matrices T,,(R) and Ore extension R|[x, g, §], where ¢ is an endomorphism and
o is a o-derivation. Also, in [14] Ouyang et al continued the study of zip rings
and introduced the notion of a X-zip ring and investigated some of its proper-
ties. For a proper ideal U of R, R is called Zy-zip provided that for any subset
X of Rwith X € U, if (U: X) = U, then there exists a finite subset Y € X such
that (U:Y) = U. Clearly, if U = 0, then for any subset X of R, we have
(U:X) = rg(X), and so R is X,-zip if and only if R is right zip. If R is an NI
ring (i.e., a ring in which nil(R)forms an ideal) andU = nil(R). Then for any
subset X of R, we have (nil(R):X) = Ng(X), and so R is X, r)-Zip if and
only if R is weak zip. So, both right zip rings and weak zip rings are special
cases of X-zip rings. This caused us to pay attention to prove that, R is X, -zip

ring if and only if A = R((G; 0; 7)) is a Xy (g; o; 1))-ZIP ring.
2. Rings of Mal’cev—Neumann Series

The Mal’cev-Neumann construction appeared for the first time in the latter part
of 1940’s (the Laurent series ring, a particular case of Mal’cev-Neumann rings,
was used before by Hilbert). Using them, Mal’cev and Neumann inde-
pendently showed (in 1948 and 1949 resp.) that the group ring of an ordered

group over a division ring can be embedded in a division ring. Since then, the



construction has appeared in many papers, mainly in the study of various prop-
erties of division rings and related topics. For in-stance, Makar-Limanov in
[10] used a skew Laurent series division ring to prove that the skew field of
fractions of the first Weyl-algebra contains a free noncommutative subalgebra.
Other results on Mal’cev-Neumann rings can be found in Lorenz [9], Musson
and Stafford [11], Sonin [17] and Zhao and Liu. [19]. A pair (G, <) , where G
Is a group and < an order relation, is called quasitotally if the order < can be
refined to a total order < on G. Let (G, <) be a quasitotally ordered group, and
o amap from G into the group of automorphisms of R(Aut(R)), which assigns
to each x € G, o, € Aut(R). Suppose also that we are given a map 7 from
G X GtoU(R), the group of invertible elementsof R.Let A = R((G; o; t))de-

notes the set of all formal sums f = ),.;1n X withr, € R such that

supp(f) ={x€G | 1, # 0} (the support of f) is a artinian and narrow subset

of G, with component wise addition and multiplication defined by:
(erG Ay f)(ZyeG by y) = ZzeG (Z{x,ypcy =z} Ay Oy (by)T(x' Y)) Z. In order
to insure associativity

of A, it is necessary to impose two additional conditions on ¢ and 7, namely

that for all x,y,z € G,

() (s 2)ox(t(xy)) = 1(x;y2)T(y; 2);
(i) oy0, = 0y, 1(y; 2);

where n(y; z) denotes the automorphism of R induced by the unit z(y; z). It
IS now routine to check that A = R((G; o; 1)) Is a ring which is called the

Mal’cev-Neumann series ring, that has as an R-basis, the set G (a copy of G)



and contains R as a subring where the embedding of R into A is given by r —
r1. It is easy to see that the identity element of A is of the form 1 = u1 for
some u € U(R), unlike group rings, crossed product also rings of Mal’cev—
Neumann series do not have a natural basis. Indeed if d: G - U(R) assigns to
each element g € G aunitd,, then G = {§ = gdy| g € G} yields an alterna-
tive R-basis for A which still exhibit the basic Mal’cev—Neumann structure
and this is called a diagonal change of basis. Thus, via diagonal change of

basis we can still assume that 1 = 1.

In [14] Ouyang called an ideal U semiprime if for any a € R,a™ € U implies
a € U.We denote U((G;o; 1)) the subset of A consisting of those elements
whose coefficients lie in U, that IS, U((G;0;1)) =
{f =Y eca,x € R((G;0;7))|a, € U,x € suppf} For each feA, let
C(f)be the content of £, i.e. C(f) = {a, | x € supp(f)}

For f = QXxecaxx) andg =(Xyecbyy) €A we define X, (f,g) =

{(x;,y;) € G X G| x;y; = w where x; € supp(f) and y; € supp(g)}. It is
well known that X, (f, g) is a finite subset. Let R be aring and G a quasitotally
ordered group, R is called a G-Armendariz ring if whenever f = Y., .c a, x
and g = XYyec by y € A = R((G; 0; 7)) suchthat fg = 0 implies a, b, = 0 for
each x € supp(f) and y € supp(g).

3. Fusible rings of Mal’cev—Neumann Series.

It is well known that an element a € R is a left zero-divisor if thereis 0 = r €

R with ar = 0 and an element which is not a left zero-divisor is called a non-



left zero-divisor. An element a € R is regular if it is neither a left zero-divisor
nor a right zero-divisor. Let Z,(R) (respectively, Z,(R)) denote the set of left
zero-divisors (respectively, non-left zero-divisors) of R. Similarly, Z,.(R) (re-
spectively, Zr(R)) denote the set of right zero-divisors (respectively, non-right

zero-divisors) of R.

In this section, we study the left fusible and right nonsingular rings of Mal’cev—

Neumann series.

Definition 3.1. A ring R is said to be left fusible if every element can be ex-

pressed as a sum of a left zero divisor and a non-left zero divisor (left regular).

Proposition 3.2. Let (G, <) be a quasitotally ordered group, : G = Aut(R)
and 7: G X G - U(R), the group of units in R. If R is a o- compatible and left
fusible ring, then R((G; o; 7)) is left fusible.

Proof. Let R be a left fusible ring and 0 = f € R((G; 0;7)) . Since, the or-
der < on G can be refined to a total ordered < on G, then there exists 0 #
so = m(f) € G aminimal element in supp f with respect to<<. Since R is a left
fusible ring, then there exists a € Z,(R) and b € Z,(R) such that f(sy) = a +
b. Since a € Z,(R), then there exists d € R such that ad = 0. Now consider
g,h € R((G; o; T)) such that

b if s=s5,

_(a if s=s, _ { _
g(s) = { 0 otherwise and h(s) £(s) if s # sy consequently f

g + h.Since R is g-compatible and (1, s,) is an invertible element it follows
that 0 = ad = g(so)d = g(s0)ds,(d) = g(50)0s,(A)T(1,50)= (gd1)(so).
Hence g € Z,(R((G; 0;7))). Now we prove that h € Z,(R((G; g;1))). To the



contrary suppose that h € Z,(R((G; 0;1))), so there exists k € R((G; o; 1))
such that hk = 0. By hypothesis the order < can be refined to a total ordered
< on G. So, let s’ = m(h) be the minimal element in supp h. Hence, 0 =
(hk)(sg +s') = h(sg)os k(s")T(so,s") = h(so)k(s") = bk(s’),since R is o-
compatible and (s, s") is an invertible element which contradicts the fact that
b € Z;(R).Hence h € Z,(R((G; 0;7))) and we get that f = g + hwhere g €
Z,(R((G;0;1))) and h € Z,(R((G; 0;1))). Therefore R((G; 0; 1)) is left fusi-

ble. A right ideal I of aring R is said to be essential (or large), denoted
by I <. Rg, if forevery rightideal L of R, I n L = 0 implies that

L = 0. Following [7], the right singular ideal of a ring R is denoted by
Sing(Rg) = {x € R|r(x) <. R} where r(x) denotes the right annihilator of

x. A ring R is called right nonsingular if Sing(Rg) = 0. Similarly, we can

define Sing(R((G; o; T))R((G;J;T))).

Corollary 3.3. Let (G, <) a quasitotally ordered group, : G — Aut(R) and
7: G X G > U(R), the group of units in R. If R is a a-compatible and left fusi-
ble ring, then R((G; o; 1)) is a right nonsingular ring.

Proof. By proposition 2.1, R((G; ;1)) is a left fusible ring yielding that
R((G; o; 1))is aright nonsingular ring by [7, proposition 2.11].

4. SA rings of Mal’cev—Neumann Series.

In this section, we study the right IN and right SA on rings of Mal’cev—Neu-

mann series.



Definition 4.1. Aring R is said to be a right SA-ring, if for any two ideals I, ]
of R there is an ideal K of R suchthat r(I) + r(J) = r(K), where r(I) de-

notes the right annihilator of 1.

Definition 4.2. Aring R is called a right Ikeda—Nakayama (for short, a right
IN-ring) if the left annihilator of the intersection of any two right ideals is the
sum of the left annihilators; that is, if 2(I n J) = £(I) + £(J)for all right ide-
alsI,] of R; and we say R isan IN-ring if R is a left and a right IN-ring (see

[3].[12]).

Lemma 4.3. Let R be aring, (G, <) a quasitotally ordered group and | and J
right ideals in R. Then I((G; g; 7)) and J((G; o; 7)) are right ideals of

R((G; 0;1)) such  that  €reciom)(I((G5 ;7)) NJ((G;0;7))) =
Lrcomy (A NG5 057))) = I N ((G; 0;7)).

Proof. It can be easily shown that I((G;0;7))nJ((G;0;7)) =(In

N((G; o5 7)). Hence, using [16, lemma 2.1] the Lemma follows.

Proposition 4.4. Let R be a ¢- compatible ring, (G, <) a totally ordered group.
If A= R((G;0;7))isaright IN-ring, thenso is R.

Proof. Let I and J be right ideals of R. Then I((G; o; 7)) and J((G; o; 1)) are
right ideals of A =R((G;0;7)), so by hypothesis, £,(1((G;a;7)) N
J((G;0;7)) = 2,(1((G; 0;7))) + £4(J((G; 55 7)) ). Hence Lr(IN]))
((G;057)) = 2,(1((G; 05 7))) + £4(J((G; 55 7)) [16, lemma 2.1]. We need
to prove that £x(IN J) = €x(I) + £x(J). It is clear that £, (1) + £ (J) S
fr(INnJ).Nowleta € £x(IN]).



Then f = al € £,((I n])((G; 5;7))) . Hence by hypothesis there exists h =
Yyec by ¥ € £4(1((G; 057))) = x(D((G; 057)) by Lemma 2.3 and g €
Yec ¢Z € 2,(J((G; ;7)) = €r(J)((G; 05 7)) such that f = al=h+g.
Hence there exist b and ¢ such that a = b + ¢ where b € £3(I) and c €
2r(J); thus a € £x(I1) +€x(J) and consequently (I N J) = £x(I) +

£r()).

Theorem 4.5. The following statements hold:

(i) IfA=R((G;0;71))isaa- compatible and right SA-ring, then R is a
right SA-ring;

(i) If R is a G-Armendariz ring, then R is a right SA-ring if and only if
A = R((G; ;1)) is aright SA-ring.

Proof. (i) Let I and J be right ideals of R. Then I((G; g; 1)) and J((G;0;71))
are right ideals of R((G; o; 1)). So there exist a right ideal K of R((G; ;1))
such that rA(I((G; o; T))) + rA(]((G; o; T))) =1y (K). Now let K, =
Urex C(f), then it follows that K, is a right ideal of R. We prove that 7 (I) +
rx(J) = r:(K,). Suppose that a € rz(I) and b € rz(J). Then f =alc€
r(1((G;0;1)) =rr(D((G;0;7))  and g =bler,(J((Gio;7)) =
rR(1)((G; 0; 7)), so by hypothesis f + g € r,(K). Then for each h € K,
h(al+b1)=0. So, a+b=r(C(h)) S1r(Ky). Therefore, rx(l)+
r2(J) € 12(Ky). Now let, ¢ € rz(K,). Then, h = c1 € r,(K). By assumption
there exists f =X ,ccax €Erg()((G;o;7)) and g=2X,cbYE
rR(J)((G; 0; 7)) such that, f + g = h. Hence there exist a, € rz(I) and b,, €



rz(J) such that a, + b, = c € rg(I) + 1r(J). So, 1r(Ky) € (1) + 12(J).
Consequently rz(Ky) = rg(I) + rx(J). Hence, R is a right SA-ring.

(i1) The necessity is evident by (i). Now, let R be a G-Armendariz and right
SA-ring and I and J are right two ideals of R((G; o; 7)).

Let, Iy = U C(f) and Jo = Uge; C(f) are right two ideals of R, where
C(f ) denotes the content of f. Then, there exists an ideal K in R such that

rR(K) =1g(Iy) + r:(Jp). Now we prove that r\(I)+1,()) =
rA(K((G;0;7))). It is sufficient to show that r,(I)+ ra(J) €
a(K((G;0;7))). Let f=YregarX€ma() and g =Tyecbyy € Ta(),
Thenforeachh € Iandp € J, hf = 0 and pg = 0. Since, R is G-Armendariz,
then hy.a, =0 and p,.b, =0 for all k € supp(h), x € supp(f), z €

supp(p) and y € supp(g). Therefore, a, € r(I,) and b, € r(J5).S0 a, +
by, € rr(Ip) + 12 (Jo) = 1r(K), i.e., there exists ¢ € rz(K) suchthata, + b, =
c, then for all m € G, Yme AxM + Xmeg byM = Ymeq ¢ m Which implies
that f+ g € \(K((G;0;7))). Thus 74(D) + 1, ()) € 1A(K((G; 05 7))).
Therefore ry(I) + r\(J) = rA(K((G; o; r))).

5. X-Zip Rings of Mal’cev—Neumann series

In this section, we investigate X, —zip property in the ring A of Mal’cev- Neu-

mann series.
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Definition 5.1 [14, Definition 4.1]. Let 0: S = End(R) be a monoid homo-
morphism and U an ideal of R. We say that U is X-compatible if foreacha, b €

Randeachs € S,ab € U & ao,(b) € U.

Definition 5.2 [14]. An ideal U of a ring R is called semiprime if for any a €
R,a™ € U impliesa € U.

Lemma 5.3 [14, Lemma 4.2]. Let 0:S — End(R) be a monoid homomor-
phism and U an ideal of R. If U is X-compatible, then for each a,b € R and
eachs € S,ab € U & ag5(a)b € U.

Theorem 5.4. Let R be aring, U a Z-compatible semiprime ideal of R and G a
totally ordered group, Then, R is X, -zip ring if and only if A = R((G; o0; 1))

IS a Xy ((6; o; 7))ZIP FiNg.

Proof. Suppose that A = R((G; o0;1))is a2y o; T))-zip and Y € R such that
YZU and (U:Y)=U. Let ¥ = {y1|y € Y} € R((G; 0;7)). (we need to
show that there exists a finite subset Y, € Y such that (U:Y,) = U). Itis clear
that U((G; ;1)) = {f € R((G; ;1)) |f(y) € U for each y € supp f}, is
such that U((G; a;7)) € (U((G; 0;7)): ) and it is sufficient to show that
(U((G;0;7)):¥) € U((G;0;7)). So, let fe (U((G;0;7)):Y), therefore
F() = y1f(s) = yo,f(s)t(1,s) = yf(s)r(1,s) € U, since 7(1,s) is an
invertible element in R we conclude that yf(s) € U. Hence, f(s) € U for each

s €supp f. Consequently fe€ U((G;o;t)) and it follows that
U((G;0;7)) = (U((G; 057)):7)

11



Since R((G; 0; 7)) IS Zy((6; o; ))-ZiP, it follows that there exists a finite subset
¥, € ¥ such that (U((G;0;7)):%,) = U((G;0;7)). SO, Yo ={yeY|yle
Y,} is a finite subset of Y and we get (U((G;0;7)):¥5) NR = U((G; 0;7)) N
R = U. Therefore, Ris a X, -zip ring.

Conversely, suppose that R is a Xy -zip ring and X € R((G; a; 7)) such
that X € U((G;o;7)) and  (U((G;0;1)):X) =U((G;0;1)). Let Cyx =
Urex Cr =Urex {f(s)Is € supp f} € R be the content of all element of X.

We need to show that (U: Cyx) = U. Itis clear that U < (U: Cy). So, it is suffi-
cient to show that (U:Cx) € U. Let r € (U:Cy). Then, ar € U for each a €

Cx. Since U is a Z-compatible ideal, then ao,(r) € U

for each se€G. Hence for each feX and s€G,(fr1)(s)=
f(s)o,(r)r(1,s) € U. Therefore, r1 € (U((G; 0;7)): X) = U((G; 0;7)).
Hence, r € U and (U: Cx) = U follows. Since R is a X, -zip ring, then there
exists a finite subset Cy, of Cy such that (U: Cx ) =U. Let, X, ={f €
X | f(s) € Cx for some s € supp f} be a minimal subset of X and it is clear
that X, is finite. We need to show that (U((G; 0;1)): Xy) = U((G; 0;7)). Itis
clear that U((G; 0;7)) € (U((G; 05 7)): X,)- So, it is sufficient to show that
(U((G;0;71)):X0) S U((G;0;71)). SO, let g € (U((G; 0;7)): Xy), Withv be
the minimal element of supp g. Then for each f € X,, with the minimal ele-

ment u of suppf, (fg)wv)=fWoay,(g())r(u,v) € U. There-

fore, f(u)au(g(v))r(u, v) = f(u)oy (g(v)au‘l(r(u, v))) € U.Since, Uis a

12



semiprime and X-compatible ideal, then f(u) (g(v)au_l(r(u, v))) and
P (g(v)au‘l(T(u, v))) f(u) € U foreachs € G.

Now, suppose that w € G is such that for each u € supp f and each v €
supp g, such that uv < w, o, (g(v)au_l(r(u, v)))f(u) € U for each s € G.

Using transfinite induction, we need to show that f (u;)o,,g(v;)t(u;, v;) € U

for each uv = w. Since,X,, (f, g) = {(u,v) € G X G|luv = w,u € suppf and

v € supp g}is a finite set and G totally ordered then, let {u;v;i=

1,2,3, ...,n} be such thatu; < u, ...... <u,and v, < v,_q .... < v;. Hence,
FDW) = Xluvex,r.g) f (), (gw))r(uy,v) =
i=1

f@)oy, (gw)r(uy, v1) + -+ f (U)o, (W) T(Uy, v) = a; € U(1)

Since, for eachu;,i = 2, u;v; < u;v; = w, then using induction hypothesis,
we have o, (g(vi)a,jil(r(ui,vi))) f(uy) € U. Multiplying (1) on the right
byf (uy).then we have fgw)f(uy) = f(uy)ay, (9(v1)) (g, v)f (uy) +
f(2)0u, (9020t (1, v) ) f(ug) + -+ +

f (), (9o (tCun, va))) f(ur) = asf (uy) € U. Thus, we obtain
fu)oy, (9ot (t(uy, v1))) £ (ur) € U. Since U is semiprime it follows

that f(uy)oy, (g(w1)) t(uy, vy) € U. Now, subtract
f(uy)oy, (g(v1)) T(uy, v1) and multiply by f (u,) from the right of both sides

of (1), it follows that (fg)(wW)f (uz) — f(u1)ay, (g(v1)) T(uy, v)f (up) =
f(u2)oy, (9(v2)) T(uz, v2) f (u2) + - + f(Un) 0y, (g(Vn)) T(Un, vp) f (U2)=

13



arf(uz) — f(uy)oy, (g(vy)) t(uy, v1)f (uz) € U. Using the same argument
as above we obtainf (u,)o,, (g(v;)) t(uy, v;) € U. Continuing this process,
we can show that f (u;)o,, (9 (v;)) T(u;, v;) € Uforeachi =1,2,3,...,n such

that w;v; = w. Thus, f(u)o,(g(v))t(u,v) € U for each

u € suppf and v € suppg. Hence g € U((G;0;7)) and it follows that
(U((G;0;1)):X9) €S U((G;0;7)). Consequently, we deduce that
R((G; 0;1))is a Zy((G; o 1))-ZIP ring.

In the following we give some examples of Xy;- zip ring

Example 5.5. Let R = Z, be the ring of integer modulo 4 and U =< 2 > the
ideal generated by 2, then R is a Xyy- zip ring since (U: X) = U for each sub-
setX € U. If U = {0}, then R is X,- zip as well as zip.

a b

Example 5.6. Let R =T (Z,,Z,) = {(0 a),a,b € Z4} the trivial extension

0 m
0 O

any subset of R with X & U, then R is a X;- zip ring since (U:X) = U and for

of Z,. We can write the proper ideal of R as U = {( ) :m € Z4} let X be

any subset X, of X, we have (U:X,) = U by a routine computation. So R is

2y- Zip.
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