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Abstract
New advancements in radio data post-processing are underway within the SKA precursor community, aiming to facilitate the extraction
of scientific results from survey images through a semi-automated approach. Several of these developments leverage deep learning (DL)
methodologies for diverse tasks, including source detection, object or morphology classification, and anomaly detection. Despite substantial
progress, the full potential of these methods often remains untapped due to challenges associated with training large supervised models,
particularly in the presence of small and class-unbalanced labelled datasets.
Self-supervised learning has recently established itself as a powerful methodology to deal with some of the aforementioned challenges, by
directly learning a lower-dimensional representation from large samples of unlabelled data. The resulting model and data representation can
then be used for data inspection and various downstream tasks if a small subset of labelled data is available.
In this work, we explored contrastive learning methods to learn suitable radio data representation from unlabelled images taken from the
ASKAP EMU and SARAO MeerKAT GPS surveys. We evaluated trained models and the obtained data representation over smaller labelled
datasets, also taken from different radio surveys, in selected analysis tasks: source detection and classification, and search for objects with peculiar
morphology. For all explored downstream tasks, we reported and discussed the benefits brought by self-supervised foundational models built
on radio data.
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1. Introduction

Radio astronomy stands at the threshold of a transformative
era, marked by the advent of large sky surveys carried out with
instruments such as the Square Kilometre Array (SKA) (Dewd-
ney et al., 2016) and its precursor telescopes. As the field enters
this golden age, the immense volumes of observational data
generated pose unprecedented challenges and opportunities.
For example, the Evolutionary Map of the Universe (EMU)
(Norris et al., 2011) of the Australian SKA Pathfinder (ASKAP,
Johnston et al. 2008; Hotan et al. 2021) started in 2022 to sur-
vey ∼75% of the sky at 940 MHz with an angular resolution
of ∼15" and a noise rms of ∼15 µJy/beam. The EMU source
cataloguing process will require an unprecedented degree of
automation and knowledge extraction, as the expected num-
ber of detectable sources is ∼50 millions. So will be for other
precursors and future SKA observations. The sheer scale and
complexity of these datasets demand innovative approaches to
shorten the time needed to deliver scientific results or ground-
breaking discoveries.
In this context, machine learning (ML) emerges as a powerful
tool for unlocking the full potential of radio astronomy data,
offering solutions to complex tasks that are often beyond the
reach of conventional methods in multiple areas, including
source extraction, classification (e.g. morphological or astro-

physical type) and discovery of anomalous/unexpected objects.
Most existing contributions focused on galaxy morphology
classification for extragalactic science cases employing either
supervised learning (SL), e.g. with convolutional neural net-
works (CNNs) (Aniyan & Thorat, 2017; Lukic et al., 2018;
Wu et al., 2019; Lao et al., 2023) or Vision Transformers (ViTs)
(Gupta et al., 2024), weakly-supervised learning (Gupta et al,
2023), semi-supervised learning (Slijepcevic et al., 2023), or
unsupervised learning, e.g. Self-Organizing Maps (SOMs)
(Galvin et al., 2020; Mostert et al., 2021; Gupta et al, 2022) or
t-distributed stochastic neighbour embedding (Pennock et al.,
2022).
Despite substantial progress, the full potential of supervised
approaches often remains untapped due to the scarcity of large
and high-quality annotated radio image datasets, crucial for
training very deep models. The human effort required to pro-
duce them is in fact unsustainable. Citizen science projects,
launched within different precursor surveys on the Zooniverse
platform12 and building on the previous Radio Galaxy Zoo
project (Banfield et al., 2015), will partially alleviate this need,
at the cost of potentially introducing errors and biases in the

1https://www.zooniverse.org/projects/chrismrp/radio-galaxy-zoo-lofar
2https://www.zooniverse.org/projects/hongming-tang/

radio-galaxy-zoo-emu
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Figure 1. Schema of self-supervised learning for radio data analysis.

cumulative dataset. As a result, existing labelled radio datasets
are typically very limited in size, class-unbalanced, and adopt
a diverse or ambiguous labelling schema, usually depending
on the particular domain of application. Several applications
produced so far for either radio source classification or source
detection scopes, have therefore resorted to fine-tune models
that were previously pre-trained on large annotated collections
of non-astronomical data, such as the ImageNet (Deng et al.,
2009) or COCO (Tsung-Yi et al., 2014) datasets, that may not
well capture all distinctive features of radio observations. On
the other hand, completely unsupervised approaches are not
very effective when directly dealing with highly dimensional
image data, typically requiring previous feature extraction and
dimensionality reduction steps to be applied. Currently, em-
ployed methods based on SOMs typically enforce an apriori
discrete static data organization that do not well support ex-
tension to new tasks. These limitations necessitate exploring
alternative methodologies.
Representation learning (Bengio et al., 2013), and in partic-
ular self-supervised learning (SSL) (Liu et al., 2023), has re-
cently emerged as a promising avenue to address these issues,
by directly learning (pretext task), without any supervision,
a lower-dimensionality representation (i.e. the latent space)
from large samples of unlabelled data. The resulting model
and data representation can then be used for data inspection
and generalized for various applications (downstream tasks),
e.g. classification, object detection, etc, if a small subset of la-
belled data is available. Previous works in the radio domain are
based on convolutional autoencoders (CAE) generative meth-
ods, which learns a latent space by minimizing a loss between
input data and data reconstructed through an encoder-decoder
network. For example, Ralph et al. 2019 developed a pipeline
for unsupervised source morphology studies based on SOMs
and k-mean clustering algorithm, employing CAEs to extract

features from the Radio Galaxy Zoo (RGZ) (Banfield et al.,
2015) images. Bordiu et al. (2023) employed CAEs to extract
features from combined radio and infrared images of known
Galactic supernova remnants (SNRs) to search for possible
multiwavelength patterns.
Contrastive learning approaches, on the other hand, employ
siamese or teacher-student network architectures, minimizing
the similarity between augmented versions of the input data,
eventually in contrast to negative samples. They were reported
to obtain superior performance on natural images in classi-
fication tasks (e.g. rivalling supervised methods), quality of
representation learnt, computation efficiency, and robustness
to noise. Recently, Slijepcevic et al. (2024) trained BYOL (Grill
et al., 2020) contrastive learning method over a sample of ∼105

radio source RGZ images from the VLA FIRST survey (Becker
et al., 1995). The resulting self-supervised model was then fine-
tuned to classify FRI/FRII radio galaxies from the VLA FIRST
survey, as listed in the Mirabest dataset (Porter & Scaife, 2023).
The analysis was repeated over a second dataset that include
data from the MeerKAT MIGHTEE survey. Both analyses in-
dicated an increase in classification accuracy (ranging from few
percent to 8% for MIGHTEE) over the same model trained in a
completely supervised way. Mohale & Lochner (2023) carried
out a similar FRI/FRII classification analysis over the Mirabest
dataset, using self-supervised models, previously pre-trained
over the ImageNet-1k (natural images), RGZ (radio galaxy im-
ages), Galaxy Zoo DECaLS (optical galaxy images) datasets.
Using a KNN classifier evaluation, they found that the model
pre-trained on RGZ outperforms the others by a considerable
margin (5% to 10% improvement in accuracy). Hossain et
al. (2023) carried out the same analysis with both BYOL and
SimCLR (Chen et al., 2020) self-supervised models but using
Group Equivariant Convolutional Neural Network (G-CNN)
backbones to make models invariant to different isometries
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(translation, rotation, mirror reflection). They pre-trained self-
supervised models on the RGZ dataset and fine-tuned them on
Mirabest dataset, obtaining FRI/FRII classification accuracies
around 95%-97%3, improving by ∼2% the fully supervised
baseline.
With respect to previous studies, we focused more on SKA pre-
cursor data, building self-supervised models over large samples
of unlabelled images, extracted from ASKAP and MeerKAT ra-
dio maps in two different modes: (1) "source-centered" mode,
e.g. images centred and zoomed over catalogued sources (as
in previous studies); (2) "blind" or "random" mode, e.g. im-
ages with arbitrary fixed size extracted from the entire map,
without any source position awareness. We assessed trained
self-supervised models using significantly larger test datasets
compared to previous studies, across three representative radio
source analysis tasks: radio source morphology classification,
radio source instance segmentation, and search for radio ob-
jects with peculiar morphology. This study aims to quantify
the benefits of self-supervision for the radio domain, provid-
ing ready-to-use foundational models that can be exploited in
SKA precursor or other radio surveys as feature extractors for
similar analysis or to tackle completely new tasks.
The paper is organized as follows. In Section 2 we describe the
contrastive learning model considered, along with the train-
ing datasets, data pre-processing and training methodologies
adopted. In Sections 3, 4, and 5 we studied how the trained
self-supervised models perform in the three selected analysis
scenarios, reporting performances achieved against benchmark
supervised models. Finally, in Section 6 we summarize the
obtained results and discuss future steps.

2. Self-supervised learning of radio data
2.1 Contrastive Learning Model
Fig. 1 illustrates how self-supervised learning can be used for
radio data analysis. Initially, a self-supervised framework (indi-
cated by the red block) is trained on large samples of unlabelled
image data. Subsequently, the resulting model backbone and
data representation (or latent space vector) can be utilized for
various downstream tasks, such as data inspection or anomaly
detection, typically employing dimensionality reduction meth-
ods. Furthermore, the model can be applied to source detection
and classification analysis using new labelled datasets. In this
study, we used SimCLR as the self-supervised framework for
our analysis.
SimCLR (Chen et al., 2020) is a simple yet widely used popular
self-supervised learning framework. It learns data representa-
tions by maximizing the similarity between augmented views
of the same input data (positive examples) relative to augmented
views of different input data within the same training batch
(negative examples). The architecture of SimCLR, depicted in
Fig. 1, consists of two main components: a base encoder net-
work f , which is typically a ResNet network (He et al., 2016),
and a small projection head network g, which is typically a
Multi-Layer Perceptron (MLP) with one or two layers. Input

3The observed metric differences between BYOL and SimCLR pre-trained
models are not significant (below 1%) given the reported uncertainties.

images xk (k=1,. . . ,N) in a given batch sample of size N are first
processed to produce two augmented views (or positive pair)
x̂2k–1 and x̂2k, by randomly applying multiple transformations
from a specified transform set T . The encoder network, also
denoted as the backbone model throughout the paper, extracts
representation vectors h2k–1 = f (x2k–1) and h2k = f (x2k) from
each augmented data pair. The projector network maps the
representations to a space where a contrastive loss is applied,
obtaining vectors z2k–1 = g(h2k–1) and z2k = g(h2k). The con-
trastive loss L, which is minimized during model training, is
defined as:

L =
1

2N

N∑
k=1

[l2k–1,2k + l2k,2k–1] (1)

li,j = – log
exp(sim(zi, zj)/τ)∑2N

k=1 1k̸=i exp(sim(zi, zk)/τ)
(2)

where li,j is the normalized temperature-scaled cross entropy
loss (NT-Xent), 1k̸=i=1 if k=i (equal to 0 otherwise), τ is a tem-
perature parameter, and sim(zi, zj) is the pair-wise similarity
between vectors zi and zj, defined as:

sim(zi, zj) =
zTi zj

∥ zi ∥ ∥ zj ∥
(3)

Table 1. Summary information of datasets used for SimCLR model training.
The number of images nimg is reported in column (2). The image size simg
is reported in column (3). simg is fixed for all images in the hulk_smgp and
hulk_emupilot datasets, while simg is not fixed and depends on the source
size ssource (equivalent to the maximum source bounding box dimension) in
the banner_smgps and banner_emupilot datasets. For these datasets, we
report the average, minimum and maximum source sizes in columns (4), (5)
and (6), respectively. Images from all datasets are eventually resized to a
fixed size for model training and testing (see Section 2.3).

ssource

Dataset nimg simg ⟨ssource⟩ sminsource smaxsource

(pix) (arcmin) (arcsec) (arcmin)

hulk_smgps 178,057 – – –

hulk_emupilot 55,773
256×256

– – –

banner_smgps 17,062 1.3 11.3 24.7
banner_emupilot 10,414

1.5×ssource
1.2 18.8 7.8

2.2 Datasets
We created the following unlabelled datasets for training Sim-
CLR:

1. Two distinct datasets were generated using data from the
SARAO MeerKAT Galactic Plane Survey (SMGPS) (Goed-
hart et al., 2024), which covers a large portion of the 1st, 3rd
and 4th Galactic quadrants (l=2◦-61◦, 251◦-358◦, |b| <1.5◦)
in the L-band (886-1678 MHz). The survey has an angular
resolution of 8" and a noise rms of ∼10-20 µJy/beam at
1.3 GHz:
• hulk_smgps: A collection of 178,057 radio images,

each of fixed size (256×256 pixels, equivalent to
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 2. Representative examples of images from the hulk_smgps (top panels), banner_smgps (middle panels) and hulk_emupilot (bottom panels)
datasets. A zscale transform was applied to all images for visualization scopes. Top panels: sample images containing only compact sources (Fig. 2(a)), or
multiple extended sources (Figures 2(b) and 2(c)). Middle panels: sample source with diffuse morphology (Fig. 2(d)), a multi-component extended source
exhibiting typical radio galaxy morphology (Fig. 2(e)), a single-component extended source with a roundish morphology (Fig. 2(f)). Bottom panels: sample
sources with FR-I (Fig. 2(g)), FR-II (Fig. 2(h)) and peculiar (Fig. 2(i)) classification.

∼6.4’×6.4’), extracted from SMGPS 1.28 GHz inte-
grated intensity maps. This dataset was created by
assuming a sliding window that traverses the entire sur-
veyed area with a shift size equal to half the frame size,
resulting in a 50% overlap among frames. The image
size was chosen to be large enough to encompass the
most extended radio galaxies that might be located in
the cutout4;

4Out of ∼5800 catalogued sources that were labelled as candidate radio

• banner_smgps: A collection of 17,062 radio images
extracted from SMGPS 1.3 GHz integrated maps, each
centered around sources listed in the SMGPS extended
source catalogue (Bordiu et al., 2024). The size of the
images varies across the dataset and is set to 1.5 times
the size of the source bounding box. The radio sources
in this dataset exhibit different morphologies, including

galaxies on the basis of their radio morphology, only one was found to have a
size (7.4’) larger than the chosen image cutout (6.4’).



Publications of the Astronomical Society of Australia 5

single-island, multi-island, and diffuse sources.

2. Two distinct datasets were generated using data from the
ASKAP EMU pilot survey (Norris et al., 2021), which cov-
ered approximately 270 deg2 of the Dark Energy Survey
area, achieving an angular resolution of 11" to 18" and a
noise rms of ∼30 µJy/beam at 944 MHz:

• hulk_emupilot: A collection of 55,773 radio im-
ages, each of fixed size (256×256 pixels, equivalent
to ∼8.5’×8.5’), extracted from ASKAP EMU pilot 944
MHz integrated map. The images were extracted using
a sliding frame that traversed the entire mosaic with
a shift size equal to half the frame size, resulting in a
50% overlap among frames.

• banner_emupilot: A collection of 10,414 radio im-
ages extracted from ASKAP EMU pilot 944 MHz in-
tegrated map, each centered around extended sources
listed in the pilot source catalogue compiled by Gupta
et al. (2024). The size of the images varies across the
dataset and is set to 1.5 times the size of the source
bounding box. The radio sources in this dataset exhibit
different morphologies, including FR-I (∼6%), FR-II
(∼54%), FR-x (∼14%), single-peak resolved (∼23%)
radio galaxies. ∼3% of the sources present a rare mor-
phology not fitting into the previously mentioned cat-
egories.

Table 2. List of augmentations used in SimCLR model training. In column (2)
we reported the transform parameter values. In column (3) we reported the
probability used to apply the transform in the augmentation pipeline, e.g.
1.0 means the transform is always applied to all input images.

Augmentation Parameters Probability

RandomCropResize crop_size=[0.8,1.0] 1.0
ColorJitter brightness=0.8 0.8

contrast=0.8
saturation=0.8
hue=0.2
strength=0.5

HorizontalFlip – 0.33
VerticalFlip – 0.33
Rotate angle={90,180,270} 0.5
Blur sigma=[1,3] 0.1
RandomThresholding percentileThr=[40,60] 0.5

Datasets extracted in a blind mode (e.g. without any pre-
vious knowledge of the source location and morphology) can
be constructed rapidly, potentially reaching substantial sizes
(up to millions of images) when using future full-sky surveys.
Without additional selection processes, these datasets tend to
be largely unbalanced, predominantly comprising frames com-
posed entirely of compact sources. The hulk_smgps dataset
also comprises frames with large-scale diffuse emission, in-
cluding background or portions of very extended sources lo-
cated along the Galactic plane. For simplicity, we have la-
belled them as hulk. In contrast, "smarter" datasets centered

on selected source positions typically have smaller sizes, re-
quiring significant efforts (catalogue production and source
type annotation) for construction. We have labelled them
as banner. Indeed, one goal of this work is evaluating dif-
ferences and benefits of both kind of datasets over different
analysis tasks. Summary information for all produced datasets
is reported in Table 1. In Fig. 2 we display sample images from
the hulk_smgps (top panels), banner_smgps (middle panels)
and banner_emupilot (bottom panels) datasets.

Table 3. List of hyperparameters used in SimCLR model training.

Hyperparameter Value

Encoder model ResNet18
Projector model size 2 layers (256-128)
Optimizer Adam
Batch size 128
Learning Scheduler Linear warmup + Cosine decay
Warmup epochs 10
Learning rate (warmup target) 0.1
Epochs 100 (hulk_smgps datasets)

500 (banner_smgps dataset)
100 (hulk_emupilot dataset)
500 (banner_emupilot dataset)

2.3 Data pre-processing and augmentation
For the training and inference stages, we applied these pre-
processing steps to input images:

• Grayscale images were converted to 3-channels. Each
channel was processed differently from others, applying
the following transformations:

– Channel 1: sigma-clipping (σlow=5, σup=30);
– Channel 2: zscale transform (contrast=0.25);
– Channel 3: zscale transform (contrast=0.4).

• Each channel was independently normalized to a [0,1]
range using a MinMax transformation;

• Finally, each channel was resized to a 224×224 size in
pixels.

A key aspect when training contrastive learning models is the
choice of applied data augmentation steps to make the model
invariant with respect to non-physical properties or to features
not related to the radio sources. We applied the following
augmenters to the data sequentially:

• RandomCropResize: randomly crop input images to size
crop_size × image size, and resize data to the original
size. crop_size was randomly varied in the range [0.8,
1.0];

• ColorJitter: apply a colour jitter transformation using all
three image channels;

• Flip: random flip images either vertically or horizontally;
• Rotate: rotate images by either 90, 180 or 270 degrees;
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(a) 1C-1P (b) 1C-2P (c) 1C-3P

(d) 2C-2P (e) 2C-3P (f ) 3C-3P

Figure 3. Sample images from the RGZ dataset with representative sources of different morphological classes (reported below each frame). A zscale transform
was applied to all images for visualization scopes.

• Blur: apply Gaussian blurring to images using a σ parame-
ter randomly varied in the range [1,3];

• RandomThresholding: threshold each channel separately
using a per-channel percentile threshold randomly varied
in the range [40,60].

The RandomThresholding augmenter was introduced to make
the model less dependent on image background features. This
stage was not applied when training over the banner datasets,
as images in this dataset are already zoomed on radio sources,
and thus the background would likely not be estimated cor-
rectly. Furthermore, not all augmenters are applied to every
image in the training dataset. In Table 2 we provide a summary
of augmenter steps used in the pre-processing pipeline with
their parameters, including the probability with which each
data transform is applied to images. With respect to Chen et al.
(2020), we reduced the fraction of random cropping allowed
to avoid cutting out relevant details of extended sources from
the resulting image.

2.4 Model training
We trained a SimCLR model on each of the four datasets de-
scribed in Section 2.2, using the hyperparameters listed in
Table 3. We will refer to them using their training dataset
name: hulk_smgps, banner_smgps, hulk_emupilot, and

banner_emupilot. A fourth model, referred to as
smart_hulk_smgps hereafter, was trained in two steps, first
on the hulk_smgps dataset and then on the banner_smgps
dataset. The final model weights from the first step were used
as initialization for the second step. For all models, we used
a ResNet18 (He et al., 2016) encoder and a 2-layer projector
with 256 and 128 neurons, respectively.
Following Chen et al. (2020), all training runs began with
a linear warm-up phase lasting 10 epochs, after which we
switched to a cosine learning rate decay strategy. In total,
we trained models for 500 epochs on the banner_smgps and
banner_emupilot datasets. A smaller total number of epochs
(100) was used when training over the larger hulk_smgps and
hulk_emupilot datasets to reduce computational costs.
Training runs were performed on three different computing
server nodes, each equipped with a GPU device:

• Node A: 48 cores (Intel Xeon Gold 6248R CPU, 3.00
GHz), 512 GB RAM, NVIDIA Quadro RTX 6000 (24
GB)

• Node B: 24 cores (Intel Xeon Silver 4410Y, 2.00 GHz),
256 GB RAM, NVIDIA A30 (24 GB)

• Node C: 36 cores (Intel Xeon CPU E5-2697 v4, 2.30 GHz),
128 GB RAM, NVIDIA Tesla V100 (16 GB)

Typical training times over the hulk_smgps dataset are of
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the order of ∼6.7 hours/epoch on nodes A/B, and ∼12.5
hours/epoch on node C.

5− 0 5 10 15
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2−
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16z2 1C-1P
1C-2P
1C-3P
2C-2P
2C-3P
3C-3P

Figure 4. 2D UMAP projection of the data representation vector (size=512)
produced by the trained smart_hulk_smgps model on the RGZ dataset.

3. Task I: Classification of radio source morphology
In this section, we quantitatively evaluate the learned self-
supervised representation on a source morphology classifica-
tion problem.
Morphological classification plays a pivotal role in radio astron-
omy, enabling scientists to gain insights into the underlying
source nature from the observed shape and structures. The ma-
jority of existing works in the radio image domain are targeted
for extragalactic science objectives, focusing on classification of
radio galaxies (see for example Aniyan & Thorat 2017, Ma et al.
2019, or Ndung’u et al. 2023 for a recent review) in different
morphological classes: compact, FR-I, FR-II, bent-tailed
(including WAT5 and NAT6 population), irregular (includ-
ing, for example, X-shaped or ring-like radio galaxies).
Morphological classification is also an important post-detection
stage to filter extracted sources by general morphology (e.g.
compact vs extended sources) for specialized source property
measurements or other advanced classification analysis. In this
context, the adopted source labelling scheme is rather general-
purpose and domain-agnostic, suited to be eventually refined
afterwards. For example, typical used labels are POINT-LIKE,
RESOLVED, COMPACT, EXTENDED or labels that contain infor-
mation about the number of radio components present in the
extracted source (as in Wu et al. 2019).
The analysis carried out in this section falls into the second
use-case scenario. This choice is mostly driven by existing

5Wide-angle tail
6narrow-angle tail

datasets. Available annotated datasets for radio galaxy classifi-
cation (mostly based on VLA FIRST survey data) are, in fact,
rather limited in size (e.g. typically <100-200 images per class,
<2000 images overall) and would currently prevent us from
obtaining a robust evaluation of our self-supervised models
over multiple test set realizations. For example, the Mirabest
dataset (Porter & Scaife, 2023) contains 1256 source images
of balanced FR-I/FR-II radio galaxy classes, out of which 833
images constitute the "Confident" sample, and the rest (423
images) the "Uncertain" sample. On this dataset, Slijepcevic
et al. (2024) reported an improvement of ∼3-4% in classifica-
tion performance of a self-supervised pre-trained model with
respect to a fully supervised model trained from scratch on
the "Confident" sample (or on a portion of it). Classification
metrics were, however, estimated on the "Uncertain" sample,
and hence the observed enhancement is due to less than 20
sources. We, therefore, opted for this work to use a larger
dataset (roughly by one order of magnitude) and perform a
similar analysis once a larger dataset is assembled within the
ASKAP EMU survey.

3.1 Dataset
For this analysis, we considered data from the Radio Galaxy
Zoo (RGZ) project7 (Banfield et al., 2015). This includes radio
images of size 3’× 3’ from the VLA Faint Images of the Radio
Sky at Twenty cm (FIRST) survey (1.4 GHz, angular resolu-
tion ∼5") (Becker et al., 1995). Radio sources found in these
images were labelled into multiple morphological classes, on
the basis of the observed number of components (C) and peaks
(P) (see Wu et al. 2019 for more details on the classification
schema). Angular size is also available for each source.
In this analysis, we extracted 82,084 image cutouts around ra-
dio sources that have been classified in the RGZ Data Release 1
(DR1) with a consensus level ≥0.6 in the following classes: 1C-
1P (55.0%), 1C-2P (20.9%), 1C-3P (1.9%), 2C-2P (17.6%),
2C-3P (2.0%), 3C-3P (2.5%). We assumed a cutout size equal
to 1.5 × the source angular size, as listed in the RGZ catalogue.
A representative image of each source morphological category
is shown in Fig. 3.
As the full dataset is largely unbalanced towards sources of
class morphology 1C-1P, we randomly created N=5 balanced
train and test sets having 1000 and 600 images per each class,
respectively. Both train and test set images were pre-processed
as described in Section 2.3 for the SimCLR model training.

3.2 Evaluation of self-supervised representation
In Fig. 4 we present a two-dimensional projection, ob-
tained with the Uniform Manifold Approximation and Projection
(UMAP) algorithm, of the representation vector (original size
equal to 512) produced by the trained smart_hulk_smgps
model on the RGZ dataset. As can be observed, the self-
supervised model effectively groups sources of different mor-

7The RGZ project is a crowdsourced science project where both scientists
and citizens can classify radio galaxies and their host galaxies from radio and
infrared (WISE survey, Wright et al. 2010) images presented to users in a web
interface
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Figure 5. Classification F1-scores obtained for different classes and for all
classes cumulatively over RGZ test sets with different pre-trained and frozen
backbones: hulk_smgps (red squares), banner_smgps (blue inverted tri-
angles), smart_hulk_smgps (green triangles), hulk_emupilot (orange di-
amonds), banner_emupilot (cyan asterisks), ImageNet (black dots). The
reported values and errors are the F1-score mean and mean error computed
over five test sets.

phological class in distinct areas of the latent space. No iso-
lated clusters are discernible in the projected two-dimensional
UMAP feature space, as well as in a PCA scatter plot of top-2
features (not shown here). Nevertheless, these or similar diag-
nostic plots, can be useful for potentially identifying possible
image mislabeling in the dataset, e.g. sources that fall within a
region that is predominantly populated by other classes.
We carried out a classification analysis using a CNN classifier
with a standard architecture: a ResNet18 backbone (as in the
SimCLR model) followed by a classification head. The latter
consists of a single layer followed by a softmax activation, rep-
resenting the predicted probability distribution over the set
of classes. To evaluate the quality of the self-supervised repre-
sentation, we froze the model backbone, setting and fixing its
weights to those obtained in the trained SimCLR models, and
trained only the classification head on RGZ training datasets
for a limited number of epochs (30). We considered only rota-
tion and flipping transformations as augmentation steps during
the training. To estimate the achieved classification perfor-
mances, we used these widely adopted metrics in multi-class
classification problems:

• Recall (R): Fraction of sources of a given class that were
correctly classified by the model out of all sources labelled
in that class, computed as:

R =
TP

TP + FN

• Precision (P): Fraction of sources correctly classified as
belonging to a specific class, out of all sources the model
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Figure 6. Confusion matrix of the source morphology classifier (trained with
smart_hulk_smgps pre-trained and frozen backbone) obtained over the
RGZ test set.

predicted to belong to that class, computed as:

P =
TP

TP + FP

• F1-score: the harmonic mean of precision and recall:

F1-score = 2 × P ×R
P + R

(4)

In Fig. 5 we report the classification F1-scores obtained
on the test set by different self-supervised pre-trained
models: hulk_smgps (red squares), banner_smgps (blue
inverted triangles), smart_hulk_smgps (green triangles),
hulk_emupilot (orange diamonds), banner_emupilot
(cyan asterisks). The reported values and their errors are
respectively the F1-score mean and mean error computed
over the available test sets. These metrics were compared
against those obtained with a baseline model pre-trained on
the ImageNet-1k dataset 8 (Deng et al., 2009) (trained on non-
radio data), shown with black dots in Fig. 5. We found that
self-supervised pre-trained models reach approximately 7-12%
better scores with respect to the baseline. Another valuable
indication is that the two-step pre-training approach done for
the smart_hulk_smgps model training provide better results
compared to training over random or source-centred images
alone. The improvement is, however, not very significant with
respect to the hulk_smgps, likely due to both the limited size
of the banner_smgps dataset and the absence of Galactic-like
diffuse and extended sources in the RGZ dataset. By construc-
tion, we expect that the banner_smgps model should be more
specialized for this kind of source morphologies. This will be
tested in a future analysis once we finalize a new test dataset

8When mentioning the ImageNet dataset throughout the paper, we refer
to the ImageNet-1k version.
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with diffuse sources taken from ASKAP EMU observations.
In Fig. 6 we report the confusion matrix obtained over the
RGZ test sample with a hulk_smgps pre-trained and frozen
backbone. The obtained misclassification rates suggest that
a considerable fraction (10% to 20%) of sources, particularly
those with two or three components, may be hard to be cor-
rectly distinguished from other classes. After a visual inspection
of the misclassified sources, we found that in some cases the
misclassification is rather due to dataset mislabelling, e.g. the
ground truth label present in the dataset is not correct and the
model is indeed predicting the expected class. Some examples
are reported in Fig. A.1. Future analysis should therefore take
into consideration a revision of the RGZ dataset annotation.
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Figure 7. Classification F1-scores obtained (for all classes cumulatively) over
RGZ test sets as a function of the train set size with two alternative models:
one trained from scratch (open black dots), the other trained with backbone
weights initialized to smart_hulk_smgps weights (filled black dots).

3.3 Model fine-tuning
We fine-tuned the source classifier by unfreezing backbone
layers (e.g. training them along with the classification
head) and compared the accuracies reached by two mod-
els: one initialized with random weights (e.g. training from
scratch), and the other with backbone weights initialized to
the smart_hulk_smgps backbone weights (best performing
model found in Section 3.2). We compared the results of both
models when trained on the full training sets and when trained
on smaller training sets, obtained by gradually removing la-
belled data randomly from the original set. In all cases, models
were trained for 150 epochs. The test sets were kept unchanged
to compute the classification accuracies. This was done to study
how the model performs in the recurring scenario in which
the amount of labelled data is significantly limited. We re-
ported the results in Fig. 7. As can be seen, the fully supervised
model (trained from scratch) becomes almost untrainable, pro-

viding poor classification metrics, in the small number of labels
regime. This occurs for the RGZ dataset below a fraction
of approximately 10% of the original train dataset. On the
other hand, self-supervised pre-training enables to fine-tune
the model even with few labels, achieving considerably better
metrics (>20%). Above the 10% label fraction threshold, the
fully supervised model achieved slightly better scores, high-
lighting that no significant performance benefits are obtained
from the pre-training process, at least with the model and
dataset sample sizes available for this work.

4. Task II: Radio source detection
In this section, we quantitatively evaluate the learned self-
supervised representation on an instance segmentation prob-
lem, specifically the detection of radio sources with various
morphologies.
Algorithms used in traditional radio source finders are not well-
suited for detecting extended radio sources with diffuse edges,
and they are unable to detect extended sources that are com-
posed of multiple disjoint regions. To address this limitation,
new source finders (Wu et al., 2019; Mostert et al., 2022; Zhang
et al., 2022; Yu et al., 2022; Riggi et al., 2023; Lao et al., 2023;
Gupta et al., 2024; Cornu et al., 2024) based on deep neural
networks and object detection frameworks have been devel-
oped and trained on either simulated or real radio data. Core
components of these models are deep CNN backbones and
transformer architectures, both of which have millions of pa-
rameters that need to be optimized during training. Although
these models offer a substantial advancement in extended radio
galaxy detection, their performance is limited by the small size
(few thousand images) and the imbalance of objects in the avail-
able radio training datasets. Additionally, there is a potential
performance drop (up to 10% in Riggi et al. 2023) when trans-
ferring a trained model to data produced by a different survey
or telescope, especially if the new data has a better angular
resolution (Tang et al., 2019). To improve the training stage,
it is a common practice to use models pre-trained on much
larger annotated samples of non-astronomical images, such as
the ImageNet-1k (Deng et al. 2009, ∼1.28 million images) or
the COCO (Tsung-Yi et al. 2014, 328,000 images) datasets. In
this scenario, it is worth exploring whether foundational mod-
els built with self-supervised methods on unlabelled radio data
can offer performance benefits over non-radio foundational
models, especially with small datasets.

4.1 caesar-mrcnn source detector
For this analysis, we used the caesar-mrcnn source detector
(Riggi et al., 2023), based on the Mask R-CNN object detec-
tion framework (He et al., 2017), to extract source segmenta-
tion masks and predicted class labels from input radio images.
With respect to our original work, we have upgraded the soft-
ware to TensorFlow 2.x, producing a new refactored version9

with an improved data pre-processing pipeline and support for
additional backbone models.

9https://github.com/SKA-INAF/caesar-mrcnn-tf2

https://github.com/SKA-INAF/caesar-mrcnn-tf2
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(a) (b) (c) (d)

Figure 8. Sample images (taken from Riggi et al. 2023) from the dataset used for caesar-mrcnn training/testing, including objects of different classes: a FLAGGED
object (Fig. 8(a), in gray), COMPACT objects (in blue), a MULTI-ISLAND object (Fig. 8(b), in orange), EXTENDED objects (Fig. 8(c), in yellow), SPURIOUS objects
(Fig. 8(d), in red).

In this context, we would like to make a brief preamble and
clarify the motivations that guided the development of the
caesar-mrcnn source detector, as these were either misinter-
preted or inaccurately presented in other works. Additionally,
we aim to address certain conceptual aspects that we realize
are often source of confusion within this field.
It is essential to recognize that source detection (or extraction),
classification and source characterization (or measurement)
represent distinct conceptual stages. A source detector, to
be defined as such, should focus solely on extracting source
bounding boxes or, preferably, pixel masks, which are the
inputs required for the source measurement or classification
stages. The source measurement step, on the other hand, is
responsible for estimating source properties such as position,
flux density, and shape from the outputs of the source detec-
tion. Strictly speaking, this step is not required in a source
detector, as assumed in Lao et al. (2023). From a method-
ological standpoint, it is advisable to avoid conflating these
stages. This may allow addressing numerous use cases simul-
taneously, but it can also be counterproductive, leading, for
example, to design compromises and overly complex models
with multiple loss components to be balanced during training.
The resulting models likely have a higher chance of under-
performing on both tasks (detection or characterization) with
respect to models that are designed and optimised for a specific
task. For this reason, source characterization metrics should
be independently evaluated and not mixed with the detection
metrics, as required, for example, in the SKA Data Challenge 1
(Bonaldi et al., 2021) scoring function. When we designed the
caesar-mrcnn source detector, we deliberately did not provide
a source characterization stage. As we already implemented
source measurement functions in the caesar source finder, we
rather aim to interface both codes and, at best, add new devel-
opments for improvements in specific areas, such as low S/N
source characterization and source deblending, as discussed in
Boyce et al. (2023).
In recent ML-based source extractors, source classification
was typically performed alongside the detection step, often to
classify extracted sources into compact and extended classes
of radio galaxies (FR-I, FR-II, etc.). We aimed for our source

detector to be general-purpose, portable, and not tied to a
specific radioastronomical domain. Therefore, in our view,
the detection step should, at a minimum, classify between real
and spurious sources, or, at most, between domain-agnostic
morphological classes. More refined or domain-specific clas-
sification schemes can be more effectively applied afterwards
in specialized classifiers working on source-centered images
obtained from the detection step. These considerations were
the rationale behind the general class labeling scheme adopted
in caesar-mrcnn (briefly reported in the following Section).
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Figure 9. Mask R-CNN object detection F1-score metric obtained for dif-
ferent object classes over multiple test sets with different pre-trained and
frozen backbones: hulk_smgps (red squares), banner_smgps (blue iverted
triangles), smart_hulk_smgps (green triangles), hulk_emupilot (orange
diamonds), banner_emupilot (cyan asterisks), ImageNet (black dots). The
reported values and errors are the means and mean errors computed over 5
test sets.
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4.2 Dataset
To train and test caesar-mrcnn, we considered the dataset de-
scribed in Riggi et al. (2023), which contains 12,774 annotated
radio images from different surveys, including VLA FIRST,
ATCA Scorpio (Umana et al., 2015), and ASKAP-EMU Scor-
pio (Umana et al., 2021). The annotation data consist of pixel
segmentation masks and classification labels for a total of 38,342
objects (both real and spurious sources) present in the dataset
images. Five object classes were defined:

• SPURIOUS: imaging artefacts around bright sources, hav-
ing a ring-like or elongated compact morphology;

• COMPACT: single-island isolated point- or slightly resolved
compact radio sources with one or more blended compo-
nents, each with morphology similar to the synthesized
beam shape;

• EXTENDED: radio sources with a single-island extended
morphology, with one or more blended components,
some morphologically different from the synthesized beam
shape;

• EXTENDED-MULTISLAND: radio sources with an extended
morphology, consisting of more than one island, each
eventually containing one or more blended components,
having a point-like or an extended morphology;

• FLAGGED: poorly-imaged single-island radio sources,
highly contaminated by nearby imaging artefacts.

For more details on the dataset labelling schema and rationale,
we refer the reader to the original work. We also define a
generic class label SOURCE for analysis purposes, including real
and non-flagged sources, i.e. object instances of class COMPACT,
EXTENDED, or EXTENDED-MULTISLAND. Though it is planned,
the dataset does not presently contain images and annotation
data for Galactic diffuse objects. Indeed, none of existing ML-
based finders have been trained to detect diffuse sources other
than radio galaxy diffuse structures (e.g. lobe components).
The latter are the only diffuse structures present in our dataset,
but we never noted to obtain poor detection performances on
them, as reported in Ndung’u et al. (2023).
In Fig. 8 we present sample images from the dataset, including
representative sources for each class. Given that the current
dataset is significantly skewed towards compact sources (com-
prising approximately 80% of the annotated objects), we cre-
ated five re-balanced training samples, each containing 3245
images, with the following class distributions: SPURIOUS (1464
objects, 14.4%), COMPACT (5457 objects, 53.6%), EXTENDED
(2042 objects, 20.1%), EXTENDED-MULTISLAND (1047, 10.3%),
FLAGGED (169 objects, 1.7%). The remaining data was re-
served to create five test samples, each containing 5110 images,
with the following class distributions: SPURIOUS (1022 objects,
6.6%), COMPACT (12.346 objects, 80.0%), EXTENDED (1307 ob-
jects, 8.5%), EXTENDED-MULTISLAND (636, 4.1%), FLAGGED
(122 objects, 0.8%).

4.3 Evaluation of self-supervised representation
To assess the effectiveness of the self-supervised representation,
we followed the procedure outlined in Section 3.2. We froze
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Figure 10. Mask R-CNN object detection F1-score metric obtained over the
SOURCE class over multiple test sets as a function of the train set size with
two alternative models: one trained from scratch (open markers), the other
trained with backbone weights initialized to hulk_smgps weights (filled
markers).

the Mask R-CNN model’s ResNet18 backbone, setting and
keeping its weights fixed to those obtained in the trained Sim-
CLR models, and trained the remaining components (region
proposal network, classification and bounding box regression
head, mask prediction head) on multiple training datasets for a
set number of epochs (250). The parameters of Mask R-CNN
were configured to match the values optimized in our previ-
ous work (refer to Riggi et al. 2023, Table A1). We applied
the same pre-processing transformations used for training the
self-supervised models (as detailed in Section 2.3). During
training, we applied three distinct image augmentations: ro-
tation, horizontal/vertical flipping, and zscale transformation
with random contrast in the range of 0.25 to 0.4.
The performance of source detection was evaluated on the
test sets using the following metrics, computed with a 0.5 ob-
ject detection score threshold and an Intersection-over-Union
(IoU) match threshold of 0.6 between detected and ground
truth object masks:

• Completeness (C): Fraction of true sources detected by Mask
R-CNN and classified as belonging to the SOURCE class
group;

• Reliability (R): Fraction of detected objects classified as
SOURCE that indeed match to true sources;

• F1-score: the harmonic mean of completeness and reliabil-
ity:

F1-score = 2 × C ×R
C + R

(5)

As the focus of this analysis is on source detection, we have
used the naming convention typically adopted in astronomi-
cal source catalogue works, although these metrics are some-
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times referred to as recall/precision in other studies. The
above metrics were computed for each class label and re-
ported in Fig. 9 for different models trained with frozen
self-supervised backbone weights: hulk_smgps (red squares),
banner_smgps (blue triangles), smart_hulk_smgps (green
triangles), hulk_emupilot (orange diamonds). Metrics ob-
tained with frozen ImageNet weights are shown with black
dots. The performance boost obtained with self-supervised
models is significant, around 15%-20% for most classes, and
even larger for multi-island sources and imaging artefacts.
This is somehow expected, given that these structures are not
present in the ImageNet dataset. Overall, for the source class
group we are interested in, we did not notice significant dif-
ferences among trained self-supervised models, after taking
into account the run-to-run statistical uncertainties on the
obtained metrics. We will therefore consider a representative
model (hulk_smgps) in the following fine-tuning analysis.

4.4 Model fine-tuning
We fine-tuned the Mask R-CNN model using random initial-
ization weights (training from scratch) and weights initialized
to hulk_smgps self-supervised model. We computed the ob-
ject detection metrics over the source class group as a function
of the training sample size, following the same approach dis-
cussed in Section 3.3. Results are reported in Fig. 10. Black
filled dots are the F1-scores obtained with the pre-trained
hulk_smgps model, while open black dots are those found
when training from scratch. In this case, we did not observe
a significant benefit from using self-supervised pre-training
compared to the source classification task studied in Section 3.
The improvement in performance in the low label regime
(<10% of the original training sample size) is, in fact, of the
order of a few percent. This behaviour highlights that other
Mask R-CNN components likely play a major role in the over-
all model detection performance with respect to the backbone
network.

5. Task III: Search for peculiar objects
In this section, we quantitatively evaluated the learned self-
supervised representations in an anomaly detection problem,
i.e. employing them for an unsupervised search of radio ob-
jects with peculiar morphologies.
Next-generation radio surveys carried out with SKA precur-
sor telescopes are already generating a huge amount of data.
Serendipitous discoveries were already reported and obtained
by visual inspection of the observed maps. For instance, Nor-
ris et al. (2021b) and Koribalski et al (2021) discovered a class
of diffuse objects with a roundish shape, dubbed Odd Radio
Circles (ORCs), in the ASKAP EMU pilot survey, that did not
correspond to any types of object or artifacts known to have
similar morphological features. As it is extremely likely that
new discoveries are still waiting to be found in such data del-
uge, astronomers have started to explore ML-based methods
to automatically search for objects with peculiar morphologies.
In this process, various methods were proposed, allowing to
rediscover previously identified anomalies (including the first

detected ORCs) and identify completely new objects (Gupta
et al, 2022; Lochner et al., 2023).
In this context, two major methodologies were used. Gupta
et al (2022) and Mostert et al. (2021) employed rotation and
flipping invariant self-organizing maps (SOMs) to search for
anomalies in the ASKAP EMU pilot and LOFAR LoTSS sur-
vey data, respectively. Both analysis used images of fixed size
(approximately 1’ to 5’, ∼150 pixels per size), centered around
previously catalogued radio sources. The Euclidean distance
from each "representative" image in the SOM lattice was used
as an “anomaly proxy”, e.g. anomalous images have larger
Euclidean distances from their closest SOM template image.
Segal et al. (2023) used a coarse-grained complexity metric as
an "anomaly" proxy to detect peculiar objects in the ASKAP
EMU pilot survey. Their method is based on the idea that im-
age frames containing complex and anomalous objects have a
higher Kolmogorov complexity compared to ordinary frames.
In contrast to the previously mentioned methods, Segal et al.
(2023) conducted a blind search by sliding fixed image frames
of size 256×256 pixels (∼12 arcmin) through the entire map,
rather than focusing on frames centered around known source
positions. An approximated complexity estimation for each
frame was then computed from the compression file size (us-
ing the gzip algorithm) of smoothed and resized frames. This
allowed the authors to obtain a catalogue of peculiar sources at
different reliability levels, corresponding to different complex-
ity threshold choices. The complexity metric is conceptually
simple and fast to compute, which is undoubtedly a positive
aspect of this method. However, as noted by Mostert et al.
(2021), the complexity metric may not fully capture the mor-
phological features of the sources present in the images.
A potential limitation of "source-centric" approaches could
be their reliance on catalogues created with traditional source
finding algorithms, which are known to have a higher likeli-
hood of missing diffuse sources (a primary target in anomaly
searches). Nevertheless, existing studies successfully manage
to identify new anomalous sources in their datasets. Mostert
et al. (2021) also noted that their method is not fully sensitive
to detect anomalies at angular scales much smaller than the
chosen image size (100 arcsec in their work). The choice of
the frame size is an aspect that certainly affects "blind" anomaly
searches as well.
In this work, we aim to carry out a blind anomaly search
study using a different method, which relies on image fea-
tures extracted by trained self-supervised models. Details on
the dataset used and the methodology are provided in the
following paragraphs.

5.1 Dataset
For this analysis, we considered the hulk_emupilot dataset
(55,774 images) described in Section 2.2. We annotated
through visual inspection approximately 10% of the data (5800
images) using the following set of labels:

• BACKGROUND: If the image is purely background noise, e.g.
no sources are visible. Typically, this label is set for frames
located at the map borders;
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(a) {RADIO-GALAXY,DIFFUSE} (b) {RADIO-GALAXY,ARTEFACT} (c) {DIFFUSE-LARGE,BORDER}

(d) {RADIO-GALAXY} (e) {DIFFUSE-LARGE} (f ) {RADIO-GALAXY}

Figure 11. Sample images from the hulk_emupilot dataset, labelled as PECULIAR and COMPACT. The other assigned labels are reported below each frame. A
zscale transform was applied to all images for visualization scopes.

• COMPACT: if point sources or compact sources comparable
with the synthesized beam size (say <10 times the beam)
are present. Double or triple sources with point-like com-
ponents also fall into this category;

• EXTENDED: if any extended source is visible, e.g. a compact
source with extension >10 × beam;

• RADIO-GALAXY: if any extended source is visible with a
single- or multi-island morphology, suggesting that of a
radio galaxy (e.g. core + lobes);

• DIFFUSE: if any diffuse source is visible, typically having
small-scale (e.g. <few arcmin) and roundish morphology;

• DIFFUSE-LARGE: if any large-scale (e.g. covering half of
the image) diffuse object with irregular shape is visible;

• FILAMENT: if any extended filamentary structures is visible;
• ARTEFACT: if any ring-shaped or ray-like artefact is visible,

e.g. typically around bright resolved sources;
• PECULIAR: if any object is found with peculiar/anomalous

morphology;
• MOSAICKING: if any residual pattern of the mosaicking

process used to produce the image is present.

More than one label can be assigned to each image, depending
on the object/features the user recognize in the image.

A total of 428 peculiar frames were selected through visual
inspection starting from a list of 1198 peculiar frames identified
in Segal et al. (2023) with a complexity metric analysis and
from a catalogue of 361 peculiar sources reported in Gupta
et al. (2024). In Fig. 11 we show examples of peculiar images
from the dataset with their annotation labels.

Table 4. Peculiar frame detection metrics obtained with the Isolation Forest
algorithm over selected feature sets (column (1)) when using an anomaly
score threshold (reported in column (2)) that provides the best compromise
in terms of peculiar frame recall and precision, respectively shown in columns
(3) and (4). The precision relative to joint peculiar and complex frames is
shown in column (5). The fractions of complex and ordinary frames contami-
nating the predicted anomalous sample are shown in columns (6) and (7).

R P Ppec+complex (%) Ccomplex CordinaryFeatures Thr.
(%) (%) (%) (%) (%)

top2 0.700 55.6 59.8 93.5 33.7 6.5
top5 0.750 61.2 63.0 93.0 30.0 7.0
top10 0.725 59.1 58.7 97.4 38.7 2.6
top15 0.660 57.7 58.7 95.5 36.8 4.5
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Figure 12. Left: Anomaly score of frames contained in the hulk_emupilot dataset, shown as black solid histogram, found with the Isolation Forest algorithm
over top-10 feature data. Unclassified frames are shown with a dashed line. Red filled histogram are the scores of peculiar frames. Ordinary frames (e.g. hosting
only compact or artefacts) are shown in blue, pure compact frames in light blue, while frames not tagged as peculiar that host complex sources or structures
(EXTENDED, DIFFUSE, DIFFUSE-LARGE, RADIO-GALAXY) are shown in green. Right: Anomaly detection metrics (recall, precision, contamination) as a function
of the applied anomaly score threshold. Red solid and dashed lines indicate the recall and precision achieved on peculiar frame detection. Purple dotted line is
the precision obtained over both peculiar and complex frames. The other solid coloured lines indicate the fraction of unclassified (black line), complex (green
line) and ordinary frames contaminating the selected anomaly sample.

5.2 Anomaly analysis
The data representation variables are each sensitive to different
features of the images, including details (e.g. the presence of
image borders or artifacts, background noise or mosaicking
patterns, compact source density, etc) that are not relevant for
the anomaly search task. We tried to limit the dependency on
background features with the RandomThresholding augmenta-
tion, but the model was not fully made invariant with respect
to the other aspects. For this reason, we carried out a feature
selection analysis, aiming to explore and select features that
are mostly correlated with the presence of objects with dif-
fuse or extended morphology. We divided the labelled set of
images into two groups: "interesting" frames include images
labelled as {EXTENDED,DIFFUSE,DIFFUSE-LARGE}, while "or-
dinary" frames include the rest of labelled images, mostly
hosting only compact sources or artifacts around them. We
then trained a LightGBM 10 (Ke et al, 2017) classifier to clas-
sify the two groups with all representation features (512) as
inputs. A subset of available data was reserved as a cross-
validation set for model training early stop. Using shallow
decision trees (max_depth=2) and default LightGBM parame-
ters (num_leaves=32, min_data_in_leaf=20), we obtained
a classification score of 75.3%. In Fig. A.2 we report a plot
showing the feature importance returned by the LightGBM

10LightGBM is a high-performance gradient boosting framework based on
decision tree algorithm, particularly suited for classification tasks on tabular
data. More details are available at https://lightgbm.readthedocs.io/en/latest/index.
html.

trained model. As one can see, a small set of features are identi-
fied as the most powerful for selecting interesting frames. We
therefore carried out the following data exploration and unsu-
pervised analysis, restricting the parameter set to the top-15
ranked variables in importance.
In Fig. 3(a) we report a two-dimensional projection of the top-
15 variables produced with the UniformManifold Approximation
and Projection (UMAP) dimensionality reduction algorithm
(McInnes et al., 2018) as a function of the image noise rms
level in logarithmic scale (coloured z-axis). As can be seen, the
obtained representation shows a residual dependency on phys-
ical image parameters, such as the noise rms, that cannot be
fully removed by the augmentation scheme currently adopted.
In the other panels of Fig. A.3 we report the same projection
for unlabelled (gray markers) and labelled data, shown with
coloured markers. Interestingly, frames that were labelled as
peculiar or complex (e.g. containing extended/diffuse objects
or artifacts) tend to cluster in specific areas of the projected fea-
ture space, also related with higher noise areas, while ordinary
frames are uniformly spread in the feature space. Other higher
noise areas present in Fig. 3(a) seem related to frames that are
closer to the mosaic edges or having artifacts (see Fig. 3(b)).
We searched for peculiar frames using the Isolation Forest (IF)
(Liu et al., 2018) outlier detection algorithm11. We tuned these

11Isolation Forest is an unsupervised decision-tree-based algorithm for outlier
detection in tabular data, that works by randomly selecting a feature and a
random split value to isolate data points in a binary tree. It identifies outliers
as instances that require fewer splits to be isolated, exploiting the inherent

https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
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IF hyperparameters using the annotated dataset:

• contamination: The proportion of outliers in the data
set. We scanned these values: ’auto’, 0.001, 0.01, 0.1.

• max_samples: The number of samples to draw from the
training data to train each base estimator. We scanned
these values: ’auto’, 0.001, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.

Scans were repeated for different choices of importance ranked
feature sets: top2, top5, top10, and top15. A number of 200
base estimators were used in the tree ensemble. Other IF pa-
rameters were set to defaults. Best classification results were ob-
tained with a smaller fraction of samples (max_samples=0.02)
and contamination=0.001.
We then ran the IF algorithm in an unsupervised way with
tuned parameters and obtained an anomaly score for each
dataset frame. The anomaly score ranges from 0 to 1, with
most anomalous data expected to have values close to 1. In
Fig. 12 (left panel) we report the distribution of IF anomaly
scores of all frames contained in the hulk_emupilot dataset,
shown as a black solid histogram, found over top-10 feature
data. Unclassified frames are shown with a dashed line. The red
filled histogram indicates the labelled peculiar frames. Ordi-
nary frames (e.g. hosting only compact or artifacts) are shown
in blue, pure compact frames in light blue, while complex
frames (e.g. hosting extended or diffuse structures, not labelled
as peculiar) are shown in green. We computed the following
anomaly detection metrics as a function of the applied anomaly
score threshold:

• Recall (R): Fraction of peculiar frames that were correctly
detected by the model above the applied score threshold
out of all frames labelled as peculiar;

• Precision (P): Fraction of frames correctly classified as pe-
culiar, out of all frames the model predicted to be peculiar,
above the applied score threshold;

• Contamination (C): Fraction of non-peculiar frames of a
given label detected above the applied score threshold.

Peculiar frame recall and precision are reported in Fig. 12
(right panel) as a function of the applied anomaly score thresh-
old for top-10 feature data, respectively shown with solid and
dashed red lines. We also computed the precision in classifying
detected frames as either peculiar or complex, shown with a
dotted purple line. The other solid coloured lines indicate the
fraction of unclassified (black line), complex (green line) and
ordinary frames contaminating the selected anomaly sample.
In Table 4 we summarized the metrics obtained for different
feature sets for the anomaly score threshold that provides the
best peculiar recall/precision compromise (e.g. the score at
which recall and precision curves cross in Fig. 12(b)). Best
detection performances (∼60%) are obtained with the top-5
features, but the top-10 feature set currently provides the small-
est contamination fraction of ordinary frames (<3%). When
considering both peculiar and complex frames, the precision
increases to 97%.

rarity of anomalies in a dataset.

5.3 Astronomer-in-the-loop
It is worth to note that the source peculiarity concept is rather
subjective and may depend on the scientific domain of inter-
est. For instance, a fraction of complex frames may well be
considered as truly peculiar in specific analysis, and, on the
other hand, missed peculiar frames may be considered not
as relevant in other contexts. For this reason, an additional
"human-in-the-loop" processing stage has to be applied to our
list of candidate anomalies to create a refined sample that better
fits scientific needs.
For the sake of demonstration, we integrated our dataset in the
astronomaly package12 (Lochner & Bassett, 2021). This al-
lowed us to run an active learning process from a web interface
in which users can personalize and sort the list of anomalous
frames on the basis of the computed score and also their ex-
pressed preferences, such as how peculiar a frame is judged on
a scale of 1 to 5. A screeshot of the astronomaly UI for our
dataset is shown in Fig. A.4.
We plan to integrate in the future the full pipeline (feature
extraction, anomaly detection, active learning loop) as a sup-
ported application within the caesar-rest service13 (Riggi et al.,
2021), and extend the web UI with missing functionalities (e.g.
image filtering/exporting, model importing, configuration
options, etc). In this study, we limited ourselves to primar-
ily quantify the ordinary frame rejection power that can be
currently achieved with self-supervised features, as this will
largely impact the time needed to visually inspect the anomaly
candidates in human-in-the-loop approaches to form the final
anomaly sample.

6. Summary
In this study, we investigated the potential of self-supervised
learning for analysing radio continuum image data produced
by SKA precursors. Specifically, we have used the SimCLR
contrastive learning framework to train deep network mod-
els on large sets of unlabelled images extracted from the
ASKAP EMU pilot and SARAO MeerKAT GPS surveys, ei-
ther randomly selected or centred around catalogued extended
source positions. The trained encoder network, based on the
ResNet18 architecture, was used as a feature extractor and fine-
tuned for three distinct downstream tasks (source detection,
morphology classification, and anomaly detection) over test
datasets comprising thousands of annotated images from other
radio surveys (VLA FIRST, ASKAP Early Science, ATCA
Scorpio surveys). Notably, some of these test datasets were
purposefully created for this work.
All trained models, including both the source code and net-
work weights, have been publicly released. These represent a
first outcome of this work, as they can be viewed as prototy-
pal radio foundational models, available to be used in future
applications for multiple scopes:

• to extract feature parameters from new radio survey images
and perform data inspection, unsupervised classification or

12https://github.com/MichelleLochner/astronomaly
13https://github.com/SKA-INAF/caesar-rest

https://github.com/MichelleLochner/astronomaly 
https://github.com/SKA-INAF/caesar-rest
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outlier detection analysis (as demonstrated in Section 5);
• to serve as pre-trained backbone components of more com-

plex models designed for source classification, detection or
other tasks (e.g. source property characterization), eventu-
ally refined over new labelled datasets (as demonstrated in
Sections 3 and 4).

The analyses we performed in this work attempted to address
various open questions in this field, paving the way for future
analyses:

• Do we observe any advantages stemming from self-
supervised models trained on easily constructed "random"
survey datasets compared to costly-to-compile "source-
centric" datasets?

• How does self-supervised learning on radio data compare
in performance to models pre-trained on extensive non-
radio datasets, such as ImageNet?

• Is it feasible to enhance existing radio source detectors
utilizing deep networks through radio self-supervised pre-
training?

We found that using uncurated large collections of unlabelled
radio images randomly extracted from SKA precursor sur-
veys resulted in significantly improved performances (approxi-
mately 5%) in both radio source detection and classification
tasks, compared to curated (albeit smaller) image samples ex-
tracted around extended source catalogues. This indication,
primarily attributed to the augmented number of accessible
images achievable with uncurated collections, is highly encour-
aging, as it suggests that certain aspects of source analysis can
be enhanced even without investing numerous work months
in catalogue production.
The advantages gained from self-supervised pre-training on
radio data, compared to non-radio data, are notably significant
(exceeding 10%) in both source classification and detection
tasks. However, when contrasting our findings with fully su-
pervised models trained from scratch, we observed that these
benefits are only relevant with small labelled datasets (on the or-
der of a few hundred images). This is certainly a positive aspect,
considering that many available annotated datasets (such as
MiraBest or similar radio galaxy classification datasets) typically
fall within this size range. Nevertheless, in order to observe a
substantial impact on larger datasets, it becomes imperative to
improve both the self-supervised pre-training dataset and the
model itself.
We have identified some areas of developments to be made in
the near future to improve source analysis performance, and
overcome the limitations encountered in this study. Firstly,
we plan to increase the size of our pre-training hulk datasets,
by leveraging the massive amount of unlabelled image data
being delivered by large area surveys, such as ASKAP EMU,
the Very Large Array Sky Survey (VLASS) (Lacy et al., 2020),
or the LOFAR Two-metre Sky Survey (LoTSS) (Shimwell et
al., 2017) surveys. In this context, to reduce the computational
load during training, it is crucial to explore effective and au-
tomated strategies for constructing semi-curated large-scale
pre-training datasets, potentially comprising millions of im-
ages. This step may require the development of specialized

algorithms to filter or weight image frames included in the
pre-training dataset, aiming to maximize the balance between
ordinary and complex objects "seen" by the model.
Additionally, we have already started to train larger architec-
tures and recent state-of-the-art self-supervised frameworks,
particularly those based on Vision Transformers (ViTs), over
the same datasets produced for this study. Results will be
compared against the SimCLR baseline and presented in a
forthcoming paper.
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A. Supplementary plots

(a) 1C-1P (true), 1C-2P (pred), 1C-2P (true corr.) (b) 1C-2P (true), 1C-3P (pred), 1C-3P (true corr.) (c) 1C-3P (true), 1C-2P (pred), 1C-2P (true corr.)

(d) 2C-2P (true), 1C-3P (pred), 2C-3P (true corr.) (e) 2C-3P (true), 3C-3P (pred), 3C-3P (true corr.) (f ) 3C-3P (true), 2C-3P (pred), 2C-3P (true corr.)

Figure A.1. Examples of sources from the RGZ test dataset that were misclassified by the trained source classifier (hulk_smgps pre-trained and frozen
backbone) due to an incorrect true class label provided in the dataset (mislabelling). The true and predicted class labels are reported below each frame. In
many cases, the model indeed correctly predicted the expected true classification (denoted as "true corr." below each frame).
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Figure A.2. Feature importance obtained with a LightGBM classifier trained on hulk_emupilot data representation, for the classification of interesting against
ordinary images.
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(a) Representation vs RMS (b) Ordinary frames

(c) Complex frames (d) Peculiar frames

Figure A.3. Fig. 3(a): 2D UMAP projection of the top-15 selected features from the data representation vector produced by the trained SimCLR model on the
hulk_emupilot dataset as a function of the image noise RMS level in logarithmic scale (z-scale axis). Red markers correspond to image with higher RMS
levels, while blue markers to low noise RMS levels. Left: 2D UMAP projection of the top-15 selected features for unclassified frames (gray markers) and labelled
frames (coloured markers, as reported in the plot legends). See text for details on label schema.
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Figure A.4. Screenshot of astronomaly web UI with list of anomalous frames selected from the hulk_emupilot dataset.
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