
Improving Multi-Instance GPU Efficiency via
Sub-Entry Sharing TLB Design

Bingyao Li†, Yueqi Wang†, Tianyu Wang†, Lieven Eeckhout‡, Jun Yang†, Aamer Jaleel§, Xulong Tang†
University of Pittsburgh†, Ghent University‡, NVIDIA§

Email: †{bil35, yuw249, tiw81, juy9, tax6}@pitt.edu, ‡Lieven.Eeckhout@ugent.be, §ajaleel@nvidia.com

Abstract—NVIDIA’s Multi-Instance GPU (MIG) technology
enables partitioning GPU computing power and memory into
separate hardware instances, providing complete isolation in-
cluding compute resources, caches, and memory. However, prior
work identifies that MIG does not extend to partitioning the
last-level TLB (i.e., L3 TLB), which remains shared among all
instances. To enhance TLB reach, NVIDIA GPUs reorganized
the TLB structure with 16 sub-entries in each L3 TLB entry
that have a one-to-one mapping to the address translations for
16 pages of size 64 KB located within the same 1 MB aligned
range. Our comprehensive investigation of address translation
efficiency in MIG identifies two main issues caused by L3 TLB
sharing interference: (i) it results in performance degradation for
co-running applications, and (ii) TLB sub-entries are not fully
utilized before eviction. Based on this observation, we propose
STAR to improve the utilization of TLB sub-entries through
dynamic sharing of TLB entries across multiple base addresses.
STAR evaluates TLB entries based on their sub-entry utilization
to optimize address translation storage, dynamically adjusting
between a shared and non-shared status to cater to current
demand. We show that STAR improves overall performance by
an average of 30.2% across various multi-tenant workloads.

I. INTRODUCTION

Graphics Processing Units (GPUs) are extensively utilized
in contemporary computing systems to accelerate performance
across various applications. As artificial intelligence/ML mod-
els evolve, GPU manufacturers are continually enhancing the
capabilities of individual GPUs to meet the surging compu-
tational demands [17], [21], [23], [50], [58], [61]. However,
previous research has shown that these advanced applications
still cannot fully exploit the existing GPU computational
resources due to different workloads facing various resource
bottlenecks and exhibiting different sensitivities to different
resources [6], [25], [28], [36], [54], [59].

To address the issue of underutilization, GPU vendors are
evolving to offer GPU resource partitioning capabilities to
enable multiple applications to share the same physical GPU
resources. NVIDIA’s Multi-Instance GPU (MIG) [33] is one
of the prominent GPU-sharing technologies. MIG enables
a single physical GPU to be divided into several isolated
instances, each with their own set of resources, including
streaming multiprocessors (SMs), local memory, and caches.
NVIDIA MIG is designed to offer isolation of resources for
each instance, ensuring performance without interference from
other instances. However, a recent study [60] has indicated that
while MIG effectively partitions most of the memory system, it

does not partition the last-level TLB (i.e., L3 TLB). The shared
L3 TLB allows the TLB to dynamically allocate its entries
based on the demand from various instances, optimizing the
use of the available TLB capacity. On the flip side, TLB shar-
ing also leads to contention among multi-tenant applications.

With the increasingly large data sets and wide memory
footprints of applications, the TLB has become a critical
performance bottleneck [30], [31], [39], [40], [42], [48].
Expanding the TLB size to alleviate this issue is impractical
due to hardware size constraints. In response, NVIDIA’s new
generation GPU (e.g., A100) presents an innovative TLB
architecture to enhance TLB reach. Specifically, in the L2 and
L3 TLBs, an entry comprises 16 sub-entries, each directly
corresponding to the address translation of 16 sequential
64 KB pages within a contiguous 1 MB-aligned segment,
as recently revealed through reverse-engineering [60]. By
compressing multiple translations into a single TLB entry,
the TLB can manage more data with fewer entries, thereby
reducing hardware overhead, while improving TLB efficiency
and boosting overall performance. A sub-entry TLB design
performs well for isolated workloads that use large contiguous
memory, however, in multi-tenant setups where the L3 TLB
is shared, this design can lead to sub-entry underutilization
because interference from co-runners causes frequent evictions
when only a portion of the sub-entries are used.

To understand the impact of L3 TLB contention in a multi-
tenant environment, we co-run representative GPU applica-
tions on an NVIDIA A100 GPU with MIG enabled, see
Figure 1 where each application runs within its own instance
while sharing the L3 TLB. The GPU is partitioned into varying
sizes of instances, including (3g, 2g, 2g) and (3g, 3g), where
‘g’ represents the allocation of computing resources; each
instance runs a single application. Performance is normalized
to each application running alone on its respective instance,
thereby having exclusive access to the L3 TLB. We observe
that L3 TLB contention significantly degrades the performance
of individual applications. This is because high access demand
and interference from co-running applications lead to severe
TLB thrashing. This thrashing extends the reuse distance
of address translations, making translations less likely to be
reused before they are evicted. It also leads to lower sub-entry
utilization at the point of eviction, as the interference from
concurrent requests accelerates TLB eviction (quantitative
results and detailed analysis are given in Section IV).

ar
X

iv
:2

40
4.

18
36

1v
1

 [
cs

.D
C

]
 2

9
A

pr
 2

02
4

0.0
0.2
0.4
0.6
0.8
1.0

M
T

AT
AX

BI
CG M
T

AT
AX ST

CO
NV M
T ST

VG
G

Re
sN
et

Re
sN
ex
t

AT
AX

AT
AX NW NW

De
ns
eN
et

De
ns
eN
et

VG
G

Re
sN
et

3:2:2 3:3

N
or
m
al
iz
ed

pe
rf
or
m
an
ce

Fig. 1. Performance of co-running applications on NVIDIA’s A100.

A large body of prior work focused on improving address
translation efficiency from multiple perspectives, including
contiguity-based range TLBs [24], [27], [39], [57], cluster
TLBs [40], [42], employing large pages [8], [38], [41], and
TLB compression [49], TLB speculation [10]. Many of these
optimizations are designed for single GPU/CPU setups run-
ning one application and are not effectively applicable to
MIG environments with multiple tenants. First, range-TLB,
cluster-TLB, and TLB-compression strategies are optimized
for sequential and stride memory access patterns, commonly
found within individual applications. Co-running applications
often have varied and unpredictable access patterns, making
it challenging for these TLB optimizations to consistently
capture the requested translations efficiently. Second, TLB
speculation relies on the assumption of consistent access
patterns to achieve accurate predictions. Similarly, in scenar-
ios where the L3 TLB is accessed by multiple applications
simultaneously, the interference between applications disrupts
the regularity of memory accesses, significantly diminishing
prediction accuracy. Third, using large pages can increase TLB
reach by reducing the number of TLB entries needed to cover
the same memory range. However, multi-tenant environments
often host a mix of applications with diverse memory access
patterns. While some applications can efficiently leverage large
pages, others with irregular or sparse access patterns may
not observe the same benefits. This variance leaves those
less suited to large pages still facing contention issues. Other
work, for example MASK [9], improves address translation
efficiency in multi-application environments by controlling
warp access to the shared TLB through an epoch- and token-
based scheme. Although this approach is effective at reducing
TLB thrashing, it helps little with TLB sub-entry utilization.

Motivated by these challenges, we systematically investigate
and optimize the address translation in MIG systems. Our
quantitative analysis reveals that contention in the L3 TLB
critically undermines MIG performance, primarily due to low
utilization of TLB sub-entries caused by multi-tenant interfer-
ence. To address this, we propose the Sub-EnTry ShAring-
AwaRe (STAR) TLB, which dynamically allows different
base addresses to share TLB entries. Specifically, instead
of defaulting to Least Recently Used (LRU) eviction upon
receiving a new address translation, our method evaluates
and selects an entry based on its current sub-entry utilization
that satisfies the sharing criteria for inserting the new address
translation. Additionally, our approach can dynamically switch
between a TLB entry’s shared and non-shared states, adapting
to the fluctuating demands of TLB sub-entries. We make the

following contributions:
• We show that a major performance bottleneck in MIG arises

from severe contention in the shared L3 TLB. We provide
a detailed analysis of how multi-tenant interference affects
address translation reuse and TLB sub-entry utilization.

• We propose STAR, a hardware design tailored to mitigate
the negative effects of multi-tenant interference and enhance
overall application performance. STAR enables multiple base
addresses to share the same TLB entry, enhancing sub-entry
utilization. It also dynamically switches between shared and
non-shared states to adapt to varying application demands.

• We show that STAR improves overall performance by an
average of 30.2% across a suite of multi-tenant workloads.
We show that STAR outperforms various TLB design alterna-
tives and is orthogonal to these approaches to achieve further
performance improvement.

II. BACKGROUND

A. Multi-Instance GPU

Modern GPUs, such as NVIDIA’s Ampere and Hopper
generations (e.g., A100 and H100), leverage Multi-Instance
GPU (MIG) technology to enhance resource utilization by
enabling the sharing and partitioning of GPU resources [34],
[35]. MIG technology allows a single GPU to be divided
into multiple GPU partitions, each operating as an indepen-
dent GPU instance with its own dedicated resources. The
partitioning includes SMs and the entire memory system,
including the on-chip crossbar ports, L2 cache banks, memory
controllers, and DRAM address buses, effectively eliminating
performance interference between different applications. Each
GPU instance contains at least one GPU Processing Cluster
(GPC) along with a designated portion of the GPU’s memory.
The current setup of MIG can support up to seven distinct
instances, offering predefined configurations including 1g, 2g,
3g, 4g, and 7g, where ‘g’ indicates a portion of the total
GPU compute resources. For instance, the smallest config-
uration available is 1g.5gb, providing 1/7 of the Streaming
Multiprocessors (SMs) and 5 GB of GPU memory. However,
configurations for 5g and 6g are not available.

The TLB organization in MIG is shown in Figure 2.
Specifically, MIG partitions the L1 and L2 TLBs along with
the GPCs: the L1 TLB is shared between the two SMs within
each Texture Processing Cluster (TPC), and the L2 TLB is
shared across the SMs of a GPC. However, interestingly, prior
work [60] reveals that the L3 TLB in today’s advanced GPUs
(e.g., NVIDIA’s Ampere generations) remains shared across
all instances in MIG-supported GPUs. This sharing indicates
that despite MIG’s comprehensive approach to partitioning,
the last-level TLB still lacks the isolation necessary to prevent
contention across different GPU instances.

B. Address Translation in MIG

Figure 2 also illustrates the address translation process in
MIG. Upon a memory request, the L1 cache is first checked.
The L1 TLB lookups are performed upon an L1 cache miss
(a). If the request misses in the L1 TLB, it first checks the L1

2

v/d VPB

set 0

… …

Sub-entry

set m

way-0
v/d VPB

… …

Sub-entry

…

way-n

= =

Page
offset

TLB
indexVPB

sub-entry
index

Virtual address

…

Hit

L3 TLB

L3 TLB

L2 TLB

SM

L1 TLB

TPC

…
SM SM

L1 TLB

SM

GPC

L2 TLB

SM

L1 TLB

TPC

…
SM SM

L1 TLB

SM

GPC

…

d

b

c

a

e
f

Fig. 2. TLB structure and address translation process in A100.

Miss Status Holding Register (MSHR) to coalesce the same
requests and the outstanding request is sent to the L2 TLB
for lookup (b). Similarly, requests missing in the L2 TLB are
sent to the L3 TLB (c), and requests that miss the L3 TLB are
further sent to the GPU memory management unit (GMMU)
to perform page table walks. If the page table walk fails, a
local page fault is generated and propagated to the host CPU
to resolve. It then initiates the target data transfer and updates
TLBs, caches, and page tables. Finally, the address translation
request is replayed after resolving the page fault.

TLB sub-entries: Traditionally, each TLB entry would di-
rectly map one virtual page to one physical page. This is
a straightforward, one-to-one relationship: each entry in the
TLB represents a single page of memory, as typically done
in L1 TLBs in the latest NVIDIA GPUs (e.g., NVIDIA’s
Ampere generations). However, these GPUs organize their L2
and L3 TLB entries differently to increase TLB reach [60].
Specifically, each of these entries contains 16 sub-entries,
which directly map to the address translations for 16 pages.
These pages can be either 64 KB or 2 MB in size, and all of
them fall within an aligned range of either 1 MB or 32 MB in
size, respectively. That means each sub-entry in a TLB entry
has a one-to-one relationship with a single page. Note that, in
the sub-entry setting, if any TLB entry is evicted, all the 16
sub-entries associated with that TLB entry are zeroed.

Address translation in a sub-entry TLB proceeds as follows.
The virtual address of memory access is partitioned into a
virtual page number (VPN) and a page offset. The lower
bits of the VPN are further divided into a TLB index and
a sub-entry index, and the higher bits of the VPN serve as
the virtual page base (VPB). During a TLB lookup, the TLB
index is first used to identify the corresponding set (d). Then,
the VPB from the virtual address is compared with the VPB
within the set to check for a hit or miss (e). If there is an
entry hit, the process further checks the sub-entry index to

determine if the specific sub-entry is present in the TLB entry
(f). A non-zero sub-entry indicates a TLB hit. Conversely, a
zero sub-entry or no matching VPB results in a TLB miss,
triggering a page table walk. When a valid translation for a
virtual address is found and if this virtual address is within
the range covered by an existing TLB entry, the translation
is added to the appropriate sub-entry slot. If no existing TLB
entry covers this address range, a new entry is created. This
involves evicting the least recently used (LRU) entry along
with zeroing all of its 16 sub-entries. The new translation is
then inserted into the corresponding sub-entry slot of the newly
established TLB entry.

III. METHODOLOGY

A. Baseline Configuration

TABLE I
BASELINE MULTI-INSTANCE GPU CONFIGURATION.

Module Configuration
SM 1 GHz, 108 in total
DRAM 5 GB per slice
L1 D-cache 64 KB, 2-way set associative
L1 I-cache 32 KB, 2-way set associative
L2 cache 2 MB per slice, 8-way set associative
L1 TLB 16 entries, 16-way, 1-cycle lookup latency,

TPC shared, LRU replacement policy
L2 TLB 128 entries, 8-way, 16 sub-entries per entry,

10-cycle lookup latency, GPC shared,
LRU replacement policy

L3 TLB 1024 entries, 8-way, 16 sub-entries per entry,
40-cycle lookup latency, GPU shared,
LRU replacement policy

Page table walk 8 page table walkers, GPC shared,
100-cycle latency per level [44], [45], [52]

Page walk cache 128 entries shared across page table walkers [44]

We use MGPUSim [47] throughout the paper. To model
multi-instance GPU, we substantially modified MGPUSim by
adding (i) different cache, memory, and SM configurations
for different instance sizes, (ii) a shared L3 TLB (with sub-
entries) and sub-entries for the L2 TLB, and (iii) GMMUs for
each instance, including page walk cache, page walk queue,
page table walk thread, and the page table. Note that the exact
latency of a page walk depends on whether it hits the page
walk cache and whether it needs to wait for an available
page walk thread in the page walk queue. These processes
are all faithfully modeled in the simulator. In this paper, we
focus on a GPU partitioned into instances of sizes 3g, 2g,
and 2g. The number of SMs, cache size, and memory size are
partitioned proportionally based on each instance size. Each
instance runs a single application. Our approach also applies
to various combinations of instance sizes and we provide a
sensitivity study with altering instance sizes in Section VI-B.
The baseline configuration is listed in Table I. The page size
is set to 64 KB as the MIG default configuration.

B. Applications

We use 8 applications from the Polybench [43], SHOC [18],
Hetero-Mark [46], AMDAPPSDK [7], Rodinia [16], and DNN
Mark [19] benchmark suites, which are representative real-
world applications. The details of the applications are listed
in Table II. These applications have different computation

3

TABLE II
LIST OF APPLICATIONS.

Abbr. Application Benchmark
Suite

Instruction
Count

L2 TLB
MPKI

Access
Pattern

ATAX
Matrix Transpose and
Vector Multiplication Polybench 328,441,844 204.7 Stream, Stride

BICG
Sub Kernel of BiCG-
Stab Linear Solver Polybench 321,758,896 208.9 Stream, Stride

FFT Fast Fourier Transform SHOC 409,534,464 0.5 Stream, Stride
ST Stencil 2D SHOC 59,289,600 21.9 Stream, Block
FIR Finite Impulse Resp. Hetero-Mark 192,675,840 0.3 Stream
MT Matrix Transpose AMDAPPSDK 9,564,256 205.0 Stride

NW Needleman–Wunsch Rodinia 87,909,120 38.4 Stream,
Dependent

CONV Convolution 2D DNN-Mark 2,629,570,744 1.9 Stream, Stride

TABLE III
MULTI-TENANCY WORKLOADS.

Abbr. Workload Applications Category
W1 workload1 MT, ATAX, BICG HHH
W2 workload2 MT, ATAX, ST HHM
W3 workload3 MT, NW, ST HMM
W4 workload4 MT_s, ST_s, FIR HML
W5 workload5 MT_s, FFT, FIR HLL
W6 workload6 NW, CONV, ST_s MMM
W7 workload7 ST_s, NW, FFT MML
W8 workload8 ST_s, FIR, FFT MLL
W9 workload9 FFT, FFT, FIR LLL

intensities. For example, FFT and CONV are compute-intensive
and heavily use floating-point operations, whereas BICG and
ATAX involve memory-intensive operations. The applications
also cover a wide range of access patterns. Specifically, in the
stream access pattern, data is accessed sequentially, offering
good locality and predictability. In contrast, the stride access
pattern, shown in operations like matrix transpose, involves
accessing data at a constant stride, leading to non-sequential
memory accesses. For example, in MT, accessing elements
column-wise in a row-major stored matrix or vice versa
involves memory accesses with a stride equal to the number of
rows or columns. In the dependent access pattern, certain data
is accessed depending on the computation results of previous
elements, such as in NW, where each cell’s computation in
the scoring matrix depends on the values of its neighboring
cells. In the block access pattern, data is accessed in blocks or
chunks. For example, in ST, data is divided into blocks that
fit into the cache, allowing for efficient computation of the
convolution operation over each block.

To study multi-instance execution, we use the applications
listed in Table II to form multi-application workloads. We also
include applications with their smaller input size (indicated as
ApplicationName_s) to balance the application execution
times within the workload. Table III shows the nine workloads,
each consisting of three applications. The workloads are
formed by analyzing the L3 TLB access intensity of each ap-
plication. Specifically, we measure each application’s misses-
per-kilo-instructions (MPKI) of the address translations at L2
TLB. Applications are then grouped into three categories based
on their L2 TLB MPKI values: Low (L, MPKI<1), Medium
(M , 1<MPKI<100), and High (H , MPKI>100). Accordingly,
workloads are formed representing various combinations of
these categories, including HHH , HHM , HMM , HML,
HLL, MMM , MML, MLL and LLL. Given the possibility

of some applications finishing earlier than others during simul-
taneous execution, we adopt the same strategies as previous
studies to ensure continuous TLB contention [31], [44], [55].
That is, applications that are completed early are re-run until
the completion of the longest-running application within the
workload. The statistical data is gathered only during the initial
complete run of each application within any given workload.

IV. QUANTITATIVE ANALYSIS OF MIG MULTI-TENANCY

A. Overall Performance Characteristics

0

0.5

1

M
T

B
IC

G
A

TA
X

A
ve

.

M
T

A
TA

X ST
A

ve
.

M
T

N
W ST

A
ve

.

M
T_

s
ST

_s FI
R

A
ve

.

M
T_

s
FF

T
FI

R
A

ve
.

N
W

C
2D

ST
_s

A
ve

.

ST
_s N
W

FF
T

A
ve

.

ST
_s FI
R

FF
T

A
ve

.

FF
T

FF
T

FI
R

A
ve

.

W1 W2 W3 W4 W5 W6 W7 W8 W9
HHH HHM HMM HML HLL MMM MML MLL LLL

N
or
m
al
iz
ed

pe
rf
or
m
an
ce

Fig. 3. The normalized performance of each application within the workload.

In a MIG-enabled GPU, it has a key source of contention
under multi-tenant execution, namely the shared L3 TLB.
To quantify the performance impact of interference and con-
tention at the L3 TLB, we study normalized performance
of individual applications within workloads and the average
performance of the nine workloads in Table III as shown in
Figure 3. Specifically, the normalized performance here is the
performance of an application executed in conjunction with
other applications, normalized to the performance of running
alone. The average performance is calculated as the harmonic
mean of normalized performance for all applications within
a workload. Note that, when an application runs alone, it
uses the same instance size but gets exclusive use of the full
L3 TLB capacity. One can make the following observations.
First, L3 TLB contention compromises the performance of
individual applications. In W9, each application experiences a
negligible performance decrement. Conversely, in W1, there is
an average performance drop of 48%. Second, the performance
degradation varies among different applications within the
same workload. This variance is particularly significant in
applications with higher MPKI values. As shown in W7,
where the performance of the FFT, with a low MPKI of
0.5, drops by 6.6%, in contrast to the NW, which suffers a
substantial 36.7% decrease with a medium MPKI of 38.4.
This is because applications with higher MPKI values are
more sensitive to TLB misses due to limited latency hiding
through context switching or other parallel threads. Third, the
performance degradation of the same application can vary
depending on the specific co-runners. Taking ST_s as an
example, its performance drops by 61% in W4 but only by
34% in W8. This is due to the co-running applications having
a higher MPKI in W4 than those in W8, which leads to more
severe L3 TLB contention.

We further investigate the reuse distance of translations for
multi-tenancy. The reuse distance is defined as the unique
translation count between two accesses to the same translation
from the same instance. In multi-tenant execution, we calcu-
late reuse distance considering the application process ID to

4

0.0
0.2
0.4
0.6
0.8
1.0

2^
8

2^
9
2^

10
2^

11
2^

12
2^

13
2^

14
2^

15
2^

16
2^

17
2^

18
2^

19
2^

20
2^

21

MT ST NW
MT-corun ST-corun NW-corun

0.0
0.2
0.4
0.6
0.8
1.0

2^
8

2^
9
2^

10
2^

11
2^

12
2^

13
2^

14
2^

15
2^

16
2^

17
2^

18
2^

19
2^

20
2^

21

C
D

F
MT ATAX ST
MT-corun ATAX-corun ST-corun

0.0
0.2
0.4
0.6
0.8
1.0

2^
8

2^
9

2^
10

2^
11

2^
12

2^
13

2^
14

2^
15

2^
16

2^
17

2^
18

2^
19

2^
20

C
D

F

reuse distance

MT_s ST_s FIR
MT-corun ST-corun FIR-corun

0.0
0.2
0.4
0.6
0.8
1.0

2^
8

2^
9
2^

10
2^

11
2^

12
2^

13
2^

14
2^

15
2^

16
2^

17
2^

18
2^

19
2^

20
2^

21

reuse distance

ST_s NW FFT
ST-corun NW-corun FFT-corun

L3 TLB
capacity miss

W2 W3

W4 W7

Fig. 4. CDF of translation reuse distances at the L3 TLB.

differentiate the reuses from different applications within the
workload mix. Figure 4 presents the Cumulative Distribution
Function (CDF) of the translation reuse distances of four work-
loads with representative MPKI mix, i.e., HHM, HMM, HML,
and MML. For comparison, we also show the reuse distance
for each application running alone, depicted in light dotted
lines. We observe that some applications (e.g., NW, FFT and
FIR) show very different reuse distances when they execute
concurrently with others versus running alone. For example,
in its single-run of NW, 94.2% translation reuses are less than
the L3 TLB capacity (i.e., 16,384 sub-entries), indicating a
higher possibility of these reuses being accommodated within
the TLB. However, in W3, only 32.7% of the reuses in NW are
within the TLB capacity. This is because in W3, ST and MT
have high/medium MPKIs, and they generate a large number
of translation requests to the L3 TLB. Therefore, the reuse
distance of NW is extended. For applications such as ST_s in
W7, its reuse distance shows relatively little change compared
to its isolated run. This is because it generates intensive
translation requests that miss in the L2 TLB and therefore
consume a considerable portion of L3 TLB entries; at the
same time, its co-located application FFT has a lower MPKI,
thereby generating less contention for TLB resources. We also
marked the L3 TLB capacity in the figure. It is observed that
for applications with severe contention (e.g., MT), more than
80% of the translation reuses miss in the L3 TLB.

B. Sub-Entry Utilization Characterization

Recall that, when a TLB entry is evicted, the sub-entries
within the TLB entry are also evicted. This design is beneficial
for scenarios where memory accesses exhibit a contiguous
or linear pattern. In such cases, most sub-entries can be
utilized effectively before any TLB entry is evicted, thereby
maximizing the efficiency of the TLB. However, in situations
where memory access patterns become non-contiguous, par-
ticularly in workloads with sparse or irregular memory access
patterns, some sub-entries might remain unused at the time of
eviction. We therefore study the utilization of sub-entries of
each application when it is evicted. Figure 5 shows the CDF
of sub-entry utilization of all applications listed in Table II
running in isolation. One can observe that applications with
stream access patterns, such as FIR and FFT, tend to make full
use of TLB sub-entries before eviction due to their sequential

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
D

F

of sub-entries occupied

MT BICG ATAX ST NW CONV FIR FFT

FIR, FFT ATAX,
BICG, NW

Fig. 5. CDF of TLB sub-entry utilization when running in isolation.

0.0

0.5

1.0

1 3 5 7 9 11 13 15

C
D

F

MT ST NW
MT-corun ST-corun NW-corun

0.0

0.5

1.0

1 3 5 7 9 11 13 15
of sub-entries occupied

CONV ST_s NW
CONV-corun ST-corun NW-corun

0.0

0.5

1.0

1 3 5 7 9 11 13 15
of sub-entries occupied

FFT1 FFT2 FIR
FFT1-corun FFT2-corun FIR-corun

0.0

0.5

1.0

1 3 5 7 9 11 13 15

MT_s ST_s FIR
MT-corun ST-corun FIR-corun

W1 W2

W3 W4

W6 W9

0.0

0.5

1.0

1 3 5 7 9 11 13 15

MT BICG ATAX
MT-corun BICG-corun ATAX-corun

0.0

0.5

1.0

1 3 5 7 9 11 13 15

MT ATAX ST
MT-corun ATAX-corun ST-corun

Fig. 6. CDF of TLB sub-entry utilization under co-running.

access nature. In contrast, the application MT exhibits low sub-
entry utilization (most TLB entries evicted with only four
sub-entry occupied). This is because MT has stride access
patterns, where accesses do not align well with the contiguous
page mappings of the sub-entries. Moreover, application ST,
which exhibits a block access pattern along with a stream
pattern, shows nearly 50% of the TLB entries are evicted
when only half of the sub-entries are utilized. This is because
of the mixed nature of its memory accesses, i.e., sequential
within blocks but non-contiguous between them. Note that the
memory footprints of applications ATAX, BICG, and NW can
fit in the address coverage range of L3 TLB, therefore no
eviction is observed when they are running alone.

We further analyze the contention and interference impact
on sub-entry utilization when co-running applications. Fig-
ure 6 presents the sub-entry utilization of six workloads with
representative MPKI mix, i.e., HHH, HHM, HMM, HML,
MMM, and LLL. The darker solid lines in the figure represent
the sub-entry utilization of each application when co-running;
we also show the sub-entry utilization when applications run
individually in lighter dot lines. One can make the following
observations. First, all applications within workload categories,
except LLL, show substantially less utilization of sub-entries
when a TLB entry is evicted compared to applications that are
run in isolation. For example, in the application ATAX in W1,
73.4% of its TLB entries are evicted when less than half of the
sub-entries are used, while no evictions during its individual

5

run. Similarly, for application ST in W2, 66.3% of its TLB
entries are evicted with only one sub-entry used, whereas
43.4% of its TLB entries are evicted with fully occupied sub-
entries when run in isolation. More severe underutilization
is observed for workloads with a larger MPKI mix. Second,
the same application has very different utilization in different
workloads. For example, ST_s in W4 has 69.8% of its TLB
entries with just two sub-entries used at the time of eviction.
In contrast, in W6, ST_s shows only 22.5% of its entries
evicted with two sub-entries used. This is because in W4, the
co-running application MT_s has high MPKI, which leads to a
greater number of translation requests to the L3 TLB, causing
ST_s to suffer from more frequent evictions before the sub-
entry is fully utilized due to increased contention.
Does prompting sub-entry to regular TLB entry solve
the problem? A straightforward approach to enhancing sub-
entry utilization would be to convert sub-entries into regular
TLB entries, thus eliminating the 1 MB virtual address range
alignment for each TLB entry and allowing any address to
utilize these sub-entries. However, such an expansion would
result in a significant hardware cost. In the baseline, each
way uses one comparator to match the incoming address with
stored tags. Requests that fall within a specific TLB entry
range directly map to the corresponding sub-entry, simplifying
comparisons. However, allowing any address to use a sub-entry
would require each of the 16 sub-entries in a TLB entry to have
its comparator. Since each TLB entry is associated with 16
sub-entries, this would increase the number of comparators by
16 for each way. We use CACTI [51] to estimate the TLB size:
under this design, the TLB size is 17.2× of the baseline. This
increase is impractical considering the constraints on GPU die
size. Therefore, it is important to explore a more efficient and
cost-effective approach to optimize TLB sub-entry utilization
without excessively increasing its size.

V. SUB-ENTRY SHARING-AWARE TLB

Our goal in this paper is to improve the MIG-enabled GPU
TLB hit rates, thereby boosting the performance of multi-
tenancy execution. While contention for a shared resource is
inevitable in environments where resources are limited, our
analysis in the previous section has revealed opportunities
to mitigate such contention’s ill effects by optimizing the
utilization of TLB sub-entries.

To this end, we propose STAR, a hardware-supported TLB
sub-entry sharing mechanism that allows multiple base ad-
dresses to share a TLB entry of 16 sub-entries dynamically.
Our approach organizes sub-entries into multiple groups, allo-
cating each group to one base address for usage. However,
implementing an effective and efficient dynamic sub-entry
sharing mechanism is non-trivial and faces several challenges.
First, reducing the number of sub-entries allocated to each
base address changes the direct mapping from the original
design. It is important to resolve any resulting conflicts while
maintaining the correctness of address translation lookup.
Second, it is important to select appropriate base addresses for
sharing and determine when to share such that the utilization

Virtual
address

Address
Virtual Page Identify Sub-Entry TLB Page
Base (VPB) Bit (AIB) Index Index Offset

30 bits 1 bit 3 bits 7 bits 16 bits

layout
Physical
Address

v/d VPB bit AIB Space
2 bits Base1: 30 bits

01
1 bit 52 bits …

2 bits Base2: 30 bits …

TLB entry

Sub-Entries

Fig. 7. Format of the virtual address and contents of a sharing-aware TLB
entry in sequential layout.

Virtual
address

layout
Physical
Address

v/d VPB bit AIB Space
2 bits Base1: 30 bits

10
1 bit 52 bits …

2 bits Base2: 30 bits …

TLB entry

Sub-Entries

Address
Virtual Page Sub-Entry Identify TLB Page
Base (VPB) Index Bit (AIB) Index Offset

30 bits 3 bits 1 bit 7 bits 16 bits

Fig. 8. Format of the virtual address and contents of a sharing-aware TLB
entry in stride layout.

can be maximized and minimize the performance impact
compared to the original sub-entry capacity. Third, enabling
sub-entry sharing, the TLB lookup and insertion procedure
should not significantly be increased compared to the baseline.
Finally, the proposed TLB sub-entry sharing should involve
minimum hardware overheads, offering a cost-effective and
scalable alternative to merely enlarging the TLB size.

A. Sub-Entry Sharing-Aware TLB Format

Figure 7 depicts the format of virtual addresses and the
content of a sharing-aware TLB entry. Specifically, the original
4-bit sub-entry index is split into an n-bit sub-entry index and a
(4−n)-bit Address Identify Bit (AIB). The value of n depends
on how many base addresses are sharing one TLB entry. In the
current design, we allow each original TLB entry to support
two base addresses, and each address can occupy eight sub-
entries (i.e., n = 3). This pre-determined value is based on
our characterization analysis presented in Section IV-B, where
we found over half of the TLB entries were evicted while less
than half of their 16 sub-entries were utilized. The shared TLB
entry also needs additional bits to maintain the metadata (e.g.,
valid/dirty bits) for each base address separately. Since each
base address is limited to using 8 sub-entries in our design,
the absence of a direct one-to-one mapping within a 1 MB
alignment could lead to conflicts for sub-entries with identical
index bits. To address this, our approach dictates that if a sub-
entry is already in use and a new request arrives with the same
sub-entry index bit, the new request will replace the existing
one. Consequently, at any given moment when a TLB entry
is shared, only one address translation with a particular sub-
entry index bit can be presented in a TLB entry. The Address
Identifier Bit (AIB) becomes essential here, serving to identify
which address is currently using the sub-entry.

Because of the diverse access patterns exhibited by applica-
tions, e.g., stream versus stride patterns, we introduce a flexible
method that dynamically allocates sub-entries to base ad-

6

dresses based on the usage patterns of sub-entries. Specifically,
for scenarios where sub-entries are occupied sequentially, we
allocate the first half of the sub-entries to the first base address
and the second half to the second base address. In this case,
the last three bits of the sub-entry index are used to identify
positions within each base’s allocated sub-entries. The first bit
of the sub-entry index acts as the Address Identifier Bit (AIB)
(shown in Figure 7). Alternatively, if the occupied sub-entries
show stride access patterns, the sub-entries are interleavedly
allocated between the two base addresses according to the
stride size. In our approach, we pre-defined stride size as 1.
That is, the first base address is assigned to sub-entries with
even indices, whereas the second base address is allocated to
those with odd indices. In this case, the first three bits of the
sub-entry index are used to determine the location of sub-
entries (shown in Figure 8). These sub-entry layout strategies
are recorded in layout-bit (initially set to ‘00’, indicating
non-shared status). When inserting the new base address, the
choice between sequential or stride layout depends on the
current occupancy pattern of sub-entries: a consecutive pattern
triggers the sequential layout (layout bit set to ‘01’), whereas
a non-consecutive pattern activates stride layout (layout bit set
to ‘10’). The layout bit then determines which index bits are
used during a lookup.

Note that choosing between different numbers of shared
base addresses leads to a trade-off between sub-entry uti-
lization and hardware overhead. More shared base addresses
increase sub-entry utilization but require more bits to be
stored in the TLBs and more cycles to compare each base
address. On the other hand, fewer shared base addresses reduce
hardware overhead and lookup latency but lead to lower sub-
entry utilization. We provide sensitivity results with different
numbers of shared base addresses in Section VI-B.

B. TLB Lookup and Insertion Process

When to share? In our sub-entry sharing-aware TLB archi-
tecture, sub-entry sharing is allowed under specific conditions
to optimize utilization. Initially, the TLB works as the default
baseline, with each TLB entry independently managed until
all entries (ways) within the TLB set are allocated. At that
point when a new address arrives, instead of proceeding with
a Least Recently Used (LRU) entry eviction, we first check
how many sub-entries are actually being used in all entries
of that set. An entry is considered eligible for sharing if it
meets the following criteria: (i) less than eight sub-entries are
utilized, and (ii) only one base address is currently occupying
the entry. If multiple entries fit these criteria, we prefer to pair
the incoming base address with an existing entry from the
same process because access patterns within the same process
tend to be similar. If no matching process is found, we choose
the candidate where the current sub-entry utilization is the
lowest. Only if no entries meet these conditions for sharing
do we fall back to the baseline approach of evicting the least
recently used entry and inserting the new one.

STAR also supports dynamic shifts between the shared and
non-share status. The shared TLB entry can still revert to the

v/d

set 0 Base 1 0
1

Base 2

...

0
0

set n

way-0

…

Virtual
address

Hit

AIB

= =

1

2

4
1-bit comparator

VPB

Page
offset

TLB
indexVPB

sub-entry
index

3layout
bit

AIB + physical address space

Fig. 9. TLB lookup process in STAR.

non-shared status. Specifically, when a TLB entry, currently
shared between two base addresses, reaches a state where all 8
sub-entries allocated to one base are fully utilized, it indicates
the potential for an increase in demand for this process. Upon
the arrival of a new request that cannot be accommodated due
to fully utilized sub-entries for its corresponding base address,
the shared TLB entry will be reverted to being exclusively
used by one base with increasing demand. The other base
and its associated sub-entries are evicted from the TLB entry.
The TLB entry status is updated, which involves resetting the
layout bit, the metadata for the second base, and reorganizing
the sub-entries based on the 4-bit sub-entry index.

TLB Lookup: Figure 9 shows the TLB lookup procedure,
which is provided in Algorithm 1. Specifically, when a trans-
lation request arrives at the L3 TLB, it first identifies the
corresponding set. Each entry in that set is compared in paral-
lel with the request’s VPB. Two scenarios can happen. First,
the entry is non-shared with only one base address, indicated
by the layout bit set to ‘00’. The 4-bit sub-entry index is
then used to locate the corresponding sub-entry. Second, if an
entry contains two base addresses, these addresses are checked
sequentially (1 , 2). Upon identifying a matching entry, the
layout bit is checked to determine which bits should be used
to index the corresponding sub-entry (3). If the layout bit
is set to ‘01’, the last three bits of the sub-entry index are
employed to locate the specific sub-entry. On the other hand,
if the layout bit is set to ‘10’, the first three bits will be used.
Once locating the sub-entry, the Address Identify Bit (AIB)
stored in the sub-entry is compared with the request’s AIB
(4). A matching AIB indicates a TLB hit, and the PFN stored
in the sub-entry is concatenated with the page offset to form
the requested physical address. An AIB miss (also TLB miss)
is handled the same way as in the baseline which involves
sending the request to GMMU for a page table walk. Note
that the sequential lookup latency is twice that of the baseline,
and these latency overheads are included in our evaluation.

TLB Insertion: The insertion algorithm is shown in Algo-
rithm 2. When a new address needs to be inserted, the index

7

Algorithm 1: TLB Lookup with Sub-Entry Sharing.
1 /* Lookup () */
2 Request arrives L3 TLB
3 Compare each entry in set with request’s VPB in parallel
4 if non-shared TLB entry then
5 Use 4-bit of sub-entry index
6 if find matched sub-entry then
7 TLB hit, respond with PFN concatenated with page offset
8 else
9 TLB miss, send request to GMMU for page table walk

10 else
11 Check base addresses sequentially
12 if find matched base address then
13 Check layout bit
14 if layout bit equals ‘01’ then
15 Use last three bits of sub-entry index
16 else
17 Use first three bits of sub-entry index

18 Locate sub-entry and compare AIB with request’s AIB
19 if AIB matches then
20 TLB hit
21 else
22 TLB miss

23 else
24 TLB miss

Algorithm 2: TLB Insertion with Sub-Entry Sharing.
1 /* Insert ()*/
2 Find the TLB set for the virtual address.
/* Scenario 1: Base address hit */

3 if address matches an existing base then
4 if entry is shared then
5 Use the layout bit to find the sub-entry.
6 if base’s sub-entries are full then
7 Make entry non-shared.
8 Reset the layout bit.
9 Reorganize sub-entries.

10 else
11 Insert into sub-entry. Evict the original if needed.

12 else
13 Insert translation with 4-bit index.

14 else
/* Scenario 2: Miss all base addresses */

15 if there is an available entry in the set then
16 Insert new base address into first vacant entry

17 else
18 if conditions for sub-entry sharing are met then
19 Check access pattern of sub-entries
20 if sub-entries are continuously occupied then
21 Apply sequential layout; set layout bit to ‘01’
22 else
23 Apply stride layout; set layout bit to ‘10’

24 if sub-entry is already occupied by the original base then
25 Try to relocate the original entry
26 if alternative sub-entry is also occupied then
27 Evict the original entry to accommodate new

translation

28 else
29 Insert new address translation with determined layout

30 else
31 Evict least recently used (LRU) entry and insert new address

bits of the virtual page number are used to determine the set
in the TLB. Two scenarios can happen depending on whether
the address matches an existing base address in the identified
set. In the first scenario, if the base address hits, the following
process depends on the shared status of the TLB entry. For a

non-shared TLB entry (layout bit ‘00’), the address translation
is inserted into its corresponding sub-entry using the complete
4-bit sub-entry index. On the other hand, if the TLB entry
is shared by two base addresses, the layout bit determines
whether the last or first three bits of the index are used to
locate the sub-entry. In a situation where all sub-entries for the
inserted base address are full, it triggers a shift from a shared
to a non-shared status. That is, the metadata and sub-entries
associated with the other shared base address are evicted and
the layout bit is reset to ‘00’. The sub-entries will be relocated
using the 4-bit sub-entry index. Instead, if the sub-entries of
the inserted base address are not full, the incoming translation
is inserted into the sub-entry as indicated by the 3-bit sub-entry
index; if the target location is already occupied, the original
translation is removed.

In the second scenario, it misses all base addresses. If there
is an available entry within the set, the new base address is
inserted into this first vacant entry. Otherwise, the conditions
for sub-entry sharing are evaluated, as previously discussed.
If an entry is selected for sharing with the new base, the
access pattern of the current entry is checked to determine
how to organize the shared sub-entries (i.e., sub-entry lay-
out). Specifically, if the sub-entries are occupied continuously
without any gaps, it is classified as a sequential pattern. For
such cases, the sequential layout will be applied to the sub-
entries, and the layout bit is set to ‘10’ (indicating a sequential
layout). The last three bits of the sub-entry index are used to
assign the address translation to its corresponding sub-entry.
In contrast, if there are empty slots among these sub-entries,
the pattern is identified as stride. The stride layout is then
employed (the layout bit is set to ‘10’), utilizing the first three
bits of the sub-entry index to map the address translation to a
sub-entry. It is important to note that when allocating a new
address translation to a sub-entry, it may happen that the sub-
entry is already in use by the original base address. In such
cases, we will attempt to relocate the original entry to another
sub-entry sharing the same index bits if it is unoccupied. If
this alternative sub-entry is also in use, the original address
translation that initially occupied the chosen sub-entry will be
evicted to accommodate the incoming new address translation.
Note that the insertion into the L3 TLB is off the critical path
and hence does not directly impact performance.

C. Hardware Overhead

In our configuration, the L3 TLB entries are augmented with
additional bits to support the new functionality: a layout bit for
sub-entry indexing layout, and an Address Identify Bit (AIB)
to identify which address currently occupies the sub-entry.
Each TLB entry now comprises two bases, with associated
valid/dirty bits, the virtual page base (VPB), AIB, and physical
address space (PAS). Therefore, the sharing-aware TLB entry
format requires an additional 2 bits (layout bit) + 16 bits (1
bit AIB per sub-entry) + 30 bits (second base address) + 2 bits
(v/d for second base address) = 50 bits per TLB entry. Given
that our L3 TLB design accommodates 1024 entries, and each
entry originally consists of 864 bits (2-bit v/d, 30-bit VPB,

8

and a 52-bit PAS per sub-entry), the introduction of sub-entry
sharing and associated metadata increases the size per entry
to 914 bits. Additionally, our design adds a 1-bit comparator
for each sub-entry to match the AIB. We use CACTI [51] to
estimate the area overhead of our approach. The result shows
1.4% area overhead over the original L3 TLB assuming a
22 nm technology node.

VI. EVALUATION

A. Overall Performance

0.0

0.5

1.0

1.5

2.0

M
T

B
IC

G
A

TA
X

A
ve

.

M
T

A
TA

X ST
A

ve
.

M
T

N
W ST

A
ve

.

M
T_

s
ST

_s FI
R

A
ve

.

M
T_

s
FF

T
FI

R
A

ve
.

N
W

C
2D

ST
_s

A
ve

.

ST
_s N
W

FF
T

A
ve

.

ST
_s FI
R

FF
T

A
ve

.

FF
T

FF
T

FI
R

A
ve

.

W1 W2 W3 W4 W5 W6 W7 W8 W9
HHH HHM HMM HML HLL MMM MML MLL LLL

N
or
m
al
iz
ed

pe
rf
or
m
an
ce

Fig. 10. Normalized performance improvements offered by STAR.

0.0

0.5

1.0

M
T

B
IC

G
A

TA
X

M
T

A
TA

X ST M
T

N
W ST

M
T_

s
ST

_s FI
R

M
T_

s
FF

T
FI

R
N

W
C

2D
ST

_s
ST

_s N
W

FF
T

ST
_s FI
R

FF
T

FF
T

FF
T

FI
R

W1 W2 W3 W4 W5 W6 W7 W8 W9

H
it
ra
te

Baseline STAR

Fig. 11. L3 TLB hit rate of baseline and STAR.

Figure 10 shows the performance improvements of individ-
ual applications within each workload and the harmonic aver-
age performance improvements (represented by the last bar of
each workload) of the multi-tenant workloads. Results are nor-
malized to the baseline multi-tenant execution. Figure 11 plots
the L3 TLB hit rate for each application in each workload.
One can make the following observations from the figures.
First, the proposed STAR improves the performance by up to
51.3%, with an average of 30.2% across all workloads. The
improvement is more significant for workloads that suffer from
severe contention in the L3 TLB (i.e., high MPKI value). For
example, W2 (HHM) achieves 51.3% improvement and W6
(MMM) achieves 23.5% improvement, respectively. This is
because workloads with high MPKI values benefit more from
TLB optimizations as each TLB miss leads to costly page table
walks, directly impacting performance. Our scheme effectively
increases L3 TLB reach by sharing sub-entries, and as a result,
the TLB can accommodate more translations and also capture
a larger fraction of reused translations. Interestingly, FIR
has very low MPKI (0.3) while having 27.1% performance
improvement in W8 (MLL). This is because a large number
of pending requests are coalesced to the same TLB miss
in L2 MSHR. Reducing handling TLB misses latency can
significantly benefit the whole execution.

Second, the performance benefits come mainly from the
enhanced L3 TLB hit rates through sub-entry sharing. On
average, STAR improves L3 TLB hit rate by 28.8% across
all workloads. For example, the L3 TLB hit rate of ST
in W2 improves by 52%, which translates into a 52.7%
performance improvement. The improved TLB hit rate also

0.0

0.5

1.0

1 3 5 7 9 11 13 15
0.0

0.5

1.0

1 3 5 7 9 11 13 15

Baseline STAR

0.0

0.5

1.0

1 3 5 7 9 11 13 15

0.0

0.5

1.0

1 3 5 7 9 11 13 15

C
D

F

0.0

0.5

1.0

1 3 5 7 9 11 13 15
0.0

0.5

1.0

1 3 5 7 9 11 13 15

0.0

0.5

1.0

1 3 5 7 9 11 13 15
0.0

0.5

1.0

1 3 5 7 9 11 13 15
0.0

0.5

1.0

1 3 5 7 9 11 13 15

W1 W2 W3

W4 W5 W6

W7 W8 W9

Fig. 12. CDF of sub-entry utilization of STAR.

indicates an extended TLB reach, effectively reducing the
number of (expensive) page table walks.

Third, the performance improvement of the same applica-
tion is different in different workloads. For example, MT_s
achieves a substantial 55% performance improvement in W5
versus 35% in W4. This variance can be attributed to how
the other applications within these workloads interact with
each other. In W5, the stride access patterns of the co-located
application FFT result in low sub-entry utilization under the
baseline scenario. When STAR is applied, MT_s is able to
dynamically share the sub-entries that would otherwise remain
underutilized by FFT. Since the latter applications do not
fully utilize their allocated sub-entries, sharing them with
MT_s brings little to no detriment to their performance, hence
the significant improvement for MT_s. Conversely, in W4,
applications such as ST_s and FIR make more efficient use
of their allocated sub-entries, leaving fewer opportunities for
MT_s to benefit from sharing.

Finally, our approach does not comprise the performance of
any shared applications within the workload. This is because
our approach can dynamically shift between shared and non-
shared status based on the application demand. When an
application has a higher demand for sub-entries, our approach
allows for exclusive access to all sub-entries, the same as the
baseline scenario, thus maintaining performance integrity.

We further demonstrate the effectiveness of our approach by
plotting sub-entry utilization, as shown in Figure 12. We ob-
serve that STAR consistently achieves higher utilization rates
than the baseline, as indicated by the curves of STAR lying
closer to the bottom right compared to the baseline, indicating
a larger proportion of TLB entries with higher sub-entry
utilization. We calculate the average utilization by summing
up the product of the utilization fraction and the number
of occurrences for each eviction and dividing by the total
number of evictions. Our approach achieves on average 31.4%
improvement in sub-entry utilization over the baseline.

B. Sensitivity Analyses

Different number of shared base addresses: In our dis-
cussion so far, up to two base addresses can share the same

9

0.0

0.5

1.0

1.5

M
T

B
IC

G
A

T
A

X
A

v
e

.

M
T

A
T

A
X

S
T

A
v
e

.

M
T

N
W S
T

A
v
e

.

M
T

_
s

S
T

_
s

F
IR

A
v
e

.

M
T

_
s

F
F

T
F

IR
A

v
e

.

N
W

C
2
D

S
T

_
s

A
v
e

.

S
T

_
s

N
W

F
F

T
A

v
e

.

S
T

_
s

F
IR

F
F

T
A

v
e

.

F
F

T
F

F
T

F
IR

A
v
e

.

W1 W2 W3 W4 W5 W6 W7 W8 W9

HHH HHM HMM HML HLL MMM MML MLL LLL

N
o

rm
a

li
z
e

d
p

e
rf

o
rm

a
n

c
e

Fig. 13. STAR with a 4-base sharing TLB.

TLB entry. We now explore the option of having more base
addresses sharing the same entry (i.e., up to 4 base addresses).
That is, we allow scenarios where a TLB entry is used by one,
two and four base addresses. The 4-base sharing mechanism
works as follows. For entries with one or two base addresses,
the process remains identical to our initial design. If an entry
already has two base addresses and each utilizes fewer than
four sub-entries, we enable sharing among four base addresses
within that entry. To facilitate the varied sharing configurations
(1, 2 or 4 base addresses), we introduce a 3-bit layout indicator.
The initial state ‘000’ indicates no sharing, with the last
two bits specifying the sub-entry layout strategy. When the
entry is shared, the last two bits deviate from ‘00’ as in our
initial design, and the first bit indicates the current number
of shared base addresses in the entry. For example, ‘001’
indicates two bases sharing with a sequential layout, while
‘110’ represents four bases sharing with a stride layout. Our
design also incorporates the ability to dynamically transition
between non-shared, 2-base address shared, and 4-base address
shared states within the TLB. When a base address exhibits an
increased demand for sub-entries, and if the entry is currently
shared by four bases, we reduce the sharing to two bases, and
further one base to accommodate the demand.

Figure 13 shows the performance of 4-base sharing nor-
malized to baseline execution. On average, 4-base sharing
improves performance by 22.4% over the baseline. However,
it experiences a 7.8% performance reduction when compared
to 2-base sharing. This is because, 4-base sharing, while
enhancing utilization, introduces a trade-off by increasing
address conflict evictions. Specifically, four addresses are allo-
cated to share a single sub-entry (compared to two addresses
sharing one sub-entry in the initial design), the address conflict
evictions increase, which potentially reduces the TLB hit rate.
Moreover, the lookup process requires up to four sequential
operations in 4-base sharing, further exacerbating the lookup
latency. We also evaluate the hardware overhead of the 4-
base sharing approach with CACTI, and it shows a 3.6% area
overhead compared to the baseline.
Different instance sizes: We use the applications in Table II
to form multi-tenant workloads with different numbers of
applications, including five workloads with four applications
each, one workload with five applications, and one with six
applications, as listed in Table IV. The whole GPU is parti-
tioned into different instance sizes depending on the number
of co-running applications, with each instance running one
application. Specifically, in W10-W14 (4-application work-
load), the GPU is divided into 2+2+2+1; in W15, it is divided
into 2+2+1+1+1; and in W16, it is 2+1+1+1+1+1. Figure 14

TABLE IV
MULTI-TENANCY WORKLOADS WITH 4, 5 AND 6 APPLICATIONS.
Abbr. Workload Applications Category
W10 workload10 MT, MT, ATAX, BICG HHHH
W11 workload11 MT, ATAX, ST, NW HHMM
W12 workload12 MT, BICG, FFT, FIR HHLL
W13 workload13 CONV, NW, ST, ST MMMM
W14 workload14 CONV, NW, FFT, FIR MMLL
W15 workload15 MT, ATAX, ST, NW, FFT HHMML
W16 workload16 MT, ATAX, BICG, ST, NW, FFT HHHMML

0.0

0.5

1.0

1.5

M
T

M
T

A
TA

X
B

IC
G

A
ve

.

M
T

A
TA

X ST N
W

A
ve

.

M
T

B
IC

G
FF

T
FI

R
A

ve
.

C
O

N
V

N
W ST ST

A
ve

.

C
O

N
V

N
W

FF
T

FI
R

A
ve

.

M
T

A
TA

X ST N
W

FF
T

A
ve

.

M
T

A
TA

X
B

IC
G ST N
W

FF
T

A
ve

.

W10 W11 W12 W13 W14 W15 W16
HHHH HHMM HHLL MMMM MMLL HHMML HHHMML

N
or
m
al
iz
ed

pe
rf
or
m
an
ce

Fig. 14. STAR with different instance sizes.

reports normalized performance for STAR. First, our approach
is able to deliver scalable performance improvements with
different instance sizes, achieving 14.6%, 15.3%, and 12.1%
performance improvement in 4-, 5- and 6-application work-
loads, respectively. Second, the performance improvement is
reduced as the number of co-running applications increases.
This is because, first, the decrease in instance size leads to
a corresponding reduction in L2 TLB size, which in turn
increases the number of requests directed to the L3 TLB.
Second, the increase in the number of co-running applications
intensifies the competition for the limited number of L3 TLB
entries which also impacts performance.

C. Comparison to TLB Alternatives

0.0

0.5

1.0

1.5

W1 W2 W3 W4 W5 W6 W7 W8 W9 Ave.

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Half-Sub-Double-Set Half-Sub-Double-Way-Seq
Half-Sub-Double-Way-Para STAR

Fig. 15. Comparison of different TLB designs.

We compare STAR with three TLB design alternatives,
which feature 8 sub-entries per TLB entry while doubling the
number of ways or sets to keep total TLB capacity constant
relative to the baseline. The TLB entries are exclusively used
by one base address. Specifically, we consider (i) Half-Sub-
Double-Set: 256 sets, 8 ways, and 8 sub-entries per entry;
(ii) Half-Sub-Double-Way-Para: 128 sets, 16 ways, and 8 sub-
entries per entry — here we increase the number of compara-
tors with the number of ways such that all ways are compared
in parallel within a set; this approach significantly increases
hardware overheads; and (iii) Half-Sub-Double-Way-Seq: 128
sets, 16 ways, and 8 sub-entries per entry — we keep the same
number of comparators as the baseline to avoid significant
hardware overheads, such that two ways within a set are
checked sequentially. We compare the hardware overhead of
these alternatives using CACTI: both Half-Sub-Double-Set and
Half-Sub-Double-Way-Seq maintain overheads comparable to

10

the baseline with a 1.1% area increment; while Half-Sub-
Double-Way-Para incurs a significant 78.8% area increment
due to the increased number of comparators.

Figure 15 reports performance for each alternative compared
to STAR. All results are normalized to the baseline multi-
tenant execution. One can make the following observations.
First, STAR achieves the highest performance improvement
among all alternatives. Specifically, our approach achieves
a 21.6%, 23.2% and 17.4% performance improvement over
Half-Sub-Double-Set, Half-Sub-Double-Way-Seq, and Half-
Sub-Double-Way-Para, respectively. Second, halving the num-
ber of sub-entries statically to 8 incurs a performance degra-
dation. For example, in W7, the performance of Half-Sub-
Double-Way-Para drops by 26.7% compared to the baseline.
This is because, in the baseline TLB design with 16 sub-
entries, a hit in any of the 16 sub-entries reduces the chance of
the TLB entry being evicted by the LRU scheme, potentially
keeping it in the TLB longer, benefiting other accesses to
one of the 16 sub-entries. This especially benefits the access
patterns with good spatial locality, where multiple accesses
are closely within a contiguous memory (e.g., ST). In contrast,
reducing the number of sub-entries to 8 weakens the capability
to exploit spatial locality (i.e., each hit now only benefits 8
sub-entries, compared to 16 in the baseline). Our approach
dynamically alternates between a shared and non-shared TLB
status, effectively enhancing the TLB sub-entry utilization
while maintaining the efficiency of spatial locality accesses.

D. Comparison to Static TLB Partitioning

0.0

0.5

1.0

W1 W2 W3 W4 W5 W6 W7 W8 W9 Ave.

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Static partition Static partition+STAR

Fig. 16. Comparison to static partition.

One straightforward solution to mitigate contention is to
statically partition the L3 TLB. In this approach, we statically
partition the L3 TLB ways based on instance sizes (i.e., 4-
way, 2-way, 2-way for each instance). Figure 16 plots the
performance of the static partition normalized to the baseline
shared L3 TLB. We observe an average 7.9% performance
degradation due to static partitioning. Workloads combining
applications with mixed MPKI values, particularly those in-
cluding at least one high/medium-MPKI application (such as
in W5, W7, and W8) suffer from a more severe performance
drop. This is because static partitioning restricts the number of
TLB entries available to high/medium-MPKI applications, thus
reducing the ability of applications to accommodate increasing
demands by taking up entries from others. STAR is also
adaptable to scenarios with static partitioning, enabling two
base addresses within the same instance or process to share
a single TLB entry. Figure 16 also shows the performance
of our approach on top of the static partitioning. The re-
sults are normalized to the baseline TLB sharing execution.

STAR+static partitioning achieves an average of 14.2% per-
formance improvement over static partitioning alone. This is
because our approach is able to further optimize sub-entry
utilization within individual processes, effectively increasing
the TLB hit rate and enhancing overall performance.

E. Comparison with State-of-the-Art

0.0

0.5

1.0

W1 W2 W3 W4 W5 W6 W7 W8 W9 Ave.

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Fig. 17. Combined with MASK [9].
The previous work MASK [9] addressed shared TLB con-

tention in multi-application environments using TLB-Fill To-
kens to manage how many warps can fill the shared TLB, and
adjusted the TLB entries allocated to each application based on
its L2 TLB miss rate, thus reducing thrashing. It also features
a TLB bypass cache for entries from warps with insufficient
tokens. Although MASK effectively manages TLB contention
through dynamic partitioning, it lacks optimizations at the
sub-entry level. This suggests that STAR is complementary
to MASK. Figure 17 shows the performance improvement
of MASK+STAR normalized to MASK. We note an average
17.6% performance improvement over MASK. This demon-
strates that STAR can work with TLB dynamic partitioning
optimizations, bringing additional performance benefits.

VII. RELATED WORK

Substantial prior studies have focused on address translation
optimizations to improve system performance [5], [10], [11],
[15], [26], [31], [39], [40]. Several previous studies [10], [41]
enhanced TLB hit rates by employing speculative techniques
to predict the translations that miss in the TLBs. Many studies
have delved into methods designed for enhancing page man-
agement to optimize the address translation process [2]–[4],
[29], [30], [32], [53], [56]. An alternate set of techniques [12],
[22], [24] improved the TLB reach by generating contiguous
translations. Research proposals also suggested an alternative
memory management unit (MMU) cache structures, to cache
multiple levels of the page tables [11], [14]. Additionally, the
research community has explored approaches to increase TLB
performance by using large pages and improving super-page
management [20], [37]. Bharadwaj et al. [13] co-designed
distributed TLBs with a lightweight interconnect to realize
scalable shared L2 TLBs. Li et al. [31] optimized address
translation in multi-GPUs through sharing and spilling aware
TLB design. Achermann et al. [1] proposed Mitosis, a hard-
ware optimization to reduce address translation overheads by
eagerly keeping page tables local through replication and
migration. Compared to all the prior efforts, our research
pioneers the optimization of MIG-enabled GPUs by innova-
tively addressing TLB thrashing and implementing a sharing
mechanism for advanced TLB sub-entry designs.

11

VIII. CONCLUSION

In this paper targeting multi-instance GPUs, we comprehen-
sively study the address translation efficiency in multi-tenant
execution. Our investigation reveals that shared L3 TLB con-
tention significantly impacts performance by increasing TLB
thrashing and reducing the utilization of TLB sub-entries. To
address this problem, we propose STAR that enables dynamic
sharing of TLB entries among different base addresses. Exper-
imental results demonstrate that STAR substantially enhances
performance, delivering an average improvement of 30.2%
across a variety of multi-tenant workloads.

REFERENCES

[1] R. Achermann, A. Panwar, A. Bhattacharjee, T. Roscoe, and J. Gandhi,
“Mitosis: Transparently self-replicating page-tables for large-memory
machines,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 283–300.

[2] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch,
“Unlocking bandwidth for GPUs in CC-NUMA systems,” in 2015
IEEE 21st International Symposium on High Performance Computer
Architecture, Feb 2015, pp. 354–365.

[3] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W. Keck-
ler, “Page placement strategies for GPUs within heterogeneous memory
systems,” in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2015, pp. 607–618.

[4] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent
page management for two-tiered main memory,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, 2017, pp. 631–644.

[5] H. Alam, T. Zhang, M. Erez, and Y. Etsion, “Do-it-yourself virtual
memory translation,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, 2017, pp. 457–468.

[6] H. AlJahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau, and J. Xu,
“Multi-tenancy in cloud computing,” in 2014 IEEE 8th International
Symposium on Service Oriented System Engineering, 2014, pp. 344–
351.

[7] AMD. (2015) AMD APP SDK OpenCL Optimization Guide.
[8] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi,

C. J. Rossbach, and O. Mutlu, “Mosaic: A GPU memory manager
with application-transparent support for multiple page sizes,” in 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture,
2017, pp. 136–150.

[9] R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose, J. Gandhi, A. Jog,
C. J. Rossbach, and O. Mutlu, “MASK: Redesigning the GPU memory
hierarchy to support multi-application concurrency,” in Proceedings of
the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018, pp. 503–518.

[10] T. W. Barr, A. L. Cox, and S. Rixner, “SpecTLB: A mechanism
for speculative address translation,” in 2011 38th Annual International
Symposium on Computer Architecture, 2011, pp. 307–317.

[11] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: Skip, don’t
walk (the page table),” in Proceedings of the 37th Annual International
Symposium on Computer Architecture, 2010, pp. 48–59.

[12] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, 2013, pp.
237–248.

[13] S. Bharadwaj, G. Cox, T. Krishna, and A. Bhattacharjee, “Scalable
distributed last-level TLBs using low-latency interconnects,” in 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture,
2018, pp. 271–284.

[14] A. Bhattacharjee, “Large-reach memory management unit caches,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, 2013, pp. 383–394.

[15] A. Bhattacharjee, “Translation-triggered prefetching,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, 2017, pp. 63–76.

[16] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization,
2009, pp. 44–54.

[17] Y. Dai, Y. Zhang, and X. Tang, “CEGMA: Coordinated elastic graph
matching acceleration for graph matching networks,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture,
2023, pp. 584–597.

[18] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in GPGPU-3: Proceedings of the
3rd Workshop on General-Purpose Computation on Graphics Processing
Units, 2010, p. 63–74.

[19] S. Dong and D. Kaeli, “Dnnmark: A deep neural network benchmark
suite for gpus,” in Proceedings of the General Purpose GPUs, 2017, pp.
63–72.

[20] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem, “Supporting
superpages in non-contiguous physical memory,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture,
2015, pp. 223–234.

[21] S. Feng, S. Pal, Y. Yang, and R. G. Dreslinski, “Parallelism analysis
of prominent desktop applications: An 18-year perspective,” in 2019
IEEE International Symposium on Performance Analysis of Systems and
Software, 2019, pp. 202–211.

[22] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient memory
virtualization: Reducing dimensionality of nested page walks,” in 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture,
2014, pp. 178–189.

[23] Ian King. (2017) Chipmakers Nvidia, AMD
Ride Cryptocurrency Wave—for Now. [Online].
Available: www.bloomberg.com/news/articles/2017-07-17/chipmakers-
nvidia-amd-ride-cryptocurrency-wave-for-now.

[24] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant memory
mappings for fast access to large memories,” in Proceedings of the 42Nd
Annual International Symposium on Computer Architecture, 2015, pp.
66–78.

[25] Y. Kim, Y. Choi, and M. Rhu, “Paris and elsa: An elastic scheduling
algorithm for reconfigurable multi-gpu inference servers,” in Proceed-
ings of the 59th ACM/IEEE Design Automation Conference, 2022, pp.
607–612.

[26] M. K. Kumar, S. Maass, S. Kashyap, J. Veselý, Z. Yan, T. Kim,
A. Bhattacharjee, and T. Krishna, “Latr: Lazy translation coherence,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2018, pp. 651–664.

[27] J. Lee, J. M. Lee, Y. Oh, W. J. Song, and W. W. Ro, “SnakeByte: A
TLB design with adaptive and recursive page merging in GPUs,” in
2023 IEEE International Symposium on High-Performance Computer
Architecture, 2023, pp. 1195–1207.

[28] B. Li, T. Patel, S. Samsi, V. Gadepally, and D. Tiwari, “Miso: exploit-
ing multi-instance GPU capability on multi-tenant GPU clusters,” in
Proceedings of the 13th Symposium on Cloud Computing, 2022, pp.
173–189.

[29] B. Li, Y. Guo, Y. Wang, A. Jaleel, J. Yang, and X. Tang, “IDYLL:
Enhancing page translation in multi-gpus via light weight PTE inval-
idations,” in Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, 2023, pp. 1163–1177.

[30] B. Li, J. Yin, A. Holey, Y. Zhang, J. Yang, and X. Tang, “Trans-FW:
Short Circuiting Page Table Walk in Multi-GPU Systems via Remote
Forwarding,” in Proceedings of the 29th International Symposium on
High-Performance Computer Architecture, 2023.

[31] B. Li, J. Yin, Y. Zhang, and X. Tang, “Improving address translation in
multi-GPUs via sharing and spilling aware TLB design,” in Proceedings
of the 54th Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2021, pp. 1154–1168.

[32] J. Marathe and F. Mueller, “Hardware profile-guided automatic page
placement for ccNUMA systems,” in Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, 2006, pp. 90–99.

[33] NVIDIA, “NVIDIA Driver Documentation - NVIDIA Multi-Instance
GPU User Guide,” 2023. [Online]. Available: https://docs.nvidia.com/
datacenter/tesla/mig-user-guide/

[34] NVIDIA Corp. (2020) NVIDIA A100 Tensor Core GPU Architecture.
[Online]. Available: https://images.nvidia.cn/aem-dam/en-zz/Solutions/
data-center/nvidia-ampere-architecture-whitepaper.pdf

12

www.bloomberg.com/news/articles/2017-07-17/chipmakers-nvidia-amd-ride-cryptocurrency-wave-for-now.
www.bloomberg.com/news/articles/2017-07-17/chipmakers-nvidia-amd-ride-cryptocurrency-wave-for-now.
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

[35] NVIDIA Corp. (2022) NVIDIA H100 Tensor Core GPU Architecture.
[Online]. Available: https://resources.nvidia.com/en-us-tensor-core

[36] I. Odun-Ayo, S. Misra, O. Abayomi-Alli, and O. Ajayi, “Cloud multi-
tenancy: Issues and developments,” in Companion Proceedings of
The10th International Conference on Utility and Cloud Computing,
2017, p. 209–214.

[37] A. Panwar, A. Prasad, and K. Gopinath, “Making huge pages actually
useful,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2018, pp. 679–692.

[38] M. Parasar, A. Bhattacharjee, and T. Krishna, “SEESAW: Using su-
perpages to improve VIPT caches,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture, 2018, pp. 193–206.

[39] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid TLB coalescing:
Improving TLB translation coverage under diverse fragmented memory
allocations,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture, 2017, pp. 444–456.

[40] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing tlb
reach by exploiting clustering in page translations,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture,
2014, pp. 558–567.

[41] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee, “Large pages
and lightweight memory management in virtualized environments: Can
you have it both ways?” in Proceedings of the 48th Annual IEEE/ACM
International Symposium on Microarchitecture, 2015, pp. 1–12.

[42] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT: Coa-
lesced large-reach TLBs,” in Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture, 2012, p. 258–269.

[43] Pouchet L-N, Grauer-Gray S. (2010) Polybench: The polyhedral
benchmark suite. [Online]. Available: https://web.cse.ohio-state.edu/
∼pouchet.2/software/polybench/

[44] B. Pratheek, N. Jawalkar, and A. Basu, “Improving GPU multi-tenancy
with page walk stealing,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture, 2021, pp. 626–639.

[45] S. Shin, G. Cox, M. Oskin, G. H. Loh, Y. Solihin, A. Bhattacharjee, and
A. Basu, “Scheduling page table walks for irregular GPU applications,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture, 2018, pp. 180–192.

[46] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mc-
cardwell, A. Villegas, and D. Kaeli, “Hetero-mark, a benchmark suite
for CPU-GPU collaborative computing,” in 2016 IEEE International
Symposium on Workload Characterization, 2016, pp. 1–10.

[47] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K. Ziabari,
Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and D. Kaeli,
“MGPUSim: Enabling multi-GPU performance modeling and optimiza-
tion,” in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, p. 197–209.

[48] M. Talluri and M. D. Hill, “Surpassing the TLB performance of
superpages with less operating system support,” ACM SIGPLAN Notices,
vol. 29, no. 11, pp. 171–182, 1994.

[49] X. Tang, Z. Zhang, W. Xu, M. T. Kandemir, R. Melhem, and J. Yang,
“Enhancing address translations in throughput processors via compres-
sion,” in Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques, 2020, p. 191–204.

[50] Tech Power Up. (2017) ETH Mining: Lower VRAM GPUs
to be Rendered Unprofitable in Time. [Online]. Avail-
able: www.techpowerup.com/234482/eth-mining-lower-vram-gpus-to-
be-rendered-unprofitable-in-time

[51] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P.
Jouppi, “A comprehensive memory modeling tool and its application
to the design and analysis of future memory hierarchies,” in 2008
International Symposium on Computer Architecture, 2008, pp. 51–62.

[52] J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee,
“Observations and opportunities in architecting shared virtual memory
for heterogeneous systems,” in 2016 IEEE International Symposium on
Performance Analysis of Systems and Software, 2016, pp. 161–171.

[53] Y. Wang, B. Li, A. Jaleel, J. Yang, and X. Tang, “GRIT: Enhancing
multi-GPU performance with fine-grained dynamic page placement,” in
2024 IEEE International Symposium on High-Performance Computer
Architecture, 2024, pp. 1080–1094.

[54] K. Wood and M. Anderson, “Understanding the complexity surrounding
multitenancy in cloud computing,” in 2011 IEEE 8th International
Conference on e-Business Engineering, 2011, pp. 119–124.

[55] Y. Xie and G. H. Loh, “Pipp: Promotion/insertion pseudo-partitioning
of multi-core shared caches,” in Proceedings of the 36th Annual Inter-
national Symposium on Computer Architecture, 2009, p. 174–183.

[56] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble page
management for tiered memory systems,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2019, pp. 331–345.

[57] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Translation ranger:
Operating system support for contiguity-aware TLBs,” in Proceedings
of the 46th International Symposium on Computer Architecture, 2019,
pp. 698–710.

[58] J. Yi and Y. Lee, “Heimdall: Mobile GPU coordination platform for
augmented reality applications,” in Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking, 2020,
pp. 1–14.

[59] F. Yu, S. Bray, D. Wang, L. Shangguan, X. Tang, C. Liu, and X. Chen,
“Automated runtime-aware scheduling for multi-tenant DNN inference
on GPU,” in 2021 IEEE/ACM International Conference On Computer
Aided Design, 2021, pp. 1–9.

[60] Z. Zhang, T. Allen, F. Yao, X. Gao, and R. Ge, “Tunnels for boot-
legging: Fully reverse-engineering GPU TLBs for challenging isolation
guarantees of NVIDIA MIG,” in Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, 2023, pp. 960–
974.

[61] S. Zhao, H. Zhang, C. S. Mishra, S. Bhuyan, Z. Ying, M. T. Kandemir,
A. Sivasubramaniam, and C. Das, “Holoar: On-the-fly optimization of
3d holographic processing for augmented reality,” in Prodeedings of the
54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021, pp. 494–506.

13

https://resources.nvidia.com/en-us-tensor-core
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
www.techpowerup.com/234482/eth-mining-lower-vram-gpus-to-be-rendered-unprofitable-in-time
www.techpowerup.com/234482/eth-mining-lower-vram-gpus-to-be-rendered-unprofitable-in-time

	Introduction
	Background
	 Multi-Instance GPU
	Address Translation in MIG

	Methodology
	Baseline Configuration
	Applications

	Quantitative Analysis of MIG Multi-Tenancy
	Overall Performance Characteristics
	Sub-Entry Utilization Characterization

	Sub-Entry Sharing-Aware TLB
	Sub-Entry Sharing-Aware TLB Format
	TLB Lookup and Insertion Process
	Hardware Overhead

	Evaluation
	Overall Performance
	Sensitivity Analyses
	Comparison to TLB Alternatives
	Comparison to Static TLB Partitioning
	Comparison with State-of-the-Art

	Related Work
	Conclusion
	References

