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Abstract

HyperLTL model-checking enables the automated verification of information-flow properties for se-
curity-critical systems. However, it only provides a binary answer. Here, we introduce two paradigms to
compute counterexamples and explanations for HyperLTL model-checking, thereby considerably increas-
ing its usefulness. Both paradigms are based on the maxim “counterexamples/explanations are Skolem
functions for the existentially quantified trace variables”.

Our first paradigm is complete (everything can be explained), but restricted to ultimately periodic
system traces. The second paradigm works with (Turing machine) computable Skolem functions and is
therefore much more general, but also shown incomplete (not everything can computably be explained).
Finally, we prove that it is decidable whether a given finite transition system and a formula have com-
putable Skolem functions witnessing that the system satisfies the formula. Our algorithm also computes
transducers implementing computable Skolem functions, if they exist.

1 Introduction

Prologue. Tracy sits in her office and needs to print her latest travel reimbursement claim. After
hitting the print button, she walks to the printer room only to find out that the document has not been
printed. So, she walks back to her office, hits the print button again, walks to the printer and is slightly
surprized to find her document. Sometimes Tracy wonders whether the print system is nondeterministic. If
only there was a way to find out.

Information-flow properties, which are crucial in the specification of security-critical systems, require
the simultaneous reasoning about multiple executions of a system. However, most classical specification
languages like LTL and CTL∗ refer to a single execution trace at a time. Clarkson and Schneider [10] coined
the term hyperproperties for properties that require the reasoning about multiple traces. Just like ordinary
trace and branching-time properties, hyperproperties can be specified using temporal logics, e.g., Hyper-
LTL and HyperCTL∗ [9], expressive, but intuitive specification languages that are able to express typical
information-flow properties such as noninterference, noninference, declassification, and input determinism.
Due to their practical relevance and theoretical elegance, hyperproperties and their specification languages
have received considerable attention during the last decade.

HyperLTL is obtained by extending LTL [28], the most influential specification language for linear-time
properties, by trace quantifiers to refer to multiple executions of a system. Hence, a HyperLTL formula
is indeed evaluated over a set of traces, which forms the universe for the quantifiers. For example, the
HyperLTL formula ϕid = ∀π, π′. G(iπ ↔ iπ′) → G(oπ ↔ oπ′) expresses input determinism, i.e., every
pair of traces that always has the same input (represented by the proposition i) also always has the same
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output (represented by the proposition o). Having learned about HyperLTL, Tracy wonders whether she
can formally prove that the print system violates ϕid.

In this work, we focus on the model-checking problem for HyperLTL, which intuitively asks whether a
given (finite model of a) system satisfies a given HyperLTL specification. This problem is decidable, albeit
Tower-complete [30, 27].

But the model-checking problem as described above is “just” a decision problem, i.e., the user only learns
whether the system satisfies the specification or not, but not the reason it does or does not. It has been
argued that this binary answer is in general not useful [26]: Most real-life systems are too complex to be
modelled faithfully by a finite transition system. Hence, one always checks an abstraction, not the actual
system. Then, a positive answer to the model-checking problem does not show that the actual system is
correct, bugs in it might have been abstracted away when constructing a finite transition system modelling
it. The actual killer application of model-checking is the automated generation of counterexamples in case
the specification is not satisfied by the abstraction. Given a counterexample in the abstraction one can
then check whether this (erroneous) behaviour also exists in the actual system, or whether it was introduced
during the abstraction. In the latter case, the abstraction has to be refined and checked again. But if the
erroneous behaviour can be found in the actual system, then this bug can be fixed in the actual system.

But what is a counterexample in HyperLTL model-checking? For the formula ϕid expressing input
determinism this is straightforward: if a transition system does not satisfy the formula, then it has two traces
that coincide on their input, but not on their output. However, the situation becomes more interesting in the
presence of existentially quantified variables and quantifier alternations. Consider, for example, a formula
of the form ϕ = ∃π∀π′. ψ with quantifier-free ψ and let T be a transition system with set Tr(T) of traces.
If T 6|= ϕ, then for every choice of t ∈ Tr(T) there is a t′ ∈ Tr(T) such that the variable assignment {π 7→
t, π′ 7→ t′} does not satisfy ψ. Thus, a counterexample is described by a Skolem function f : Tr(T) → Tr(T)
for the existentially quantified variable π′ in the negation ∀π∃π′. ¬ψ of ϕ. It gives, for every choice t for
the existentially quantified π in ϕ a trace f(t) for the universally quantified π′ in ϕ such that {π 7→ t, π′ 7→
f(t)} |= ¬ψ, i.e., {π 7→ t, π′ 7→ f(t)} 6|= ψ, thereby explaining for every choice of t why it is not a good one.
The maxim “counterexamples are Skolem functions for existentially quantified variables in the negation of
the specification” is true for arbitrary formulas. But before we explore this approach further, let us first
consider a second application.

Explainability, the need to explain to, e.g., users, customers, and regulators, what a system does, is an
aspect of system design that gains more and more significance. This is in particular true when it comes
to systems designed by algorithms, e.g., machine-learning or synthesis. For any nontrivial such system, it
is impossible for humans to develop an explanation of their behaviour or a witness for their correctness.
This is a major obstacle preventing the wide-spread use of (unexplained) machine-generated software in
safety-critical applications [3]. Also here, HyperLTL model-checking can be useful: Assuming the system is
supposed to satisfy a HyperLTL specification and indeed does so, then Skolem functions “explain” why the
specification is satisfied.

In this work, we are interested in computing counterexamples/explanations for HyperLTL. Before we do
so, let us remark that these counterexamples are really explanations for the negation of the specification,
as we have seen above. Hence, in the following we will focus on explanations, as this setting spares us
from dealing with a negation. Also, let us remark that for every transition system T and every HyperLTL
formula ϕ, we either have T |= ϕ or T |= ¬ϕ. Hence, our framework will either explain why T satisfies ϕ or
explain why T satisfies ¬ϕ, i.e., explain why T does not satisfy ϕ.

In general, we are given a transition system T and a HyperLTL formula ϕ such that T |= ϕ, and we
want to compute Skolem functions for the existentially quantified variables in ϕ. Note that the actual
explanation-phase employing the Skolem functions is an interactive process between the user (i.e., Tracy)
and these functions: Tracy has to specify choices for the universally quantified variables, which are then feed
into the Skolem functions, yielding choices for the existentially quantified variables such that the combination
of all of these traces satisfies the quantifier-free part of the specification.

However, as the inputs to the Skolem functions are (infinite) traces of T, their domain may be uncountable.
Hence, we need to discuss how to represent such functions, as, due to a simple counting argument, not each
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possible Skolem function is finitely representable. Here, we propose and investigate two paradigms.

The up-paradigm. In the up-paradigm, we restrict ourselves to ultimately periodic traces, which are
finitely representable, and do not actually compute the full Skolem functions, but only restrictions of the
Skolem functions that suffice to handle ultimately periodic inputs. Such traces are particularly well-suited
for human inspection, which is not always true for non-ultimately periodic traces.

The cs-paradigm. On the other hand, the cs-paradigm is much more general: Here, we work with
Skolem functions that are computable by Turing machines (in a very natural sense). Continuing previous
work by Filiot and Winter [13], we show that such functions are actually implementable by a much simpler
machine model, i.e., word-to-word transducers with bounded delay between input and output. This model
allows the effective computation and simulation of computable Skolem functions.

Beyond expressiveness, there is another key difference between the two paradigms: Computable Skolem
functions are always continuous: Intuitively, if two inputs coincide on a “long” prefix, then the corresponding
outputs also coincide on a “long” prefix. However, explanations in the up-paradigm are not continuous. For
example, consider the formula ∀π∃π′. true. Then, a Skolem function for π′ could on input ∅n{a}ω return ∅ω

if n is even and {a}ω if n is odd. Hence, the sequence (∅n{a}ω)n∈N of inputs converges, but the sequence
of outputs does not. But, continuity makes explanations easier to understand: settled outputs are never
revoked. However, it is straightforward to construct a pair (T, ϕ) with T |= ϕ that does not have continuous
explanations (see Theorem 2). Hence, the cs-paradigm is incomplete, unlike the up-paradigm, in which every
such pair has an explanation.

This incompleteness means that deciding whether a computable explanation exists is non-trivial (in the
sense that the answer is not always “yes”, as in the up-paradigm). Combining techniques developed in
the theory of uniformization [13], delay games [24], and concurrent multiplayer games with hierarchical
imperfect information [4], we show that this problem is decidable. As a byproduct, we present an algorithm
that generates a computable explanation (implemented by transducers), whenever one exists.

The cs-paradigm can be used in an on-the-fly manner in which Tracy specifies, letter by letter, traces
for the universally quantified variables of the specification and the transducers produce (possibly with some
delay) corresponding traces for the existentially quantified variables. This process allows Tracy to under-
stand how the evolution of the traces for the universally quantified variables influences the evolution of the
existentially quantified variables.

Alternatively, the cs-paradigm can also be used by feeding the transducers with infinite inputs (traces
for the universally quantified variables), which yields corresponding outputs (traces for the existentially
quantified variables). As the transducers have bounded delay, Tracy only has to provide prefixes of length n+
d as inputs to obtain prefixes of length n for the existentially quantified variables, where d is the delay of
the transducers.

2 Preliminaries1

We denote the set of nonnegative integers by N. The domain of a partial function f : A→ B is denoted by
dom(f) = {a ∈ A | f(a) is defined}. More generally, we denote the domain {a ∈ A | (a, b) ∈ R for some b ∈
B} of a relation R ⊆ A×B by dom(R).

Languages and Transition Systems. An alphabet is a nonempty finite set. The sets of finite and
infinite words over an alphabet Σ are denoted by Σ∗ and Σω, respectively. The length of a finite word w is
denoted by |w|. An infinite word w ∈ Σω is ultimately periodic if there are finite words x, y ∈ Σ∗ such that

1We like the twentieth letter of the alphabet. In fact, we like it so much that we use t to denote traces, T to denote sets of
traces, T to denote transition systems, and T to denote transducers. We hope this footnote will help the reader keeping track
of them.
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w = xyω . Given n infinite words w0, . . . , wn−1, let their merge (also known as zip) be defined as

mrg(w0, . . . , wn−1) =





w0(0)
...

wn−1(0)









w0(1)
...

wn−1(1)









w0(2)
...

wn−1(2)



 · · · ∈ (Σn)
ω
.

We define mrg(w0, . . . , wn−1) for finite words w0, . . . , wn of the same length analogously.
The set of prefixes of an infinite word w = w(0)w(1)w(2) · · · ∈ Σω is Prfs(w) = {w(0) · · ·w(i−1) | i ≥ 0},

which is lifted to languages L ⊆ Σω via Prfs(L) =
⋃

w∈L Prfs(w). A language L ⊆ Σω is closed if {w ∈ Σω |
Prfs(w) ⊆ Prfs(L)} ⊆ L.

Throughout this paper, we fix a finite set AP of atomic propositions. A transition system T = (V,E, vI , λ)
consists of a finite set V of vertices, a set E ⊆ V × V of (directed) edges, an initial vertex vI ∈ V , and a
labelling λ : V → 2AP of the vertices by sets of atomic propositions. We assume that every vertex has at
least one outgoing edge. A path ρ through T is an infinite sequence ρ = v0v1v2 · · · of vertices with v0 = vI
and (vn, vn+1) ∈ E for every n ≥ 0. The trace of ρ is defined as λ(ρ) = λ(v0)λ(v1)λ(v2) · · · ∈ (2AP)ω. The
set of traces of T is Tr(T) = {λ(ρ) | ρ is a path of T}.

Remark 1. The following facts follow directly from the definition of closed languages.

1. Let T be a transition system. Then, Tr(T) is closed.

2. If L0, . . . , Ln−1 ⊆ Σω are closed, then so is {mrg(w0, . . . , wn−1) | wi ∈ Li for 0 ≤ i < n}.

HyperLTL. The formulas of HyperLTL are given by the grammar

ϕ ::= ∃π. ϕ | ∀π. ϕ | ψ ψ ::= aπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where a ranges over AP and where π ranges over a fixed countable set V of (trace) variables. Conjunction (∧),
exclusive disjunction (⊕), implication (→), and equivalence (↔) are defined as usual, and the temporal
operators “eventually” (F) and “always” (G) are derived as Fψ = ¬ψUψ and Gψ = ¬F¬ψ. A sentence
is a formula without free variables, which are defined as expected.

The semantics of HyperLTL is defined with respect to a trace assignment, a partial mapping Π: V →
(2AP)ω. The assignment with empty domain is denoted by Π∅. Given a trace assignment Π, a variable π,
and a trace t we denote by Π[π → t] the assignment that coincides with Π everywhere but at π, which
is mapped to t. Furthermore, Π[j,∞) denotes the trace assignment mapping every π in Π’s domain to
Π(π)(j)Π(π)(j + 1)Π(π)(j + 2) · · · , the suffix of Π(π) starting at position j.

For sets T of traces and trace assignments Π we define

• (T,Π) |= aπ if a ∈ Π(π)(0),

• (T,Π) |= ¬ψ if (T,Π) 6|= ψ,

• (T,Π) |= ψ1 ∨ ψ2 if (T,Π) |= ψ1 or (T,Π) |= ψ2,

• (T,Π) |= Xψ if (T,Π[1,∞)) |= ψ,

• (T,Π) |= ψ1 Uψ2 if there is a j ≥ 0 such that (T,Π[j,∞)) |= ψ2 and for all 0 ≤ j′ < j: (T,Π[j′,∞)) |=
ψ1,

• (T,Π) |= ∃π. ϕ if there exists a trace t ∈ T such that (T,Π[π → t]) |= ϕ, and

• (T,Π) |= ∀π. ϕ if for all traces t ∈ T : (T,Π[π → t]) |= ϕ.

We say that T satisfies a sentence ϕ if (T,Π∅) |= ϕ. In this case, we write T |= ϕ and say that T is a
model of ϕ. A transition system T satisfies ϕ, written T |= ϕ, if Tr(T) |= ϕ. Although HyperLTL sentences
are required to be in prenex normal form, they are closed under Boolean combinations, which can be easily
seen by transforming such a formula into an equivalent formula in prenex normal form. In particular, the
negation ¬ϕ of a sentence ϕ satisfies T |= ¬ϕ if and only if T 6|= ϕ. Also, note that the statement (T,Π) |= ψ
for quantifier-free formulas ψ is independent of T . Hence, we often just write Π |= ψ for the sake of readability.
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∅ ∅{a}

Figure 1: The transition system for Example 2.

Skolem Functions for HyperLTL. Let ϕ = Q0π0 · · ·Qk−1πk−1. ψ be a HyperLTL sentence such
that ψ is quantifier-free and let T be a set of traces. Moreover, let i ∈ {0, 1, . . . , k − 1} be such that Qi = ∃
and let Ui = {j < i | Qj = ∀} be the indices of the universal quantifiers preceding Qi. Furthermore,
let fi : T

|Ui| → T for each such i (note that fi is a constant, if Ui is empty). We say that a variable
assignment Π with dom(Π) ⊇ {π0, π1, . . . , πk−1} is consistent with the fi if Π(πi) ∈ T for all i with Qi = ∀
and Π(πi) = fi(Π(πi0 ),Π(πi1 ), . . . ,Π(πi|Ui |−1

)) for all i with Qi = ∃, where Ui = {i0 < i1 < · · · < i|Ui|−1}.
If Π |= ψ for each Π that is consistent with the fi, then we say that the fi are Skolem functions witnessing
T |= ϕ.

Remark 2. T |= ϕ if and only if there are Skolem functions for the existentially quantified variables of ϕ
that witness T |= ϕ.

Note that only traces for universal variables are inputs for Skolem functions, but not those for existentially
quantified variables. As usual, this is not a restriction, as the inputs of a Skolem function for an existentially
quantified variable πi is a superset of the inputs of a Skolem function for another existentially quantified
variable πj with j < i.

Example 1. Let ϕ = ∀π∃π1∃π2. G(aπ ↔ (aπ1
⊕ aπ2

)). We have (2{a})ω |= ϕ. Now, for every func-
tion f1 : (2

{a})ω → (2{a})ω, there is a function f2 : (2
{a})ω → (2{a})ω such that f1, f2 are Skolem functions

witnessing (2{a})ω |= ϕ, i.e., we need to define f2 such that (f2(t))(n) = (f1(t))(n) for all n ∈ N such that
t(n) = ∅ and (f2(t))(n) = (f1(t))(n) for all n ∈ N such that t(n) = {a}, where {a} = ∅ and ∅ = {a}. Hence,
f2 depends on f1, but the value of f1(t) (for the existentially quantified π1) does not need to be an input to
f2, it can be determined from the input t for the universally quantified π. This is not surprising, but needs
to be taken into account in our constructions.

We conclude by informally illustrating the two paradigms described in the introduction.

Example 2. Consider the transition system T given in Figure 1 and the sentence ϕ = ∀π0∃π1∀π2∃π3. ψ
with

ψ = [(GF aπ0
) ↔ (GF aπ1

)] ∧ [(GF aπ0
∧GF aπ2

) ↔ (GF aπ3
)] ∧ [G¬(aπ1

∧ aπ3
)]

and note that we have T |= ϕ.
In the up-paradigm, Tracy could, for example, pick the ultimately periodic trace t0 = (∅{a})ω for π0 and a

Skolem function yields the trace t1 = (∅{a}∅∅)ω for π1. Then, Tracy could pick t2 = t0 and a Skolem function
yields the trace t3 = (∅∅∅{a})ω. The assignment {π0 7→ t0, . . . , π3 7→ t3} satisfies ψ. As in Example 1, the
choice of t3 depends not only on the choices for the universally quantified variables π0 and π2, but also on
the choice for π1, as the last conjunct of ψ requires that a is never simultaneously true in π1 and π3.

In the cs-paradigm, we could obtain a transducer for π1 mapping t0(0)t0(1)t0(2) · · · ∈ Tr(T) to the
trace t1(0)t1(1)t1(2) · · · ∈ Tr(T) where

t1(n) =

{

{a} if n ≥ 4, n mod 4 = 1, and t0(n− 3) · · · t0(n) contains an {a},

∅ otherwise,

and a transducer for π3 that maps (t0(0)t0(1)t0(2) · · · , t2(0)t2(1)t2(2) · · · ) ∈ Tr(T)×Tr(T) to the trace t3(0)t3(1)t3(2) · · · ∈
Tr(T) where

t3(n) =











{a} if n ≥ 3, n mod 4 = 3, and t0(n
′ + 1) · · · t0(n) and t2(n′ + 1) · · · t2(n)

both contain an {a}, where n′ < n is maximal with t3(n
′) = {a},

∅ otherwise.
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Both functions described above are indeed implementable by a transducer (see Section 8 of the appendix for
formal definitions) and witness Tr(T) |= ϕ.

Parity Automata. We end this section by introducing ω-automata, which we use to represent lan-
guages of (tuples of) traces. We use parity automata here, as they are (unlike Büchi automata) determinizable
and recognize all ω-regular languages [18]. This is useful in proofs.

A (deterministic) parity automaton P = (Q,Σ, qI , δ,Ω) consists of a finite set Q of states containing the
initial state qI ∈ Q, an alphabet Σ, a transition function δ : Q × Σ → Q, and a coloring Ω: Q → N of its
states by natural numbers. Let w = w(0)w(1)w(2) · · · ∈ Σω. The run of P on w is the sequence q0q1q2 · · ·
with q0 = qI and qn+1 = δ(qn, w(n)) for all n ≥ 0. A run q0q1q2 · · · is (parity) accepting if the maximal color
appearing infinitely often in the sequence Ω(q0)Ω(q1)Ω(q2) · · · is even. The language (parity) recognized by
P , denoted by L(P), is the set of infinite words over Σ such that the run of P on w is accepting.

Proposition 1 (See, e.g., [18]).

1. Parity automata are closed under all Boolean operations.

2. The nonemptiness problem for parity automata “Given a parity automaton P, is L(P) nonempty” is in
PTime. Furthermore, if L(P) is nonempty, one can compute in polynomial time an ultimately periodic
word in L(P).

3 Automata-based HyperLTL Model-Checking

In this section, we recall the automata-based approach to HyperLTL model-checking [9, 15]. Throughout this
subsection, we fix a HyperLTL sentence ϕ = Q0π0Q1π1 · · ·Qk−1πk−1. ψ and define ϕi = QiπiQi+1πi+1 · · ·Qk−1πk−1. ψ
for i ∈ {0, 1, . . . , k − 1} and ϕk = ψ. Note that ϕ0 = ϕ and that the free variables of each ϕi with
i ∈ {0, 1, . . . , k} are exactly π0, . . . , πi−1.

Proposition 2 ([9, 15]). Let T be a transition system. For every i ∈ {0, 1, . . . , k} there is an (effectively
constructible) parity automaton Pi such that

L(Pi) = {mrg(Π(π0), . . . ,Π(πi−1)) | Π(πj) ∈ (2AP)ω for 0 ≤ j < i and (Tr(T),Π) |= ϕi}.

Note that P0 is a parity automaton over a singleton alphabet (containing the empty tuple) that has an
accepting run if and only if T |= ϕ. Hence, the HyperLTL model-checking problem can be solved by con-
structing P0 and checking it for nonemptiness. However, P0 may be large: each quantifier alternation requires
a complementation and projection (which introduces nondeterminism), implying that each complementation
may be exponential. This blowup is unavoidable, as HyperLTL model-checking is Tower-complete [30, 27].

Remark 3. Note that we may have mrg(Π(π0), . . . ,Π(πi−1)) ∈ L(Pi), but Π(πj) /∈ Tr(T). But oftentimes
we want to restrict ourselves to traces from T. Hence, for each i ∈ {0, 1, . . . , k} let PT

i be a parity automaton
for the language {mrg(t0, . . . , ti−1) ∈ L(Pi) | tj ∈ Tr(T) for all 0 ≤ j < i}, which can be effectively computed
from Pi and T.

4 The up-Paradigm

Recall that in the up-paradigm, we only work with ultimately periodic traces, i.e., we essentially work with
restrictions of Skolem functions to such traces. This enables an effective computation, as such traces can be
finitely represented. Also, the approach is complete in the sense that T |= ϕ has such an explanation, for
every transition system T and every sentence ϕ with T |= ϕ. On the other hand, the paradigm is limited to
ultimately periodic traces, i.e., any nonperiodic behavior cannot be analyzed nor explained in this paradigm.
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Using the parity automata constructed in Section 3, we present here the up-paradigm for computing ex-
planations for HyperLTL. For the remainder of this section, we fix a transition system T and a HyperLTL sen-
tence ϕ = Q0π0Q1π1 · · ·Qk−1πk−1. ψ such that T |= ϕ. As before, we define ϕi = QiπiQi+1πi+1 · · ·Qk−1πk−1. ψ
for i ∈ {0, . . . , k − 1} and ϕk = ψ. For the sake of simplicity, we assume that k − 1 is odd and that the Qi

with even (odd) i are universal (existential).2 Hence, we have ϕ = ∀π0∃π1 · · · ∀πk−2∃πk−1. ψ. We will use
the parity automata PT

i from Remark 3 satisfying

L(PT

i ) = {mrg(Π(π0), . . . ,Π(πi−1)) | Π(πj) ∈ Tr(T) for all 0 ≤ j < i and (Tr(T),Π) |= ϕi}.

Consider the following procedure:

1. Tracy picks an ultimately periodic t0 ∈ Tr(T) for the universally quantified variable π0.

2. The language L1(t0) =
{

t ∈ Tr(T)
∣

∣ mrg(t0, t) ∈ L(PT
2 )
}

is recognized by a parity automaton which
can be obtained by taking the product of PT

2 and a parity automaton for the language {mrg(t0, t) | t ∈
(2AP)ω}, which can easily be constructed from t0.

Furthermore, as we have T |= ∀π0∃π1. ϕ2, L1(t0) is nonempty for every choice of t0 ∈ Tr(T). Formally,
it contains, all those t ∈ Tr(T) such that (Tr(T), {π0 7→ t0, π1 7→ t}) |= ϕ2. Thus, Tracy (or an
algorithm solving the nonemptiness problem) can generate an ultimately periodic t1 ∈ L1(t0) for the
existentially quantified variable π1.

3. Tracy picks an ultimately periodic t2 ∈ Tr(T) for the universally quantified variable π2.

4. The language L3(t0, t1, t2) =
{

t ∈ Tr(T)
∣

∣ mrg(t0, t1, t2, t) ∈ L(PT
4 )
}

is again recognized by some parity
automaton and nonempty. Thus, Tracy (or an algorithm solving the nonemptiness problem) can pick
an ultimately periodic t3 ∈ L1(t0, t1, t2) for the existentially quantified variable π3.

5. We proceed until traces t0, t1, . . . , tk−1 have been picked.

These traces have the property that the variable assignment mapping each πi to ti satisfies ψ. Thus, the
procedure above explains T |= ψ.

Note that whenever we have T |= ϕ, then the procedure described above is applicable. In particular,
there are always ultimately periodic traces to pick from.3 Thus, in this sense, the up-paradigm is complete.

Theorem 1. Let ϕ be a HyperLTL sentence and T a transition system. If T |= ϕ, then this fact has an
explanation in the up-paradigm.

Proof. An induction shows that each Li(t0, . . . , ti−1) for odd i is a nonempty language recognized by a parity
automaton. Hence, it contains, due to Proposition 1, an ultimately periodic word. This implies that the
procedure never gets stuck and one indeed obtains traces for all variables.

Thus, in the up-paradigm, if we have T |= ϕ, then this fact has an explanation. However, in this paradigm,
explanations are very restricted, i.e., we are working with the restrictions of Skolem functions to ultimately
periodic traces. On the one hand, this is very natural and user-friendly, as the representation, reasoning,
and human inspection of traces that are not ultimately periodic is challenging. However, not every trace
is ultimately periodic. Further, as argued in the introduction, the up-paradigm does not give continuous
explanations.

2The following reasoning can easily be extended to general sentences with arbitrary quantifier prefixes, albeit at the cost of
more complex notation.

3Note that this is true, even though there are satisfiable HyperLTL sentences that do not have any model containing an
ultimately periodic trace [17]. However, as every finite transition system contains an ultimately periodic trace, such sentences
are not satisfied by any finite transition system.
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5 The cs-Paradigm

In the cs-paradigm we want to reason with arbitrary (Turing machine) computable Skolem functions, which
allows us to overcome the restrictions of the up-paradigm. At first glance, this is a very ambitious goal,
as it requires working with Turing machines processing infinite inputs and producing infinite outputs. We
will apply the theory of uniformization of relations (a.k.a. synthesis) to approach this problem. Intuitively,
in the uniformization problem one is given a relation R ⊆ A × B and the goal is to determine whether
there is a function uniformizing R computed by a machine from some fixed class of machines, i.e., a partial
function f : A → B such that dom(f) = dom(R) and {(a, f(a)) | a ∈ dom(R)} ⊆ R. For the case where
A is the Cartesian product of the set of traces of a transition system and B is the set of traces of the
same transition system, we have captured the problem of computing a Skolem function as a uniformization
problem.

Thus, for a sentence with quantifier prefix ∀∗∃∗ we can compute computable Skolem functions by inter-
preting the problem as a uniformization problem. However, for more complex quantifier prefixes, this is no
longer straightforward, as the dependencies between the variables have to be considered, e.g., the Skolem
function of an existentially quantified variable only has inputs corresponding to outermore universally quan-
tified variables, but may also depend on outermore existentially quantified variables, i.e., outputs are also
(implicit) inputs for other functions.

Another issue is that Turing machines are a very expressive model of computation. Filiot and Winter [13]
studied synthesis of computable functions from rational specifications (e.g., specifications recognized by
a parity automaton): they proved that uniformization by Turing machines coincides with uniformization
by transducers with bounded delay (if the domain of the specification is closed), a much nicer class of
machines computing functions from infinite words to infinite words. Crucially, the functions computed by
such transducers are also continuous in the Cantor topology (see refer to [13] for definitions and details).
In the setting of Skolem functions for HyperLTL model-checking for ∀∗∃∗-sentences, that means that if two
inputs agree on a “long” prefix, then the corresponding outputs also agree on a “long” prefix. Continuity
is a desirable property in the context of the interactive simulation of Skolem functions described in the
introduction: If Tracy has simulated a long prefix of the inputs for the Skolem functions, then future
changes do not change the output prefixes already produced by the Skolem functions.

However, we will show that continuity also implies that not every HyperLTL sentence has computable
(and therefore continuous) explanations. Thus, it is natural to ask whether it is decidable whether a given
pair (T, ϕ) has an explanation in the cs-paradigm. We prove that this is indeed the case for sentences with
arbitrary quantifier prefixes.

We begin this section by reviewing the uniformization problem. Then, we introduce and investigate the
cs-paradigm and provide an algorithm to determine the existence of computable Skolem functions.

5.1 Uniformization

In the following, for languages over the alphabet Σ×Γ recognized by parity automata, i.e., L ⊆ (Σ×Γ)ω we
speak about its induced relationRL = {(x, y) ∈ Σω×Γω | mrg(x, y) ∈ L}. For the sake of readability, we often
do not distinguish between (automata-recognizable) languages L ⊆ (Σ × Γ)ω and induced relations RL ⊆
Σω × Γω.

We say that a function f : Σω → Γω uniformizes a relation R ⊆ Σω × Γω if the domain of f is equal to
the domain of R and the graph {(w, f(w)) | w ∈ dom(f)} of f is a subset of R. The uniformization problem
asks whether, for a given relation, there is a computable function that uniformizes it.

To define the computability of a function from Σω to Γω, we consider deterministic three-tape Turing
machines M with the following setup (following [13]): the first tape is a read-only, one-way tape and contains
the input in Σω, the second one is a two-way working tape, and the third one is a write-only, one-way tape
on which the output in Γω is generated. Formally, we say that M computes the partial function f : Σω → Γω

if, when started with input w ∈ dom(f) on the first tape, M produces (in the limit) the output f(w) on the
third tape. Note that we do not require the Turing machine to check whether its input is in the domain of f .
We just require it to compute the correct output for those inputs in the domain, it may behave arbitrarily
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∅ {a}

Figure 2: The transition system for the proof of Theorem 2.

on inputs outside of the domain of f . This is done so that the uniformization function only has to capture
the complexity of transforming possible inputs into outputs, but does not have to capture the complexity of
checking whether an input is in the domain. In our setting, this can be taken care of by parity automata
that can be effectively computed.

We say that such an M has bounded delay, if there is a d ∈ N such that to compute the first n letters
of the output only n+ d letters of the input are read (i.e., the other cells of the input tape are not visited
before n output letters have been generated).

Remark 4. If the domain of f is closed, then M can be assumed (w.l.o.g.) to have bounded delay. This
follows from the fact that the set Σω is a compact space when equipped with the Cantor distance. A closed
subset of a compact space is compact (see, e.g., [2]). Hence, dom(f) is a compact space. Further, every com-
putable function is continuous (see, e.g., [13]). Now, the Heine-Cantor theorem states that every continuous
function between metric spaces f : M → N where M is a compact space is in fact uniformly continuous.
Uniform continuity directly implies bounded delay.

Now, we can formalize the relation between uniformization by computable functions (e.g., implemented
by Turing machines) and uniformization by functions implementable by bounded-delay transducers (a much
weaker machine model, informally introduced below, formally in Section 8) in the appendix, when considering
relations with closed domain recognized by parity automata. Transducers extend (deterministic) automata
with outputs on their transitions, and therefore implement functions of the form f : Σω → Γω by reading an
input letter in Σ on each transition and producing a finite output word over Γ on each transition. We say a
transducer has bounded delay if the length difference between read input and produced output is bounded
for every prefix of a run.

Proposition 3 ([13]). The following are equivalent for a relation R encoded by a parity automaton P and
with closed dom(R):

1. R is uniformized by a computable function.

2. R is uniformized by a function implemented by a bounded-delay transducer.

5.2 Computing Explanations in the cs-Paradigm

Our goal in to determine under which circumstances T |= ϕ has an explanation in the cs-paradigm, i.e.,
there are computable Skolem functions witnessing T |= ϕ, and whether such Skolem functions can be
computed by “simpler” models of computation, i.e., bounded-delay transducers. Intuitively, this aims to
extend Proposition 3 from ∀∗∃∗ sentences to arbitrary quantifier prefixes.

We start by establishing the following result, showing that the cs-paradigm is incomplete.

Theorem 2. There is a HyperLTL sentence ϕ and a transition system T such that T |= ϕ has no explanation
in the cs-paradigm, i.e., it is not witnessed by computable Skolem functions.

Proof. Consider the sentence ϕ = ∀π∃π′. (F aπ) ↔ (X aπ′) and the transition system T in Figure 2 with
Tr(T) = ∅(2{a})ω.

Towards a contradiction, assume there is a computable Skolem function for π′. Then, due to Remark 4,
there is also one that is implemented by a bounded-delay Turing machine M, say with delay d. Now, let
M run on an input with prefix ∅d+2 ∈ Prfs(Tr(T)). As M has bounded delay, it will produce the first two
output letters ∅A ∈ ∅2{a} after processing the prefix ∅d+2 (note that all traces of T start with ∅, the label of
the initial state).
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If A = ∅, then the output of M on the input ∅d+2{a}ω starts with ∅∅ (as this output only depends on
the prefix ∅d+2), but the input contains an {a}. These traces do not satisfy (F aπ) ↔ (X aπ′). On the other
hand, if A = {a}, then the output of M on the input ∅ω starts with ∅{a} (again, the output only depends
on the prefix ∅d+2), but the input contains no {a}. Again, these traces do not satisfy (F aπ) ↔ (X aπ′). So,
in both cases, M does not implement a Skolem function for π′, i.e., we have the desired contradiction.

So, as not every T |= ϕ has an explanation in the cs-paradigm, it is natural to ask whether it is decidable
whether, given T and ϕ, T |= ϕ has an explanation in the cs-paradigm. Before we study this problem, we
consider another example showing that for some transition system T and sentence ϕ, even if T |= ϕ does
have computable Skolem functions, not every (computable) Skolem function is a “good” Skolem function:
Fixing a Skolem function for an outermore variable may block innermore variables having computable Skolem
functions.

Example 3. Consider the sentence ∃π∀π′∃π′′. (X aπ) → ((F aπ′) ↔ (X aπ′′)) and the transition system T

from Figure 2. Recall that we have Tr(T) = ∅(2{a})ω; especially, every trace of T starts with ∅. Also, as the
quantification of π is not in the scope of any other quantifier we can identify Skolem functions for π with
traces that are assigned to π.

Now, if we pick a trace t for π with a ∈ t(1) then there is no computable Skolem function for π′′ (see
Theorem 2). However, if we pick a trace t for π with a /∈ t(1) then every function is a Skolem function
for π′′, as satisfaction is independent of the choices for π′ and π′′ in this case. In particular, π′′ has a
computable Skolem function.

Thus, the wrong choice of a (computable) Skolem function for some variable may result in other variables
not having computable Skolem functions. By carefully accounting for the dependencies between the Skolem
functions we show that the existence of computable Skolem functions is decidable.

Theorem 3. The following problem is decidable: “Given a transition system T and a HyperLTL sentence ϕ
with T |= ϕ, is T |= ϕ witnessed by computable Skolem functions?”, i.e., does T |= ϕ have an explanation
in the cs-paradigm? If the answer is yes, our algorithm computes bounded-delay transducers implementing
such Skolem functions.

To show the result, we characterize the existence of computable Skolem functions by a game, generalizing
previous work on uniformization via two-player games with delay [24, 13] (which covers essentially the
special case of ∀∗∃∗-sentences) to multi-player games (one player for each existentially quantified variable) of
imperfect information [4] (which captures the fact that an existentially quantified variable may only depend
on variables that are quantified outermore). The full proof is presented in the appendix.

Hence, while the cs-paradigm is not complete, one can at least decide whether T |= ϕ has an explanation
in this paradigm, and, if yes, effectively compute such an explanation.

6 Related Work

As explained in the introduction, computing counterexamples for debugging is the most important application
of model-checking. In the framework of LTL model-checking, a counterexample is a single trace of the system
that violates the specification. Such a counterexample is typically obtained by running a model-checking
algorithm (which are in fact based on searching for such counterexamples). Variations of the problem
include bounded model-checking [6], which searches for “short” counterexamples. Also, counterexample-
guided abstraction refinement [7] and bounded synthesis [16] rely on counterexample computation.

Counterexamples have not only been studied in the realm of linear-time logics, but also for many other
frameworks, e.g., for ∀CTL [8], for CTL [19, 31], for probabilistic temporal logics [12, 20], and for discrete-
time Markov models [1].

Finally, counterexamples have also been studied in the realm of HyperLTL model-checking. Horak et
al. [22] developed HyperVis, a webtool which provides interactive visualizations of a given model, specifi-
cation, and counterexample computed by the HyperLTL model-checker MCHyper [15]. In complementary
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work, Coenen et al. [11] present a causality-based explanation method for HyperLTL counterexamples, again
computed by MCHyper. However, the counterexamples computed by MCHyper are just sets of traces
that violate the formula. More specifically, MCHyper only considers the outermost universal quantifiers
and returns a variable assignment to those. This is obviously complete for formulas with quantifier-prefix ∀∗,
i.e., without existential quantifiers, but not for more general formulas. In fact, this approach ignores the
dynamic dependencies between universally and existentially quantified variables that is captured by Skolem
functions, which we analyze here. Finally, let us also mention that counterexamples are the foundation of
the bounded synthesis algorithm for ∀∗HyperLTL specifications [14]. In this setting, it is again sufficient to
only consider sets of traces and not general Skolem functions.

7 Conclusion

We have presented two paradigms to explain why a given transition system satisfies a given HyperLTL
formula or, equivalently, to provide counterexamples in case the system does not satisfy the formula. The
up-paradigm is complete (if T |= ϕ, then this has an explanation), but restricted to ultimately periodic
traces. The cs-paradigm handles arbitrary computable explanations, but is incomplete: T |= ϕ may not
have a computable explanation. However, we have shown that the existence of computable explanations is
decidable, and that they are effectively computable (whenever they exist).

After having laid the theoretical foundations, it remains to investigate under which circumstances such
explanations can be useful in the verification work-flow. For a restricted setting, this line of work has been
studied as discussed in Section 6. We propose to continue this line of work for more expressive fragments
of HyperLTL and explanations in both the up- and cs-paradigm. On the theoretical side, in future work
we will study the size of transducers implementing Skolem functions and the complexity of deciding the
existence of computable Skolem functions. In general, this is infeasible, as HyperLTL model-checking is
already Tower-complete, but for fragments with few quantifier alternations, the problem is simpler. For
example, we expect that results on delay games with LTL winning conditions [25] can be adapted to show
that deciding the existence of computable Skolem functions for ∀∗∃∗-sentences is 3ExpTime-complete.

Finally, we propose to compare our work to the HyperLTL model-checking algorithm for ∀∗∃∗-sentences
of Beutner and Finkbeiner [5], which relies on a delay-free game extended with prophecies that require the
player in charge of the universal variable to make commitments about future moves (w.r.t. to membership
in a finite list of ω-regular properties). In particular, to the best of our knowledge, this approach has not
been extended beyond the ∀∗∃∗-fragment.

Epilogue. After her lunch break, Tracy walks by the printer room and finds a second copy of her
document in the printer tray. It turns out the print system satisfies ϕid, but the explanation shows that
there is a large lag in the network.
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Appendix

8 Transducers

A (one-way deterministic finite) transducer T is a tuple (Q,Σ,Γ, qI , δ,Ω) that consists of a finite set Q of
states containing the initial state qI , an input alphabet Σ, an output alphabet Γ, a transition function δ : Q×
Σ → Q×Γ∗, and a coloring Ω: Q→ N. The (unique) run of T on an input w = w(0)w(1)w(2) · · · ∈ Σω is the
sequence q0q1q2 · · · of states defined by q0 = qI and qi+1 being the unique state with δ(qi, w(i)) = (qi+1, xi)
for some xi ∈ Γ∗. The run is accepting if the maximal color appearing infinitely often in Ω(q0)Ω(q1)Ω(q2) · · ·
is even. With the run q0q1q2 · · · on w we associate the output x0x1x2 · · · , where the xi are as defined above.
As the transducer is deterministic, it induces a map from inputs to outputs. Note that the output may, a
priori, be a finite or an infinite word over Γ. In the following, we only consider transducers where the output
is infinite for every input with an accepting run. In this case, T computes a partial function fT : Σω → Γω

defined as follows: the domain of fT is the set of infinite words w ∈ Σω such that the run of T on w is
accepting and fT (w) is the output induced by this (unique) run.

We say that T has delay d ∈ N if for every accepting run and every induced sequence x0x1x2 · · · of
outputs (xi is the output on the i-th transition), we have i−d ≤ |x0 · · ·xi−1| ≤ i for all i ≥ 0, i.e., the output
is, at any moment during an accepting run, at most d letters shorter than the input and never longer. We
say that T is a bounded-delay transducer if there is a d such that it has delay d.
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9 Proof of Theorem 3

This section is devoted to the proof of Theorem 3, i.e., we prove that it is decidable whether, for a given
transition system T and HyperLTL sentence ϕ with T |= ϕ, T |= ϕ is witnessed by computable Skolem func-
tions. Furthermore, if the answer is yes, then we show how to compute such Skolem functions (represented
by bounded-delay transducers).

We begin by giving some intuition for the coming proof by first looking at the special case of a sentence
of the form ∀π∃π′. ψ where ψ is quantifier-free. Then, we need to decide whether there is a computable
function f : Tr(T) → Tr(T) such that {π 7→ t, π′ 7→ f(t)} |= ψ. Note that

{mrg(t, t′) | t, t′ ∈ Tr(T) and {π 7→ t, π′ 7→ t′} |= ψ}

is accepted by a parity automaton (see Proposition 2). Hence, the problem boils down to a uniformization
problem for an ω-regular relation (recall Subsection 5.1). This problem was first posed (and partially solved)
by Hosch and Landweber in 1971 [23] and later completely solved in a series of works [21, 24, 13]. Let us
sketch the main ideas underlying the solution, as we will generalize them in the following.

Let L ⊆ (ΣI × ΣO)
ω be ω-regular. Then, the existence of a computable function f : Σω

I → Σω
O that

uniformizes L is captured by a (perfect information) two-player game Γ(L) of infinite duration played be-
tween Player I (the input player) and Player O (the output player) in rounds r = 0, 1, 2, . . . as follows:
In each round r, Player I picks an ar ∈ ΣI and then Player O picks a br ∈ ΣO ∪ {ε}. Thus, the out-
come of a play of Γ(L) is an infinite word a0a1a2 · · · ∈ Σω

I picked by Player I and a finite or infinite
word b0b1b2 · · · ∈ Σ∗

O ∪Σω
O picked by Player O. The outcome is winning for Player O if a0a1a2 · · · ∈ dom(L)

implies mrg(a0a1a2 · · · , b0b1b2 · · · ) ∈ L (which requires that b0b1b2 · · · is infinite, i.e., Player O has to pick
infinitely often a letter from ΣO). Now, one can show that a winning strategy for Player O can be turned
into a function that uniformizes L and every function uniformizing L can be turned into a winning strategy
for Player O.

So far, the uniformizing function may be arbitrary, in particular not computable. Also, the delay between
input and output in plays that are consistent with a strategy can be unbounded, e.g., if Player O picks ε in
every second round. A crucial insight is that this is not necessary: for every ω-regular L ⊆ (ΣI ×ΣO)

ω such
that Player O wins Γ(L), there is a bound ℓ (that only depends on the size of a (minimal) parity automaton
accepting L) such that she has a winning strategy that picks ε at most ℓ times [21].

This insight allows to change the rules of Γ(L), giving Player O the advantage gained by using ε a
bounded number of times from the beginning of a play and grouping moves into blocks of letters of a fixed
length. How the block length is obtained is explained below.

The block game Γb(L) is played in rounds r = 0, 1, 2, . . . as follows: In round 0, Player I picks two
blocks x0, x1 ∈ Σℓ

I and then Player O picks a block y0 ∈ Σℓ
O. Then, in every round r > 0, Player I picks a

block xr+1 ∈ Σℓ
I and then Player O picks a block yr ∈ Σℓ

O. Note that Player I is one block ahead, as he has
to pick two blocks in round 0. This accounts for the delay allowed in the definition of computable functions.
The outcome of a play of Γb(L) is an infinite word x0x1x2 · · · ∈ Σω

I picked by Player I and an infinite
word y0y1y2 · · · ∈ Σω

O picked by Player O. The outcome is winning for Player O if x0x1x2 · · · ∈ dom(L)
implies mrg(x0x1x2 · · · , y0y1y2 · · · ) ∈ L.

Now, one can show that L is uniformizable if and only if Player O has a winning strategy for Γb(L).
As Γb(L) is a finite two-player game with ω-regular winning condition, Player O has a finite-state winning
strategy (one implemented by a transducer). Such a finite-state winning strategy can be turned into a
computable function uniformizing L, as a transducer can be simulated by a Turing machine. Hence, Γb(L)
does indeed characterize uniformizability of ω-regular relations by computable functions.

Next, let us give some intuition how to obtain the bound ℓ. To this end, let P be an automaton over
some alphabet ΣI × ΣO (we ignore the acceptance condition in this discussion and later hint at how this is
taken into account). As usual, if two finite words w0 ∈ (ΣI × ΣO)

∗ and w1 ∈ (ΣI × ΣO)
∗ induce the same

state transformations (e.g., for all states p and q, processing w0 from p leads P to q if and only if processing
w1 from p leads P to q), then these words are indistinguishable for P (again, we are ignoring acceptance
for the time being), i.e., one can replace w0 by w1 without changing the possible runs that P has. This
indistinguishability is captured by an equivalence relation over (ΣI × ΣO)

∗ with finite index.
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However, to capture the interaction described in Γ(L) above, we need a more refined approach. Assume
Player I picks a sequence x ∈ Σ∗

I of letters. Then, Player O will have to “complete” this block by picking

a block y ∈ Σ
|x|
I so that mrg(x, y) is processed by the automaton. In this situation, we can say that

x0 and x1 ∈ Σ∗ are equivalent if they are indistinguishable w.r.t. to their completions to words of the
form mrg(xi, yi), e.g., for all states p and q, there is a completion mrg(x0, y0) ∈ (ΣI ×ΣO)

∗ of x0 that leads
P from p to q if and only if there is a completion mrg(x1, y1) ∈ (ΣI × ΣO)

∗ of x1 that leads P from p to q.
Intuitively, one does not need to distinguish between x0 and x1 because they allow Player O to achieve the
same state transformations in P . This indistinguishability is captured by an equivalence relation over Σ∗

I of
finite index. Now, ℓ can be picked as an upper bound on the length of a minimal word in all equivalence
classes.

Thus, the intuition behind the definition of Γb(L) is that blocks of length ℓ are rich enough to capture
the full strategic choices for both players in Γ(L): every longer word has an equivalent one of length at most
ℓ.

Finally, let us briefly mention how to deal with the acceptance condition we have ignored thus far. As
the state transformations are concerned with finite runs of a parity automaton, we can just keep track of
the maximal color occurring during this run, all other information is irrelevant. Keeping track of the color
can be achieved using the states of the automaton.

After having sketched the special case of a sentence of the form ∀π∃π′. ψ, let us now illustrate the
challenges we have to address to deal with more quantifier alternations, e.g., for a sentence of the form ϕ =
∀π0∃π1 · · · ∀πk−2∃πk−1. ψ.

• We will consider a multi-player game with one player being in charge of providing traces for the uni-
versally quantified variables (generalizing Player I above) and one variable player for each existentially
quantified variable (generalizing Player O above), i.e., altogether we have k

2 + 1 players. Thus, the
player in charge of the universally quantified variables produces traces t0, t2, . . . , tk−2 while each vari-
able player produces a trace ti (one for each odd i). These traces are again picked block-wise in
rounds.

• The choices by the variable player producing ti (i.e., i is odd) may only depend on the traces t0, t1, . . . , ti−1

in order to faithfully capture the semantics of ϕ. Hence, we need to consider a game of imperfect in-
formation, which allows us to hide the traces ti+1, . . . , tk−1 from the player in charge of πi.

• Recall that Player I is always one block ahead of Player O in Γb(L), which accounts for the delay
allowed in the definition of computable functions. With k traces to be picked (and ti depending on
t0, t1, . . . , ti−1), there must be a gap of one block for each even i.

In the following, we present a game that captures the existence of computable Skolem functions and then show
that it can effectively be solved. As a byproduct, we obtain Skolem functions implemented by bounded-delay
transducers whenever computable Skolem functions exist. We begin by defining the appropriate equivalence
relations in Subsection 9.1 and then use them to define our game-theoretic characterization. To this end, we
first introduce an abstract game in Subsection 9.2 to prove the characterization correct, and then formalize the
abstract game as a multi-player game of imperfect information in Subsection 9.4 to prove decidability of our
characterization. Before that, we introduce multi-player games of imperfect information in Subsection 9.3.

Throughout the remainder of this section, we fix a HyperLTL sentence ϕ and a transition system T with
T |= ϕ. We assume (w.l.o.g.)4 ϕ = ∀π0∃π1 · · · ∀πk−2∃πk−1. ψ, define ϕi = QiπiQi+1πi+1 · · · ∀πk−2∃πk−1. ψ
for i ∈ {0, 1, . . . , k − 1} and ϕk = ψ, and use the automata PT

i = (Qi, (2
AP)i, qI,i, δi,Ωi) constructed in

Remark 3 satisfying

L(PT

i ) = {mrg(Π(π0), . . . ,Π(πi−1)) | Π(πj) ∈ Tr(T) for all 0 ≤ j < i and (Tr(T),Π) |= ϕi}.

Recall that the PT
i are all deterministic, which will be crucial in the following.

4The following reasoning can easily be extended to general sentences with arbitrary quantifier prefixes, albeit at the cost of
more complex notation.
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9.1 The Equivalence Relations

We write P : p
w
−→ q for states p, q of a parity automaton P , if P (over an alphabet Σ) has a run from p to

q processing the word w ∈ Σ∗. Similarly, we write T : v
w
−→ v′ for vertices v, v′ of a transition system T, if T

has a path from v to v′ labeled by the word w ∈ (2AP)∗. Also, we need to work with tuples of finite words

of the same length. To simplify our notation, from now on we only write











w0

w1

...
wi−1











if each wj is a word in

(2AP)∗ such that |w0| = |w1| = · · · = |wi−1|.

Note that our notation P : p
w
−→ q expressing the existence of a run does not keep track of the colors

encountered during the run. This is because we modify the automata PT
i to keep track of the maximal color

encountered along a finite run using their state space, as motivated above.

Remark 5. Let C ⊆ N be finite, let α = α0α1α1 · · · ∈ Cω where each αi is a nonempty finite word (over
C) and define ci to be the maximal color occurring in αi. Then, α satisfies the parity condition if and only
if c0c1c2 · · · satisfies the parity condition.

To exploit this, we define the color-tracking automaton

Ci = (Qi × Ωi(Qi), (2
AP)i, (qI,i,Ωi(qI,i)), δ

′
i,Ω

′
i)

where

• δ′i((q, c), a) = (q′,max{c,Ωi(q
′)}) where q′ = δi(q, a) and

• Ω′
i(q, c) = c.

Note that Ci is deterministic, as PT
i is deterministic. In the following, we do not care about the language

recognized by Ci (which in fact is not necessarily equal to L(PT
i )), but only about finite runs in Ci. The

following remark formalizes how Ci keeps track of the maximal color of runs of PT
i , where the second item

relies on the fact that PT
i is deterministic and on Remark 5.

Remark 6.

1. For all finite words w (over the alphabet of PT
i ) and all states p, q and colors c of PT

i : Ci : (p,Ωi(p))
w
−→

(q, c) if and only if PT
i has a run from p to q processing w with maximal color c.

2. Consequently, for all infinite sequences w0, w1, w2, . . . of nonempty finite words and all infinite se-
quences (q0, c0), (q1, c1), (q2, c2), . . . of states of Ci such that

• Ci : (qI,i,Ωi(qI,i))
w0−−→ (q0, c0) and

• Ci : (qn−1,Ωi(qn−1))
wn−−→ (qn, cn) for all n > 0:

w0w1w2 · · · ∈ L(PT
i ) if and only if c0c1c2 · · · = Ω′

i(q0, c0)Ω
′
i(q1, c1)Ω

′
i(q2, c2) · · · satisfies the parity

condition.

We continue by defining an equivalence relation ≡i between (i − 1)-tuples of (finite) words with the
intuition that two such tuples of words are i-equivalent if they both can be “completed” with an i-th
component such that the completed i-tuples induce the same state transformations in Ci, i.e., such tuples do
not need to be distinguished in the following.
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Formally, fix some even i ∈ {2, 4, . . . , k}, some











w0

w1

...
wi−2











, as well as states p, q of Ci. We say that wi−1 ∈

(2AP)|w0| is a (p, q)-completion of











w0

w1

...
wi−2











if Ci : p
mrg(w0,w1,...,wi−1)
−−−−−−−−−−−−−→ q. We define











w0

w1

...
wi−2











≡i











w̃0

w̃1

...
w̃i−2











if

and only if

• for all states p, q of Ci:











w0

w1

...
wi−2











has a (p, q)-completion if and only if











w̃0

w̃1

...
w̃i−2











has a (p, q)-completion,

and

• for all vertices u, v of T and all j ∈ {0, 1, . . . , i− 2}: T : u
wj

−−→ v if and only if T : u
w̃j

−−→ v.

Let us collect some facts about the ≡i. Here, the first item is straightforward while the second follows
from the second item of the definition of ≡i for i = k.

Remark 7.

1. Every ≡i is an equivalence relation of finite index.

2. Let











w0
0

w0
1
...

w0
k−2











,











w1
0

w1
1
...

w1
k−2











,











w2
0

w2
1
...

w2
k−2











, . . . and











w̃0
0

w̃0
1
...

w̃0
k−2











,











w̃1
0

w̃1
1
...

w̃1
k−2











,











w̃2
0

w̃2
1
...

w̃2
k−2











, . . . be two sequences of tu-

ples of words such that











wn
0

wn
1
...

wn
k−2











≡k











w̃n
0

w̃n
1
...

w̃n
k−2











for all n ∈ N, and let i ∈ {0, 1, . . . , k − 2}. Then,

w0
iw

1
iw

2
i · · · ∈ Tr(T) if and only if w̃0

i w̃
1
i w̃

2
i · · · ∈ Tr(T).

However, ≡i is still too coarse, as, for example, w0 and w̃0 can be ≡2-equivalent, but still have (p, q)-

completions w1 and w̃1 respectively, such that





w0

w1

w2



 and





w̃0

w̃1

w̃2



 are not ≡4-equivalent for any w2 and w̃2.

Hence, (intuitively) we need to refine ≡2 with respect to the equivalence classes of all possible completions.

Formally, we inductively define a refined equivalence relation ≡rf
i over words of the form











w0

w1

...
wi−2











for

every i ∈ {2, 3, . . . , k} (i.e., also for the odd i!).

• We define ≡rf
k to be equal to ≡k.

• For i ∈ {3, 5, . . . , k − 1}, we define











w0

w1

...
wi−2











≡rf
i











w̃0

w̃1

...
w̃i−2











if and only if
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– for all wi−1 ∈ (2AP)|w0| there exists w̃i−1 ∈ (2AP)|w̃0| such that











w0

w1

...
wi−1











≡rf
i+1











w̃0

w̃1

...
w̃i−1











, and

– for all w̃i−1 ∈ (2AP)|w̃0| there exists wi−1 ∈ (2AP)|w0| such that











w0

w1

...
wi−1











≡rf
i+1











w̃0

w̃1

...
w̃i−1











.

• For i ∈ {2, 4, . . . , k− 2}, define











w0

w1

...
wi−2











≡rf
i











w̃0

w̃1

...
w̃i−2











if and only if











w0

w1

...
wi−2











≡i











w̃0

w̃1

...
w̃i−2











and if for all

states p, q of Ci,

– for all (p, q)-completions wi−1 of











w0

w1

...
wi−2











there exists a (p, q)-completion w̃i−1 of











w̃0

w̃1

...
w̃i−2











such

that











w0

w1

...
wi−1











≡rf
i+1











w̃0

w̃1

...
w̃i−1











, and

– for all (p, q)-completions w̃i−1 of











w̃0

w̃1

...
w̃i−2











there exists a (p, q)-completion wi−1 of











w0

w1

...
wi−2











such

that











w0

w1

...
wi−1











≡rf
i+1











w̃0

w̃1

...
w̃i−1











.

Lemma 1.

1. Every ≡rf
i is an equivalence relation of finite index.

2. For even i, ≡rf
i refines ≡i.

Proof. The second item follows from the definition of ≡rf
i , so we only consider the first one.

To begin, recall that ≡rf
k is defined as ≡k. So, the result follows from Remark 7. For i < k, note that

both cases in the definition of ≡rf
i share some similarities, i.e., the pattern of quantification is

∀wi−1∃w̃i−1[· · · ] and ∀w̃i−1∃wi−1[· · · ]

(we ignore the additional quantification over states of Ci in the case of an even i for the time being). Hence,
we present an abstract proof that captures the essence of both cases simultaneously.

Fix some set S ×E, let ≡ be an equivalence relation over S ×E of finite index, and let R ⊆ S ×E be a
relation. Furthermore, let ≡′ be the relation over S defined as s ≡′ s̃ if and only if

• for all e ∈ E such that (s, e) ∈ R there exists an ẽ ∈ E such that (s̃, ẽ) ∈ R and

(

s
e

)

≡

(

s̃
ẽ

)

, and
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• for all ẽ ∈ E such that (s̃, ẽ) ∈ R there exists an e ∈ E such that (s, e) ∈ R and

(

s
e

)

≡

(

s̃
ẽ

)

.

It is straightforward to verify that ≡′ is an equivalence relation, so let us focus on the index of ≡′.

We define ext(s) for s ∈ S to be the set of ≡ equivalence classes of tuples of the form

(

s
e

)

, where e

ranges over elements from E with (s, e) ∈ R. Now, we define s ≡ext s̃ if and only if ext(s) = ext(s̃), which is
an equivalence relation of finite index: The codomain of ext has at most 2n elements, where n is the index
of ≡. Finally, ≡ext refines ≡′, which implies that ≡′ has finite index as well.

Now, our result follows by induction over i from k − 1 to 2 by instantiating (for odd i)

• S with the set of tuples of words of the form











w0

w1

...
wi−2











,

• E with the set of finite words over 2AP,

• R with the relation







































w0

w1

...
wi−2











, wi−1











∣

∣

∣

∣

∣

∣

∣

∣

∣

|wi−1| = |w0|



















, and

• ≡ with ≡rf
i+1.

It follows that ≡′ is the relation ≡rf
i for odd i.

For even i, slightly more work is necessary: We first fix a pair p, q of states of Ci and then instantiate

• S with the set of tuples of words of the form











w0

w1

...
wi−2











,

• E with the set of finite words over 2AP,

• R with the relation







































w0

w1

...
wi−2











, wi−1











∣

∣

∣

∣

∣

∣

∣

∣

∣

wi−1 is a (p, q)-completion of











w0

w1

...
wi−2





























,

and

• ≡ with ≡rf
i+1.

The intersection of ≡i and the equivalence relations ≡′ obtained by letting p and q range over all pairs of
states yields the relation ≡rf

i for even i. It has finite index, as the intersection of finitely many equivalence
relations, all with a finite index, is another equivalence relation of finite index.

Let ℓ be minimal such that each word w0 with |w0| ≥ ℓ is in an infinite ≡rf
2 equivalence class. This is well-

defined, as ≡rf
2 has finite index, which implies that there are only finitely many words in finite equivalence

classes. A block is a word in (2AP)ℓ.
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9.2 The Abstract Game

Now, we have all definitions at hand to define an incomplete information multi-player game G(T, ϕ) that
captures the existence of computable Skolem functions. To build some intuition, we first describe the game
abstractly and then define it formally as a multi-player graph game in Subsection 9.4.

The game G(T, ϕ) is played between Player U who picks traces for the universally quantified variables
(by picking blocks) and a coalition of variable players {1, 3, . . . , k − 1}, who pick traces for the existentially
quantified variables (Player i for πi), also by picking blocks.

As in the intuition given above for the case of a formula of the form ∀π∃π′. ψ, the rules of the game G(T, ϕ)
need to account for the delay inherent to the definition of computable functions. In the ∀∃ setting, this is
covered by the fact that the player in charge of π is one block ahead of the player in charge of π′. With more
quantifier alternations, we generalize this as follows for ϕ = ∀π0∃π1 · · · ∀πk−2∃πk−1. ψ:

• The player in charge of πk−2 is one block ahead of the player in charge of πk−1.

• The player in charge of πk−3 must not be ahead of the player in charge of πk−2, but may also not be
behind.

• The player in charge of πk−4 must be one block ahead of the player in charge of πk−3. This implies
that the player in charge of πk−4 must be two blocks ahead of the player in charge of πk−1.

• And so on.

So, the player in charge of πk−1 picks one block in round 0, the player in charge of πk−2 picks two blocks
in round 0 (to be one block ahead), the player in charge of πk−3 picks two blocks in round 0, the player

in charge of πk−4 picks three blocks in round 0 and so on. In general, we define ∆i = k−(i−1)
2 for (odd)

i ∈ {1, 3, . . . , k − 1} and ∆i = ∆i+1 + 1 for (even) i ∈ {0, 2, . . . , k − 2}, e.g., we have ∆k−1 = 1, ∆k−2 = 2,
∆k−3 = 2, and ∆k−4 = 3 capturing the “delay” described above.

Now, we split each round r = 0, 1, 2, . . . into subrounds (r, i) for by i = 0, 1, . . . , k − 1.

• In subround (0, i) of round 0 for even i, Player U picks ∆i blocks t
0
i−1, t

1
i−1, . . . , t

∆i−1
i−1 .

• In subround (0, i) of round 0 for odd i, Player i picks ∆i blocks t
0
i , t

1
i , . . . , t

∆i−1
i .

• In subround (r, i) of round r > 0 for even i, Player U picks a block t∆i+r
i−1 .

• In subround (r, i) of round r > 0 for odd i, Player i picks a block t∆i−1+r
i .

Figure 3 illustrates the evolution of a play of the game and illustrates the number of blocks picked in round 0
as well as the resulting “delay” between the selection of blocks for the different variables.

During a play of G(T, ϕ) the players build traces t0, t1, . . . , tk−1 defined as ti = t0i t
1
i t

2
i · · · . We call

(t0, t1, . . . , tk−1) the outcome of the play. The coalition of variable players wins the play if ti /∈ Tr(T) for
some even i or if mrg(t0, t1, . . . , tk−1) ∈ L(PT

k ), i.e., the variable assignment mapping each πi to ti satisfies
ψ and each ti is in Tr(T).

As already alluded to above, the game described above is a game of imperfect information, which captures
the fact that the Skolem function for an existentially quantified πi depends only on the universally quantified
variables πj with j ∈ {0, 2, . . . , i−1}. Intuitively, we capture this by giving Player i access to all blocks picked
in subrounds (r, j) with j ∈ {0, 2, . . . , i−1}, but hiding all other picks made by the players in subrounds (r, j)
with j ∈ {1, 3, . . . , i− 2, i, i+1, i+ 2, . . . , k− 1}. Note that Player i not having access to their own moves is
not a restriction, as they can always be reconstructed, if necessary.

Formally, a strategy for Player i is a function σi mapping sequences of the form










t00
t02
...

t0i−1





















t10
t12
...

t1i−1











· · ·











t∆i+r
0

t∆i+r
2
...

t∆i+r
i−1





















t∆i+r+1
0

t∆i+r+1
2

...

t∆i+r+1
i−3





















t∆i+r+2
0

t∆i+r+1
2

...

t∆i+r+2
i−5











· · ·

(

t
∆i+r+ i

2
−1

0

t
∆i+r+ i

2
−1

2

)

(

t
∆i+r+ i

2

0

)

(1)
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t00

t01

t02

t03

t04
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t11

t12

t13

t14

t15

t20

t21

t22

t23
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t44

t50

t51

t52

t60

Figure 3: The evolution of a play of G(T, ϕ) for a sentence ϕ with six variables. Each gray shape is a
subround, consisting of a move of Player U or a move of one variable player. We have ∆5 = 1, ∆4 = ∆3 = 2,
∆2 = ∆1 = 3, and ∆0 = 4, which corresponds to the number of blocks picked by the player in charge of
variable πi in round 0.
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for r ≥ 0 to a block (or a sequence of ∆i blocks for r = 0). The vectors getting shorter at the end is a
manifestation the fact that the players in charge of variables πj with smaller j are ahead of the players in
charge of variables with larger j′ (see Figure 3).

A (finite or infinite) play is consistent with σi, if the pick of Player i in each round r is the one prescribed
by σi. A collection (σi)i∈{1,3,...,k−1} of strategies, one for each variable player, is winning, if every play that
is consistent with all σi is won by the variable players. We say that a strategy σi is finite-state, if it is
implemented by a transducer that reads inputs as in Equation (1) (over some suitable finite alphabet) and
produces an output block (or a sequence of ∆i blocks in round 0).

The following lemma shows that the existence of a winning collection of strategies characterizes the
existence of computable Skolem functions. Note that there is a slight mismatch, as the first implication
requires the strategies to be finite-state, while the second implication only yields arbitrary strategies. This
gap will be closed later.

Lemma 2. 1. If the coalition of variable players has a winning collection of finite-state strategies then
T |= ϕ has computable Skolem functions.

2. If T |= ϕ has computable Skolem functions, then the coalition of variable players has a winning collection
of strategies.

Proof. We begin by showing Item 1. So, let (σi)i∈{1,3,...,k−1} be a winning collection of finite-state strategies
for the variable players. We construct computable Skolem functions (fi)i∈{1,3,...,k−1} witnessing T |= ϕ. So,
fix some i ∈ {1, 3, . . . , k − 1}.

The machine Mi computing fi works in iterations n = 0, 1, 2, . . . coinciding with the rounds of G(T, ϕ).
Its input is mrg(t0, t2, . . . , ti−1) (encoding

i
2 input traces as a single infinite word on the input tape), where

we split each tj into blocks t0j t
1
j t

2
j · · · . Recall that the block length ℓ is a constant, i.e., Mi can read its input

blockwise.
Now, in iteration 0, Mi reads the first ∆i +

i
2 blocks of the input, which yields ∆i +

i
2 blocks of each

tj . These blocks can be used to simulate the moves of Player U in subrounds (0, j) for even j < i. Note
that this does not require all blocks of the tj for j > 0. These have to be stored in the working tape for
later use, as the reading tape is one-way. The simulated moves by Player U can be feed into the finite-state
implementation of σi, yielding blocks t0i , t

1
i , . . . , t

∆i−1
i as output. The word t0i t

1
i · · · t

∆i−1
i is then written to

the output tape of Mi, which completes iteration 0.
In general, assume Mi has completed iteration n − 1 and now starts iteration n > 0. This iteration

begins with Mi reading another block of the input, which yields another block of each tj . The new block of
t0, and the oldest stored block for each tj with j > 0 can be used to continue the simulated play (restricted
to moves by Player U in subrounds for the variables πj for j ∈ {0, 2, . . . , i − 1}) by feeding them into the
finite-state implementation of σi, yielding a block t as output. This block is then appended on the output
tape. The unused new blocks of tj with j > 0 are again stored on the working tape. This ends iteration n.

To simulate the play, Mi can just store the whole play prefix on the working tape. To process the play
prefix by the finite-state implementation of σi, Mi can just store the whole run prefix on the working tape,
although a more economical would be possible.

Now, we show that the functions fi computed by the Mi constructed above are indeed Skolem functions
witnessing T |= ϕ. To this end, let Π with dom(Π) ⊇ {π0, π1, . . . , πk−1} be a variable assignment that
is consistent with the fi, i.e., each Π(πi) with even i is in Tr(T) and each Π(πi) with odd i is equal to
fi(Π(π0),Π(π2), . . . ,Π(πi−1)). We need to show that each Π(πi) for odd i is in Tr(T) (i.e., the functions fi
are well-defined) and that Π |= ψ, i.e., mrg(Π(π0),Π(π1), . . . ,Π(πk−1)) ∈ L(PT

k ).
By construction, (Π(π0),Π(π1), . . . ,Π(πk−1)) is the outcome of a play of G(T, ϕ) that is consistent with

the σi and therefore winning for the variable players. As each Π(πi) with even i is in Tr(T), we conclude
mrg(Π(π0),Π(π1), . . . ,Π(πk−1)) ∈ L(PT

k ), as required. Note that this does also imply Π(πi) for odd i is in
Tr(T), as L(PT

k ) only contains tuples of traces from Tr(T).

Now, let us consider Item 2. Let fi : (Tr(T))
i+1

2 → Tr(T) for i ∈ {1, 3, . . . , k − 1} be computable Skolem
functions witnessing T |= ϕ, say each fi is implemented by a Turing machine Mi. By Remark 4, each Mi

can be assumed to have bounded delay: there is a di such that to compute the first n letters of the output
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only n+ di letters of the input are read. Note that we can run such a Turing machine Mi with delay di on
a finite input w of length n+ di and obtain the first n letters of the output fi(w

′) of every infinite w′ that
starts with the prefix w. We will apply this fact to simulate the Mi on-the-fly on longer and longer prefixes.

Also note that our definition of a function f being computed by a Turing machine M only requires
it to compute the output f(w) for all w ∈ dom(f), but it can produce arbitrary (even finite) outputs for
w /∈ dom(f). To simplify our construction, we assume here that each Mi produces an infinite output for
every input, even if it is not in the domain of fi. This can be done w.l.o.g., as the Mi have bounded delay di:
as soon as Mi wants to access input letter n + di + 1 without having produced n+ 1 output letters so far
(this can be detected, as di is a constant), the run does not have delay di, which implies that the input
cannot be in dom(fi). Hence, a designated state can be entered, which produces an arbitrary infinite output
while ignoring the remaining input. The resulting machine still has delay di, but a complete domain.

Let di ∈ N be minimal such that each Mi has delay at most d. We inductively define a winning collection
of strategies for the variable players.

Round 0.

Subrounds (0, 0) and (0, 1). Assume Player U picks t00, t
1
0, . . . , t

∆0−1
0 in subround (0, 0) to start a

play. We fix t̃00 = t00 and fix t̃n0 for n ∈ {1, 2, . . . ,∆0−1} such that t̃n0 ≡rf
2 tn0 and |t̃00t̃

1
0 · · · t̃

n
0 | ≥ |t̃00t̃

1
0 · · · t̃

n−1
0 |+d

for all such n. This is always possible, as the ≡rf
2 equivalence class of each tn0 is infinite and therefore contains

arbitrarily long words.
Let t̃01t̃

1
1 · · · t̃

∆0−2
1 be the output of M1 when given the partial input t̃00t̃

1
0 · · · t̃

∆0−1
0 such that |t̃n1 | = |t̃n0 | for

all n. This is well-defined by the choice of the length of the t̃n0 and the fact that M1 has delay d. Note that
M1 might produce even more output on that input. Any such additional output is ignored in this subround.

Now, let (qn2 , c
n
2 ) be the unique state of C2 that is reached by processing mrg(t̃n0 , t̃

n
1 ) from (qn−1

2 ,Ω2(q
n−1
2 )),

where we use q−1
2 = qI,2 to start. Again, this is well-defined as C2 is deterministic. Each t̃n1 is a ((qn−1

2 ,Ω2(q
n−1
2 ), (qn2 , c

n
2 ))-

completion of t̃n0 .
As we have tn0 ≡rf

2 t̃n0 for all such n, there also exists a ((qn−1
2 ,Ω2(q

n−1
2 )), (qn2 , c

n
2 ))-completion tn1 of tn0

for all n ∈ {0, 1, . . . ,∆0 − 2} such that

(

tn0
tn1

)

≡rf
3

(

t̃n0
t̃n1

)

. We define σ1 such that it picks t01, t
1
1, . . . , t

∆0−2
1 in

subround (0, 1). As ∆0 − 2 = ∆1 + 1, these are ∆1 many blocks, as required by the definition of G(T, ϕ).

Subrounds (0, 2) and (0, 3). Now, assume Player U picks t02, t
1
2, . . . , t

∆2−1
2 in subround (0, 2). We

fix t̃02 = t02 and then fix t̃n2 for n ∈ {1, 2, . . . ,∆2 − 1} such that





t̃n0
t̃n1
t̃n2



 ≡rf
4





tn0
tn1
tn2



. This is possible, as

we have

(

tn0
tn1

)

≡rf
3

(

t̃n0
t̃n1

)

for all such n. Let t̃03t̃
1
3 · · · t̃

∆2−2
3 be the output of M3 when given the partial

input mrg(t̃00 t̃
1
0 · · · t̃

∆2−1
0 , t̃02t̃

1
2 · · · t̃

∆2−1
2 ) such that |t̃n3 | = |t̃n0 | for all n (again, this is well-defined due to the

choice of the length of the t̃n0 and M3 having delay d, and might require to ignore some output).
Let (qn4 , c

n
4 ) be the unique state of C4 that is reached by processing mrg(t̃n0 , t̃

n
1 , t̃

n
2 , t̃

n
3 ) from (qn−1

4 ,Ω4(q
n−1
4 )),

where we use q−1
4 = qI,4 to start. Each t̃n3 is a ((qn−1

4 ,Ω4(q
n−1
4 )), (qn4 , c

n
4 ))-completion of





t̃n0
t̃n1
t̃n2



.

As we have





t̃n0
t̃n1
t̃n2



 ≡rf
4





tn0
tn1
tn2



 for all such n, there also exists a ((qn−1
4 ,Ω4(q

n−1
4 )), (qn4 , c

n
4 ))-completion

tn3 of





tn0
tn1
tn2



 for all n ∈ {0, 1, . . . ,∆2 − 1} such that











tn0
tn1
...
tn3











≡rf
5











t̃n0
t̃n1
...
t̃n3











. We define σ3 such that it picks
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t03, t
1
3, . . . , t

∆2−2
3 in subround (0, 3). As ∆2 − 2 = ∆3 − 1, these are ∆3 many blocks, as required by the

definition of G(T, ϕ).

Subrounds (0, i−1) and (0, i) for odd i ∈ {5, 7, . . . , k−1}. Assume PlayerU picks t0i−1, t
1
i−1, . . . , t

∆i−1−1
i−1

in subround (0, i− 1). As before, we fix t̃0i−1 = t0i−1 and then fix t̃ni−1 for n ∈ {1, 2, . . . ,∆i−1 − 1} such that










t̃n0
t̃n1
...

t̃ni−1











≡rf
i+1











tn0
tn1
...

tni−1











. This is possible, as











tn0
tn1
...

tni−2











≡rf
i











t̃n0
t̃n1
...

t̃ni−2











for all such n is an invariant of our con-

struction.
Let t̃0i t̃

1
i · · · t̃

∆i−1−2
i be the output of Mi when given the partial input

mrg(t̃00t̃
1
0 · · · t̃

∆i−1−1
0 , t̃02t̃

1
2 · · · t̃

∆i−1−1
2 , . . . , t̃0i−1t̃

1
i−1 · · · t̃

∆i−1−1
i−1 )

such that |t̃ni | = |t̃n0 | for all n. As in the previous cases, this is well-defined.
Let (qni , c

n
i ) be the unique state of Ci that is reached by processing mrg(t̃n0 , t̃

n
1 , . . . , t̃

n
i ) from (qn−1

i ,Ωi(q
n−1
i )),

where we use q−1
i = qI,i to start. Each t̃ni is a ((qn−1

i ,Ωi(q
n−1
i ), (qni , c

n
i ))-completion of











t̃n0
t̃n1
...

t̃ni−1











. As we have











t̃n0
t̃n1
...

t̃ni−1











≡rf
i+1











tn0
tn1
...

tni−1











for all such n, there also exists a ((qn−1
i ,Ωi(q

n−1
i ), (qni , c

n
i ))-completion tni of











tn0
tn1
...

tni−1











for all n ∈ {0, 1, . . . ,∆i−1 − 1} such that











tn0
tn1
...
tni











≡rf
i+2











t̃n0
t̃n1
...
t̃ni











for all n, satisfying the invariant again. We

define σi such that it picks t0i , t
1
i , . . . , t

∆i−1−2
i in subround (0, i). As ∆i−1 − 2 = ∆i − 1, these are ∆i many

blocks, as required by the definition of G(T, ϕ).

Round r > 0. Now, we consider a round r > 0, assuming the σi are already defined for all earlier rounds.
The construction is very similar to the one for round 0, but simpler as each player (also Player U !) only
picks a single block in each subround (r, i) of round r.

Subrounds (r, 0) and (r, 1). Assume Player U picks t∆0−1+r
0 in subround (r, 0). We fix t̃∆0−1+r

0

such that t∆0−1+r
0 ≡rf

2 t̃∆0−1+r
0 and |t̃00t̃

1
0 · · · t̃

∆0−1+r
0 | ≥ |t̃00t̃

1
0 · · · t̃

∆0+r−2
0 | + d. This is possible, as the ≡rf

2

equivalence class of t∆0−1+r
0 is infinite and therefore contains arbitrarily long words.

We run M1 on t̃00 t̃
1
0 · · · t̃

∆0−1+r
0 and obtain another block t̃∆0+r−2

1 . Then, we define (q∆0+r−2
2 , c∆0+r−2

2 )
as the unique state of C2 reached from (q∆0−1+r−2

2 ,Ω2(q
∆0−1+r−2
2 )) (which was defined in subround (r−1, 0))

when processing mrg(t̃∆0+r−2
0 , t̃∆0+r−2

1 ), i.e., t̃∆0+r−2
1 is a ((q∆0−1+r−2

2 , c∆0−1+r−2
2 ), (q∆0+r−2

2 ,Ω2(q
∆0+r−2
2 )))-

completion of t̃∆0+r−2
0 .

There is also a ((q∆0−1+r−2
2 , c∆0−1+r−2

2 ), (q∆0+r−2
2 ,Ω2(q

∆0+r−2
2 )))-completion t∆0+r−2

1 of t∆0+r−2
0 such

that

(

t∆0+r−2
0

t∆0+r−2
1

)

≡rf
3

(

t̃∆0+r−2
0

t̃∆0+r−2
1

)

, as we have t∆0+r−2
0 ≡rf

2 t̃∆0+r−2
0 . We define σ1 such that it picks the

block t∆0+r−2
1 in subround (r, 1) (note that ∆0 + r − 2 = ∆1 − 1 + r).
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Subrounds (r, i − 1) and (r, i) for i ∈ {3, 5, . . . , k − 1}. Now, assume Player U picks t
∆i−1−1+r

i−1

in subround (r, i − 1). We fix t̃
∆i−1−1+r

i−1 such that













t̃
∆i−1−1+r

0

t̃
∆i−1−1+r

1
...

t̃
∆i−1−1+r

i−1













≡rf
i+1













t
∆i−1−1+r

0

t
∆i−1−1+r

1
...

t
∆i−1−1+r

i−1













. This is possible, as













t̃
∆i−1−1+r

0

t̃
∆i−1−1+r

1
...

t̃
∆i−1−1+r

i−2













≡rf
i













t
∆i−1−1+r

0

t
∆i−1−1+r

1
...

t
∆i−1−1+r

i−2













is an invariant of our construction.

We run Mi on

mrg(t̃00t̃
1
0 · · · t̃

∆i−1−1+r

0 , t̃02t̃
1
0 · · · t̃

∆i−1−1+r

2 , . . . , t̃0i−1t̃
1
i−1 · · · t̃

∆i−1−1+r

i−1 ),

yielding another block t̃
∆i−1+r−2
i . Let (q

∆i−1+r−2
i , c

∆i−1+r−2
i ) be the unique state of Ci that is reached by

processing

mrg(t̃
∆i−1+r−2
0 , t̃

∆i−1+r−2
1 , . . . , t̃

∆i−1+r−2
i )

from (q
∆i−1−1+r−2
i ,Ωi(q

∆i−1−1+r−2
i )) (defined in subround (r − 1, i− 1)). Hence, t̃

∆i−1+r−2
i is a

((q
∆i−1−1+r−2
i ,Ωi(q

∆i−1−1+r−2
i )), (q

∆i−1+r−2
i , c

∆i−1+r−2
i ))-completion of













t̃
∆i−1+r−2
0

t̃
∆i−1+r−2
1

...

t̃
∆i−1+r−2
i−1













. As













t̃
∆i−1+r−2
0

t̃
∆i−1+r−2
1

...

t̃
∆i−1+r−2
i−1













≡rf
i+1













t
∆i−1+r−2
0

t
∆i−1+r−2
1

...

t
∆i−1+r−2
i−1













, there also exists a

((q
∆i−1−1+r−2
i ,Ωi(q

∆i−1−1+r−2
i )), (q

∆i−1+r−2
i , c

∆i−1+r−2
i ))-completion t

∆i−1+r−2
i of













t
∆i−1+r−2
0

t
∆i−1+r−2
1

...

t
∆i−1+r−2
i−1













such that













t
∆i−1+r−2
0

t
∆i−1+r−2
1

...

t
∆i−1+r−2
i













≡rf
i+2













t̃
∆i−1+r−2
0

t̃
∆i−1+r−2
1

...

t̃
∆i−1+r−2
i













. We define σi such that it picks t
∆i−1+r−2
i in

subround (r, i) (note that ∆i−1 + r − 2 = ∆i − 1 + r).
This completes the definition of the σi. Note that each σi does indeed only depend on the blocks picked

in subrounds (r, j) with j ∈ {0, 2, . . . , i− 1}, i.e., σi is indeed a strategy for Player i in G(T, ϕ).
It remains to show that the σi are a winning collection of strategies. To this end, let (t0, t1, . . . , tk−1) be

an outcome of a play that is consistent with the σi. If a ti with even i is not in Tr(T), then the variable
players win immediately. So, assume each ti with even i is in Tr(T). Let t̃0, t̃1, . . . , t̃k−1 be the traces
constructed during the inductive definition of the σi. By applying Remark 7.2 and the fact that ≡rf

k refines
≡k, we obtain that each t̃i with even i is in Tr(T) as well. Also, the t̃i for odd i satisfy t̃i = fi(t̃0, t̃2, . . . , t̃i−1)
by construction, i.e., they are obtained by applying the Skolem functions. Hence, the variable assignment
mapping πi to t̃i satisfies ψ, which implies that mrg(t̃0, t̃1, . . . , t̃i−1) is in L(PT

k ). Now, consider the sequence
of states (q−1

k ,Ωk(q
−1
k )), (q0k, c

0
k), (q

1
k, c

1
k), (q

2
k, c

2
k), . . . obtained during the definition of σk−1. They satisfy

Ck : (q
n−1
k ,Ωk(q

n−1
k ))

mrg(t̃n0 ,t̃
n
1 ,...,t̃

n
k−1)

−−−−−−−−−−−−→ (qnk , c
n
k ) for all n ∈ N and (q−1

k ,Ωk(q
−1
k )) is the initial state of Ck.

Hence, Remark 6.2 implies that c0kc
1
kc

2
k · · · satisfies the parity condition.
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Now, as











t̃n0
t̃n1
...

t̃nk−1











≡k











tn0
tn1
...

tnk−1











for all n, we have Ck : (q
n−1
k ,Ωk(q

n−1
k ))

mrg(tn0 ,t
n
1 ,...,t

n
k−1)

−−−−−−−−−−−−→ (qnk , c
n
k ) for all n

as well. By applying Remark 6.2 again, we obtain mrg(t0, t1, . . . , ti−1) ∈ L(PT

k ), i.e., the variable players
win.

9.3 Distributed Games

After having shown that the abstract game G(T, ϕ) characterizes the existence of computable Skolem func-
tions, we now model G(T, ϕ) as a multi-player graph game of imperfect information using the notation of
Berwanger et al. [4]. In this subsection, we introduce the necessary definitions before we model the game in
Subsection 9.4. The games considered by Berwanger et al. are concurrent games (i.e., the players make their
moves simultaneously), while G(T, ϕ) is turn-based, i.e., the players make their moves one after the other.
Hence, we will also introduce some notation for the special case of turn-based games, which simplifies our
modeling.

Game Graphs. Fix some set N = {1, . . . , n} of players and a distinguished agent called Nature
(which is not in N !). A profile is a list p = (p1, . . . , pn) of elements pi ∈ Pi for sets Pi that will be clear
from context. For each player i ∈ N we fix a finite set Ai of actions and a finite set Bi of observations. A
game graph G = (V,E, vI , (β

i)i∈N ) consists of a finite set V of positions, an edge relation E ⊆ V × A × V
representing simultaneous moves labeled by action profiles (i.e., A = A1×· · ·×An), an initial position vI ∈ V ,
and a profile (βi)i∈N of observation functions βi : V → Bi that label, for each player, the positions with
observations. We require that E has no dead ends, i.e., for every v ∈ V and every a ∈ A there is a v′ ∈ V
with (v, a, v′) ∈ E.

A game graph (V,E, vI , (β
i)i∈N ) yields hierarchical information if there exists a total order � over N

such that if i � j then for all v, v′ ∈ V , βi(v) = βi(v′) implies βj(v) = βj(v′), i.e., if Player i cannot
distinguish v and v′, then neither can Player j for i � j.

Plays. Intuitively, a play starts at position vI ∈ V and proceeds in rounds. In a round at position v,
each Player i chooses simultaneously and independently an action ai ∈ Ai, then Nature chooses a successor
position v′ such that (v, a, v′) ∈ E. Now, each player receives the observation βi(v′) and the next round is
played at position v′. Thus, a play of G is an infinite sequence v0v1v2 · · · of vertices such that v0 = vI and
for all r ≥ 0 there is an ar ∈ A such that (vr , ar, vr+1) ∈ E.

A history is a prefix v0v1 · · · vr of a play. We denote the set of all histories by Hist(G) and extend
βi : V → Bi to plays and histories by defining βi(v0v1v2 · · · ) = βi(v1)β

i(v2)β
i(v3) · · · . Note that the

observation of the initial position is discarded for technical reasons [4]. We say two histories h and h′ are
indistinguishable to Player i, denoted by h ∼i h

′, if βi(h) = βi(h′).

Strategies. A strategy for Player i is a mapping si : V ∗ → Ai that satisfies si(h) = si(h′) for all h, h′

with h ∼i h
′ (i.e., the action selected by the strategy only depends on the observations of the history). A

play v0v1v2 · · · is consistent with si if for every r ≥ 0, there is an ar = (a1, . . . , an) ∈ A with (vr , ar, vr+1) ∈ E
and ai = si(v0v1 · · · vr). A play is consistent with a strategy profile (s1, . . . , sn) if it is consistent with each
si. The set of possible outcomes of a strategy profile is the set of all plays that are consistent with s.

A distributed game G = (G,W ) consists of a game graph and a winning condition W ⊆ V ω, where V is
the set of positions of G. A play is winning if it is in W and a strategy profile S is winning in G if all its
outcomes are winning.

Finite-state Strategies. Next, we define what it means for a strategy for Player i to be finite-state.
So far, we used transducers, i.e., automata with output on transitions to implement strategies in a finitary
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manner. From now on, we follow the definitions used by Berwanger et al. [4] and use Moore machines, i.e.,
finite automata with output on states. However, each Moore machine can be transformed into a transducer
by “moving” the output from a state to all its outgoing transitions.

Let Ai and Bi be the actions and observations of Player i. A Moore machine S = (M,mI , upd, nxt)
for Player i consists of a finite set M of memory states containing the initial memory state mI , a memory
update function upd: M ×Bi →M , and a next-move function nxt : M → Ai. We extend upd to words over
Bi by defining upd(ε) = mI and upd(b0b1 · · · br) = upd(upd(b0b1 · · · br−1), br). We say S implements the
strategy mapping v0v1 · · · vr to nxt(upd(βi(v0v1 · · · vr))). A strategy is finite-state, if it is implemented by
some Moore machine.

Proposition 4 ([29, 4]).

1. The following problem is decidable: Given a distributed game with ω-regular winning condition, does it
have a winning strategy profile?

2. A distributed game with ω-regular winning condition has a winning strategy profile if and only if it has
a winning profile of finite-state strategies.

Turn-based Game Graphs. We say that a game graph G = (V,E, vI , (β
i)i∈N ) is turn-based, if there

is a function o : V → N such that if (v, a, v′) ∈ E, (v, a′, v′′) ∈ E, and the action profiles a and a′ having
the same action for Player o(v) implies v′ = v′′. To simplify our notation, we label the edges leaving v only
by actions of Player o(v). Thus, in a turn-based game graph, at every position v Player o(v) determines the
possible next moves, and Nature selects one of them. Turn-based distributed games are distributed games
whose game graphs are turn-based.

9.4 The Concrete Game

Now, we are finally ready to formalize the abstract game G(T, ϕ) described above as a turn-based distributed
game.

We begin by introducing notation for the positions of the game, which intuitively keep track of blocks
picked by the players of G(T, ϕ) until they can be processed by an automaton recognizing the winning
condition. Due to the delay between the choices by the different players, this requires some notation.

Recall that we have defined ∆i for even i to be the number of blocks Player U picks in subround (0, i)
for variable i and for odd i to be the number of blocks Player i picks in subround (0, i) for variable i. Now,
let

D = {(j, x) | j ∈ {0, 1, . . . , k − 1} and x ∈ {0, 1, . . . ,∆i − 1}}.

A configuration is a partial function c : D → B, where B = (2AP)ℓ denotes the set of blocks. Let C denote
the set of all configurations. The following definitions are visualized in Figure 4.

We only need certain types of configurations c for our construction. We say that c is

• a full configuration if dom(c) = D,

• an initial i-configuration (for i ∈ {0, 1, . . . , k − 1}) if

dom(c) = {(j, x) | j ∈ {0, 1, . . . , i− 1} and x ∈ {0, 1, . . . ,∆j − 1}},

and

• a looping i-configuration (again for i ∈ {0, 1, . . . , k − 1}) if

dom(c) = {(j, x) | j ∈ {0, 1, . . . , i− 1} and x ∈ {0, 1, . . . ,∆j − 1}}∪

{(j, x) | j ∈ {i, i+ 1, . . . , k − 1} and x ∈ {0, 1, . . . ,∆j − 2}}.
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Figure 4: Illustrating configurations for a formula with six variables, where a filled circle denotes an element
in the domain, and an unfilled circle an element that is not in the domain. The upper row shows initial
i-configurations for i = 0, 1, 2, . . . , 5 (from left to right), the lower row shows looping i-configurations for
i = 0, 1, 2, . . . , 5 (from left to right), and the configuration on the right in between the rows is full. Solid
arrows show the effect of extending and shifting configurations. The shifting operation is illustrated using
the numbers in the circles. Finally, in a play of G(T, ϕ) the configurations stored in positions follow the solid
arrows, but take the dashed shortcuts avoiding full configurations.

Note that for i = k − 1, both the definition of initial and looping i-configuration coincides, as we have
∆k−1 = 1. Hence, in the following, we will just speak of (k − 1)-configurations whenever convenient.

Given an initial i-configuration c and a sequence b = b0, b1, . . . , b∆i−1 of ∆i blocks, we define ext(c, b) to
be the configuration c′ defined as

c′(j, x) =











c(j, x) if (j, x) ∈ dom(c),

bx if j = i,

undefined otherwise.

Furthermore, given a looping i-configuration c and a block b, we define ext(c, b) to be the configuration c′

defined as

c′(j, x) =











c(j, x) if (j, x) ∈ dom(c),

b if j = i and x = ∆i − 1,

undefined otherwise.

Finally, given a full configuration c, we define shft(c) to be the configuration c′ defined as

c′(j, x) =

{

c(j, x + 1) if x < ∆j − 1,

undefined otherwise.

The following remark collects how these operations update initial and looping configurations.

Remark 8.
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1. If c is an initial i-configuration for i < k − 1, then ext(c, b) is an initial (i + 1)-configuration.

2. If c is a (k − 1)-configuration, then ext(c, b) is a full configuration.

3. If c is a full configuration, then shft(c) is a looping 0-configuration.

4. If c is a looping i-configuration for i < k − 1, then ext(c, b) is a looping (i + 1)-configuration.

Finally, let P = (Q, (2AP)k, qI , δ,Ω) be a deterministic parity automaton accepting the language of
words of the form mrg(t0, t1, . . . , tk−1) ∈ ((2AP)ω)k such that either ti /∈ Tr(T) for some even i or if
mrg(t0, t1, . . . , tk−1) ∈ L(PT

k ) (i.e., accepting the winning outcomes of plays of G(T, ϕ)).
Now, we are able to formally define G(T, ϕ). It will be played by the players in N = {1, 3, . . . , k − 1}

(ignoring, for the sake of readability, the fact that N is not of the form {1, 2, . . . , n} for some n, as required
by the definitions in Subsection 9.3). Furthermore, the role of Player U will be played by Nature.

We define the set of positions to contain all tuples (i, c, q) where i ∈ {0, 1, . . . , k − 1}, c is an (initial or
looping) i-configuration, and q is a state of P , together with a sink state s⊥. The initial position is (0, c⊥, qI)
where c⊥ is the configuration with empty domain (which is the unique initial 0-configuration).

We define the action set for Player i (for odd i) as B∆i ∪B, where actions in B∆i are intended for round 0
and those in B are intended for all other rounds. If the wrong action is used, then the sink state will be
reached. Next, we define the function o determining which player picks an action to continue a play: we
have o(i, c, q) = i for odd i, o(i, c, q) = 1 for even i (we will soon explain how Player U moves are simulated
even though Player 1 owns the corresponding positions), and o(s⊥) = 1.

The set E of edges is defined as follows (recall that we label edges by actions of a single player, as we
define a turn-based game):

• We begin by modelling the moves of Player U . Recall that in a turn-based distributed game, Nature
resolves the nondeterminism left after the player who is in charge at that positions has picked an action.
Thus, we simulate a move of Player U by giving the position to (say) Player 1. Then, we define the
edges such that Player 1’s move is irrelevant, but the nondeterminism models the choice of Player U .

Formally, for i ∈ {0, 2, . . . , k − 2}, an initial i-configuration c, and a state q of P , we have the
edge ((i, c, q), a, (i + 1, ext(c, b), q)) for every action a of Player 1 and every b ∈ B∆i: No matter
which action a Player 1 picks, Nature can for each possible b pick a successor that extends c by b. This
indeed simulates the move of Player U in subround (0, i).

• For i ∈ {1, 3, . . . , k−3}, an initial i-configuration c, and a state q of P , we have the edge ((i, c, q), b, (i+
1, ext(c, b), q)) for each b ∈ B∆i (this simulates the move of Player i in subround (0, i)) as well as the
edge ((i, c, q), b, s⊥) for each b ∈ B (Player i may not pick a single block in subround (0, i) if i < k− 1).
Note that there is no nondeterminism to resolve for Nature, as there is a unique successor position for
each action.

• For a (k− 1)-configuration c and state q of P , we have the edge ((k− 1, c, q), b, (0, shft(c′), q′)) for each
b ∈ B (recall that we have ∆k−1 = 1 here), where c′ = ext(c, b) and q′ is the state reached by P when
processing mrg(c′(0, 0), c′(1, 0), . . . , c′(k − 1, 0)) from q.

• For i ∈ {0, 2, . . . , k−2}, a looping i-configuration c, and a state q of P , we have the edge ((i, c, q), a, (i+
1, ext(c, b), q)) for every action a of Player 1 and every b ∈ B: No matter which action a Player 1 picks,
Nature can for each possible b pick a successor that extends c by b. This simulates the move of Player U
in a subround (r, i+ 1) for r > 0 using the same mechanism as described above for moves of Player U
in initial configurations.

• For i ∈ {1, 3, . . . , k−3}, a looping i-configuration c, and a state q of P , we have the edge ((i, c, q), b, (i+
1, ext(c, b), q)) for each b ∈ B (this simulates the move of Player i in subround (r, i) for r > 0) as well as
the edge ((i, c, q), b, s⊥) for each b ∈ B∆i (Player imay not pick a sequence of blocks in a subround (r, i)).
Again, there is no nondeterminism to resolve for Nature, as there is a unique successor position for
each action.
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• For completeness, we have the edge (s⊥, a, s⊥) for every action a of Player 1.

It remains to define the observation functions βi as βi(i, c, q) = c↾ i where c↾ i is the configuration defined
as

(c↾ i)(j, x) =

{

c(j, x) if j ∈ {0, 2, . . . , i− 1},

undefined otherwise,

i.e., Player i can only observe the blocks picked for the variables πj with even j < i. For completeness, we
also define the observation of the sink state s⊥ to be ⊥, where ⊥ /∈ C. Then, the order 1 � 3 � · · · � k − 1
witnesses that the game graph yields hierarchical information.

This completes the definition of the game graph. To complete the definition of the game we define the win-
ning condition as follows: Let (i0, c0, q0)(i1, c1, q1)(i2, c2, q2) · · · be a play and let (i0, c0, q0)(ik, ck, qk)(i2k, c2k, q2k) · · ·
be the subsequence of all (initial and looping) 0-configurations. Recall that the state qrk in such a position
(for r > 0) is obtained by processing some mrg(b0, . . . , bk−1) from q(r−1)k , where the bi are blocks picked
by the players. We say (i0, c0, q0)(i1, c1, q1)(i2, c2, q2) · · · is in the winning condition, if Ω(q0)Ω(qk)Ω(q2k) · · ·
satisfies the parity condition, which is an ω-regular winning condition. In particular, no winning play may
visit the sink s⊥.

Remark 9. The (concrete) distributed game constructed here is a formalization of the abstract game G(T, ϕ)
described in Subsection 9.2. In particular, a winning collection of (finite-state) strategies for the coalition of
players in the abstract game corresponds to a winning (finite-state) strategy profile in the concrete game and
vice versa.

Hence, whenever convenient below, we do not distinguish between the concrete and the abstract game.

Now, our main theorem (Theorem 3) is a direct consequence of Proposition 4 and Lemma 2. Recall that
we need to show that the following problem is decidable: “Given a transition system T and a HyperLTL
sentence ϕ with T |= ϕ, is T |= ϕ witnessed by computable Skolem functions?”, i.e., does T |= ϕ have an
explanation in the cs-paradigm? If the answer is yes, our algorithm computes bounded-delay transducers
implementing such Skolem functions.

Proof. Due to Lemma 2 and Proposition 4.2, the following statements are equivalent:

• T |= ϕ has computable Skolem functions.

• G(T) has a winning strategy profile.

• G(T) has a winning profile of finite-state strategies.

The last statement can be decided effectively due to Proposition 4.1. Thus, the existence of computable
Skolem functions is decidable.

Now, assume T |= ϕ has computable Skolem functions. Due to the equivalence above, (the concrete)
G(T, ϕ) has a winning profile (s1, s3, . . . , sk−1) of finite-state strategies. We show by induction over i how
the finite-state strategies si can be turned into bounded-delay transducers Ti computing Skolem functions
witnessing T |= ϕ. The proof follows closely the analogous results shown in Lemma 2.1 for Turing machine
computable Skolem functions.

Let us fix some i ∈ {1, 3, . . . , k − 1} and let Si be a Moore machine for Player i implementing si. Recall
that Si reads observations of Player i (configurations of the form c↾ i for initial and looping configurations)
and returns actions of Player i.

On the other hand, Ti reads an input mrg(t0, t2, . . . , ti−1) ∈ ((2AP)
i
2 )ω where we split each tj into blocks

tj = t0j t
1
j t

2
j · · · .

We construct Ti so that it works in two phases, an initialization phase and a looping phase, that is
repeated ad infinitum. We begin by describing the initialization. It begins by Ti reading ∆0 blocks from
each tj . These blocks can now be assembled into a sequence of observations of Player i corresponding to
the play prefix of G(T, ϕ) in which Player U picks these blocks. Note that this requires to process each
such observation twice, as Player i’s observation does not get updated, when Player j for odd j < i makes
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a move. All unused blocks are stored in the state space of T . Now, Ti simulates the run of the Moore
machine Si implementing si on this sequence of observations, yielding an action ai. As si is winning, this
action is a sequence b = b0, b1, . . . , b∆i−1 of blocks. Then, Ti outputs b0b1 · · · b∆i−1. Now, we process the last
observation another k− i times with Si, simulating the moves for the remaining variables (which are hidden
from Player i which implies the observation is unchanged). This concludes the initialization phase.

The looping phase begins with Ti reading another block from each tj . Again, these blocks and the ones
stored in the state space can be assembled into observations of Player i corresponding to a continuation
of the simulated play prefix in which Player U pick these blocks. Then, the run of the Moore machine Si

implementing si can be continued, yielding an action ai. This is now a block b, which is output by Ti. Again,
we process the last observation just assembled another k − i times to simulate the moves for the remaining
variables, which concludes one looping phase. Note that the delay of Ti is bounded by k · ℓ, where ℓ is the
block length.

By storing blocks from the input that have been read but not yet used in observations, by discarding
blocks no longer needed, and by keeping track of the state the simulated run of Si ends in, this behaviour
can indeed be implemented using a finite state-space. We leave the tedious, but straightforward, formal
definition of Ti to the reader.
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