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Åqvist’s Logics

Dmitry Rozplokhas 1

TU Wien, Austria

Abstract

Åqvist’s logics (E, F, F+(CM), andG) are among the best-known systems in the long
tradition of preference-based approaches for modeling conditional obligation. While
the general semantics of preference models align well with philosophical intuitions,
more constructive characterizations are needed to assess computational complexity
and facilitate automated deduction. Existing small model constructions from condi-
tional logics (due to Friedman and Halpern) are applicable only to F+(CM) and G,
while recently developed proof-theoretic characterizations leave unresolved the exact
complexity of theoremhood in logic F. In this paper, we introduce alternative small
model constructions, obtained uniformly for all four Åqvist’s logics. Our construc-
tions propose alternative semantical characterizations and imply co-NP-completeness
of theoremhood. Furthermore, they can be naturally encoded in classical proposi-
tional logic for automated deduction.

Keywords: deontic logic, preference models, small model property

1 Introduction

The analysis of various normative scenarios and deontic paradoxes led to the
formalization of obligations as conditionals, i.e. as dyadic modalities ©(γ |α)
read “γ is obligatory if α holds”. One standard way to formalize conditionals
is to use relational models with a certain preference relation on worlds induc-
ing a notion of maximality (or minimality), known as preference models. In
the deontic context, a landmark framework implementing the preference-based
approach is Åqvist’s family [1], comprising logics E, F, and G. G is a deontic
version of Lewis’ counterfactual logic VTA [13] and it is too strong in many
deontic contexts, necessitating weaker modifications E and F. In the latter two
logics the preference relation is not required to be transitive and smoothness
assumption (a.k.a. Lewis’ “Limit assumption”) is either completely discarded
(in E) or is replaced with a more general limitedness property (in F). This
makes logics E and F rather unique among conditional logics (the smoothness
assumption is ubiquitous in other conditional formalisms, e.g. [3,11,13]). A
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2 LEGO-like Small-Model Constructions for Åqvist’s Logics

later addition to Åqvist’s family is F+(CM) [14] which extends F with the
cautious monotonicity principle, well-known in non-monotonic reasoning [8].

In recent decades, significant progress has been made in exploring variations
of preference-model characterization for Åqvist’s logics and their correspond-
ing axiomatizations, surveyed in [15]. Now, there’s a growing focus on the
computational properties of these logics, which is the main motivation for this
paper too. In [15] the decidability of theoremhood for all four logics is proven
through alternative semantics based on selection functions, and embedding of
the weakest logic E into Higher-Order Logic (HOL) from [2] is suggested as
a potential approach for automated deduction. These approaches however are
not suitable for assessment of the exact complexity of logics, which requires
more constructive characterizations. One such characterization came from the
proof-theoretic side in the form of cut-free hypersequent calculi, developed re-
cently for all four Åqvist’s logics [4,5,6]. For E, F+(CM) and G the proof
search in the calculi has optimal co-NP complexity, and polynomial-size pref-
erence countermodels can be reconstructed from failed derivations [4,9]. At
the same time, the limitedness condition of F seems difficult to handle both
modal-theoretically and proof-theoretically. The calculus for F [5], which is an
even more complicated variation of the calculi for logic GL [16], gives only a
co-NEXP upper bound for theoremhood (which is the best estimation so far)
and no countermodel construction.

Another powerful approach for establishing computational complexity of
conditional logics is small-model constructions proposed by Friedman and
Halpern [7] for Burgess’ logic PCL [3] and its extensions, which transforms
any satisfying model into a satisfying model of bounded size. Their approach
covers in particular extensions PCA and VTA (in terminology of [9]), which
coincide with Åqvist’s logics F+(CM) and G respectively, and establishes co-
NP-completeness of theoremhood for them. However, this approach signifi-
cantly relies on the smoothness of the preference relation and therefore is not
applicable for weaker logics E and F (see Remark 3.24 for details).

In this paper, we propose alternative small model constructions to uniformly
handle all four Åqvist’s logics. We compose a model of polynomial size by
assembling elementary building blocks (chains, antichains, and cliques of worlds
selected from any given model) like LEGO. We provide sufficient conditions for
such construction to be a countermodel and define a suitable construction for
each Åqvist’s logic. There are two main applications for our constructions,
obtained uniformly for all logics.

Alternative semantical characterizations of theoremhood. Our re-
sults imply that theoremhood can be characterized by finite models. Moreover,
for finite models the complicated properties of limitedness and smoothness
(which are not frame properties) can be replaced by natural frame properties:
acyclicity and transitivity of the preference relation, respectively.

Complexity and automated deduction. The polynomial size of mod-
els together with easily checkable frame properties immediately imply co-NP-
completeness of theoremhood (including logic F, for which it was an open prob-
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lem) and allow for natural encodings in classical propositional logics, which can
be utilized for efficient automated deduction using SAT-solvers.

2 Preliminaries

The syntax of Åqvist’s logics extends the usual propositional language with two
modalities: unary ✷ for necessity and binary ©(· | ·) for conditional obligation.
We define the formulas over the set Var of propositional variables.

F ::= x ∈ Var | ¬F | F ∧ F | ✷F | ©(F |F)

We will use small Greek letters to denote formulas. |ϕ| will denote size of the
formula (number of symbols), SubF(ϕ) will denote the set of all subformulas
of ϕ (including ϕ), and Cond(ϕ) = {α | ©(γ |α) ∈ SubF(ϕ)}.

Definition 2.1 A preference model is a triple 〈W,�, V 〉 where W is a (non-
empty) set of worlds, � is a binary relation on W , and V : Var → 2W is a
valuation function. We denote by W (M) the set of worlds of a given model.

The semantics of obligation is based on the notion of “best” worlds in the
preference model. There are different definitions of bestness appearing in the
literature (see [10,14] for the comparison of different definitions), we will use
the most common one — maximality: a world is a best world when there are
no worlds that are strictly more preferable. As usual we denote by ≻ a strict
version of � (w1 ≻ w2 when w1 � w2 and w2 6� w1). We will use the notation
Bet≻(v) = {w ∈W | w ≻ v} for a set of worlds strictly preferable (better) than
the given one.

Definition 2.2 For a preference model M = 〈W,�, V 〉 and U ⊆W we define
max(U) = {v ∈ U | ∄u ∈ U : u ≻ v}.

Satisfaction of ©(γ |α) is defined using this notion of bestness: ©(γ |α) is
true when γ is true in all maximal worlds satisfying α (we will call such worlds
α-maximal). And ✷β is true when β is true in all worlds (so we treat ✷ as the
universal S5 modality).

Definition 2.3 (Satisfaction) For a preference model M = 〈W,�, V 〉 the
truth set ||ϕ||M of a formula ϕ is defined inductively:

• w ∈ ||x||M for x ∈ Var when w ∈ V (x),

• w ∈ ||¬ψ||M when w 6∈ ||ψ||M ,

• w ∈ ||ψ1 ∧ ψ2||M when w ∈ ||ψ1||M and w ∈ ||ψ2||M ,

• w ∈ ||✷β||M when ||β||M =W ,

• w ∈ || © (γ |α)||M when max(||α||M ) ⊆ ||γ||M .

We say that w satisfies ϕ in M (denoted M,w |= ϕ) when w ∈ ||ϕ||M , and that
M validates ϕ (denoted M |= ϕ) when ||ϕ||M =W .

Notice that the satisfaction of both ✷β and ©(γ | α) does not depend on
the world of evaluation.
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Logic Properties of the models
E no properties
F limited

F+(CM) smooth and transitive
G smooth, transitive and total

Fig. 1. Preference-semantical characterizations for Åqvist’s logics from [15, Tab. 1
and 2] (with maximality as the notion of bestness).

Different Åqvist’s logics are defined by different classes of preference models.
Some of these classes are defined using the properties of preference relation �
in the model, we will use two properties: transitivity (� is transitive when
w1 � w2 and w2 � w3 imply w1 � w3) and totalness (� is total when for
any w1, w2 ∈ W either w1 � w2 or w2 � w1). Another property used for the
characterization of deontic logic is what Lewis called “limit assumption”, which
ensures the existence of best worlds. The are different formal definitions of these
assumptions in the literature, we will use two versions from [15]: limitedness
and smoothness.

Definition 2.4 (Limit conditions) Let M = (W,�, V ) ∈ M. M is limited
when for any formula α if ||α||M 6= ∅ then max(||α||M ) 6= ∅. M is smooth when
for any formula α and any world w ∈ ||α||M there exists u ∈ max(||α||M ) such
that either u = w or u ≻ w.

We rely on the semantical characterizations of the four Åqvist logics in
Tab. 1, which are presented (among various other characterizations) in [15].

Definition 2.5 Formula ϕ is a theorem of Åqvist’s logic L iff M � ϕ for any
preference model M that satisfies model conditions for logic L in Fig. 1.

We will call a preference modelM a countermodel for a formula ϕ ifM 6|= ϕ
and we will further call it an L-countermodel if it belongs to a class of models
corresponding to a logic L in Tab. 1.

3 Small Model Constructions

This section contains the main technical result of the paper: we will show how
for any formula ϕ an arbitrary given L-countermodel M can be transformed
into a L-countermodel with the number of worlds bounded polynomially w.r.t.
|ϕ| for every logic L from the Åqvist family. We will achieve this by selecting a
finite number of worlds from M , possibly adding copies for some of them, and
defining a new preference relation on these selected worlds without changing
the valuation. We call such transformation a rearrangement of a model.

Definition 3.1 We say that a model M ′ = 〈W ′,�′, V ′〉 rearranges the model
M = 〈W,�, V 〉 when there exists a prototype function prot : W ′ → W such
that w′ ∈ V ′(x) is equivalent to prot(w) ∈ V (x) for all x ∈ Var.

Our main goal for the rearranged model is to have each of its worlds satis-
fying exactly the same subformulas of ϕ as its prototype does (we do not care
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about the satisfaction of other formulas, since the evaluation of a formula in
a world only involves subformulas). The definition of the satisfaction of a for-
mula in a world concerns other worlds of the model only in the cases of ✷ and
©(· | ·) modalities. Therefore we only need to ensure that the rearranged model
validates exactly the same modalities among subformulas of ϕ as the original
model does, while the satisfaction (and non-satisfaction) for other subformulas
will be preserved in the rearranged model automatically (due to preservation
of valuation for variables).

We will examine the cases of validated and non-validated modalities sep-
arately. Let us denote by Box+(ϕ,M) (resp. Ob+(ϕ,M)) the set of sub-
formulas of ϕ of the form ✷β (resp. ©(γ | α)) that are validated by M ,
and by Box−(ϕ,M) and Ob−(ϕ,M) the sets of subformulas of ϕ of the corre-
sponding form that are not validated by M . To falsify ✷β ∈ Box−(ϕ,M) and
©(γ |α) ∈ Ob−(ϕ,M) we need to take in M ′ some worlds that were falsifying
these modalities in M . While the evaluation of ✷β modalities relies only on
the presence of the worlds satisfying β in the model, special care is needed to
ensure that the evaluation of ©(γ | α) is the same: if a world w was made
not α-maximal in M by some world u ∈ ||α||M such that u ≻ w we need to
preserve this violation of maximality in M ′, and conversely we need to ensure
we are not breaking α-maximality in M ′ for the world falsifying ©(γ | α).
To ensure this we will introduce the condition that u′ ≻′ v′ in M ′ requires
prot(u′) ≻ prot(v′) in M (we need this condition only for the worlds v′ fal-
sifying some ©(γ | α) ∈ Ob−(ϕ,M)), and a converse condition that if there
exist some α-world ≻-better than prot(w′) in M then there should exist some
α-world ≻′-better than w′ in M (for all worlds w′ ∈ W (M ′) and all conditions
α such that ©(γ | α) ∈ Box+(ϕ,M)). All that is left to make M ′ a coun-
termodel for ϕ is to take in M ′ any world falsifying ϕ in the original model.
This reasoning leads to the following four conditions sufficient to ensure that a
rearranged model M ′ is a countermodel for ϕ.

Theorem 3.2 Suppose M = 〈W,�, V 〉 is a countermodel for ϕ and
M ′ = 〈W ′,�′, V ′〉 rearranges M with the prototype function prot : W ′ → W .
Then the following conditions are sufficient for M ′ 6|= ϕ.

(i) There exists v′ ∈W ′ such that M,prot(v′) 6|= ϕ.

(ii) For any ✷β ∈ Box−(ϕ,M) there exists v′ ∈ W ′ such that M,prot(v′) 6|= β.

(iii) For any ©(γ |α) ∈ Ob−(ϕ,M) there exists v′ ∈ W ′ such
that prot(v′) ∈ max(||α||M ) \ ||γ||M and for all u′ ≻′ v

′
holds

prot(u′) ≻ prot(v′).

(iv) For any w′ ∈W ′, for all ©(γ |α) ∈ Ob+(ϕ,M) if there exists u ≻ prot(w′)
such that M,u |= α then there exists s′ ≻′ w′ such that M,prot(s′) |= α.

Proof. We will prove the goal statement described above: for any w′ ∈ W ′

and any ψ ∈ SubF(ϕ) holds M ′, w′ |= ψ iff M,prot(w′) |= ψ. Then M ′ 6|= ϕ
follows from condition (i). The proof is by induction on ψ with case analysis
on ψ belonging to Box+(ϕ,M) or Box−(ϕ,M) for ψ = ✷β and on ψ belonging
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to Ob+(ϕ,M) or Ob−(ϕ,M) for ψ = ©(γ | α). Conditions (ii), (iii), and
(iv) directly cover case ψ ∈ Box−(ϕ,M), case ψ ∈ Ob−(ϕ,M), and case ψ ∈
Ob−(ϕ,M) respectively (see appendix A for details). ✷

Ensuring conditions (i) and (ii) is simple: we need to take arbitrary worlds
from (W \ ||ϕ||M ) and from (W \ ||β||M ) for each ✷β ∈ Box−(ϕ,M). For this,
we will use a representative function rep : (2W \∅) →W that for any given non-
empty subset S of W chooses an element rep(S) ∈ S (thus, we use the axiom
of choice explicitly in our construction). We will also need representatives of
(max(||α||M ) \ ||γ||M ) for every ©(γ |α) ∈ Ob−(ϕ,M) for condition (iii). Let
us denote the set of all such falsifying worlds Fal(ϕ,M).

Definition 3.3 (Falsifying worlds) For a model M = 〈W,�, V 〉 such
that M 6|= ϕ, Fal(ϕ,M) = rep(W \ ||ϕ||M ) ∪ Fal✷(ϕ,M) ∪ Fal©(ϕ,M),
where Fal✷(ϕ,M) = {rep(W \ ||β||M ) | ✷β ∈ Box−(ϕ,M)}, Fal©(ϕ,M) =
{rep((max(||α||M ) \ ||γ||M | ©(γ |α) ∈ Ob−(ϕ,M)}.

The rest of the rearranged models will be chosen to ensure the satisfaction
of conditions (iii) and (iv). We will represent our small model constructions
as composite models, assembled from blocks. A block B is a finite selection of
worlds from M with some new ordering on them (in our cases it will be either
an empty relation, a strict linear order, or a universal relation).

Definition 3.4 (Block) A block on M is a tuple 〈WB,�B〉 where WB ⊆
W (M) and �B is a binary relation on WB. We will use W (B) to refer to WB .

If there are no w1, w2 ∈ WB such that w1 ≻B w2, we call B flat.
A composite construction consists of the number of blocks with an addi-

tional preference relation on them. Each composite construction generates a
model rearranging M , in which the new preference relation is given by com-
bining the relation between blocks and the relations inside a block. To allow
multiple occurrences of the same block in the construction we define it formally
using labels.

Definition 3.5 (Composite construction) A composite construction on M
is a tuple 〈L,�L, cont〉 where L is a set of labels, �L is a binary relation on
L, and cont is a function mapping every label from L into a block on M .
We will denote by CC(M) a set of all composite constructions on M . Each
C = 〈L,�L, cont〉 ∈ CC(M) generates a model gen(C) = 〈WC ,�C , V C〉 where
WC = {(l, w) | l ∈ L,w ∈ W (cont(l))}, (l1, w1) �C (l2, w2) iff either l1 �L l2
or both l1 = l2 and w1 �B w2 for the preference relation �B in the block
cont(l1), and (l, w) ∈ V C(x) iff w ∈ V (x) for the valuation V in M .

We can now simplify conditions of Th. 3.2 for models generated by compos-
ite constructions. Specifically, we can ensure (iv) separately for each block by
either ensuring it inside this block already or having another block≻L-preferred
to it that has all worlds required in (iv).

Definition 3.6 We say that block B is (iv)-safe if condition (iv) is satisfied
for the model generated just by this block. We say that block B′ (iv)-covers
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block B if for any α ∈ Cond(ϕ) and v ∈ W (B) if there exists u ∈ Bet≻(w) such
that M,u′ |= α then there exists u′ ∈ W (B′) such that M,u′ |= α.

Other conditions can be ensured by having every falsifying world v in the
composite model in some flat block with blocks covering it containing only
worlds from Bet≻(v).

Theorem 3.7 Let M 6|= ϕ and C ∈ CC(M). For gen(C) 6|= ϕ it is sufficient
that: (a) for each v ∈ Fal(ϕ,M) there is a flat block Bv in C such that v ∈
W (Bv) and for every B′ ≻L Bv holds W (B′) ⊆ Bet≻(v); (b) each block B in C
is either (iv)-safe or (iv)-covered by some other block B′ such that B′ ≻L B.

Proof. gen(C) rearrangesM (with prot((l, w)) = w), so we can apply Th. 3.2.
(a) ensures conditions (i)-(iii) and (b) ensures condition (iv). ✷

We now define composite constructions for each Åqvist’s logic satisfying
these conditions and the required model conditions for the logic from Tab. 1.

falv1 falvn

orbv1 orbvn

star3

star1

star2

(a) SMCE(ϕ,M)

falv1 falvn

orbv1 orbvn

mchain

(b) SMCF(ϕ,M)

falv1 falvn

chorbv1 chorbvn

(c) SMCF+(CM)(ϕ,M)

gfalV1

gchorbV1

gfalVn

gchorbVn

(d) SMCG(ϕ,M)

Fig. 2. Small model constructions for Åqvist’s logics. Gray circles represent worlds,
dashed rectangles represent blocks. Symbol ‘· · · ’ in a block indicates an antichain,
a dotted vertical arrow indicates a chain, and a dotted two-sided arrow indicates a
clique. Solid arrows represent the preference relation �

L between blocks: an arrow
from a block l1 to a block l2 means l2 �

L l1. A dotted arrow between blocks in
construction SMCG(ϕ,M) means that there is a linear order on blocks. Note that the
preference relation in constructions SMCE(ϕ,M) and SMCF(ϕ,M) is not transitive.
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3.1 Small Model Construction for Logic E

In the case of logic E there are no model conditions we need to satisfy in our
countermodel, so we can use a preference relation that is both non-transitive
and contains cycles. In this simple case, all blocks of the countermodel con-
struction will be antichains.

Definition 3.8 antichain(U) = 〈U,�a〉 where �a is an empty relation.

We start our composite construction with a dedicated one-world block
antichain({v}) for each world v ∈ Fal(ϕ,M), labeled falv. The simplest way
to (iv)-cover such block with linearly many (w.r.t. |ϕ|) worlds without violat-
ing condition (iii) is to go through formulas from Cond(ϕ) satisfied by some
world in Bet≻(v) and select one representative for each. Below such selection
is defined more generally, for an arbitrary set of formulas A and an arbitrary
set of worlds U to select from.

Definition 3.9 (Selection) For a set U ⊆ W (M) and a set of formulas A,
SelM (U,A) = {rep(||α||M ∩ U) | α ∈ A, ||α||M ∩ U 6= ∅}.

We can show that such a selection can (iv)-cover not only single-world
blocks like falv, but any block B as long as U contains all worlds ≻-preferable
to any world in B.

Lemma 3.10 If Bet≻(w) ⊆ U for all w ∈ W (B) in some block B then
antichain(SelM (U,Cond(ϕ))) (iv)-covers B.

Proof. If α ∈ Cond(ϕ) is satisfiable in Bet≻(w) for some w ∈W (B) then there
will be a representative satisfying α in SelM (U,Cond(ϕ)). ✷

A block to (iv)-cover falv, which we will call orbit and label orbv, can be
defined as Orbit(M,ϕ, v) = antichain(SelM (Bet≻(v),Cond(ϕ))). To (iv)-cover
orbits themselves, we can make another selection, this time from the whole
W (M), as we do not need to care about condition (iii) for these blocks. So
the block Star(M,ϕ) = antichain(SelM (W (M),Cond(ϕ))), which we will label
star1, can be used to (iv)-cover all orbits. Finally, to cover star1 we can
add two more copies of Star(M,ϕ) (labeled star2 and star3) and have a non-
transitive loop on these three copies, which will (iv)-cover each other circularly.
This leads to the following small model construction for E.

Definition 3.11 (Small Model Construction for E)
If M is an E-countermodel for ϕ, SMCE(ϕ,M) = 〈L,�L, comp〉 where
L = {falv, orbv | v ∈ Fal(ϕ,M)} ∪ {stari | i ∈ {1, 2, 3}}, comp(falv) =
antichain({v}), comp(orbv) = Orbit(M,ϕ, v), comp(stari) = Star(M,ϕ) and
a preference relation �L on blocks is demonstrated on Fig. 2a.

Theorem 3.12 If M is a E-countermodel for ϕ then gen(SMCE(ϕ,M)) is a
E-countermodel for ϕ and |W (gen(SMCE(ϕ,M)))| = O(|ϕ|2). 2

2 As usual, the notation f(ϕ,M) = O(g(ϕ,M)) for integer-valued functions f and g means
that there exists a constant C such that f(ϕ,M) ≤ C · g(ϕ,M) for all ϕ and M .
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Proof. SMCE(ϕ,M) is a countermodel for ϕ by Th. 3.7, because
we have W (orbv) ⊆ Bet≻(v) and all blocks are (iv)-covered by
Lem. 3.10. |W (gen(SMCE(ϕ,M)))| = O(|ϕ|2) since SMCE(ϕ,M) contains
(2 · |Fal(ϕ,M)|+ 3) blocks with at most |Cond(ϕ)| worlds each. ✷

3.2 Small Model Construction for Logic F

For logic F, we will utilize the limitedness of the countermodelM to construct a
small countermodel with an acyclic ≻, which will automatically make it limited
(and thus an F-countermodel) too.

Lemma 3.13 Model 〈W,�, V 〉 is limited if W is finite and ≻ is acyclic.

Proof. If there is some w0 ∈ ||α||M , consider (any) longest path
w0 ≺ w1 ≺ w2 ≺ . . . with worlds from ||α||M staring from w0. Since W is finite
and there can be no repetitions on the path (due to acyclicity of ≻), the path
is finite and there is the last world wm for which there is no u ∈ ||α||M such
that u ≻ wm, and so wm ∈ max(||α||M ) by definition. ✷

For acyclicity, we will modify our construction SMCE(ϕ,M) by replacing
a non-transitive cycle on blocks star1, star2, star3 with one finite chain (i.e.
block with linear ordering). To work with chains we will use lists (finite ordered
sequences). We will use the notation [a1, . . . , am] for a list containing given
elements, the notation [ ] for the empty list, and the notation a :: S for the list
in which element a is appended to the beginning of the list S.

Definition 3.14 (Chain) For a list S = [w1, . . . , wm] of worlds from W (M),
chain(S) = 〈{wi}ni=1,�

ch〉 where wi �ch wj when i ≤ j.

Our goal is to define a finite chain that is (iv)-safe and satisfies any
α ∈ Cond(ϕ) that is satisfiable in M (which will allow us to use the chain to
(iv)-cover any block). We construct such a chain through an iterative process,
that selects maximal worlds for disjunctions of conditions. At the beginning
of the process, we have A0 = Cond(α) as the set of conditions for which we
need satisfying worlds. If at least one of conditions in A0 is satisfied by some
world in M , then ||

∨

α∈A0
α||M 6= ∅, then by limitedness there exists some

z0 ∈ max(||
∨

α∈A0
α||M ). We can safely take z0 as the first (i.e. ≻B-greatest)

world in the chain, since there are no worlds u ≻ z0 in M satisfying condi-
tions from A0. z0 satisfies some conditions from A0 (since M, z0 |=

∨

α∈A0
α),

therefore we can move on to the next step with a strictly smaller set A1 of
conditions for which we still need satisfying worlds. We can safely repeat this
process by taking worlds from zi ∈ max(||

∨

α∈Ai
α||M ) at every iteration: zi

has no ≻-prefferable α-worlds for all remaining conditions α ∈ Ai, while for
all already removed formulas there is a satisfying world somewhere earlier in
the chain (i.e. ≻B-preferrable to zi), thus condition (iv) will be satisfied for
this world. After a linear number of iterations, the chain will contain satisfying
worlds for all formulas from A satisfiable in M . Below is the formal definition
of the described chain of maximal worlds. We give a generalized version that
selects maximal worlds from any given subset of worlds U and any given set
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of formulas Ai, the same way as we did for SelM (U,A). We will need this
generalized version for logics F+(CM) and G.

Definition 3.15 For any U ⊆W (M) and a finite set of formulas Ai,

MaxSeqM (U,Ai) =











[ ], if Ai = ∅

[ ], if D(U,Ai) = ∅

d(U,Ai) :: MaxSeqM (U,Ai+1), otherwise

where D(U,A) = U ∩ max(||
∨

α∈Ai
α||M ), d(U,A) = rep(D(U,A)) and

Ai+1 = {α ∈ Ai |M,d(U,A) 6|= α}.

Notice that for a finite A0 this sequence is well-defined (representative
d(Ai,) is always taken from a non-empty set and |Ai| decreases) and always
has length at most |A0|. The reasoning above that shows (iv)-safeness of the
chain built from this sequence works in the general case with arbitrary U and
doesn’t even require the limitedness of M .

Lemma 3.16 chain(MaxSeqM (U,Cond(ϕ))) is (iv)-safe for any U ⊆W (M).

Proof. Let zk ∈ W (chain(MaxSeqM (U,Cond(ϕ)))) and ©(γ | α) ∈
Ob+(ϕ,M). zk ∈ max(||

∨

α∈Ak
α||M ) for some step k and set Ak of remain-

ing conditions. If there is u ≻ zk such that M,u |= α, then α 6∈ Ak, i.e. α
was removed at some previous step, therefore there is zj with j < k such that
M, zj |= α. ✷

For logic F, we select worlds in the chain from the whole
W (M): for a limited model M we define block MaxChain(M,ϕ) =
chain(MaxSeqM (Cond(ϕ),W (M))), which we will label mchain.
MaxChain(M,ϕ) contains satisfying worlds for all conditions from Cond(ϕ)
satisfiable in M so it (iv)-covers any block on M .

Lemma 3.17 For a limited M , MaxChain(M,ϕ) (iv)-covers any block.

Proof. If a condition α ∈ Cond(ϕ) is satisfiable in M then it can not be
among the remaining conditions when the chain is built (otherwise Am 6= ∅
and D(W (M),Am) 6= ∅ due to limitedness of M), therefore for some world z
in the chain M, z |= α. ✷

Replacement of non-transitive triangle in SMCE(ϕ,M) with
MaxChain(M,ϕ) gives us the small model construction SMCF (ϕ,M)
with an acyclic strict version of preference relation.

Definition 3.18 (Small Model Construction for F)
If M is an F-countermodel for ϕ, SMCF(ϕ,M) = 〈L,�L, comp〉 where
L = {falv, orbv | v ∈ Fal(ϕ,M)} ∪ {mchain}, comp(falv) = antichain({v}),
comp(orbv) = Orbit(M,ϕ,Bet≻(v)), comp(mchain) = MaxChain(M,ϕ) and a
preference relation �L on blocks is demonstrated on Fig. 2b.

Theorem 3.19 If M is a F-countermodel for ϕ then gen(SMCF(ϕ,M)) is a
F-countermodel for ϕ and |W (gen(SMCF(ϕ,M)))| = O(|ϕ|2).
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Proof. gen(SMCF(ϕ,M)) is a countermodel for ϕ by Th. 3.7, because we
have W (orbv) ⊆ Bet≻(v), mchain is (iv)-safe by Lem. 3.16 and all other
blocks are (iv)-covered by Lem. 3.17 and Lem. 3.10. gen(SMCF(ϕ,M)) is
an F-countermodel by Lem. 3.13. |W (gen(SMCF(ϕ,M)))| = O(|ϕ|2) since
SMCF(ϕ,M) contains (2 · |Fal(ϕ,M)|+ 1) blocks with at most |Cond(ϕ)|
worlds each. ✷

3.3 Small Model Construction for Logic F+(CM)

For logic F+(CM) we need to ensure the transitivity of preference relation

in gen(SMCF+(CM)(ϕ,M)). It is enough to obtain an F+(CM)-countermodel
since for finite models transitivity implies smoothness.

Lemma 3.20 Any model 〈W,�, V 〉 is smooth ifW is finite and � is transitive.

Proof. If there is some w0 ∈ ||α||M , consider (any) longest path
w0 ≺ w1 ≺ w2 ≺ . . . with worlds from ||α||M staring from w0. Since W is finite
and there can be no repetitions on the path due to transitivity of ≻, the path
is finite and there is the last world wm for which there is no u ∈ ||α||M such
that u ≻ wm, so wm ∈ max(||α||M ) and either wm = w0 or wm ≻ w0. ✷

In SMCF(ϕ,M) non-transitivity was essential: imposing mchain ≻L falv

can violate condition (iii) since we selected worlds in the maximal chain
from the whole initial model. However, smoothness allows us to select a
maximal chain only among worlds in Bet≻(v). Specifiaclly, for every fal-
sifying world v we introduce individual chain-orbit ChainOrbit(M,ϕ, v) =
chain(MaxSeqM (Bet≻(v),Cond(ϕ))). We already know that this block is (iv)-
safe by Lem. 3.16, and we can show that for an F+(CM)-model M it covers
block falv.

Lemma 3.21 For a transitive and smooth M , ChainOrbit(M,ϕ, v) (iv)-covers
antichain({v}).

Proof. Suppose that (1) there is some u ≻ v in M such that M,u |= α for
some α ∈ Cond(ϕ), we need to show that there is a world zk in the chain such
that M, zk |= α. Similarly to Lem. 3.17, we show it by proving that in this
case α is removed from the set of conditions Ai at some point. And to show
this, it is enough to prove that (*) α ∈ Ai implies D(Bet≻(v),Ai) 6= ∅ (then
the sequence of maximal worlds cannot end while α belongs to Ai).

Let us prove (*). Suppose that α ∈ Ai. From this and (1) fol-
lows u ∈ ||

∨

α∈Ai
α||M . By smoothness of M it implies that (2) there is

u′ ∈ max(||
∨

α∈Ai
α||M ) such that either u′ = u or u′ ≻ u. In either case

u′ ≻ v (since u ≻ v by (1) and � is transitive). So, we have (3) u′ ∈ Bet≻(v).
(2) and (3) together imply u′ ∈ D(Bet≻(v),Ai), concluding the proof of (*).✷

So we can obtain a small model construction for F+(CM) by replacing
each orbit orbv with an individual maximal chain ChainOrbit(M,ϕ, v) (which
we will label chorbv). The common chain mchain from SMCF(ϕ,M) is not
needed anymore.
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Definition 3.22 (Small Model Construction for F+(CM))

If M is an F+(CM)-countermodel for ϕ, SMCF+(CM)(ϕ,M) = 〈L,�L, comp〉
where L = {falv, chorbv | v ∈ Fal(ϕ,M)}, comp(falv) = antichain({v}),
comp(chorbv) = ChainOrbit(M,ϕ, v) and a preference relation �L on blocks
is demonstrated on Fig. 2c.

Theorem 3.23 If M is a F+(CM)-countermodel for ϕ then

gen(SMCF+(CM)(ϕ,M)) is a F+(CM)-countermodel for ϕ and

|W (gen(SMCF+(CM)(ϕ,M)))| = O(|ϕ|2).

Proof. SMCF+(CM)(ϕ,M) is a countermodel for ϕ by Th. 3.7, because we have
W (chorbv) ⊆ Bet≻(v), each chorbv is (iv)-safe by Lem. 3.16 and each falv is

(iv)-covered by Lem. 3.21. SMCF+(CM)(ϕ,M) is an F+(CM)-countermodel by

Lem. 3.20. |W (gen(SMCF+(CM)(ϕ,M)))| = O(|ϕ|2) since SMCF+(CM)(ϕ,M)
contains (2 · |Fal(ϕ,M)|) blocks with at most |Cond(ϕ)| worlds each. ✷

Remark 3.24 The form of countermodel we obtain— a union of incomparable
finite chains — is the same as a Friedman-Halpern countermodel for logic PCA
(i.e. F+(CM)) [7]. However, we have achieved it by using different methods:
they use a finite-model property of PCL extensions (shown in [3]) and extend
the preference relation to a linear order, then construct chains by selecting
the greatest world w.r.t. extended order independently for each conditional in
Ob+(ϕ,M), while we do it using an iterative procedure. The possibility of their
selection fully relies on finitedness and transitivity, which due to Lem. 3.20 is
only possible in smooth models, so it cannot be applied to the weaker logics E
and F. Furthermore, the Horn fragment 3 of PCA was studied extensively in
the area of non-monotonic reasoning, where it is known as the KLM logic P [11]
of preferential reasoning. A small model construction forP has been introduced
in [12] and consists of a single chain of polynomial size (by essentially the same
method as Friedman-Halpern). Notice, that both Friedman-Halpern and our
constructions turn into a single chain when restricted to Horn formulas.

3.4 Small Model Construction for Logic G

For logic G we also need to ensure the totalness of the transformed model
by leveraging that the falsifying worlds in Fal(ϕ,M) are ordered in the initial
model by � which in a G-model is a total preorder.

Let us consider first a simple case where � in the given G-countermodel
is asymmetric (and therefore a strict linear order). Then there ex-
ists an ordering v1 ≺ · · · ≺ vn of worlds from Fal(ϕ,M). Then we

can linearly order blocks of SMCF+(CM)(ϕ,M) with the following order:
falv1 ≺L chorbv1 ≺L . . . ≺L falvn ≺L chorbvn . The (iii)-preservation of ev-
ery block falvi will be still satisfied with such ordering, because for every j ≥ i
we have W (chorbvj ) ⊆ Bet≻(vj) and Bet≻(vj) ⊆ Bet≻(vi) due to transitivity
of �.

3 Conditional Horn formula is a formula of a form ©(γ1 |α1)∧· · ·∧©(γn |αn) → ©(γ0 |α0)
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In general, � is not necessarily asymmetric, but we can generalize the same
idea by grouping together �-equivalent worlds as in the following definition.

Definition 3.25 (Stratification) For a finite set U and a binary relation �
on it, a list [U1, . . . , Un] is called a stratification of U when U is the disjoint
union of non-empty subsets {Ui} and ui � uj iff i ≥ j for every ui ∈ Ui, uj ∈ Uj .

For total and transitive � (as in G-models) the unique stratification of any
finite set is given by its factorization w.r.t. �-equivalence (see appendix B for
details). So we can take the stratification [V1, . . . , Vn] of Fal(ϕ,M) w.r.t. �
and create a clique block for every group Vi.

Definition 3.26 (Clique) For U ⊆ W (M), clique(U) = 〈U,�cl〉 where
u1 �cl u2 for all u1, u2 ∈ U .

Notice that for v1, v2 ∈ Vi both v1 � v2 and v2 � v1 so Bet≻(v1) = Bet≻(v2)
(due to transitivity). Therefore, to (iv)-cover block clique(Vi) we can take orbit-
chain ChainOrbit(M,ϕ, rep(Vi)) with arbitrary representative of Vi.

Lemma 3.27 For a transitive and smooth M = 〈W,�, V 〉 and V ⊆W (M), if
v � v′ for all v, v′ ∈ V then ChainOrbit(M,ϕ, rep(V )) (iv)-covers clique(V ).

Proof. For any v ∈ Vi holds Bet≻(v) = Bet≻(rep(V )) (since � is transitive),
so any formula from Cond(ϕ) satisfied in some world from Bet≻(v) is also
satisfied by some world in ChainOrbit(M,ϕ, rep(V )) by Lem. 3.21. ✷

Then we can take as the construction SMCG(ϕ,M) a linearly-oredered
sequence of blocks in which cliques clique(Vi), labeled gfalVi

, are interleaved
with chain-orbits ChainOrbit(M,ϕ, rep(Vi)), labeled gchorbVi

.

Definition 3.28 (Small Model Construction for G) For a
G-countermodel M = 〈W,�, V 〉 for a formula ϕ, let [V1, . . . , Vn] be the strat-
ification of Fal(ϕ,M) w.r.t. �. Then SMCG(ϕ,M) = 〈L,�L, comp〉 where
L =

⋃n

i=1
{gfalVi

, gchorbVi
}, comp(gfalVi

) = clique(Vi), comp(gchorbVi
) =

chain(ChainOrbit(M,ϕ, rep(Vi))) and the blocks are ordered linearly as
follows: gfalV1

≺L gchorbV1
≺L . . . ≺L gfalVn

≺L gchorbVn
.

Theorem 3.29 If M is an G-countermodel for ϕ then gen(SMCG(ϕ,M)) is
a G-countermodel for ϕ and |W (gen(SMCG(ϕ,M)))| = O(|ϕ|2).

Proof. SMCG(ϕ,M) is a countermodel for ϕ by Th. 3.7: gfalVi
is flat and

(iii)-preserving (since � in M is transitive), each gchorbVi
is (iv)-safe by

Lem. 3.16 and each gfalVi
is (iv)-covered by Lem. 3.27. SMCG(ϕ,M) is a

G-countermodel since its preference relation is transitive and total, and also
smooth by Lem. 3.20. |W (gen(SMCG(ϕ,M)))| = O(|ϕ|2) since SMCG(ϕ,M)
contains at most (2 · |Fal(ϕ,M)|) blocks with at most |Cond(ϕ)| worlds each.✷

Remark 3.30 Friedman and Halpern also provide a counter-model for logic
VTA (i.e. G) [7]. They use an ad hoc approach, different from the one they
use for the other extensions of PCL. For VTA for each conditional they simply
take one world from the original model without changing the preference rela-
tion, resulting in a model of linear size. Although Th. 3.2 can be also used to
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establish the adequacy of their constriction, we provided a different construc-
tion (with a new explicitly defined preference relation and with potentially a
quadratic number of worlds) for uniformity with the constructions for the other
three logics.

4 Applications

In this section, we describe two applications of our small model constructions:
alternative semantical characterizations and computational applications.

4.1 Alternative semantical characterizations

New semantical characterizations for theoremhood can be extracted from the
specific form of our small model constructions. Namely, any model property
satisfied by SMCL(ϕ,M) (for all ϕ andM) that is stronger than some existing
characterization for L (e.g. from Tab. 1) can be used as an alternative char-
acterization: theorems are satisfied in all models with this property, while any
non-theorem ϕ has a countermodel SMCL(ϕ,M) with this property.

We can use this method to characterize theoremhood in Åqvist logics with
frame properties, i.e. properties of the preference relation. Notice that the
limit conditions (limitedness and smoothness) used for the characterization of
F, F+(CM), and G are not frame properties: they impose conditions only on
truth sets of the model. This choice plays a vital role in establishing correspon-
dence between semantics and known axiomatizations of Åqvist’s logics, but it
makes it hard to work with these models since you need to distinguish which
subsets of worlds can be a truth set.

However, our constructions satisfy some stronger frame properties. In fact,
we already used these properties to prove that SMCL(ϕ,M) generates an
L-countermodel. If we consider only finite models (which can be seen as a
frame condition itself) limit conditions can be replaced with much more natu-
ral conditions on relations that our constructions satisfy: acyclicity of ≻ instead
of limitedness (due to Lem. 3.13) and transitivity instead of smoothness (due
to Lem. 3.20). Moreover, gen(SMCF(ϕ,M)) almost satisfies the acyclicity of
�, not only acyclicity of ≻. The only cycles in SMCF(ϕ,M) are loops on the
worlds in the chains, which can be removed without affecting evaluation in the
model. Thus we get the following convenient finite-model characterizations.

Corollary 4.1 Formula ϕ is a theorem of Åqvist logic L iff M |= ϕ for all:

• finite models M (for L = E);

• finite models M with acyclic preference relation (for L = F);

• finite models M with transitive preference relation (for L = F+(CM));

• finite models M with transitive and total preference relation (for L = G).

In addition to that our models for E, F, F+(CM) satisfy antisymmetry so
it can be augmented to any existing characterization for these logics, but not to
characterizations of G (see appendix C). Either reflexivity or irreflexivity can
also be added since it is trivial to force them in any model without changing it
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satisfaction relation. Thus, F+(CM) is characterized by finite models where
� is a partial order (strict or non-strict). At the same time, finite models
where � is a linear order give some logic that is stronger than G (see the
same appendix C). Even more specialized properties can be extracted from our
construction, e.g. F+(CM) can be characterized by models that are unions of
non-comparable finite chains.

4.2 Complexity and automated deduction

Our small model constructions show that for any non-valid formula there exists
a countermodel with at mostN(ϕ) worlds, whereN(ϕ) is a certain upper bound
polynomial w.r.t. |ϕ|. Plus, the stronger frame properties from Cor. 4.1 can
be easily checked in polynomial time w.r.t. the model size. This immediately
implies co-NP-completeness of theoremhood.

Corollary 4.2 Theoremhood is co-NP-complete for any Åqvist’s logic.

Proof. Non-theoremhood can be checked non-deterministically in polynomial
time by guessing a countermodel M of size at most N(ϕ) (i.e. guessing prefer-
ence relation and valuation for all variables occurring in ϕ) and then checking
M 6|= ϕ and the properties from Cor. 4.1 for the required logic. co-NP-hardness
follows from co-NP-completeness of theoremhood in classical logic (since propo-
sitional formula is a classical theorem iff it is a theorem of an Åqvist logic). ✷

Moreover, with simpler finite-model characterization from Cor. 4.1 a coun-
termodel definition can be rather straightforwardly encoded with a proposi-
tional formula of a polynomial size: having variables pi,j to encode the wi � wj
and variables vψi to encode the fact M,wi |= ψ for ψ ∈ SubF(ϕ), it is trivial to
encode both evaluation and the frame properties (for acyclicity via additional
variables for a transitive closure of the preference relation), and then require vϕ1
to be false. This propositional formula can be given to any SAT-solver for effi-
cient theoremhood checking and countermodels can be trivially reconstructed
from classical models found by the solver.

Concluding remark

In this paper, we provide small model constructions for Åqvist’s logics, which
can be used to understand theoretical properties of these logics (such as finite-
model semantical characterizations and complexity) and to generate counter-
models for non-valid formulas using SAT-solvers. Ideally, this should be com-
plemented by analytic calculi which provide transparent derivations for valid
formulas. We plan to further investigate the connection between our construc-
tions and hypersequent calculi in hope that it can hint at simpler proof-theoretic
characterizations, especially for the tricky logic F.
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URL https://doi.org/10.1007/978-94-010-0387-2_3

[2] Benzmüller, C., A. Farjami and X. Parent, Åqvist’s dyadic deontic logic E in HOL,
FLAP 6 (2019), pp. 733–754.
URL https://collegepublications.co.uk/ifcolog/?00034

[3] Burgess, J. P., Quick completeness proofs for some logics of conditionals, Notre Dame
Journal of Formal Logic 22 (1981), pp. 76–84.

[4] Ciabattoni, A., N. Olivetti and X. Parent, Dyadic obligations: Proofs and countermodels
via hypersequents, in: R. Aydogan, N. Criado, J. Lang, V. Sánchez-Anguix and
M. Serramia, editors, PRIMA 2022: Principles and Practice of Multi-Agent Systems
- 24th International Conference, Valencia, Spain, November 16-18, 2022, Proceedings,
Lecture Notes in Computer Science 13753 (2022), pp. 54–71.
URL https://doi.org/10.1007/978-3-031-21203-1_4

[5] Ciabattoni, A., N. Olivetti, X. Parent, R. Ramanayake and D. Rozplokhas, Analytic proof
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Appendix

A Detailed proof of Th. 3.2

Theorem A.1 Let ϕ be a formula andM = 〈W,�, V 〉 ∈ M such thatM 6|= ϕ.
If a model M ′ = 〈W ′,�′, V ′〉 ∈ M rearranges M with the prototype function
prot : W ′ →W then the following four conditions are sufficient for M ′ 6|= ϕ.

(i) There exists v′ ∈W ′ such that M,prot(v′) 6|= ϕ.

(ii) For any ✷β ∈ Box−(ϕ,M) there exists v′ ∈ W ′ such that M,prot(v′) 6|= β.

(iii) For any ©(γ |α) ∈ Ob−(ϕ,M) there exists v′ ∈ W ′ such
that prot(v′) ∈ max(||α||M ) \ ||γ||M and for all u′ ≻′ v

′
holds

prot(u′) ≻ prot(v′).

(iv) For any w′ ∈W ′, for all ©(γ |α) ∈ Ob+(ϕ,M) if there exists u ≻ prot(w′)
such that M,u |= α then there exists u′ ≻′ w′ such that M,prot(u′) |= α.

Proof. We will prove that for any w′ ∈ W ′ and any ψ ∈ SubF(ϕ) holds
M ′, w′ |= ψ iff M,prot(w′) |= ψ. Then M ′ 6|= ϕ follows by the condition (i).
The proof is by induction on ψ (we use the abbreviation IH(s) to refer to the
inductive hypothesis(-es)).

• ψ = x. w ∈ V (x) iff prot(w) ∈ V ′(x) by the definition of the prototype
function.

• ψ = ¬ψ′. Directly from IH for ψ′.

• ψ = ψ1 ∧ ψ2. Directly from IHs ψ1 and ψ2.

• ψ = ✷β and ψ ∈ Box+(ϕ,M). M |= ✷β, so for all w′ ∈ W ′ holds
M,prot(w′) |= β, so by IH for all w′ ∈ W ′ holdsM ′, w′ |= β, soM ′ |= ✷β.

• ψ = ✷β and ψ ∈ Box−(ϕ,M). By (ii) there is v′ ∈ W ′ such that
M,prot(v′) 6|= β, so by IH holds M ′, v′ 6|= β, so M ′ 6|= ✷β.

• ψ = ©(γ | α) and ψ ∈ Ob+(ϕ,M). Take any w′ ∈ W ′ such that w′ ∈
max(||α||M

′

). Then (1) prot(w′) ∈ max(||α||M ): prot(w′) ∈ ||α||M by
IH, and there can be no s ≻ prot(w′) such that s ∈ ||α||M (otherwise
there would be u′ ≻′ w′ such that M ′, u′ |= α by (iv) and IH). Since
M |= ©(γ |α), (1) implies M,prot(w′) |= γ, which implies M ′, w′ |= γ by
IH. Thus M ′ |= ©(γ |α).

• ψ = ©(γ |α) and ψ ∈ Ob−(ϕ,M). For the corresponding world v′ ∈ W ′

from (iii) we have v′ /∈ ||γ||M
′

(by IH and the choice of v′) and v′ ∈
max(||α||M

′

) (since v′ ∈ ||α||M
′

by IH and the choice of v′, and for all
u′ ≻′ v′ we have u′ /∈ ||α||M

′

by (iii) and IH), so M ′ 6|= ©(γ |α).
✷

B Stratification

Definition B.1 (Stratification) For a finite set U and a binary relation �
on it, list [U1, . . . , Un] is called stratification of U when U is the disjoint union
of non-empty subsets {Ui} and ui � uj iff i ≥ j for every ui ∈ Ui, uj ∈ Uj.
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Lemma B.2 For a finite set U and a transitive and total relation � on it,
there exists a unique stratification of U w.r.t �.

Proof. Consider an equivalence relation ≈ on U where u1 ≈ u2 means that
both u1 � u2 and u2 � u1. Consider further a relation �s on the set of
equivalence classes of U w.r.t. ≈ where Ui �s Uj when there exist ui ∈ Ui
and uj ∈ Uj such that ui � uj . Notice that for a transitive and total � the
relation �s is a linear order: it is antisymmetric due to definitions of ≈ and �s,
and it is transitive and total (and hense reflexive) due to the transitivity and
totalness of �. This linear ordering gives a stratification by definition. Notice
also that it is the only stratification: every element of a stratification should
be an equivalence class w.r.t. ≈ and their order in the list should preserve �s
(i.e. Ui �s Uj for i ≥ j) by definition, so it has to be the sequence of the same
elements ordered the same way as in the construction described above. ✷

C Logic of finite linearly-ordered models

We showed that for logics E, F and F+(CM) antisymmetry can be added to
our finite-model characterizations. The same is not true for the logic G: we
characterize G by finite, transitive and total models, if we add antisymmetry
to this list of properties we will get the logic of finite models with preference
relation being a linear order, and this logic is strictly stronger than G.

In particular, the following principle of conditional excluded middle from
conditional logics is validated in all linearly-ordered models.

(CEM) © (γ |α) ∨©(¬γ |α)

Indeed, in any linear modelM there is at most one α-maximal world (if there
are two different α-maximal worlds, one of them should be strictly preferable
to another due to totality and antisymmetry, which contradicts the definition
of maximality). If there are no α-maximal worlds in M then M satisfies both
©(γ | α) and ©(¬γ | α) by definition. And if there is a unique α-maximal
world v in M then either M, v |= γ (then M |= ©(γ |α)) or M, v |= ¬γ (then
M |= ¬γ© (γ |α)). In either case M |= ©(γ |α) ∨©(¬γ |α).

At the same time, G does not validate (CEM): for example consider the for-
mula χ = ©(y |x)∨©(¬y |x) (where x, y ∈ Var), which is an instance of (CEM)
and consider the preference model M = 〈W,≻cl, V 〉 where W = {w1, w2},
w ≻cl w′ for any w,w′ ∈ W , and V (x) = {w1, w2} and V (y) = {w1}. M
is a G-model (by Lem. 3.20), both w1 and w2 are α-maximal by definition and
M,w2 6|= y and M,w1 6|= ¬y, so neither M |= ©(y |x) nor M |= ©(¬y |x), so
M 6|= χ, therefore χ is not a theorem of G.

Thus, the logic of finite linearly-ordered models is some conditional logic
strictly stronger than G, which satisfies (CEM).
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