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Abstract. We classify all contact structures with contact surgery number one

on the Brieskorn sphere Σ(2, 3, 11) with both orientations. We conclude that

there exist infinitely many non-isotopic contact structures on each of the above
manifolds which cannot be obtained by a single rational contact surgery from

the standard tight contact 3-sphere. We further prove similar results for some

lens spaces: We classify all contact structures with contact surgery number
one on lens spaces of the form L(4m + 3, 4). Along the way, we present an

algorithm and a formula for computing the Euler class of a contact structure

from a general rational contact surgery description and classify which rational
surgeries along Legendrian unknots are tight and which ones are overtwisted.

1. Introduction

A fundamental result in 3-dimensional contact topology due to Ding–Geiges
says that any connected orientable compact contact 3-manifold with co-orientable
contact structure can be obtained by contact surgery on a Legendrian link in the
standard tight contact 3-sphere (S3, ξst) [DG04]. Moreover, one can assume all
contact surgery coefficients to be ±1. Thus a natural complexity notion for a given
contact 3-manifold is the minimal number of components required for the surgery
link.

The contact surgery number cs(M, ξ) of a given contact 3-manifold (M, ξ) is
defined to be the minimal number of components of a Legendrian link L in (S3, ξst)
needed to describe (M, ξ) as a rational contact surgery along L (with non-vanishing
contact surgery coefficients). Similarly, we define other versions of contact surgery
numbers, i.e. csZ(M, ξ), cs1/Z(M, ξ), and cs±1(M, ξ) by requiring in addition that all
contact surgery coefficients of L are integers, reciprocal integers, or ±1, respectively.

In [EKO22] the study of contact surgery numbers was initiated. In particular,
explicit calculations on some simple manifolds were performed and general upper
bounds on contact surgery numbers were obtained. For example it was shown that
the contact surgery number of a contact manifold (M, ξ) is at most 3 larger than
the topological surgery number of the underlying smooth manifold M . On the other
hand, it remained unclear if this bound is sharp. And especially for tight contact
manifolds certain properties of contact surgery numbers remained unclear.

In this paper, we will add new computations of contact surgery numbers on
certain Brieskorn spheres and lens spaces. In particular, these results will add some
previously unknown phenomena about the behavior of contact surgery numbers of
tight contact structures.
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1.1. The Brieskorn sphere Σ(2, 3, 11). Let Σ(2, 3, 11) be the Brieskorn sphere
with Brieskorn invariants (2, 3, 11), i.e. the Seifert fibered space presented as the
surgery diagram in Figure 4. Up to contactomorphism there exists a unique Stein
fillable (hence tight) contact structure on Σ(2, 3, 11) which we denote by ξst [GS03,
Theorem 4.4]. Since Σ(2, 3, 11) is a homology sphere every overtwisted contact
structure is determined by its d3-invariant, which can take all integer values. Our
first result completely classifies all contact structures on this manifold with contact
surgery number 1.

Theorem 1.1

(1) A contact structure on the Brieskorn sphere Σ(2, 3, 11) has integer contact
surgery number csZ = 1 if and only if its d3-invariant is of the form

m(3−m)− 1 for m ≥ 4.

(2) A contact structure on the Brieskorn sphere Σ(2, 3, 11) has rational contact
surgery number cs = 1 if and only if its d3-invariant is of the form

m(3−m)− 1 for m ≥ 4,

−2
(
m(m+ 2) + 2

)
for m ≥ −3, or

−2
(
m(m+ 3) + 3

)
for m ≤ −3.

In the proof of Theorem 1.1 we will also describe all possible contact surgery
diagrams of these contact structures along a single Legendrian knot. From that, we
will deduce the following corollary.

Corollary 1.2 Let ξ be any overtwisted contact structure on Σ(2, 3, 11), then

2 ≤ cs1/Z(ξ) ≤ cs±1(ξ) ≤ 3.

We also have similar results for the tight contact structure.

Corollary 1.3 Let ξst be the standard tight contact structure on Σ(2, 3, 11), then

cs(ξst) = 2, 2 ≤ cs1/Z(ξst) ≤ 3, and 2 ≤ csZ(ξst) ≤ cs±1(ξst) ≤ 4.

A rational contact surgery diagram of (Σ(2, 3, 11), ξst) along a 2-component Legen-
drian link is shown in Figure 5.

We remark that this is the first tight contact structure for which we can explicitly
compute the rational contact surgery number and where it does not agree with the
topological surgery number of the underlying smooth manifold.

1.2. The mirror of the Brieskorn sphere Σ(2, 3, 11). Again up to contacto-
morphism there exists a unique Stein fillable (hence tight) contact structure on
−Σ(2, 3, 11) which we denote by ξst [GS03, Theorem 4.9], cf. [GVHM16]. Again we
can completely classify the contact structures with contact surgery number 1.

Theorem 1.4

(1) A contact structure on −Σ(2, 3, 11) has integer contact surgery number
csZ = 1 if and only if its d3-invariant is of the form

m(m− 1) for m ≥ 0.
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(2) An overtwisted contact structure on −Σ(2, 3, 11) has rational contact surgery
number cs = 1 if and only if its d3-invariant is of the form

m(m− 1) for m ≥ 0,

2m(m+ 1) for m ≤ −1, or

2(m+ 1)2 for m ≤ −1.

From Theorem 1.4 we will deduce that some contact structures have unique
contact surgery diagrams along Legendrian knots.

Corollary 1.5 If K is a Legendrian knot in (S3, ξst) such that contact (+1)-surgery
or contact (−1)-surgery along K yields a contact structure ξ on −Σ(2, 3, 11). Then
K is isotopic to the unique Legendrian realization of the twist knot −K5a1 with
tb = 0 and rot = 0, the contact surgery coefficient is +1, and ξ is isotopic to the
overtwisted contact structure with d3 = 0. This contact surgery diagram is shown
in Figure 6.

If we allow reciprocal integer contact surgery coefficients, then this contact struc-
ture has exactly one more surgery diagram: contact (1/2)-surgery along the Legen-
drian realization of the right-handed trefoil with tb = 0 and rot = 1, shown in
Figure 6.

For the tight contact structure, we can compute all contact surgery numbers.

Corollary 1.6 If K is a Legendrian knot in (S3, ξst) such that for some r ∈ Q\{0},
contact r-surgery K(r) is contactomorphic to (−Σ(2, 3, 11), ξst), then K is isotopic
to the right-handed trefoil with tb = 1 and rot = 0 and r = −1/2.

In particular, we compute its contact surgery numbers as

cs(ξst) = cs1/Z(ξst) = 1, and cs±1(ξst) = csZ(ξst) = 2.

We remark that this is the first tight contact structure for which we have explic-
itly computed all different versions of the contact surgery numbers and where cs±1

and cs1/Z differ.

1.3. Integral surgery numbers of lens spaces. For m ≥ 1, we denote by
L(4m + 3, 4) the lens space obtained by topological (−m − 3

4 )-surgery on the un-
knot U . We call this surgery diagram the standard surgery diagram of L(4m+3, 4).
If we denote by µU the meridian of this unknot we know that H1(L(4m + 3, 4))
is isomorphic to Z4m+3 generated by µU . The Euler class of a 2-plane field on
L(4m+ 3, 4) is Poincaré dual to a first homology class which we always present in
this identification with Z4m+3. In other words if we write that a contact structure
ξ on a lens space of the form L(4m+3, 4) has Euler number e for an integer e, then
we consider e modulo 4m+ 3 and see it as an element in Z4m+3 which we identify
with H1(L(4m + 3, 4)) under the above identification, i.e. we identify e with the
element eµ ∈ H1(L(4m+ 3, 4)).

The tight contact structures on L(4m+3, 4) are classified by Honda [Hon00]. In
particular, any tight contact structure can be obtained by rational contact surgery
on a Legendrian unknot (and thus has cs = 1), two tight contact structures on a
lens space are distinguished by their Euler classes.

For the tight contact structures, we can compute all contact surgery numbers.
In particular, there are exactly m non-contactomorphic tight contact structures on
L(4m+ 3, 4) that have integer contact surgery number one.
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Theorem 1.7 Let ξk be the tight contact structure ξ on the lens space L(4m+3, 4)
with Euler class k ∈ Z4m+3 = H1(L(4m+3, 3)). Then their contact surgery numbers
are as follows:

cs±1(ξk) = csZ(ξk) = 1, if k ≡ 2m(l + 1) + 2 + 4l mod(4m+ 3),

for l ∈ {0, 1, 2, . . . ,m− 1},
cs±1(ξk) = csZ(ξk) = 2, otherwise.

We conclude that several tight contact structures on these lens spaces have
unique contact surgery diagrams along a single Legendrian knot.

Corollary 1.8 Let l ∈ {0, 1, 2, . . . ,m−1} and let K be a Legendrian knot in (S3, ξst)
such that for n ∈ Z contact n-surgery along K yields (L(4m+3, 4), ξ2m(l+1)+2+4l).
Then K is the unique Legendrian realization of T(2,−(2m+1)) with tb = −4m − 2
and rot = 1 + 2l and the contact surgery coefficient n is −1.

For the overtwisted contact structures we can completely classify the contact
structures with cs±1 = 1 and with csZ = 1. In general it follows from [EKO22]
that any overtwisted contact structure on L(4m + 3, 3) has cs±1 ≤ 3. Since the
first homology H1(L(4m+3, 4)) has no 2-torsion overtwisted contact structures are
completely determined by their Euler class and their d3-invariants [Gom98, DGS04].

Theorem 1.9

(1) An overtwisted contact structure on L(4m+3, 4) has contact surgery number
cs±1 = 1 if and only if its tuple (e,d3) of Euler class e and d3-invariant is
of the form(
2m+ 2 + k,

3m+ 2− k(k + 1)

4m+ 3
+

1

2

)
for k ∈ {−1, 0, 1, 2, . . . ,m}.

(2) An overtwisted contact structure on L(4m+3, 4) has contact surgery number
csZ = 1 if and only if it appears in the list of (1) or if its tuple (e,d3) of
Euler class e and d3-invariant is of the form(

±(k + 1),− (k + 1)2

4m+ 3
− k −m− 1

2

)
for k ≤ −m− 2.

In particular, the above result implies the following.

Corollary 1.10

(1) For any given e ∈ {2m + 1, 2m + 2, . . . , 3m + 2} there exists exactly one
overtwisted contact structure ξ on L(4m + 3, 4) with Euler class e(ξ) = e
that has cs±1 = 1.

(2) For a given e ∈ Z4m+3 \ {2(m + 2)} there exists infinitely many pairwise
non-contactomorphic contact structures on L(4m+3, 4) with Euler classes
e that have csZ = 1. And there exist also infinitely many pairwise non-
contactomorphic contact structures on L(4m + 3, 4) with Euler classes e
that have csZ > 1.

1.4. Rational surgery numbers of lens spaces. We also have similar results
for rational contact surgery numbers. All tight contact structures on lens spaces
have cs = 1. We also classify the overtwisted contact structures on L(4m + 3, 4)
that have cs = 1 in Theorem 4.2. But here the result is much more evolved, so in
this introduction, we only state one of its corollaries.
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Corollary 1.11 For every given m ≥ 1 there exists infinitely many pairwise non-
contactomorphic contact structures on L(4m+ 3, 4) that have cs > 1.

1.5. Outline of the arguments. We briefly outline our main arguments. Let M
be either the Brieskorn sphere ±Σ(2, 3, 11) or a lens space which is of the form
L(4m + 3, 4). Then there are results of Culler–Gordon–Luecke–Shalen [CGLS87],
Baldwin–Sivek [BS22], and Rasmussen [Ras07] that together completely classify all
surgery diagrams along a single knot yielding M . It turns out that these are all
surgeries along unknots, certain torus knots, and twist knots for which the classi-
fication of Legendrian realizations is known [EF98, EH01, ENV13, CN]. Moreover,
the classification of tight contact structures on M is known by [Hon00, GS03]
and the overtwisted contact structures are determined by their homotopical invari-
ants [Eli89]. Since M is a rational homology sphere that has no 2-torsion in its
first homology, these homotopical invariants are given by the Euler class, and the
d3-invariant [Gom98, DGS04]. Thus we can enumerate all possible contact surgery
diagrams along a single Legendrian knot in (S3, ξst) yielding a contact structure
on M . Then we check which of these surgeries yield tight and which yield over-
twisted manifolds. We use the formulas from [DK16] to compute their homotopical
invariants. This yields the classification of contact structures on M that have con-
tact surgery number 1 from which we can deduce the claimed results. Opposed
to the results obtained in [EKO22], here we also need to work with Legendrian
non-simple knots (the Legendrian twist knots) and since we do not just work on
homology spheres, we have more complicated surgery coefficients and need to take
the Euler classes into account. For that we discuss in Theorem 2.3 how to com-
pute the Euler classes of general rational contact surgery diagrams which might be
of independent interest. In Section 2 we recall the needed background on contact
surgery and in Section 4 we present the details of the above arguments.

Conventions. All contact structures are assumed to be positive and coorientable.
We present Legendrian knots always in their front projection. Since a contact
surgery diagram determines a contact manifold only up to contactomorphism, we
consider contact manifolds only up to contactomorphism (and not up to isotopy).
Moreover, the contactomorphism type of a contact surgery is independent of an
orientation of the Legendrian surgery link. Thus we mainly consider unoriented
Legendrian links in (S3, ξst) up to isotopy of unoriented links. Then the rotation
number of an unoriented Legendrian knot is only defined up to sign. For some
calculations, it will be helpful to choose orientations on Legendrian links in which
case the rotation numbers are always understood with signs. We normalize the d3
invariant such that d3(S

3, ξst) = 0 as done for example in [CEK21, EKO22, KO23].
With that normalization, the d3-invariant is additive under connected sum and
takes integer values on homology spheres.
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2. Preliminaries

In this section, we briefly recall the necessary background on contact surgery and
how to compute the homotopical invariants of a contact structure from one of its
contact surgery diagrams. For background on contact geometry, we refer to [Gei08].
For more on contact surgery and the homotopical invariants of contact structures,
we refer to [Gom98, DG04, DGS04, OS04, DK16, Keg17, Keg18, CEK21, EKO22].

2.1. Contact surgery. Let K be a Legendrian knot in (S3, ξst). We perform Dehn
surgery onK with contact surgery coefficient r ∈ Q\{0} (i.e. measured with respect
to the contact longitude ofK, obtained by pushingK into the Reeb-direction). Then
there exist (up to contactomorphism) finitely many tight contact structures on the
newly glued-in solid torus that fit together with the old contact structure to give a
global contact structure on the surgered manifold [Hon00]. We write K(r) for one of
these contact manifolds obtained by contact r-surgery along K. If in addition, the
contact surgery coefficient is of the form 1/n, for n ∈ Z, then the contact structure
on the surgered manifold is unique up to contactomorphism.

It will be convenient to introduce the following notation. We write K K for
the Legendrian link consisting of K together with a Legendrian push-off of K. We
denote a copy ofK with n extra stabilizations byKn. Here the n-extra stabilizations
are not specified but fixed. If the knot Kn is again stabilized m times this is denoted
by Kn,m.

Lemma 2.1 (Ding–Geiges [DG01, DG04]) Let K be a Legendrian knot in (S3, ξst).

(1) Cancellation lemma: For every n ∈ Z \ {0}, we have

K

(
1

n

)
K

(
− 1

n

)
∼= (S3, ξst).

(2) Replacement lemma: For every n ∈ Z \ {0}, we have

K

(
± 1

n

)
∼= K(±1) · · · K(±1).

(3) Transformation lemma: For every r ∈ Q \ {0} and every integer k, we
have

K(r) ∼= K

(
1

k

)
K

(
1

1
r − k

)
.

If the contact surgery coefficient r is negative, one can write r uniquely as

r = [r1 + 1, r2, . . . , rn] := r1 + 1−
1

r2 −
1

· · · −
1

rn

with integers r1, . . . , rn ≤ −2 and we have

K(r) ∼= K|2+r1|(−1) K|2+r1|,|2+r2|(−1) · · · K|2+r1|,...,|2+rn|(−1).
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In addition, all these results hold true in a tubular neighborhood of K. In particular,
they can be applied to knots in larger contact surgery diagrams.

2.2. The homotopical invariants. We will also need to compute the algebraic
invariants of the underlying tangential 2-plane field of a contact structure. It is
known that a tangential 2-plane field ξ on a rational homology sphere M with
no 2-torsion in H1(M), is completely determined by its Euler class and its d3-
invariant [Gom98, DGS04]. Roughly speaking, the Euler class determines ξ on the 2-
skeleton of M , while the d3-invariant gives ξ on the 3-cell of M . For contact (±1/n)-
surgeries these invariants can be computed with the following result from [DK16].

Lemma 2.2 Let L = L1 ⊔ . . . ⊔ Lk be a Legendrian link in (S3, ξst) and denote by
(M, ξ) the contact manifold obtained from S3 by contact (±1/ni)-surgeries along L,
with ni ∈ N. After choosing an orientation on L we write ti, ri for the Thurston–
Bennequin invariant and the rotation number of Li, and lij for the linking number of
Li and Lj. We denote the topological surgery coefficient of Li by pi/qi = ±1/ni+ ti
and define the generalized linking matrix as

Q :=


p1 q2l12 · · · qnl1n

q1l21 p2
...

. . .

q1ln1 pn

 .

(1) Then Q is a presentation matrix for the first homology group H1(M) of M ,
i.e. H1(M) is generated by the meridians µi and the relations are Qµ = 0
where µ is the vector with entries µi.

(2) If all ni = 1, the Euler class e(ξ) is Poincaré dual to

PD
(
e(ξ)

)
=

k∑
i=1

riµi ∈ H1(M).

(3) The Euler class e(ξ) is torsion if and only if there exists a rational solution
b ∈ Qk of Qb = r, where r is the vector of the rotation numbers ri. In this
case, the d3-invariant is a well-defined rational number and computes as

d3(M, ξ) =
1

4

(
k∑

i=1

nibiri + (3− ni) signi

)
− 3

4
σ(Q)

where signi denotes the sign of the contact surgery coefficient of Li and
σ(Q) denotes the signature of Q. (In the proof of Theorem 5.1. in [DK16]
it is shown that the eigenvalues of Q are all real and thus the signature of
Q is well-defined although Q is in general a non-symmetric matrix.)

Next, we present a formula and an algorithm how to compute the Euler class of
a contact structure from a general rational contact surgery diagram. Here the main
idea is to use the transformation lemma to transform a general contact surgery
diagram into one with only (±1)-contact surgery coefficients. We will perform that
process by doing explicit Kirby moves which will allow us to keep track of the
meridians. Then we can use Lemma 2.2 to compute the Euler class.

Theorem 2.3 Let (M, ξ) be a contact manifold that is obtained by rational contact
surgery on an oriented Legendrian link L in (S3, ξst). Let K be a component of
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L with contact surgery coefficient r ∈ Q \ {0}. Then the Euler class of ξ can be
represented in the basis of H1(M) given by the meridians of L by

e(ξ) = eKµ+ eL,

where eK is an integer, µ is the meridian of K, and eL is a linear combination of
the meridians of L \K.

On the other hand, the transformation lemma tells us that there exist integers
l,m, sl+1, . . . , sm such that

(1) K(r) ∼= K(+1) · · ·K(+1)︸ ︷︷ ︸
l

Ksl+1
(−1) · · · Ksl+1,··· ,sm(−1).

We denote the components of the above surgery description as Ki for i = 1, 2, · · · ,m
and write t and r for the Thurston–Bennequin invariant and rotation number of
K, and ri for the rotation number and µi for the meridian of Ki.

We have the following cases:

(1) For m = 2, the surgery diagram reduces to K(r) = K(±1) Ks2(−1). In
the basis of H1(M) given by this surgery description the Euler class is given
by

e(ξ) =
(
∓ t(r1 − r2) + r2

)
µ+ eL

(2) For m = l, i.e for contact ( 1
m )-surgery and for l = 0 and si = 0 for

i = 3, · · ·m, i.e for contact (− 1
m ) surgery the Euler classes are given by

e(ξ) = rµ+ eL

(3) For m > 2 and l = 0, in the basis of H1(M) given by the surgery description
from Equation 1 the Euler class is given by

e(ξ) =

rt + (1 − t)

rm

m−1∏
k=2

(1 − t + sk) + r2(t − s2) +

m−1∑
i=3

ri(t − si)

i−1∏
k=2

(1 − t + sk)

µ + eL

This case corresponds to negative contact surgery.
(4) For m > 2, l > 0 and l ̸= m, in the basis of H1(M) given by the surgery

description from Equation 1 the Euler class is given by

e(ξ) =

r + (1 + t)
l

−r + rm

m−1∏
k=l+1

(1 − t + sk) + rl+1(t − s2) +

m−1∑
i=l+2

ri(t − si)

i−1∏
k=l+1

(1 − t + sk)

µ + eL

The main ingredients in the proof of the above theorem are the following two
lemmas.

Lemma 2.4 Under the diffeomorphism from Equation 1, for m > 2 and m ̸= l the
homology classes of the meridians µi in H1(M) are mapped as follows:

µk 7−→ −t(1 + t)k−1µ for k = 1, 2, · · · , l

µl+1 7−→ (t− sl+1)(1 + t)lµ

µl+2 7−→ (t− sl+2)(1− t+ sl+1)(1 + t)lµ

...

µm−1 7−→ (t− sm−1)(1− t+ sm−2) · · · (1− t+ sl+1)(1 + t)lµ

µm 7−→ (1− t+ sm−1)(1− t+ sm−2) · · · (1− t+ sl+1)(1 + t)lµ
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For m = 2, the meridians are mapped as follows:

µ1 7−→ −tµ

µ2 7−→ (1 + t)µ

For m = l, we have the following:

µk 7−→ −t(1 + t)k−1µ For k = 1, 2, · · · ,m
µm 7−→ (1 + t)m−1µ

Proof. We will consider several cases of increasing difficulty.
Case 1: First we consider the case that r = 1/m for a positive integer m > 2. This
is equivalent of saying that l = m. We will show by induction on m that

µk 7−→ −t(1 + t)k−1µ for all k = 1, 2, . . . ,m− 1,

µm 7−→ (1 + t)m−1µ.

The induction step follows from the Kirby moves in Figure 1. We start in (1)
with the Kirby diagram

K(1) · · · K(1)︸ ︷︷ ︸
m−1

K(1)

and their meridians µi and end up with their images in

K(1) · · · K(1)︸ ︷︷ ︸
m−2

K(1/2)

under the Kirby moves in diagram (6) from which we read-off that

µi 7−→ µ′
i for i = 1, . . .m2,

µm−1 7−→ −tµ′
m−1,

µm 7−→ (1 + t)µ′
m−1,

where we write µ′
i for the i-th knot in the surgery diagram (6). The statement then

follows from the induction hypothesis.
Case 2: Next, we consider a surgery diagram where K1 has contact surgery coef-
ficient 1 and all other Ki’s have contact surgery coefficient −1. We will show by
induction that

µ1 7−→ −tµ

µ2 7−→ (t− s2)(1 + t)µ

µ3 7−→ (t− s3)(1− t+ s2)(1 + t)µ

...

µm−1 7−→ (t− sm−1)(1− t+ sm−2)(1− t+ sm−3) · · · (1 + t)µ

µm 7−→ (1− t+ sm−1)(1− t+ sm−2)(1− t+ sm−3) · · · (1 + t)µ.

The induction step (for m ≥ 3) follows also along the same lines as Case 1 from
the Kirby moves depicted in Figure 2. From Figure 2 we read-off that

µi 7−→ µ′
i for i = 1, . . .m− 2,

µm−1 7−→ (t− sm−1)µ
′
m−1,

µm 7−→ (1− t+ sm−1)µ
′
m−1,
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µm

µm−1

1 + t

1 + t

(1)

µm

µm−1

2 + 2t− 2t

1 + t

(2)
µm

µm−1 2

1 + t

(3) (4)

µm

µm−1

1 + t

2

(5)

1 + t

µm

µm−1

(6)

1 + t

µm−1
µm

1+t

Figure 1. Case 1: While performing the explicit Kirby moves
from diagram (1) to diagram (6) we keep track of the meridians.
Note that in this figure all surgery coefficients are measured with
respect to the Seifert framing.

where we write µ′
i for the i-th knot in the surgery diagram (6). The statement then

follows from the induction hypothesis.
Case 3: The general case is smoothly depicted in Figure 3. First, we just look at
the last (m − l + 1) components starting from Kl. Notice that this coincides with
Case 2. And thus we get

µl 7−→ −tµ′
l,

µl+1 7−→ (t− sl+1)(1 + t)µ′
l,

µl+2 7−→ (t− sl+2)(1− t+ sl+1)(1 + t)µ′
l,

...

µm−1 7−→ (t− sm−1)(1− t+ sm−2)(1− t+ sm−3) · · · (1− t+ sl+1)(1 + t)µ′
l,

µm 7−→ (1− t+ sm−1)(1− t+ sm−2)(1− t+ sm−3) · · · (1− t+ sl+1)(1 + t)µ′
l.

Here again µ′
l denotes the meridian of Kl after the Kirby moves. Now we can for-

get about the components with index larger than l and just look at the components
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µm

µm−1

k − sm

k

(1)

µm

µm−1

−2− sm

(2)

µm

µm−1

(3)

−2− sm

(4)

µm

µm−1

−2− sm

(5)

µm

µm−1

−2− sm

k

(6)

µm
k

µm−1

-sm−1 -sm−1

−1 + t

Figure 2. In Case 2, performing the explicit Kirby moves from
diagram (1) to diagram (6) we keep track of the meridians. All
surgery coefficients are measured with respect to the Seifert fram-
ing. (1) A local picture with components Km and Km−1. Here
k = −1 + t − sm−1 (2) Slide Km over Km−1. (3) and (4) Isotopy.
(5) Slide µm and µm−1 over Km−1. (6) Slam-dunk Km.

K1, . . . ,Kl. This part coincides with Case 1. Thus we have

µk 7−→ −t(1 + t)k−1µ, for k = 1, 2, . . . , l − 1,

µ′
l 7−→ (1 + t)l−1µ.

Together this implies the general case of the lemma.
For m = 2, the proof works the same. One just needs to keep track of the

meridian as in Figure 1. The only difference will be that K2 will have topological
surgery coefficient −1 + t− s2. □

Lemma 2.5 For negative contact surgery, under the diffeomorphism from Equa-
tion 1 with l = 0, the homology classes of the meridians µi for m > 2 in H1(M)
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−s2−s1

t

−sm−sm−1

−1 − t − s1 · · · − sm−1

.

.

.

.

.

.

±1 + t

.

.

.

.

.

.

.

.

.

±1 + t

−1 + t − s1

.

.

.

.

.

.

.

.

.

.

.

.

−1 + t − s1 − · · · sm

Figure 3. Case 3: A general surgery diagram again with surgery
coefficients measured with respect to the Seifert longitude. The
number inside the box represents the linking number between the
components.

are mapped as follows:

µ1 7−→ tµ

µ2 7−→ (t− s2)(1− t)µ

µ3 7−→ (t− s2)(1− t+ s2)(1− t)µ

...

µm−1 7−→ (t− sm−1)(1− t+ sm−2) · · · (1− t+ s2)(1− t)µ

µm 7−→ (1− t+ sm−1)(1− t+ sm−2) · · · (1− t+ s2)(1− t)µ

For m = 2, the meridians are mapped as follows:

µ1 7−→ tµ

µ2 7−→ (1− t)µ

For contact (− 1
m )-surgery, we have the following:

µk 7−→ t(1− t)k−1µ For k = 1, 2, · · · ,m
µm 7−→ (1− t)m−1µ

Proof. The proof is similar to the proof of Lemma 2.4. □

Proof of Theorem 2.3. Lemma 2.4 and Lemma 2.5 tells us how to express the merid-
ians µi in the surgery description from Equation 1 in terms of µ. By plugging this
description into the formula from Lemma 2.2 and simplifying the expression we get
the statement of the theorem. □
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3. Tight surgeries on Legendrian unknots

In this section, we will classify which rational contact surgeries on Legendrian un-
knots yield tight contact manifolds and which yield overtwisted contact manifolds.
Our main result reads as follows.

Theorem 3.1 Let U be a Legendrian unknot with tb(U) = t ≤ −1. Then U(r) is
tight if and only if

(1) r < 0, or
(2) r ≥ −t and U is only stabilized with one sign (or not stabilized at all) and

the first stabilization of U(r) in the transformation lemma has the same
sign as the stabilizations of U (or has arbitrary sign in case that U is not
stabilized).

We first start with a simple lemma.

Lemma 3.2 Let U be a Legendrian unknot with tb(U) = t ≤ −1. Then every U(r)
is overtwisted if 0 < r < −t.

Proof. Let r = p/q for coprime integers p > q > 0. We denote by K a Legendrian
meridian of U with tb(K) = −1 seen as a knot in (S3, ξst). Then K can also be seen
as a rational Legendrian unknot in U(r), and thus any rational Seifert surface F of
K in U(r) has Euler characteristic χ(F ) ≤ 1. On the other hand, we compute, for
example with [Keg17, Section 4.5], the rational Thurston–Bennequin invariant of K
in U(r) to be tbQ(K) = −1− q

p+qt > −1. Thus K violates the rational Bennequin

inequality [BE12] in U(r) which implies that U(r) is overtwisted. □

Proof of Theorem 3.1. First, we recall that contact surgery with a negative contact
surgery coefficient preserves fillability. In particular, K(r) is tight whenever r < 0.
Thus in the following, we will restrict to positive contact surgery coefficients.

We denote by U = U0 the Legendrian unknot with Thurston–Bennequin invari-
ant tb = −1. Then it follows from Lemma 3.2 that U(r) is overtwisted for r ∈ [0, 1).
If r > 1, we can use the transformation lemma to write

U(r) = U(+1) U

(
1

1
r − 1

)
.

Since U(+1) yields the tight contact structure on S1 × S2 and 1
1
r−1

is negative, it

follows that every U(r) is tight. Together with Lemma 3.2 we have shown that U(r)
is overtwisted if and only if r ∈ [0, 1).

Now we denote by U−t−1 a Legendrian unknot with Thurston–Bennequin in-
variant tb(U−t−1) = t ≤ −2. If U−t−1 is stabilized with two different signs then
every U(r), r ≥ 0, is overtwisted [Ozb06], cf. [EKO22, Theorem 3.3]. So we assume
from now that U−t−1 is stabilized with only one sign, i.e. | rot(U−t−1)| = t − 1. If
r ∈ [0,−t) then U−t−1(r) is always overtwisted by Lemma 3.2. Next, we consider
the case r ≥ −t. We choose coprime integers p, q > 0, such that r = p/q. Then
p+ tq ≥ 0 and

2 ≥ 1
1
r − 1

=
p

p− q
≥ 1.

Thus the first terms in the negative continued fraction expansion read as

p

p− q
= −3 + 1− 1

− p−q
p−2q

.
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Then the transformation lemma yields

U−t−1(p/q) = U−t−1(+1) U−t−1,1(−1) U−t−1,1

(
− p− q

p− 2q

)
.

If the extra stabilization of U−t−1,1 has a different sign than the stabilizations of
U−t−1 then the contact structure is overtwisted [EKO22, Theorem 3.3] if the extra
stabilization has the same sign we use the lantern destabilization [LS11, EKO22]
and the transformation lemma again to write

U−t−1(p/q) =U−t−1(+1) U−t−1,1(−1) U−t−1,1

(
− p− q

p− 2q

)
=U−t−2(+1) U−t−2,1

(
− p− q

p− 2q

)
=U−t−2

(
−p− q

q

)
=U−t−2(p/q − 1).

Inductively, this implies

U−t−1(p/q) = U(p/q − t+ 1)

and since p/q−t+1 > 1 it follows that this contact structure is tight as claimed. □

4. Proofs of the main results

4.1. The Brieskorn sphere Σ(2, 3, 11).

Proof of Theorem 1.1. Let (Σ(2, 3, 11), ξ) be contactomorphic to K(r) for some Le-
gendrian knot K in (S3, ξst) and some r ∈ Q\{0}. Then a recent result of Baldwin–
Sivek [BS22] says that either K is a Legendrian realization of the positive twist knot
K5a1 with topological surgery coefficient −1 or K is a Legendrian realization of
the left-handed trefoil knot −K3a1 with topological surgery coefficient −1/2. These
surgery diagrams are shown in Figure 4.

− 3
2 − 11

2
2

0 − 3
2

− 3
2 − 11

9

− 1
2 −1

Figure 4. Four different surgery diagrams of the Brieskorn sphere
Σ(2, 3, 11). The left diagram shows the description of that manifold
as Seifert fibered space.

To prove statement (1), we only need to consider the first possibility (since
the latter will always yield a rational contact surgery). Since K5a1 is Legendrian
simple, every Legendrian realizationK ofK5a1 is obtained by stabilizing the unique
Legendrian representative of K5a1 with tb = −8 and rot = 1 [ENV13]. Then we
can readily apply Corollary 4.7 from [EKO22] to deduce statement (1).
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For (2), we also need to consider Legendrian realizations of the left-handed trefoil.
Let K be a Legendrian left-handed trefoil. From the classification of Legendrian
realizations of −K3a1, we deduce that K has Thurston–Bennequin invariant t ≤
−6 [EH01]. Thus K(−1−2t

2 ) yields a contact structure on Σ(2, 3, 11). (And together
with the contact structures obtained in (1) this is the complete list of contact
structures on Σ(2, 3, 11) with cs = 1.) We compute the possible d3-invariants of
these contact structures. For that, we use Lemma 2.1 to change the contact surgery
diagram into one with only reciprocal integer coefficients, so that Lemma 2.2 applies.
We apply the transformation lemma to see that

K

(
−1− 2t

2

)
= K(+1) K

(
−1 + 2t

3 + 2t

)
= K(+1) K1

(
− 1

−t− 2

)
K1,1(−1),

where the last equality comes from the negative continued fraction expansion

(2) −1 + 2t

3 + 2t
= [−2, . . . ,−2︸ ︷︷ ︸

−t−2

,−3].

From this surgery description, we deduce the generalized linking matrix to be

Q =

1 + t −t(t+ 2) t
t 1− t− t2 t− 1
t −(t+ 2)(t− 1) t− 3

 .

Next, we compute the signature of Q to be 1 and solve Qb = r from which we
get the d3-invariants. We write r for the rotation number of L. In the case of
r = (r, r ± 1, r ± 2), we get

d3 = −(t± r)− (t± r)2 + 5

2

and for r = (r, r ± 1, r), we compute

d3 = −2(t± r)− (t± r)2 + 7

2
.

By writing t± r = 2m+ 1 for m ≤ −3 the claimed formulas follow. □

Proof of Corollary 1.2. In the proof of Theorem 1.1 we created all contact surgery
diagrams along a single Legendrian knot yielding contact structures on Σ(2, 3, 11).
The lower bound of the corollary follows by observing that these were all with
contact surgery coefficients not of the form of a reciprocal integer. The upper bound
follows from Proposition 6.8 in [EKO22]. □

Proof of Corollary 1.3. Figure 5 shows how to obtain a contact surgery diagram
of (Σ(2, 3, 11), ξst) along a two-component Legendrian link. This yields the upper
bound of 2 for cs and by applying the transformation lemma it also yields the upper
bound 3 for cs1/Z. For the lower bound, we compute d3(ξst) = 2 and observe that 2
is never attained for the possible d3-invariants in Theorem 1.1. Finally, the upper
bound of 4 for cs±1 is given by Theorem 6.9 in [EKO22]. □
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− 1
2

− 1
2

− 2
9

∼= ∼=

− 1
2

− 1
2

− 2
9

− 1
4 − 2

9

Figure 5. Three different contact surgery diagrams of
(Σ(2, 3, 11), ξst). The left diagram is obtained by Legendrian
realizing the topological surgery diagram of Σ(2, 3, 11) along the
three component link in Figure 4. Since it only has negative
coefficients it represents the tight contact structure [Wan15]. The
middle diagram is obtained by performing a handle slide [CEK21]
of the red curve along the red dotted arc over the blue curve. The
two curves in the middle diagram bound an obvious annulus. Thus
we can apply the replacement lemma to get the surgery diagram
on the right along a two-component link.

4.2. The mirror of the Brieskorn sphere Σ(2, 3, 11).

Proof of Theorem 1.4. First, we observe that if topological r-surgery (i.e. with re-
spect to the Seifert framing) along a smooth knot K yields the smooth manifold
M , then (−r)-surgery along the mirror −K of K yields the mirrored manifold −M .
Thus we can deduce from [BS22] that any Legendrian knot K such that K(r) yields
a contact structure on −Σ(2, 3, 11) is either isotopic to a Legendrian realization of
−K5a1 with topological surgery coefficient +1 or isotopic to a Legendrian realiza-
tion of the right-handed trefoil K3a1 with topological surgery coefficient 1/2. Since
the classification of all Legendrian realizations ofK3a1 [EH01] and −K5a1 [ENV13]
are known, the same strategy as above works.

Statement (1) follows directly from the classification of Legendrian realization
of −K5a1 and Corollary 4.76 from [EKO22].

For statement (2) we consider a Legendrian realization K of the right-handed
trefoil K3a1 with Thurston–Bennequin invariant t ≤ 1. Then K( 1−2t

2 ) yields a
contact structure on Σ(2, 3, 11). For t = 1 this corresponds to a contact (−1/2)-
surgery. Since negative surgery preserves tightness [Wan15] the resulting contact
structure is contactomorphic to the standard tight contact structure ξst, with d3 =
−1. If t = 0, we perform a contact (1/2)-surgery and we compute directly that
d3 = 0. For t ≤ −1, we use Lemma 2.1 to change the contact surgery diagram to

K

(
1− 2t

2

)
= K(+1) K

(
1− 2t

1 + 2t

)
= K(+1) K1

(
− 1

−t− 1

)
K1,1(−1),

where the last equality comes from the negative continued fraction expansion from
Equation (2). From that, we deduce the generalized linking matrix to be

Q =

1 + t −t2 − t t
t −t2 t− 1
t −t2 + 1 t− 3

 .
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Next, we compute the signature of Q to be −1 and solve Qb = r from which
we get the d3-invariants. We write r for the rotation number of L. In the case of
r = (r, r ± 1, r ± 2), we get

d3 =
(t± r)2 + 1

2
− 1

and for r = (r, r ± 1, r), we compute

d3 =
(t± r)2 + 1

2
+ (t± r).

By writing t± r = 2m+ 1 for m ≤ −1 the claimed formulas follow. □

Proof of Corollary 1.5. In the proof of Theorem 1.1 we created all contact surgery
diagrams of contact structures on Σ(2, 3, 11) along a single Legendrian knot. We
observe that the only diagrams with reciprocal integer contact surgery coefficients
are the ones shown in Figure 6. This directly implies the statement. □

Proof of Corollary 1.6. In Figure 6 we can replace the contact (−1/2)-surgery by
two contact (−1)-surgeries along two Legendrian push-offs and thus cs±1(ξst) ≤ 2.
The other statements follow directly from the proof of Theorem 1.4 and Corol-
lary 1.5 by noticing that d3(ξst) = −1. □

− 1
2 + 1

2
+1

Figure 6. The only three contact surgery diagrams along a sin-
gle Legendrian knot with reciprocal integer contact surgery coef-
ficients that yield contact structures on −Σ(2, 3, 11). The left di-
agram yields ξst while the other two diagrams represent the over-
twisted contact structure with d3 = 0.

4.3. Surgery diagrams of the lens spaces L(4m+3, 4). Recall from the intro-
duction that for an integer m ≥ 1 we can represent L(4m + 3, 4) in its standard
surgery diagram: The (−m− 3/4)-surgery along the unknot U .

As preparation for the classification of the contact structures on L(4m + 3, 4)
that have contact surgery number 1 we enumerate in this section all smooth surgery
diagrams of L(4m + 3, 4) along a single knot K. Moreover, we will present the
meridians µK of these surgery knots in the standard basis of H1(L(4m + 3, 4))
generated by the meridian µ of the unknot in the standard surgery description.
The result is as follows.

Theorem 4.1 Let K be a knot in S3 and r ∈ Q be a surgery coefficient measured
with respect to the Seifert framing such that K(r) is diffeomorphic to L(4m+3, 4).
Then (K, r) is either

• the torus knot T(2,−(2m+1)) with surgery coefficient r = −4m− 3, or
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• an unknot Uk with surgery coefficient − 4m+3
4−4km−3k for an integer k ∈ Z, or

• an unknot U∗
k with surgery coefficient − 4m+3

m+1−4km−3k for an integer k ∈ Z.
Moreover, the meridians µT , µk, and µ∗

k of the torus knot T(2,−(2m+1)), Uk, and U∗
k

can be expressed in the standard basis as

µT 7−→ 2(m+ 1)µ,

µk 7−→ µ,

µ∗
k 7−→ (m+ 1)µ.

Proof. First, the cyclic surgery theorem [CGLS87] implies that K is either an
unknot or r is an integer. If r is an integer then a result of Rasmussen [Ras07]
implies that K is isotopic to the torus knot T(2,−(2m+1)) with surgery coefficient
r = −4m− 3.

If K is an unknot then the classification of lens spaces gives us all surgery dia-
grams along unknots yielding L(4m+3, 4). For that, we consider the surgery plumb-
ing graph corresponding to the continued fraction expansion of this lens space. I.e.
we consider the positive Hopf link with surgery coefficients −4 on the first com-
ponent K1 and surgery coefficient −m − 1 on the second component K2 shown in
Figure 7.

K1K2

−m− 1 −4

Figure 7. A surgery diagram on a positive Hopf link yielding
L(4m+ 3, 4).

By slam dunking K1 away, we get the standard surgery diagram of L(4m+3, 4).
In Figure 8 we keep track of the meridians µ1 and µ2 of K1 and K2 under this
slam dunk, which shows that under the slam dunk diffeomorphism, the meridians
get mapped as follows

µ1 7−→ (m+ 1)µ,

µ2 7−→ µ.

For any integer k ∈ Z we can perform a Rolfsen twist on the standard surgery
description to get again an unknot but with the surgery coefficient changed to
− 4m+3

4−4km−3k . The Rolfsen twist does not change the homology class of the meridian
and thus

µk 7−→ µ.
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K1

−m− 1

µ2

µ1

K2

−4

(1)

K1 −4

µ1

µ2

(2)K1

−4

−m− 1

µ2

µ1

−m− 1

(3)

K2

(4)

µ2

−m− 3
4K2

−m− 1

µ1

-m-1

Figure 8. A sequence of Kirby moves from the surgery diagram
of L(4m+3, 4) along the positive Hopf link to its standard surgery
diagram. (1) The surgery diagram of L(4m + 3, 4) along positive
Hopf link. (2) Sliding µ1 along K2. (3) Isotopy. (4) Slam-dunk K1

to get the final diagram.

Finally, there are the dual surgery descriptions (which we get by interchanging the
roles of the two Heegaard tori in the above surgery descriptions). In the surgery
picture we obtain these by slam dunking K2 away in Figure 7. This yields an unknot
U∗ with surgery coefficient − 4m+3

m+1 . This dual slam dunk diffeomorphism sends µ1

to µ∗ and thus

µ∗ 7−→ (m+ 1)µ.

By performing a k-fold Rolfsen twist on U∗ we get the surgery descriptions on
U∗ with surgery coefficient − 4m+3

m+1−4km−3k . The Rolfsen twist does not change the
homology class of the meridian of U∗ and thus

µ∗
k 7−→ (m+ 1)µ.

The classification of lens spaces implies that this is the complete list of 1-component
surgery descriptions of L(4m+ 3, 4).

It remains to express µT as a multiple of µ. For that, we refer to Figure 9 in
which a sequence of Kirby moves from the surgery diagram along the torus knot
T(2,−(2m+1) to the dual surgery description is presented. In that figure, we observe
that µT gets mapped to 2µ∗ and thus we obtain

µT 7−→ 2(m+ 1)µ

as claimed. □
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−4m− 3

......
−2m− 1 µT

T

(1)

µT

1
m+1

T1

(2) (3)

µT

1
m+1

T

1

(4)

1
m+1

− 4

µT

(5)

− 4m+3
m+1

µT

Figure 9. A sequence of Kirby moves from from the surgery di-
agram of L(4m + 3, 4) along the torus knot T(2,−(2m+1)) to its
dual surgery diagram along the unknot.(1) Surgery representation
of L(4m + 3, 4) along T(2,−(2m+1)). (2) Result of (m + 1) Rolfsen
twist. (3) Isotopy. (4) Blow down T . (5) Isotopy.

4.4. Integral contact surgery numbers of the lens spaces L(4m+ 3, 4).

Proof of Theorem 1.7. By Honda’s classification of tight contact structures on lens
spaces [Hon00] any tight contact structure can be obtained by Legendrian surgery
on a chain of Legendrian unknots. For a lens space of the form L(4m + 3, 4) the
complete list of tight contact structures is given by the surgery descriptions shown
in Figure 10. In particular, it follows that any tight contact structure on such a lens
space has contact surgery number cs±1 ≤ 2.

Now let ξ be a tight contact structure on L(4m+ 3, 4) that is contactomorphic
to K(n) for some Legendrian knot K in (S3, ξst) and some n ∈ Z \ {0}. Then The-
orem 4.1 implies that K is a Legendrian realization of the torus knot T(2,−(2m+1))

with topological surgery coefficient −4m−3. By [EH01], torus knots are Legendrian
simple and the torus knots at hand have tb ≤ −4m − 2. There are exactly m dif-
ferent Legendrian realizations of T(2,−(2m+1)) with Thurston–Bennequin invariant
t = −4m− 2. These have rotation numbers r ∈ {1, 3, 5, . . . , 2m− 1} and are shown
in Figure 11. Legendrian surgery on any of these Legendrian realizations yields a
tight contact structure on L(4m+3, 4). From Lemma 2.2 we see that the Poincaré
dual of the Euler class is given by rot(K)µT . Using Theorem 4.1 we can express the
Euler class in the standard basis to see that the tight contact structures claimed in
Theorem 1.7 all have contact surgery numbers cs±1 = 1.
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m− 1 2

−1 −1

K1K2

Figure 10. Surgery diagrams of all tight contact structures on
L(4m + 3, 4). The integer-labeled boxes denote that many stabi-
lizations.

To see that the other tight contact structures have cs±1 ≥ 2, we observe that
any other integer surgery on a Legendrian realization of T(2,−(2m+1)) that yields a
contact structure on L(4m+3, 4) is along a stabilized knot with a positive surgery
coefficient and thus is overtwisted by [LS11].

The same argument yields the result for the integer contact surgery numbers. □

Proof of Corollary 1.8. In the proof of Theorem 1.7 we have constructed the com-
plete list of integer contact surgery diagrams along a single Legendrian knot of tight
contact structures on L(4m+3, 4). These are shown in Figure 11. This immediately
implies the corollary. □

r = 2m− 1 r = 2m− 3 r = 1

1 2m
2 2m− 1 m− 1 m

Figure 11. All Legendrian realizations of T2,−(2m+1) with max-
imal Thurston–Bennequin invariant (equal to t = −4m − 2) and
rotation numbers r = 1, 3, . . . , 2m− 1. (The numbers indicate the
number of crossings.) Performing contact (−1)-surgery along these
knots gives the complete list of all integer contact surgery diagrams
along a single Legendrian knot yielding a tight contact structure
on the lens space L(4m+ 3, 4).

Next, we study the overtwisted contact structures on L(4m+ 3, 4).
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Proof of Theorem 1.9. Let ξ be a contact structure on L(4m+3, 4) that is contac-
tomorphic to K(n) for some Legendrian knot K in (S3, ξst) and some n ∈ Z \ {0}.
The same argument as in the proof of Theorem 1.7 shows that K is a Legendrian
realization of T(2,−(2m+1)) with Thurston–Bennequin invariant t ≤ −4m − 2 and
the topological surgery coefficient is −4m− 3.

If t = −4m − 2 the contact structure ξ is tight and was already handled in the
proof of Theorem 1.7. We do not need to consider the case when t = −4m−3 since
then the contact surgery coefficient would vanish.

We recall that any other integer surgery on a Legendrian realization of T(2,−(2m+1))

that yields a contact structure on L(4m + 3, 4) is along a stabilized knot with a
positive surgery coefficient and thus is overtwisted by [LS11].

If t = −4m−4, the contact surgery coefficient is +1. Thus the generalized linking
matrix is Q = (−4m − 3) and we can readily apply Lemma 2.2 to compute that
e(ξ) = rµT = 2r(m+ 1)µ and

d3(ξ) =
1

4

(
5− r2

4m+ 3

)
,

where r denotes the rotation number of K. From [EH01] we see that the possible
range of rotation numbers of Legendrian realizations of K with t = −4m − 4 is
given by r = 2k+1, for k ∈ {−1, 0, 1, 2, . . . ,m}. Plugging this in yields the formulas
claimed in (1).

Next, we assume that t ≤ −4m − 5. Then the contact surgery coefficient is
n = −4m− 3− t ≥ 2. Thus we deduce from the transformation lemma 2.1 that

(3) K(n) ∼= K(+1) K1

(
− 1

−4m− 4− t

)
.

From this surgery description, we compute the generalized linking matrix to be

Q =

(
1 + t −t(4m+ 4 + t)
t 4m+ 3− t2 − t(4m+ 3)

)
.

We first compute the d3-invariants. For that we observe the signature of Q to be
−2 and solve Qb = (r, r ± 1) (where r denotes again the rotation number of K)
from which we get

d3 = −m− t± r

2
−
(
(t± r)2 + 2(t± r) + 1

4(4m+ 3)

)
.

From [EH01] we conclude that t± r = 2k+1, for k ≤ −m−2, which directly yields
the claimed formula for the d3-invariants in (2).

It remains to compute the Euler classes. For that, we write µ1 for the meridian
of K and µ2 for the meridian of K1 in the surgery description (3). Then Lemma 2.2
implies that the Euler class is given by

PD(e) = rµ1 + (r ± 1)µ2

Now from Lemma 2.4 it follows µ1 = −tµT and µ2 = (1 + t)µT . Putting these
together we have the claimed result. □
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(i) (ii) (iii)

1 + t 1 + t

−4m− 3

1
4m+t+4 + t− 1

1
4m+t+4

µ1
µ1 µ1

µ2
µ2µ2

µT

Figure 12. The diagram (i) shows a topological realization of the
surgery description (3) (where all surgery coefficients are measured
with respect to the Seifert framing) together with the meridians
µ1 and µ2. We obtain (ii) from (i) by the handle slide indicated
with the dotted line. An −(4m+ t−4)-fold Rolfsen twist yields the
standard surgery diagram along T2,−(2m+1) shown in (iii) where
we can read-off the homology classes of µ1 and µ2 in terms of µT .
The box denotes 4m+ t+ 4 left-handed full-twists.

4.5. Rational contact surgery numbers of the lens spaces L(4m + 3, 4).
For the rational contact surgery numbers the same strategy works to classify all
contact structures on L(4m + 3, 4) that have cs = 1. However, here we have to
consider several infinite families of contact surgery diagrams given by Legendrian
realizations of the smooth surgery diagrams given in Theorem 4.1. The main result
is as follows.

Theorem 4.2 An overtwisted contact structure on L(4m+3, 4) has contact surgery
number csQ = 1 if and only if its tuple (e, d3) of Euler class and d3-invariant appears
in the lists of Theorem 1.9 (1) or (2) or in Table 1.

Proof. LetK be a Legendrian knot such that contact rc-surgery, rc ∈ Q, onK yields
an overtwisted contact structure on L(4m + 3, 4). The case that rc is an integer
was already discussed in Theorem 1.9. Thus here we concentrate on the case that
rc ∈ Q \ Z. From Theorem 4.1, we know that K is a Legendrian realization of the
unknot and that the topological surgery coefficient is − 4m+3

4−4km−3k or − 4m+3
m+1−4km−3k

for k ∈ Z.
Now the strategy is the same as in the proof of Theorem 1.9. We will enumerate

all possible contact surgery diagrams and compute their homotopical invariants. For
that we convert the topological surgery coefficient into a contact surgery coefficient.
We denote by t the Thurston–Bennequin invariant of K. Then it follows that

rc =
−(4m+ 3)(1− kt)− 4t

4− k(4m+ 3)
or rc =

−(4m+ 3)(1− kt)− t(m+ 1)

m+ 1− k(4m+ 3)
.

Next, we consider the different possibilities for k ∈ Z, t ≤ −1, possible rotation
numbers of K, and the possible stabilizations in the transformation lemma. In all of
these cases we first use Theorem 3.1 to sort out the tight contact structures (these
all have cs = 1 by Honda’s classification [Hon00]) and for the remaining overtwisted
contact structures we compute e and d3 with the methods from Section 2.
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Table 1. Overtwisted contact structures on L(4m+ 3, 4).

e = ±(2n + 1 ± 1) + (2 − t)(1 + t)(1 − t)−t−m−3

(3) d3 = 1
2

− m(7+x2)+(19+x2)
4(4m+3)

− m2+1+n(n+8+4m)∓4(1+n)
4m+3

for x ∈ {1, 3}, n ≤ −1, t < −2 − m

e = (−1 − m)y + (−m − 1 + 2l)

(4) d3 = 1
2

− (3+m)(m+1−2l)2+(m+1−2l)(2+m)y
4m+3

+
2(1+m−2l)y−(1+m)y2

4(4m+3)
for y ∈ {0,±2,±4}, l ∈ {0, 1, . . . ,m + 1}

e = (−m + 2l)

(5) d3 = 1
2

− (m−2l)2

4m+3
for l ∈ {0, 1, . . .m}

e = ±(1 + 2n) ± 1 + (2 − t)(1 + t)(1 − t)−t−3(±1 + (2 − t)(1 − t)−k−2((−m + 2l) + r4(1 − t + m)))

(6) d3 = 1
2

+ kn(n + 1) − (1 + 2n) − (1+2n)2+(−m+2l)2

4m+3
+

2(−m+2l)r4+r24(m+1)±2(1+2n)(4(−m+2l)+r4)

4(4m+3)
for k ≤ −2, r4 ∈ {0,±2}, l ∈ {0, 1, 2, . . .m}, t ≤ −2, n ≤ −1

e = ±(1 + 2n) ± 1 + (2 − t)(1 + t)(1 − t)−t−3(∓1 + (2 − t)(1 − t)−k−2((−m + 2l) + r4(1 − t + m)))

(7) d3 = 1
2

+ k(n + 1)(n + 2) − 5−4m−6(−m+2l)+n(8−4(−m+2l)−r4)+(1+2n)2+(−m+2l)2

4m+3
−

r24(m+1)+2(−m+2l)r4−2r4
4(4m+3)

for k ≤ −2, r4 ∈ {0,±2}, l ∈ {0, 1, . . .m}, t ≤ −2, n ≤ −1

e = ±1 − r1 − 3−k−25((m − 2l) + (3 + m)r3)

(8) d3 = 1
2

+
kr1(r1∓2)

4
+

2(m−2l)(±1−r1)−(m−2l)2∓2mr1+4m+2
4m+3

+
r21(4m−1)−2r3(r1+m−2l)−r23(1+m)±2(r1+r3)

4(4m+3)
for k ≤ −2, r1 ∈ {0,±2}, r3 ∈ {0,±2}, l ∈ {0, 1, . . . ,m}

e = ±(2 + 2n) + (1 − t)−t−3(2 − t)(1 + t)((−m − 1 + 2l) + (2 − t + m)r3)

(9) d3 = 1
2

− n(n+1)(4m+7)+2n(5+4m)∓(n+1)(4(−m−1+2l)+r3)+(−m−1+2l)2

4m+3
+

2(−m−1+2l)r3+r23(m+1)

4(4m+3)
for r3 ∈ {0,±2}, l ∈ {0, 1, . . .m + 1}, t < −2, n ≤ −1

e = ±(5 + 2m) + (3 + 2m)(m + 2 − 2l) + (m − 1)r2

(10) d3 = 1
2

+
2r2((m+2−2l)∓1)+r22(1+m)

4(4m+3)
+

2+4m±2r1−(m+2−2l)2

4m+3

for r2 ∈ {0,±2}, l ∈ {0, 1, . . . ,m + 2}

e = 0

(11) d3 = 1
2

− −2(2m+1)+(−m+2l)2

4m+3
−

r23(m+1)+2(−m+2l)r3±2(r3+4(−m+2l))

4(4m+3)
for r3 ∈ {0,±2}, l ∈ {0, 1, . . .m}

e = 0

(12) d3 = 1
2

+ 1 − (m+1−2l)2

4m+3
−

r22(1+m)+2r2(m+1−2l)

4(4m+3)
for r2 ∈ {0,±2}, l ∈ {0, 1, . . . ,m + 1}

e = 0

(13) d3 = 1
2

− m2

4m+3
+

(1+m)(9−r2)
4(4m+3)

for r ∈ {1, 3}

e = ±(2n + 1) ± 1 + (1 − t)−t−2(2 − t)(1 + t)(−k − 1 + 2l1 − (t − k)(−m + 1 + 2l2 − (t − m)r4)))

(14) d3 = 1
2

− (1 + n) + k(1 + n)2 − 4(n+1)2±(n+1)(−k+1+2l1+4(−m+1+2l2)+r4)
4m+3

− (1+m)r4
2+2(−m+1+2l2)r4+4(−m+1+2l2)2

4(4m+3)
for r4 ∈ {0,±2}, l1 ∈ {0, 1, . . . , k − 1}, l2 ∈ {0, 1, . . . ,m − 1}, t ≤ −2, n < −1, k > 0.

e = 0

(15) d3 = 1
2

+
3(m+1)+l−(−m+1+2l)2

4m+3
+

(1+m)(1−r2
2)

4(4m+3)
for r2 ∈ {±1,±3} , l ∈ {0, 1, . . .m − 1}

e = 0

(16) d3 = 1
2

+
−5−8m+r2(l+1)+l+(−m+1+2l)2

4m+3
+

(1+m)(r2
2−1)

4(4m+3)
for r2 ∈ {±1,±3}, l ∈ {0, 1, . . .m − 1}

e = 0

(17) d3 = 1
2

+ 1 − (m−1−2l)2

4m+3
−

r21(1+m)+2r1(m−1−2l)

4(4m+3)
for r1 ∈ {0,±2,±4}, l ∈ {0, 1, . . . ,m − 1}

e = (m + 1)((2n + 2) + (1 − t)−t−3(1 + t)(2 − t) + (1 − t)−t−k−5(2 − t)2(1 + t)(r3 + (4 − t)(−m + 1 + 2l)))

(18) d3 = 1
2

+ kn(n + 1) − n(m+1)(n+1)+n(6−r3+m−1−2l)
4m+3

+
(−m+1+2l)2+4m(1+2n)+(m−l)+3−r3(l−m(n+1))

4m+3
− (m+1)(r3

2−1)
4(4m+3)

for r3 ∈ {±1,±3}, n ≤ −1, k ≤ −2, t ≤ −3, l ∈ {0, 1, . . . ,m − 1}

e = (m + 1)(−(2n + 2) − (1 − t)−t−3(1 + t)(2 − t) + (1 − t)−t−k−5(2 − t)2(1 + t)(r3 + (4 − t)(−m + 1 + 2l)))

(19) d3 = 1
2

+ kn(n + 1) − n(m+1)(n+1)+n(6+r3−m+1+2l)
4m+3

+
(−m+1+2l)2+4m(1+2n)+l+4+r3(l+mn)

4m+3
− (m+1)(r3

2−1)
4(4m+3)

for r3 ∈ {±1,±3}, n ≤ −1, t ≤ −3, k ≤ −2, l ∈ {0, 1, . . . ,m − 1}

e = (m + 1)(±(2n + 2) ∓ (1 − t)−t−3(1 + t)(2 − t) + (1 − t)−t−k−5(2 − t)2(1 + t)(r3 + (4 − t)(−m + 1 + 2l)))

(20) d3 = 1
2

+ k(n + 1)(n + 2) − (m+1)(n2+3n−r3(n+1))−2(m−1−2l)+(m−1−2l)2

4m+3
− (−2m−r3(l+1)+l)

4m+3
− (m+1)(r3

2−1)
4(4m+3)

for r3 ∈ {±1,±3}, n ≤ −1, t ≤ −3, k ≤ −2, l ∈ {0, 1, . . . ,m − 1}
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Table 2. Table 1 continued.

e = (m + 1)(1 − r1 − 5(3)−k−2r2 − 3−k−230(m − 1 − 2l))

(21) d3 = 1
2

+
kr1(r1−2)

4
−

2(1+m)r1r2+2r1(m−1−2l)+(r22−1)(1+m)+(3m+2)(r21−2r1)

4(4m+3)
+

(4m+2)−(r2+1)l+(m−1−2l)2+r1
4m+3

for r1 ∈ {0,±2}, r2 ∈ {±1,±3}, l ∈ {0, 1, . . . ,m − 1}, k ≤ −2

e = (m + 1)(−1 − r1 − 5(3)−k−2r2 − 3−k−230(m − 1 − 2l))

(22) d3 = 1
2

+
kr1(r1+2)

4
−

2(1+m)r1r2+2r1(m−1−2l)+(r22−1)(1+m)+(3m+2)(r21+2r1)

4(4m+3)
+

3(m+1)−l−r2(m−l)−(m−1−2l)2+r1
4m+3

for r1 ∈ {0,±2}, r2 ∈ {±1,±3}, l ∈ {0, 1, . . . ,m − 1}, k ≤ −2

e = (m + 1)(±(2n + 2) + (2 − t)(1 + t)(1 − t)−t−3((5 − t)(−m + 1 + 2l) + r2))

(23) d3 = 1
2

− (1 + n + n2) − (m+1)(1+n+n2)
4m+3

+
7n∓(1+n)(r2(m+1)+(−m+1+2l))+r3

2+9mn
4m+3

− 2r2(−m+1+2l)+r2
2(1+m)

4(4m+3)
for t ≤ −3, n ≤ −1, r2 ∈ {0,±2,±4}, l ∈ {0, 1, . . . ,m − 1}

e = (m + 1)(1 − r − 27(−m + 1 + 2l))

(24) d3 = 1
2

+
r(m−l)+((m−1−2l)2−l−r)

4m+3
+

(1+m)(r2−1)
4(4m+3)

)

for r ∈ {±1,±3,±5}, l ∈ {0, 1, . . . ,m − 1}

e = (m + 1)(−1 − r − 27(−m + 1 + 2l))

(25) d3 = 1
2

− r(l+1)+((m−1−2l)2−m+r)
4m+3

+
(1+m)(r2−1)

4(4m+3)
)

for r ∈ {±1,±3,±5}, l ∈ {0, 1, . . . ,m − 1}

e = 0

(26) d3 = 1
2

− (−m+2l)2

3+4m
for l ∈ {0, 1, . . . ,m}

e = (m + 1)(±(2n + 2) + (1 + t)(2 − t)(1 − t)−t−2((−k + 1 + 2l1) − (t + k)((3 + t)(−m + 1 + 2l2) + r2))

(27) d3 = 1
2

+ k(1 + n)2 ∓ (1 + n)(−k + 1 + 2l1) ∓ (n+1)(r2(m+1)+(−m+1+2l2))
4m+3

− (−m+1+2l2)2

4m+3

− 2r2(−m+1+2l2)±(1+m)r2
2

4(4m+3)
− (n+1)(5m+mn+n+4)

4m+3

for t < −1, r2 ∈ {0,±2}, l1 ∈ {0, 1, . . . , k − 1}, l2 ∈ {0, 1, . . . ,m − 1}, k ≥ 1, n < −1

e = (m + 1)(±(2n + 2) − (t − 2)(1 + t)(1 − t)−t−6(−m + 2l))

(28) d3 = 1
2

± (−m+2l)(1+n)
4m+3

− (−m+2l)2−(m+1)(n2+5n+2)+mn+3m+2
4m+3

for t ≤ −6, n ≤ −1, l ∈ {0, 1, . . . ,m}

e = (m + 1)(r − 4(m + 1 − 2l))

(29) d3 = 1
2

+ 1 − r2(1+m)−2r(m+1−2l)
4(4m+3)

− (m+1−2l)2

4m+3

for r ∈ {±4,±2, 0}, l ∈ {0, 1, . . . ,m + 1}

e = (m + 1)r

(30) d3 = 1
2

+
(m+1)(9−r2)

4(4m+3)
− m2

4m+3

for r ∈ {1, 3}

We start with the simplest case, where we choose k = 0 and thus the contact
surgery coefficient simplifies to rc = −m−t− 3

4 . We need to consider three subcases
here. In Table 1, these correspond to Families (3), (4) and (5).
Family (5): For t + m = −1 this corresponds to a contact (1/4)-surgery, which
is overtwisted by Theorem 3.1. To compute d3 we see that the generalized linking
matrix is Q = (−3− 4m) with signature −1. This yields

d3 =
1

2
− r2

3 + 4m
,

with the rotation number r = rot(K) = −m + 2l for l ∈ {0, 1, · · · ,m}. The Euler
class is simply given by r.
Family (3): For t+m ≤ −3 we see that 2 < rc ≤ −t and thus it yields overtwisted
manifolds by Theorem 3.1. Applying the transformation lemma, we get

K

(
−4(t+m) + 3

4

)
=K(+1) K

(
−4(t+m)− 3

4 + 4(t+m) + 3

)
=K(+1) K1

(
− 1

−t−m− 2

)
K1,3(−1).
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The generalized linking matrix for this case is given by

Q =

1 + t −t2 − tm− 2t t
t −t2 −mt− t+m+ 1 t− 1
t −t2 − t− tm+m+ 2 + 1 t− 5

 .

To get the d3 invariants, we compute the signature of Q to be −3 and solve Qb =
(r, r ± 1, r ± 1 + x) where x ∈ {±1,±3}. Note that, we are only considering the
classification up to contactomorphism it suffices for us to consider x ∈ {1, 3} only.
Now a straightforward calculation yields

d3 =
1

2
− m(7 + x2) + (19 + x2)

4(4m+ 3)
− m2 + 1 + n(n+ 8 + 4m)± 4(1 + n)

4m+ 3

where n = t±r−1
2 . For the Euler class, we use Theorem 2.3 to compute

e(ξ) = (r ± (t+ 1))µ+ x(2− t)(1 + t)(1− t)−t−m−3µ.

Writing t± r = 2n+ 1, we get the desired number.
Family (4): Note that when t + m = −2, we have a slightly different surgery
diagram as in Family (3) and thus we have to compute the d3-invariant separately.
Here the resulting contact structures are again overtwisted by Theorem 3.1. In this
case, the generalized linking matrix is

Q =

(
1 + t −t
−t t− 5

)
.

with signature −2. We solve Qb = (r, r + y) where r is the rotation number of the
first component and y ∈ {4, 2, 0}. Solving this gives us

d3 =
1

2
− (3 +m)r2 + (2 +m)yr

4m+ 3
+

2ry − (1 +m)y2

4(4m+ 3)
.

As r ∈ {±(−1 −m),±(−3 −m), · · · , 0}, we can rewrite r = m + 1 − 2l where l ∈
{0, 1, · · · , (m+1)}. To calculate the Euler class, we simply plug in the corresponding
values in the formula from Theorem 2.3.

Finally, for t + m ≥ 0, the contact surgery coefficient rc is negative and thus
yield tight contact structures, which we do not consider here.

For k ̸= 0, the calculation is much more involved. So, we just present a single
example case here.
Family (14): We consider the first contact surgery coefficient with k ≥ 1. Then rc
is positive and from Theorem 3.1 it follows that these contact structures are over-
twisted if and only if t ̸= −1. Thus we assume t < −1. Applying the transformation
lemma 2.1 we get

K

(
−(4m+ 3)(1− kt)− 4t

4− k(4m+ 3)

)
= K(+1) K

(
−((4m+ 3)(1− kt) + 4t)

(1− k − kt)(4m+ 3) + 4(t+ 1)

)
=K(+1) K1

(
−1

−t− 1

)
K1,k−1(−1) K1,k−1,m−1(−1) K1,k−1,m−1,2(−1)

The generalized linking matrix is

Q =


t+ 1 (−t− 1)t t t t
t −t2 (t− 1) (t− 1) (t− 1)
t −t2 + 1 t− k − 1 t− k t− k
t −t2 + 1 t− k t− k −m t− k −m+ 1
t −t2 + 1 t− k t− k −m+ 1 t− k −m− 2
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with signature −3. We solve

Qb = (r, r ± 1, r ± 1 + r2, r ± 1 + r2 + r3, r ± 1 + r2 + r3 + r4)

where ri denote the rotation number of the corresponding components. Rewriting
r2 = −(k− 1)+2l1, r3 = −(m− 1)+2l2, and r4 ∈ {0, 2} with l1 ∈ {0, 1, · · · , k− 1}
and l2 ∈ {0, 1, · · · ,m − 1}. By writing n = t±r−1

2 < −1 and plugging everything
into the formulas from Lemma 2.2 and Theorem 2.3 we get the claimed values for
d3 and e.
Families (6)-(13): These families correspond to the different possibilities of rc =
−(4m+3)(1−kt)−4t

4−k(4m+3) with k < 0 that yield overtwisted contact structures.

Families (15)-(30): These families correspond to the different possibilities of rc =
−(4m+3)(1−kt)−t(m+1)

m+1−k(4m+3) that yield overtwisted contact structures.

In Table 3 we have listed the surgery diagrams of the above families. □

From Theorem 4.2 we can deduce Corollary 1.11 which was stated in the intro-
duction. More precisely, we will prove the following.

Corollary 4.3 For every m ≥ 1 and every N ∈ Z there exists a unique overtwisted
contact structure ξmN on L(4m+ 3, 4) with homotopical invariants(

e(ξmN ),d3(ξ
m
N )
)
=

{(
0, N + 1

2

)
if m ∈ 2Z+ 1(

1, N − 1
4m+3 + 1

2

)
if m ∈ 2Z.

For any odd integer N ≥ max{7,m+ 3} we have cs(L(4m+ 3, 3), ξmN ) > 1.

Proof of Corollary 1.11. First, we prove the existence of the contact structures ξmN .
We distinguish by the parity of m. If m = 2a + 1, we consider the tight contact
structure ξm on L(4m+3, 4) with surgery diagram from Figure 10 with rot(K1) =
rot(K2) = 0. From that diagram we compute that em = e(ξm) = 0 and dm =
d3(ξ

m) = 1
2 .

If m = 2a, we consider the tight contact structure ξm on L(4m + 3, 4) with
surgery diagram from Figure 10 with rot(K1) = 0 and rot(K2) = 1. From that
diagram we compute that em = e(ξm) = 1 and dm = d3(ξ

m) = 1
2 − 1

4m+3 .

Now let ξm be a contact structure on L(4m+ 3, 4) with Euler class em and d3-
invariant dm ∈ Q. For every N ∈ Z we consider the overtwisted contact manifold(

L(4m+ 3, 4), ξmN
)
:=
(
L(4m+ 3, 4), ξ

)
#
(
S3, ξN

)
.

Since the d3-invariant behaves additive under connected sum and the Euler class
does not change, we see that this contact structure has again Euler class em and
d3-invariant dm+N . This proves the existence of the overtwisted contact structures
claimed in the corollary.

Since the first homology of L(4m+3, 4) has no 2-torsion, an overtwisted contact
structure is uniquely determined by e and d3 and thus ξmN is uniquely determined
by its homotopical invariants.

To show that infinitely many of these contact structures have cs > 1 we check
which of the ξmN appear in the lists from Theorem 1.9 and 4.2. For that we will check
which of those have homotopical invariants of the form (e, d3) = (em, dm +N).
(A) Obstructions from the Euler class:
Family (1): In this family the Euler class is k + 2m + 2, for k = −1, 0, 1, . . . ,m.
Thus the Euler class takes values between 2m+ 1 and 3m+ 2 and in particular is
not 0 or 1.
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Table 3. Surgery descriptions for all families from Theorem 4.2.
Here t represents the Thurston–Bennequin invariant ofK and k de-
notes the number of Rolfsen twist. Note that, to get the overtwisted
structures of (14) and (27) either one needs a mixed stabilization on
the first component or if all the stabilizations are of the same sign
the first pushoff must have a opposite single stabilization. Families
(15)–(30) will give the dual representation of L(4m + 3, 4). Note
that, sometimes we have multiple families corresponding to some
surgery picture. The different families correspond to different sin-
gle stabilization of the first or the second component in the surgery
diagram.

(3) K(r) = K(+1) K1(
−1

−t−m−2
) K1,3(−1) t < −2 − m k = 0

(4) K(r) = K(+1) K4(−1) t = −2 − m k = 0

(5) K(r) = K( 1
4
) t = −2 − m k = 0

(6)

(7) K(r) = K(+1) K1(
−1

−t−2
) K1,1(

−1
−k−1

) K1,1,m(−1) K1,1,m,2(−1) t < −2 k ≤ −2

(8) K(r) = K(+1) K2(
−1

−k−1
) K2,m(−1) K2,m,2(−1) t = −2 k ≤ −2

(9) K(r) = K(+1) K1(
−1

−t−2
) K1,m+1(−1) K1,m+1,2(−1) t < −2 k = −1

(10) K(r) = K(+1) Km+2(−1) Km+2,2(−1) t = −1 k < −2

(11) K(r) = K( 1
2
) K1(

−1
−k−2

) K1,m(−1) K1,m,2(−1) t = −1 k < −2

(12) K(r) = K( 1
2
) Km+1(−1) Km+1,2(−1) t = −1 k = −2

(13) K(r) = K( 1
m+2

) K3(−1) t = −1 k = −1

(14) K(r) = K(+1) K1(
−1

−t−1
) K1,k−1(−1) K1,k−1,m−1(−1) K1,k−1,m−1,2(−1) t ≤ −2 k > 0

(15)

(16) K(r) = K( 1
2
) K1(

−1
−k−2

) K1,3(−1) K1,3,m−1(−1) t = −1 k < −2

(17) K(r) = K( 1
2
) K4(−1) K4,m−1(−1) t = −1 k = −2

(18)
(19)

(20) K(r) = K(+1) K1(
−1

−t−2
) K1,1(

−1
−k−1

K1,1,3(−1) K1,1,3,m−1(−1) t < −2 k ≤ −2

(21)

(22) K(r) = K(+1) K2(
−1

−k−1
) K2,3(−1) K2,3,m−1(−1) t = −2 k ≤ −2

(23) K(r) = K(+1) K1(
−1

−t−2
) K1,4(−1) K1,4,m−1(−1) t < −2 k = −1

(24)
(25) K(r) = K(+1) K5(−1) K5,m−1(−1) t = −2 k = −1

(26) K(r) = K( 1
5
) Km(−1) t = −1 k = −1

(27) K(r) = K(+1) K1(
−1

−t−1
) K1,k−1(−1) 1,k−1,2(−1) K1,k−1,2,m−1(−1) t < −1 k > 0

(28) K(r) = K(+1) K1(
−1

−t−5
) K1,m(−1) t < −5 k = 0

(29) K(r) = K(+1) Km+1(−1) t = −5 k = 0

(30) K(r) = K( 1
m+1

) t = −4 k = 0

Family (5): The Euler class is −m+2l, for l = 0, 1, . . . ,m. If m is odd this cannot
be 0 and if m is even this cannot be 1.
Family (4): In this family the Euler class is 2l− (y+1)(m+1) for y ∈ {0,±2,±4}
and l = 0, 1, . . . ,m + 1. We check that the for m = 2a + 1 (m = 2a) the Euler
class is 0 (1) if and only if y = 0 and l = a + 1. Then we plug in these values in
the d3-invariant to see that if m is even we do not get any contact structure of the
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desired form. On the other hand, for every odd m we get a contact structure with
e = 0 and d3 = 1/2.
(B) Universally bounded d3-invariants:
Families (3), (6), (9), (20), (23), (29): In these cases we observe that d3 is
always negative.
Families (7), (8), (10)–(13), (15), (17), (22), (26), (28), (30): In these cases
we can bound d3 from above by 7.
Family (2): Here we observe that if the Euler class is 0 or 1, then the d3-invariant
is negative.
(C) Bounded d3-invariants:
Families (16), (18), (19), (21), (24), (25): In these cases we estimate d3 to be
smaller than m+ 3.
(D) Even d3-invariants:
Families (14), (27): We will show that in these two cases it follows that if m is
odd (even) and d3 ∈ 1/2 + Z (d3 ∈ 1/2 − 1/(4m + 3) + Z) then it follows that
d3 ∈ 1/2+2Z (d3 ∈ 1/2−1/(4m+3)+2Z). In other words, the N in the statement
of the corollary is always an even number.

For that, we consider all possible parities of m, k, and n and check the parities
of the d3-invariants. We present the details for Family (14). (Family (27) works
similarly.)

In Family (14) the formula for the d3 invariant consists of 5-summands. The first
summand is 1/2 which we can ignore. The second two summands are integers and
the last two summands are fractions with odd denominator 4m+ 3.

The second term is −(1 + n) which is odd if and only if n is even. The third
term is k(1 + n)2 and is odd if and only if n is even and k is odd. The numerator
of the last term is a multiple of 1 +m. And the third term has even denominator
if and only if (n + 1)(k + 1) is even which is the case if and only if n or k is odd.
By adding up these parities we see that we get in all cases even values of N . □

Proof of Corollary 1.10. This corollary follows now directly from Corollary 1.11
and Theorem 1.9. □
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