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Deep Boosting Learning: A Brand-new Cooperative
Approach for Image-Text Matching

Haiwen Diao, Ying Zhang, Shang Gao, Xiang Ruan, Huchuan Lu

Abstract—Image-text matching remains a challenging task
due to heterogeneous semantic diversity across modalities and
insufficient distance separability within triplets. Different from
previous approaches focusing on enhancing multi-modal repre-
sentations or exploiting cross-modal correspondence for more
accurate retrieval, in this paper we aim to leverage the knowledge
transfer between peer branches in a boosting manner to seek
a more powerful matching model. Specifically, we propose a
brand-new Deep Boosting Learning (DBL) algorithm, where
an anchor branch is first trained to provide insights into the
data properties, with a target branch gaining more advanced
knowledge to develop optimal features and distance metrics.
Concretely, an anchor branch initially learns the absolute or
relative distance between positive and negative pairs, providing
a foundational understanding of the particular network and
data distribution. Building upon this knowledge, a target branch
is concurrently tasked with more adaptive margin constraints
to further enlarge the relative distance between matched and
unmatched samples. Extensive experiments validate that our DBL
can achieve impressive and consistent improvements based on
various recent state-of-the-art models in the image-text matching
field, and outperform related popular cooperative strategies,
e.g., Conventional Distillation, Mutual Learning, and Contrastive
Learning. Beyond the above, we confirm that DBL can be seam-
lessly integrated into their training scenarios and achieve superior
performance under the same computational costs, demonstrating
the flexibility and broad applicability of our proposed method.

Index Terms—Image-text matching, Deep boosting learning,
Deep cooperative learning, Deep metric learning.

I. INTRODUCTION

With the explosion of multimedia volume in recent years,
image-text matching [1], [2] has been a prevalent research
topic, which efficiently bridges the gap between vision and
language, and potentially benefits other multi-modal tasks such
as video-text retrieval [3]–[5], referring expression [6], [7], and
visual question answering [8], [9], etc. Despite years of efforts,
image-text matching remains challenging because it entails not
only recognizing hierarchical contents across modalities [10],
[11], but also mapping diverse inputs into a comparable space
to exploit semantic associations [12]–[14].

To explore a shared embedding space for cross-modal data,
some works [15], [16] employ a hinge-based ranking loss
function which forces each image/text to be closer to its
positive text/image than all negatives within a mini-batch. Each
triplet would be punished when the relative distance between
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query-positive and query-negative pairs is less than a fixed
margin. Though considering all pairs makes the optimization
more stable, its sum-margin strategy treats all triplets equally
during optimization, which would diminish the impact of
valuable ones. To excavate more informative matching details,
Faghri et al. [17] and Wei et al. [18] propose the max-margin
and polynomial loss respectively to assign appropriate weights
and highlight significant pairs from redundant pairs. However,
the fixed distance margin for all triplets does not necessarily
lead to good separability between the positive and negative
samples. Hence, Zhao et al. [19] employs adaptive thresholds
by computing the feature distances between text-to-text pairs
as a reference, while Biten et al. [20] takes captioning metric
(SPICE or CIDEr) as a measure and generates the semantic
boundary via the language continuum of each caption. Besides,
Zhou et al. [21] proposes the ladder loss with an inequality
chain and adopts hierarchical margins for all triplets. However,
they all consider an implicit and coarse relevance representa-
tion between each query and its candidates, resulting in an
imprecise and inconsistent threshold constraint, and matching
ambiguities between positive and negative pairs.

From the above perspective, we reconsider the key ingre-
dients to fully exploit the potential of a matching network,
i.e., constructing specialized guidance and seeking appropriate
penalties. In this paper, we propose a novel Deep Boosting
Learning (DBL) strategy, where an anchor branch is trained
synchronously or asynchronously to provide explicit adaptive
constraint for each triplet, in order to obtain a more powerful
target branch. Different from previous metrics imposing inex-
plicit handcrafted penalties, the anchor branch learns the dis-
tance distribution and triplet relationship from data in advance,
and would naturally gain an insight into the model properties
and matching patterns, offering its twin target branch an
explicit measurement to further enlarge distance separation
and gain more discriminative feature metric. More specifically,
the penalty of each triplet would be adjusted dynamically
according to the similarity values predicted by the anchor
branch, aiming to increase the association/separability between
matched/unmatched pairs, as well as relax the tedious and
costly configurations for robust constraint exploration. In this
way, the target branch would capture a comprehensive picture
of data and model characteristics, and translate the prior
distance reference into more powerful matching capacities.

We notice that the proposed DBL is closely relevant to
previous cooperative learning strategies including Conven-
tional Distillation, Mutual Learning, and Contrastive Learn-
ing - they attempt to transfer prior knowledge and achieve
better performance across multiple branches compared with
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independent learning. Specifically, they typically adopt a static
pre-trained network [22]–[24], peer-teaching cohorts [25], or
a slowly progressing encoder [26]–[28] as the anchor branch.
To learn better probability prediction or feature representation,
the target branch is encouraged to mimic the outputs of
the anchor branch, including hard/soft pseudo-labels [25],
[29], [30], absolute/relative relations [31]–[33], and feature
similarities [27], [34], [35]. However, these approaches are
originally designed for uni-modal tasks, and none of them take
into account the heterogeneous semantic gap in cross-modal
data. Besides, our DBL goes deeper into the margin knowledge
in a peer-boosting manner beyond their peer-imitating ways
to gain greater benefits under the same training and inference
schemes, confirming the necessity of investigating effective
cooperative strategies for cross-modal retrieval.

Our contributions are summarized as follows:
• We propose a novel Deep Boosting Learning (DBL) for

peer-training strategy, which introduces an adaptive and
explicit margin constraint for each triplet, and effectively
generates the initiative distance separability between pos-
itive and negative pairs for image-text matching.

• Our DBL strategy can be widely applied to multiple train-
ing scenarios of related cooperative approaches, either
as a post-processing step or in an online manner via
collaborative or momentum synchronous updates.

• We validate the proposed DBL strategy with recent
state-of-the-art works. Extensive experimental results on
Flickr30K and MSCOCO datasets demonstrate the supe-
riority and flexibility of our boosting strategy.

II. RELATED WORK

A. Image-Text Matching.

Image-text matching task targets retrieving images from
the database with natural language queries, and vice versa.
Research on this topic can be roughly divided into two
aspects: 1) mono-modal representation. To achieve this,
some works [36]–[39] introduced graph reasoning networks
to enhance the region and word features, while Wang et al.
[40] utilized a constructed concept correlation to generate the
consensus-aware embeddings. Besides, Li et al. [41], Chen et
al. [42] and Zhu et al. [43] designed global memory bank,
generalized pooling operator, and external space attention
strategy respectively which effectively enhance the feature
representation and facilitate mono-modal aggregation. Another
set of methods [44]–[47] focuses on 2) cross-modal interac-
tion. For example, some approaches [48], [49] employed an
iterative scheme with attention memory or regulator modules
to recurrently refine region-word alignments, while several
methods [39], [50]–[52] developed cross-modal correspon-
dences to perform hierarchical matching with complex graph
reasoning and high computational cost. Moreover, Zhang et al.
[53] used the optimal boundary to explicitly and adaptively
model the mismatched fragments and yield more accurate
predictions. To evaluate the effectiveness and generalization
of our proposed strategy, we apply our DBL to a series of
representative works including conventional and pre-trained
matching networks on the above two directions, and achieve

solid and consistent improvements on two benchmarks. Note
that we also construct a concise but powerful baseline, which,
though not our contribution, only serves as an insight into the
mechanisms and comparisons of our DBL strategy.

B. Deep Metric Learning.
Deep metric learning aims to map samples into a unified

projection space, such that the similarities between positive
pairs are higher than the ones between negative pairs. In
the past few years, various loss functions for uni-modal
retrieval tasks [54], [55] have been introduced, including
triplet [54], quadruplet [55], lifted structure [56], N-pair [57],
histogram [58], and Proxy-NCA [59], some of which have
been extended for cross-modal matching. Wang et al. [15]
proposed a two-way ranking loss by adapting the triplet loss
for bi-directional retrievals, which has gained great popularity
in multi-modal learning [60], [61]. Faghri et al. [17] intro-
duced hard negative mining into the loss function, while Zhang
et al. [62] developed the cross-modal projection loss, which
minimizes the matching distribution between all pairs in a
mini-batch. As mentioned before, the most related works are
[20], [21], which regarded the relationship between text-to-text
pairs as a reference and employed adaptive margin restrictions
based on implicit semantic relevance degrees. Different from
them, the DBL strategy automatically seeks an appropriate
threshold according to the explicit distance within a triplet,
and forces an adequate distance separation between matched
and unmatched image-text pairs.

C. Deep Cooperative Learning.
Deep cooperative learning is a typical peer-training strategy

trading training efficiency for performance benefits, which
brings extra training costs but no computational cost for infer-
ence. Specifically, conventional distillation trains a smaller stu-
dent network to mimic the knowledge flow of a powerful yet
static teacher, consisting of normalized probabilities [29], [30],
network parameters [22], [23], [63], and feature relations [31],
[32], while in mutual learning [25], the student cohorts imitate
the predictions from each other, and their training processes
are collaborative. Moreover, contrastive learning [26]–[28],
[34] presents a promising way of unsupervised representation
learning, and the key idea is constructing similar or dissimilar
data examples and maximizing agreement between two en-
coder networks. In contrast, our DBL strategy starts with an
anchor branch, first snooping on the prior relationships within
triplets, and punishes a target branch via adaptive and adequate
margin values. By this means, the latter can obtain a greater
discriminative ability and achieve a better matching capability
for single-branch learning. Besides, we experimentally validate
that it can perform particularly well under multiple training
scenarios of the above-mentioned approaches, reflecting the
flexibility and wide suitability of our DBL strategy.

III. METHODOLOGY

We first introduce a powerful single-branch network in
detail, including feature extraction, cross-modal interaction,
similarity prediction, and matching loss. We then elaborate on
the detailed mathematics and training strategies of our DBL.
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Fig. 1. Illustration of our single branch baseline. We adopt hard ranking loss
[14] as a task-specific loss to supervise the training process.

A. Single Branch Baseline
We build a simple and effective image-text matching base-

line, which simply combines cross-attention module [44] and
vectorized similarity representation [51], and is only used to
analyze the mechanism and comparison of our DBL.

Feature Extraction. For each image, we first apply button-
up attention [64] pretrained on Visual Genomes [65] to extract
the top K region proposals with 2048-d features. Then, a fully-
connected (FC) layer is utilized to map these features into
1024-d vectors V = {v1, ...,vK} ∈ RK×1024. For a sentence
with L words, we first encode them into 300-d word embed-
dings with random initialization, followed by a Bi-GRU [66]
to integrate the bidirectional contextual information. Finally,
we average the forward and backward hidden states at each
time to get the word features T = {t1, ..., tL} ∈ RL×1024,
and tl denotes the l-th word vector.

Cross-modal Interaction. We employ widely-used cross-
modal attention [44] to capture region-word correspondence.
Here, we take text-to-image attention as the backbone. To
be specific, we first compute the cosine similarity matrix
M ∈ RL×K for all region-word pairs, followed by a zero
threshold and word-wise L2 normalization (norm). Then, we
adopt the region-wise softmax function and integrate all the
regions attended by each word as:

M = normT (
[
TV ⊤

]
+
),

V ′ = softmaxV (λM)V ,
(1)

where λ = 9 following [44], and [x]+ = max(x, 0). Note that
V ′ = {v′

1, ...,v
′
L} ∈ RL×1024, and v′

l denotes the attended
region features with respect to l-th word feature.

Similarity Prediction. As with [51], we first vectorize all
the word-based alignments A ∈ R

L×256 between T and
V ′, followed by the average operation to obtain one holistic
alignment vector. Finally, we feed it into another FC layer and
Tanh activation to output a scalar score:

A = norm(W 1(|T − V ′|2) + b1) ,

S = tanh(W 2(Ā) + b2) ,
(2)

where | · |2 denotes the element-wise square. W {·} and b{·}
are learnable parameters, and Ā ∈ R1×256 represents word-
wise average of A ∈ RL×256, which indicates the similarity
features attended by sentence words.

Matching Loss. Given a batch D = {(in, cn)}Nn=1 with N
image-text pairs, the similarity outputs are denoted as S{·,·}.
Note that Si,c and Sì,c/Si,c̀ represent the matching scores of
positive and negative pairs. Then, a hinge-based triplet ranking
loss [16], [17] is widely used to guide optimization as:

Lraw =
∑N

n=1
ℓ(in, cn). (3)

1) Sum-margin strategy. It takes into account all possible
combinations, ideally forcing all positive and negative samples
to be separated by a margin value γ:

ℓsum =
∑

c̀
[γ+Si,c̀−Si,c]+ +

∑
ì
[γ+Sì,c−Si,c]+, (4)

where c̀ and ì are the negatives of i and c, and γ = 0.2.
2) Max-margin strategy. In contrast, the hard form only
focuses on the nearest negatives (î, ĉ) in a mini-batch D:

ℓmax = [γ + Si,ĉ − Si,c]+ + [γ + Sî,c − Si,c]+, (5)

where ĉ = argmaxd̸=cSi,d, î = argmaxj ̸=iSj,c.
Discussion. Although the latter can explore more infor-

mative details and effectively distinguish the confusing sam-
ples than the former, they both employ a handcrafted fixed
threshold to restrict the relative distances between positive
and negative pairs, resulting in an inadequate regularization
that is easy for simple samples and hard for confusing ones.
We empirically find that the network capability remains under-
explored with such independent single-branch training. Hence,
we propose the DBL strategy which carefully leverages peer
knowledge to achieve greater matching capabilities.

B. Deep Boosting Learning

The core idea is that, given the absolute or relative distance
within triplets of the anchor branch, absolute or relative
boosting strategies impose more compelling restraints on the
corresponding distance for the target branch respectively, so
that the target branch can obtain more suitable margin penalties
and learn superior matching patterns not available in the
anchor branch. To distinguish two branches, we denote the
similarity scores of the target and anchor branch as St{·,·} and
Sa{·,·}. The cumulative loss of boosting learning over training
data D is defined as:

Lboo =
∑N

n=1
ℓ′(in, cn). (6)

Relative Boosting Strategy. To fully make out the charac-
teristics and relationships of each image-text pair, we first cal-
culate relative distances between positive and negative pairs in
the anchor branch, which serves as a prior and valuable insight
into sample relationships of the original single branch. With
the learned distance from the anchor branch, we introduce an
adaptive margin for each triplet and impose more plausible
restrictions when training the target branch, which we define
as Relative Sum (RS) by:

ℓ′RS =
∑

c̀
[γ + (Sai,c − Sai,c̀)− (Sti,c − Sti,c̀)]+

+
∑

ì
[γ + (Sai,c − Saì,c)− (Sti,c − Stì,c)]+.

(7)
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Fig. 2. Illustration of deep boosting learning. We first perform the anchor branch to obtain the absolute distance (Sa
q,p,Sa

q,ni
|i=1,2) between query and

each candidate, and relative distance (Sa
q,p − Sa

q,ni
|i=1,2) within each triplet. Based on this prior knowledge, we assign the target branch with appropriate

thresholds to further enlarge the variations between matched and unmatched image-text pairs.

With well-founded priori from the anchor branch, the goal
of ℓ′RS is to implement adaptive penalties on the triplets,
sufficiently pulling apart the relative distances while ensuring
the stability of network convergence. However, a crucial caveat
of the boosting strategy is the mining of hard negatives,
as otherwise the training process will suffer from moderate
negatives and will quickly stagnate. This is inspired by the
analysis of minimizing a modified non-trivial loss function
with uniform sampling in classification tasks [67], [68], iden-
tification tasks [54], [55], and multi-modal tasks [18], [69]. To
emphasize hardest negatives (č, ǐ) for each positive pair (i, c),
we formulate Relative Max (RM) as:

ℓ′RM =[γ + (Sai,c − Sai,č)− (Sti,c − Sti,č)]+
+[γ + (Sai,c − Saǐ,c)− (Sti,c − Stǐ,c)]+,

(8)

where ǐ = argmaxì(S
t
ì,c
− Sa

ì,c
) and č = argmaxc̀(Sti,c̀ −

Sai,c̀). It is worth noting that (ǐ, č) represent the unmatched
samples where the relative distances in the target branch are
the toughest to push away based on the ones in the anchor
branch, rather than the most confusing negatives (î, ĉ) in the
target branch itself. At this point, the training difficulty of
the target branch is relatively higher aiming to further capture
discriminative matching details and improve the quality of the
learned metrics. Even with its effectiveness, we argue that
the relative boosting strategy does not specify how close the
positive pairs are and how far the negative pairs are, inevitably
rendering an insufficient exploration of positive-pair intimacy
and negative-pair alienation.

Absolute Boosting Strategy. Based on the above observa-
tion, we explicitly normalize the absolute distances by compar-
ing positive or negative pairs respectively between target and
anchor branches. Hence, in contrast to the relative strategy, we
directly adjust two new adaptive and explicit margins for the
matched and unmatched pairs to pull the former closer, and
meanwhile push the latter farther from each other in the target
branch. Translating this statement into equation, we define
Absolute Sum (AS) as:

ℓ′AS =
∑

c̀
([γ1+Sai,c−Sti,c]+ + [γ2+Sti,c̀−Sai,c̀]+)

+
∑

ì
([γ1+Sai,c−Sti,c]+ + [γ2+Stì,c−S

a
ì,c

]+),
(9)

where γ1 = αγ, γ2 = γ − αγ (consistent with Eq. (4)(5)(7)).
As described above, we also exploit hard negative mining
to discover the hidden details between image regions and
text words, and produce larger gaps between positives and
negatives. The Absolute Max (AM) can be formulated as:

ℓ′AM =[γ1 + Sai,c − Sti,c]+ + [γ2 + Sti,č − Sai,č]+
+[γ1 + Sai,c − Sti,c]+ + [γ2 + Stǐ,c − S

a
ǐ,c

]+,
(10)

where the hardest negatives (ǐ, č) are mathematically equiva-
lent to the ones of Eq. (8) in the same mini-batch. Different
from the relative loss function that only requires the distance
difference between anchor and target branches to be less
than a unified margin, the absolute loss function attempts
to simultaneously impose explicit and tighter penalties on
absolute distances of positive and negative pairs. By this
means, the latter can further enhance the discriminative power
of the target branch, and develop the optimal feature and
distance metric jointly for image-text matching.

Discussion. We utilize the relative strategy to only supervise
the relative distance within triplets, while the absolute strategy
further constrains the absolute distance among each pair.
1) Relative vs. Absolute. To take ℓ′RM and ℓ′AM as an
example, we derive their connections by the formulas:

[γ+(Sai,c − Sai,č)− (Sti,c − Sti,č)]+
= [(γ1 + Sai,c − Sti,c) + (γ2 + Sti,č − Sai,č)]+
≤ [γ1 + Sai,c − Sti,c]+ + [γ2 + Sti,č − Sai,č]+,

(11)

[γ+(Sai,c − Saǐ,c)− (Sti,c − Stǐ,c)]+
= (γ1 + Sai,c − Sti,c) + (γ2 + Stǐ,c − S

a
ǐ,c

)]+

≤ [γ1 + Sai,c − Sti,c]+ + [γ2 + Stǐ,c − S
a
ǐ,c

]+.

(12)

Combining Eq. (11) and (12), we can obtain the inequality
relations between two boosting strategies as follows:

ℓ′RM ≤ ℓ′AM , (13)

where the equality holds if and only if three items (γ1+Sai,c−
Sti,c), (γ2 + Sti,č − Sai,č), (γ2 + St

ǐ,c
− Sa

ǐ,c
) share the same

signs. Similarly, ℓ′RS ≤ ℓ′AS , confirming that the absolute form
can impose tighter constraints, and produce more compact
distances than the relative one (See Sec. IV-C).
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Fig. 3. Illustration of multiple training scenarios. OAS adopts two-stage training scheme as with Conventional Distillation, while OSS and MSS employ
one-stage parallel training scenario as with Mutual Learning and Contrastive Learning, respectively. Notably, we only verify the target branch on the validation
set, and utilize the model with the best RSUM to perform prediction on the test set.

2) Fixed γ vs. Soft γSA. The standard configurations in
Eq. (7)(8)(9)(10) recommend RM and AM with fixed γ,
meaning that the distance metric learned by the target branch
has a consistent γ penalty based on the ones learned by the
anchor branch. On the other hand, there is a value range of
all available measures used for boosting strategies, e.g. the
absolute distance of postive/negative pairs Sai,c/Sai,č/Saǐ,c ∈
[−dy, dy]dy=1 in Eq. (10), and the relative distance within each
triplet (Sai,c −Sai,č)/(Sai,c −Saǐ,c) ∈ [−dx, dx]dx=2 in Eq. (8).
In other words, each type of the above distances theoretically
has a boosting extreme namely Theoretical Maximum (TM),
some of which are less than the predefined γ. Combining these
two findings, we propose a soft γSA formulation namely Soft
Adaptation (SA) which varies exponentially corresponding to
predicted distance from the anchor branch.

For γ in RM, we initialize γSA(x) that corresponds to the
output score from the anchor branch as follows:

γSA(x) =
2γ

1 + eϵ(x−dx)
− γ, (14)

where ϵ is a smooth value that controls the sharpness of the
curve γSA(x). x indicates the inferred relative distance within
each triplet from anchor branch. To maximize margin penalty
without exceeding the extreme, we obtain an equation as:

∂γSA(x)

∂x

∣∣∣∣
x=dx

=
∂γTM (x)

∂x

∣∣∣∣
x=dx

. (15)

Given the above equation, we then compute the ϵ value. The
derivation is as follows:

∂γSA(x)

∂x

∣∣∣∣
x=dx

=
−2γϵeϵ(x−dx)

(1 + eϵ(x−dx))2

∣∣∣∣
x=dx

=
−γϵ
2

,

∂γTM (x)

∂x

∣∣∣∣
x=dx

=
∂(dx − x)

∂x

∣∣∣∣
x=dx

= −1.
(16)

Hence, ϵ = 2
γ . The γSA(x) for RM can be formulated as:

γSA(x) =
2γ

1 + e
2
γ (x−dx)

− γ =
γ − γe

2
γ (x−dx)

1 + e
2
γ (x−dx)

, (17)

and we redefine the Relative Max (RM) as:

ℓ′RM = [γSA(Sai,c−Sai,č)+(Sai,c−Sai,č)−(Sti,c−Sti,č)]+
+ [γSA(Sai,c−Saǐ,c)+(Sai,c−Saǐ,c)−(S

t
i,c−Stǐ,c)]+.

(18)

Similarly for γ1, γ2 in AM, we obtain γSA
1 (y), γSA

2 (y) as:

γSA
1 (y) =

2γ1

1 + e
2
γ1

(y−dy)
− γ1 =

γ1 − γ1e
2
γ1

(y−dy)

1 + e
2
γ1

(y−dy)
,

γSA
2 (y) =

2γ2

1 + e
−2
γ2

(y+dy)
− γ2 =

γ2 − γ2e
−2
γ2

(y+dy)

1 + e
−2
γ2

(y+dy)
,

(19)

and we reformulate the Absolute Max (AM) as:

ℓ′AM = [γSA
1 (Sai,c)+Sai,c−Sti,c]++[γSA

2 (Sai,č)+Sti,č−Sai,č]+
+ [γSA

1 (Sai,c)+Sai,c−Sti,c]++[γSA
2 (Sa

ǐ,c
)+St

ǐ,c
−Sa

ǐ,c
]+.

(20)

Experiments in Sec. IV-C show that the soft one displays
stronger abilities of image retrieval but slightly attractive pro-
motions on sentence retrieval, while the fixed one obtains the
optimal balance between bidirectional retrievals. In summary,
we recommend the fixed one as the vanilla boosting strategy.

C. Multiple Training Scenarios

The collaboration of target and anchor branches is flexible.
Following Conventional Distillation [29], [31], [32], [70],
Mutual Learning [25], and Contrastive Learning [26]–[28],
we adopt three popular and corresponding scenarios namely
Offline Asynchronous, Online Synchronous and Momentum
Synchronous Scenarios to validate the effectiveness and gen-
eralization of our boosting strategy.

Conventional Distillation. Traditional knowledge distilla-
tion [29]–[32] is a mechanism where the target (student)
branch learns to match the results of the static anchor (teacher)
branch, parameterized by θt and θa respectively:

minθt Lkd(Fθt(x), Fθa(x)) , (21)

where Lkd consists of logit/distance/angle-wise distillation
loss functions which help the target branch transfer the
powerful knowledge from the pre-trained anchor branch. To



IEEE TRANSACTIONS ON IMAGE PROCESSING 6

evaluate it, we first obtain a strong anchor branch by task-
specific loss function Lraw. As a post-processing step, the
training procedure of the target branch is then supervised by
Lraw + Lboo which penalizes the proximities between two
branches and agitates the latter to gain the better matching
ability, denoted as Offline Asynchronous Scenario (OAS).

Mutual Learning. Unlike general knowledge distillation,
the branch cohorts are updated jointly and collaboratively in
deep mutual learning which does not rely on prior knowledge.
For example, DML [25] attempts to optimize the cohorts
by bringing their probability estimates closer and minimizing
their discrepancies during the learning progress. However, our
proposed approach aims to implicitly push aside the peers’
distributions and exploit more powerful paradigms beyond
mimicry. Hence, simultaneously using boosting strategy for
each branch may lead to unclear training objectives and
unstable optimizing paths, and ultimately converge to locally
mediocre solutions for peer training. Therefore, we randomly
initialize two branches where only the target branch is updated
under the guidance of the boosting strategy by the anchor
branch, denoted as Online Synchronous Scenario (OSS).

Contrastive Learning. To avoid model collapse, several
works focus on contrastive loss [71], inconsistent struc-
ture [27], [35], clustering constraint [72], [73], and momentum
encoder [26], [28]. Likewise, they do not require a pre-
trained network given a priori. Inspired by the momentum
encoder [26], we update the anchor parameters θa with an
exponential moving average (EMA) of the target parameters
θt. Formally, we update θa by:

θa ← βθa + (1− β)θt, (22)

where β follows a cosine schedule [27], [28] from 0.99995 to
1 during training process. Only the target branch is updated
by back-propagation of Lraw +Lboo, and the dynamic anchor
branch progressively provides a consistent reference of higher
quality and hence, we have no need of maintaining the queue
dictionary of data samples or introducing data augmentation
to form positive pairs. Note that this cooperative strategy
serves as a standard operation similar to Polyak-Ruppert
averaging with exponential decay [74], [75], which is denoted
as Momentum Synchronous Scenario (MSS).

Discussion. Deep cooperative learning is a popular tech-
nique trading extra training consumption for performance
gains, and only utilizing the target branch for prediction under
the above training scenarios. OAS adopts a two-stage training
scheme as with DR [30] and RKD [32], while OSS and
MSS train two branches simultaneously at one stage as with
DML [25] and DINO [28] respectively. Compared with OSS,
OAS and MSS require no gradients for the anchor branch
during the cooperative process. We directly employ Lraw

and Lboo with a 1:1 contribution to train the target branch,
which has achieved steady and consistent improvements in all
experiments without complex manual tuning. For a fair com-
parison, we ensure the same training and inference expenses,
and validate that MSS can obtain great benefits with both slight
training time and memory costs in TABLE II.

IV. EXPERIMENTS

We first introduce the detailed training settings. Then, we
report the cooperation and comparison with recent works
and some popular strategies. After that, we investigate the
configurations and analyses of our proposed DBL. Finally, we
visualize some illustrations of bidirectional retrieval examples.

A. Datasets and Settings

Benchmark Datasets. We evaluate our proposed ap-
proaches on two benchmark datasets: Flickr30K [76] and
MSCOCO [77]. Each image of these two datasets is annotated
with five corresponding captions. For Flickr30K, we adopt the
standard split [1] and divide the dataset into 29,000 training
images, 1,000 validation images, and 1,000 testing images.
For MSCOCO, we follow [17], [44] to utilize 113,287 images
for training, 5,000 images for validation and 5,000 images for
testing. The 1k evaluation result is computed by averaging
over 5 folds of 1K test images on MSCOCO.

Evaluation Metrics. We adopt Recall@κ (R@κ) and sum
(RSUM) of R@1, R@5, and R@10 in two directions for
evaluation, where R@κ indicates the percentage of queries
whose correct response is included in the top-κ candidates.
Since R@κ evaluation only cares about the first groundtruth
retrieved in the top-κ results, we introduce the mean distance
(MD) between positive and negative candidates for a better
illustration of the similarity separability.

Implementation Details. Inspired by similarity represen-
tations [50]–[52], our baseline is an improved version of
SCAN [44] with the vectorized similarity [51] instead of
cosine distance. Following them, we extract K=36 salient
regions by bottom-up attention [64] for each image, and map
300-d word embeddings with random initialization into 1024-
d features by Bi-GRU. We set the dimension of alignment
vectors to be 256 with the inversed temperature λ as 9. The
margin value γ and the proportion α are set as 0.2 and 0.5
respectively. We train our method with 20 and 40 epochs on
MSCOCO and Flickr30k dataset respectively during all the
training scenarios, and set the initial learning rate as 0.0002
for 10 and 30 epochs, and decay it by 0.1 for the rest epochs.

B. Quantitative Results

Cooperation with Multiple Models. TABLE I lists the
applications on two types of image-text matching architec-
tures, including Embedding-based (VSRN [36], ESA [43],
CLIP [78]) and Interaction-based (BFAN [45], SGRAF [51],
NAAF [53], OSCAR [79]) methods. Considering the diverse
settings of these methods, it is essential to mention that we
uniformly adopt the setups of BiGRU and a single model based
on VSRN, ESA, BFAN, and NAAF. In particular, we utilize
BFAN with equal attention and similarity representation, CLIP
with ViT-L/14@336px encoder, and OSCAR with base BERT
as references. Limitted by current resources, we apply DBL
under OSS for relatively smaller VSRN, ESA, BFAN, SGRAF,
and NAAF, and under OAS for larger pre-trained CLIP and
OSCAR. We keep their original loss functions, training set-
tings, and model configurations. It is worth noting that we
only utilize the target branch for performance validation.
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TABLE I
COOPERATION WITH MULTIPLE REPRESENTATIVE MODELS INCLUDING EMBEDDING-BASED AND INTERACTION-BASED LEARNING ON FLICKR30K AND
MSCOCO. WE RE-IMPLEMENT THESE METHODS WITH THEIR PUBLICLY AVAILABLE CODE. THE BEST RESULTS OF THE RSUM ARE MARKED IN BOLD.

Method
Flickr30K MSCOCO 1K MSCOCO 5K

Sentence Retrieval Image Retrieval Sentence Retrieval Image Retrieval Sentence Retrieval Image Retrieval
R@1 R@5 R@1 R@5 RSUM R@1 R@5 R@1 R@5 RSUM R@1 R@5 R@1 R@5 RSUM

E
m

be
dd

in
g

L
ea

rn
in

g VSRN [36] 70.2 89.4 53.2 78.0 471.2 74.2 94.1 60.6 88.3 509.2 50.3 79.4 37.6 68.5 403.3
+RM (OSS) 72.1 90.3 54.8 78.6 476.3 75.3 94.6 61.5 89.0 512.8 51.6 79.9 38.8 69.5 407.4
+AM (OSS) 72.8 90.4 55.0 78.9 477.1 75.2 94.8 61.8 89.2 513.2 51.7 80.0 39.4 69.7 408.6
ESA [43] 82.3 95.8 61.2 86.0 514.5 79.2 96.4 63.5 90.8 524.9 58.0 84.8 41.2 71.3 429.3
+RM (OSS) 83.4 96.1 61.9 86.4 517.3 80.0 96.5 63.7 91.1 526.3 58.6 85.0 41.5 72.0 431.2
+AM (OSS) 83.2 96.2 62.2 86.5 517.5 80.1 96.5 63.8 91.2 526.7 58.8 85.2 41.6 72.0 431.8
CLIP [78] 92.0 99.4 77.8 95.0 561.1 83.2 96.4 68.3 91.3 534.8 67.5 88.3 49.4 75.1 457.8
+RM (OAS) 93.0 99.5 79.1 95.3 563.8 83.9 96.8 68.7 91.6 536.5 68.2 88.6 49.8 75.3 459.7
+AM (OAS) 92.8 99.5 78.9 95.2 563.3 84.1 97.0 68.8 91.6 536.7 68.3 88.8 50.1 75.4 460.1

In
te

ra
ct

io
n

L
ea

rn
in

g

BFAN [45] 70.3 91.6 53.2 78.5 474.2 75.5 94.3 60.8 88.0 510.6 54.6 82.1 38.8 68.7 413.8
+RM (OSS) 72.8 93.3 55.5 79.3 483.5 77.9 95.8 62.4 89.2 518.7 56.4 83.6 40.7 69.8 421.9
+AM (OSS) 73.9 92.6 55.3 78.6 481.0 77.7 95.7 62.4 89.1 518.0 55.7 83.6 40.4 70.0 420.9
SGRAF [51] 78.1 94.4 58.2 83.1 500.2 79.3 96.2 63.5 90.3 523.8 58.1 85.0 41.8 71.3 429.6
+RM (OSS) 80.1 94.7 59.6 83.5 504.9 79.8 96.7 64.0 90.5 525.5 59.2 84.9 42.3 71.6 432.2
+AM (OSS) 79.8 95.4 60.7 84.0 507.2 80.5 96.6 64.3 90.6 526.5 59.8 85.2 42.5 71.5 433.1
NAAF [53] 78.3 96.1 59.6 84.4 506.6 77.8 95.8 62.5 89.6 519.5 56.3 84.1 40.9 70.1 422.9
+RM (OSS) 78.6 96.2 60.1 84.4 507.8 78.4 96.1 63.1 89.6 521.0 56.8 84.2 41.3 70.2 424.3
+AM (OSS) 79.1 96.4 60.3 84.6 509.1 78.8 95.9 62.9 89.5 521.4 57.2 84.0 41.1 69.8 424.0
OSCAR [79] – – – – – 88.4 99.1 75.7 95.2 556.5 70.0 91.1 54.0 80.8 479.9
+RM (OAS) – – – – – 88.8 98.9 75.8 95.4 557.1 71.0 91.0 54.5 80.9 481.2
+AM (OAS) – – – – – 88.8 99.0 76.1 95.5 557.4 70.9 91.1 54.8 81.0 481.4

Visual Semantic Reasoning (VSRN) [36] performs graph rea-
soning to generate visual features with semantic relationships.

External Space Attention Aggregation (ESA) [43] enables
element-wise attention for discriminative information and
adaptive feature aggregation at the dimensional level.

Transferable Visual Models From Natural Language Super-
vision (CLIP) [78] learns dual powerful image and text en-
coders on massive image-text pairs collected from the internet.

Bidirectional Focal Attention (BFAN) [45] enhances the
region-word correspondence via a focal attention unit, and
integrates all region-based and word-based similarities.

Similarity Graph Reasoning and Attention Filtration
(SGRAF) [51] designs word-based similarity function, fol-
lowed by graph reasoning and attention filtration modules.

Negative-aware Attention Framework (NAAF) [53] learns
the optimal boundary to explicitly model matched and mis-
matched fragments, which yield the final score together.

Object-Semantics Aligned Pre-training (OSCAR) [79] uti-
lizes object tags detected in images as a bridge to considerably
alleviate cross-modality gap and alignment burden.
As can be clearly seen, they all benefit from the DBL strategy
at all evaluation metrics for both relative and absolute man-
ners. For R@1 at sentence/image retrieval on Flickr30K, it
gains a maximal boost of 2.6/1.8% (VSRN), 1.1/1.0% (ESA),
3.6/2.3% (BFAN), 2.0/2.5% (SGRAF), and 0.8/0.7% (NAAF)
respectively. The impressive and consistent improvements are
also shown on MSCOCO 1K and 5K test sets, which well
display strong capability and broad applicability regardless
of network frameworks. Besides for pre-trained CLIP, our
DBL improves R@1 by at most 1.0/1.3% and 0.8/0.7% on
Flickr30K and MSCOCO5K, while based on OSCAR, our
DBL still obtains a maximum R@1 boost of 1.0/0.8% on
challenging MSCOCO5K. Notably, we have also attempted to
apply DBL to GPO [42] and found that its warm-up process
causes drastic changes in the loss magnitudes (1300-400, 48-

TABLE II
COMPARISON WITH COOPERATIVE LEARNING ON FLICKR30K. *

INDICATES THE INVERSE KL DIVERGENCE OF DISTILLATION LOSS.

Method Sentence Retrieval Image Retrieval Scenarios
R@1 R@5 R@1 R@5 MD Memory Time

Baseline 75.8 93.4 56.5 81.4 0.91 100% 100%
DR [30] 76.8 93.7 57.4 81.8 1.25 OAS
RKD [32] 77.6 93.8 56.8 81.9 0.74 +12% +120%RM (OAS) 79.1 94.6 58.5 83.3 1.37
AM (OAS) 79.7 94.6 58.7 83.2 1.58
DML [25] 77.7 93.6 57.4 82.8 0.94 OSS
RM (OSS) 79.3 95.4 59.1 83.0 1.21 +100% +73%AM (OSS) 79.0 94.9 58.5 83.1 1.56
DINO [28] 76.5 93.4 58.5 83.2 0.89 MSS
DINO* [28] 77.9 93.9 58.8 83.5 1.15 +11% +18%RM (MSS) 78.4 94.4 59.1 83.6 1.45
AM (MSS) 79.4 94.7 59.7 83.5 1.81

14), making it difficult to balance the weights between GPO
and DBL. Without a warm-up strategy, GPO with RM and AM
can improve the bidirectional R@1, RSUM from 75.3/56.0%,
493.2% to 76.8/57.3%, 499.6% and 77.2/56.7%, 500.3% on
Flickr30K, verifying consistent boosts and robustness of our
DBL strategy. In conclusion, it is inadequate for these works
supervised by [17] to distinguish the relations within triplets,
and our DBL can assign adaptive and targeted margins and
produce optimal matching patterns between image and text.

Comparison with Deep Cooperative Learning. For fair-
ness, we compare DBL with some typical strategies under
their original training settings, including DR (softrank), RKD
(distance), DML, and DINO (ema). We extend them with
some refinements to be more suitable for cross-modal tasks.
For the first two works, we directly utilize the predicted
similarity scores for knowledge distillation, while for the
last two methods, there are no category labels to supply the
imitation process of probability outputs. Hence, we introduce
the cross-modal projection [62] that treats each image-text pair
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TABLE III
COMPARISON WITH METRIC LEARNING ON FLICKR30K. HERE WE

REPORT MSS DUE TO ITS CLOSE CONSUMPTION WITH SINGLE BRANCH.

Loss Sentence Retrieval Image Retrieval
R@1 R@5 R@1 R@5 MD

VSE0 [15] 74.4 92.8 54.3 81.2 0.58
VSE++ [17] 75.8 93.4 56.5 81.4 0.91
SAM [20] 76.1 93.2 57.0 82.9 0.88
CMPM [62] 76.8 95.1 57.8 82.8 1.12
MPL [18] 77.1 94.3 57.4 82.3 0.96
RM (MSS) 78.4 94.4 59.1 83.6 1.45
AM (MSS) 79.4 94.7 59.7 83.5 1.81

TABLE IV
CONFIGURATIONS OF BOOSTING LOSS BY OSS ON FLICKR30K. ⋆

DENOTES THE DBL STRATEGY WITH SOFT γSA . BOTH MODEL #H AND
MODEL #I AVERAGE TWO BOOSTING LOSS DURING TRAINING PROCESS.

Model Strategy Sentence Retrieval Image Retrieval
RS RM AS AM R@1 R@5 R@1 R@5 MD

A 75.8 93.4 56.5 81.4 0.91
B ✓ 77.6 94.6 58.1 82.4 1.04
C ✓ 78.2 94.8 57.1 82.5 1.13
D ✓⋆ 77.1 94.5 59.6 83.9 1.23
E ✓⋆ 77.2 94.6 58.8 83.5 1.30
F ✓ 79.3 95.4 59.1 83.0 1.21
G ✓ 79.0 94.9 58.5 83.1 1.56
H ✓ ✓ 78.0 94.6 57.8 82.3 1.13
I ✓ ✓ 78.9 95.1 58.7 83.0 1.44

within a mini-batch as a class and translates the cross-modal
scalar projections into the normalized probability estimates
between image and text. Besides, we employ H(Ps(x), Pt(x))
to replace H(Pt(x), Ps(x)) in Eq. (3) of DINO as DINO*
according to the observations [62], [80] that the latter could
blur the distributions of multiple modes and bring ambiguities
for image-text matching pattern. 1) Performance. TABLE II
shows that our DBL can consistently outweigh them on R@1
by a large margin (Maximum 2.9% and 1.7% on sentence and
image retrieval), exhibiting good flexibility and broad applica-
bility. Beyond the above, it also indicates that the knowledge
transfers in a boosting manner hold tremendous potential for
passing messages across branches and significantly promote
the matching ability of single-branch learning. 2) Efficiency.
OAS/MSS requires no gradients for the anchor branch, and
obtains about 12/11% memory and 120/18% time increase.
Only OSS trains two branches simultaneously with extra 100%
memory and 73% time costs. Notably, MSS can achieve both
slight training time and memory costs. 3) Expansion. Two-
branch structure in OAS and MSS is a standard architecture
of conventional distillation and contrastive learning. In OSS,
DML [25] demonstrates another paradigm of multi-branch
collaboration for mutual learning. Following it, we extend
our strategies to larger peer cohorts. Concretely, we randomly
initialize all branches {Bi | i = 1, ...,M} where each branch
Bm is supervised by regarding all previous cohorts {Bi | i =
1, ...,m− 1} as the anchor branches. To ensure comparability
between task-specific and boosting losses for current target
branch, we average all boosting losses from its corresponding
anchor branches, which are then added to the task-specific
loss as the final objective function. We discover that the
evaluation results slowly converge with the increasing number
of peer branches and 3-branch DBL with RM earns the best

Fig. 4. Analyses of hyperparameter γ for RM and α for AM under OSS.

bidirectional R@1 by 79.4/59.5% vs. 78.3/58.8% of 4-branch
DML (best). The combination of multiple branches is flexible
and two branches can balance complexity and performance.

Comparison with Deep Metric Learning. In TABLE III,
we report the retrieval results with several popular loss func-
tions based on single branch, which focus on cross-modal
projection [62], hard negative mining [17], [18], and adap-
tive margin setting [20], [21] respectively. Here, we utilize
our proposed DBL under MSS for comparison, given its
relatively minimal additional consumption costs (only extra
11% memory and 18% time costs), when compared to the
single branch with various loss functions. We can find that
almost all similarity metrics learned through the above losses
are better than the original ranking loss [15], confirming
that it is beneficial to highlight the informative triplets and
develop the appropriate thresholds. It is obvious that our
DBL strategy achieves more impressive improvements and
outperforms the best competitor MPL [18] on bidirectional
R@1 by 1.3/1.7% and 2.3/2.3% in the relative/absolute manner
separately. Besides, the comparison with the most related
metrics [20], [21] validates that explicit margin constraints by
the DBL are more effective and applicable for the network to
obtain more powerful matching capabilities across modalities.

C. Ablation Studies

Configurations of boosting loss. TABLE IV shows the
different configurations of our DBL, consisting of Sum-Max
sampling, Fixed-Soft margin value, and Relative-Absolute
boosting manners. 1) Sum vs. Max. Compared with Model
#B and #C via Sum operation, Model #F and #G show that
Max operation can excavate more valuable triplets and obtain
the 1.7/0.8% and 1.0/1.4% R@1 increase on sentence and
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RM AMVSE++

Fig. 5. Comparison of feature distribution for image and text samples. We implement t-SNE to visualize the image and text features based on GPO [42].

Fig. 6. Comparison of similarity distribution for positive image-text pairs.

image retrieval for the Relative/Absolute strategy. 2) Fixed
vs. Soft. Model #D, #E, #F, and #G demonstrate that the Soft
form displays stronger abilities of image retrieval but achieves
slightly attractive promotions on sentence retrieval, while the
Fixed form obtains the optimal balance between image and
sentence retrievals. Note that the Soft strategy stresses more
on the hard triplets, making its gradient easily dominated by
noise, being a result of either deficiency of model or data per
se. 3) Relative vs. Absolute. Comparing Model #B-#G, and
more applications in TABLE I, we discover that both of them
display the general effectiveness and unique qualities on R@κ
under diverse network architectures. Based on a more intuitive
MD metric, the Absolute manner produces more compact
similarity distributions than the Relative one. 4) Relative
&. Absolute. We average the relative and absolute boosting
losses to jointly supervise the training process. Compared
with Model #F and #G, Model #H and #I display no further
improvements on both R@κ and MD metrics. This may be
because AM imposes tighter constraints than RM, and such
simple combinations fail to reinforce the penalty and further
widen the distance between positive and negative pairs.

Analyses of hyperparameter tuning. The exclusive α and
γ tuning are shown in Fig. 4. For α = 0.3− 0.7, AM brings
at least 3.2/1.9% R@1 gains on sentence and image retrievals.
For γ = 0.1− 0.3, RM obtains a steady R@1 gain of at least
1.9/1.3% at two directions. Note that the VSE++ loss [17]
produces varied results with different margin γ, and γ = 0.2
is a commonly-used configuration [36], [42], [51], [53]. Hence
for simplicity and fair comparison, we set α = 0.5 and
γ = 0.2 in all our experiments, and obtain robust and stable
performance benefits over various datasets and approaches.

Fig. 7. Comparison of similarity distribution for negative image-text pairs.

Impact of the well-trained anchor branch. To validate
this, we take AM under OAS on Flickr30K as an example. (1)
We utilize γ=0.1 of hard ranking loss [17] and 50% Flickr30k
training data to construct two kinds of sub-optimal anchor
branches. Interestingly, DBL still improves corresponding
target branches by 2.7/1.9% and 7.4/5.8% R@1 gains. (2)
We also use VSE++ [17] as a poor backbone that outputs
many noisy matching results, which achieves R@1 benefits of
1.8/1.3% by DBL. (3) They verify that even with an inferior
reference, DBL still displays good stability and robustness.

Feature distributions of image and text samples. We
visualize the feature distribution of image and text features
in Fig. 5. Note that for cross-modal interaction methods,
feature visualization does not provide a direct reflection of
the similarity measurement across modalities. Therefore, we
adopt GPO [42] based on mono-modal representation for
better illustration. We can observe that our DBL achieves
better feature separation, even for some challenging samples.
The anchor branch provides explicit and targeted distance
information, which enables the target branch to enlarge the
gap between image and text through our DBL strategy.

Similarity distributions of image-text pairs. Fig. 6 and 7
exhibit the similarity distributions of positive and negative
pairs respectively on the Flickr30K test set. With VSE++
loss [17], the scores of negative pairs are concentrated near
the value -1, while the curve of positive ones is relatively
smooth. After introducing RM, their values are more densely
distributed at the value -1 and 1 respectively, and the sep-
arability between them is fully exploited. Besides, AM can
further enlarge the variations between matched and unmatched
pairs, confirming that learning an adaptive and explicit margin
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Query (a): Nine cheerleaders perform acrobatics behind a row of chairs .

Anchor Branch (VSE++): Target Branch (RM): Target Branch (AM):

Query (b): A large group of people of various ages and genders sit outside together .

Anchor Branch (VSE++): Target Branch (RM): Target Branch (AM):

Query (c): A woman with a tag is pouring red wine in a glass .

Anchor Branch (VSE++): Target Branch (RM): Target Branch (AM):

Query (d): A boy standing in the foreground looking out over other people in a court .

Anchor Branch (VSE++): Target Branch (RM): Target Branch (AM):

Fig. 8. Several retrieval examples on image retrieval. Green denotes the ground-truth image candidates and red denotes the unmatched retrieval samples.

Anchor Branch (VSE++):
1： A man on a zip line being propelled through the 
water .
2： a man in a harness being dragged across the 
water
3： One man in the hole of a tire in water , and 
another man getting up from the water next to him .
4： A wakeboarder performs a flip while being 
towed at high speed .
5： A boy playing in a lake

Target Branch (RM):
1： A man on a zip line being propelled through the 
water .
2： One man in the hole of a tire in water , and 
another man getting up from the water next to him .
3： a man in a harness being dragged across the 
water
4： A person upside down on a water board .
5： A man wearing bathing trunks is parasailing in 
the water .

Target Branch (AM):
1： A man on a zip line being propelled through the 
water .
2： a man in a harness being dragged across the 
water
3： A man wearing bathing trunks is parasailing in 
the water .
4： A person upside down on a water board .
5： A man in a harness lands in the water .

Query (a) :

Anchor Branch (VSE++):
1： A woman 's lower body can be seen as she wears 
blue jeans and walks in front of a large sign depicting 
another woman wearing a black top and sunglasses .

2： Two people looking a piece of paper standing on 
concrete .
3： A woman in jeans walks by a bus with an ad 
depicting a woman peering over her sunglasses .
4： A girl in a jean dress is walking along a raised 
balance beam .
5： Two young women discuss something while 
waiting .

Target Branch (RM):
1： A woman wearing rolled up jeans passing bus a 
pass whose ad appears to be checking her out .
2： A woman 's lower body can be seen as she wears 
blue jeans and walks in front of a large sign depicting 
another woman wearing a black top and sunglasses .

3： a man standing on a concrete platform with his 
arms wide open
4： A woman in jeans walks by a bus with an ad 
depicting a woman peering over her sunglasses .
5： A woman whose head is not visible walks in 
front of a bus with an advertisement on its side .

Target Branch (AM):
1： A woman 's lower body can be seen as she wears 
blue jeans and walks in front of a large sign depicting 
another woman wearing a black top and sunglasses .

2： Two people looking a piece of paper standing on 
concrete .
3： A woman in jeans walks by a bus with an ad 
depicting a woman peering over her sunglasses .
4： A woman wearing rolled up jeans passing bus a 
pass whose ad appears to be checking her out .
5： A woman whose head is not visible walks in 
front of a bus with an advertisement on its side .

Query (b) :

Anchor Branch (VSE++):
1： Two dancers performing in the spotlight , on 
stage .
2： A girl plays her guitar on a dark stage .
3： Two rockers are singing and playing on a dark 
stage .
4： A man sings and plays the guitar into a 
microphone .
5： Guitar player performs at a nightclub red guitar .

Target Branch (RM):
1： A girl plays her guitar on a dark stage .
2： A dj playing music in a club .
3： A girl is playing an electric guitar in front of an 
amplifier .
4： Guitar player performs at a nightclub red guitar .
5： Two rockers are singing and playing on a dark 
stage .

Target Branch (AM):
1： A girl plays her guitar on a dark stage .
2： Two rockers are singing and playing on a dark 
stage .
3： A woman is playing guitar on stage
4： Guitar player performs at a nightclub red guitar .
5： A woman playing guitar in red and blue light

Query (c) :

Anchor Branch (VSE++):
1： Two volleyball girls team both jumping for a 
double high-five
2： A group of volleyball girls high-fiving each other 
in a gym .
3： Rhythmic gymnasts are new to the competitive 
olympics .
4： A woman plays volleyball .
5： A woman is propping her leg up revealing 
cleavage , a great tatoo , and some kicking boots .

Target Branch (RM):
1： Two volleyball girls team both jumping for a 
double high-five
2： Females , who are on team usa , jump in the air 
excitedly .
3： A group of volleyball girls high-fiving each 
other in a gym .
4： Rhythmic gymnasts are new to the competitive 
olympics .
5： Two female members of team USA performing 
a jump high-five surrounded by two other female 
members .

Target Branch (AM):
1： Two volleyball girls team both jumping for a 
double high-five
2： A group of volleyball girls high-fiving each other 
in a gym .
3： Females , who are on team usa , jump in the air 
excitedly .
4： Two female members of team USA performing a 
jump high-five surrounded by two other female 
members .
5： A woman plays volleyball .

Query (d) :

Fig. 9. Several retrieval examples on sentence retrieval. Green denotes the ground-truth sentence candidates and red denotes the unmatched retrieval samples.

can lead to sufficient distance metrics and powerful match-
ing patterns. Note that a slight peak arises around -1.0 for
positive pairs. This is because DBL generally produces more
confident predictions as compared to plain VSE++, and could
inadvertently misclassify some hard positive pairs with weak
correlations as negative samples. We further discover that the
positive pairs with the similarity between -1.0 and -0.8 by RM
and AM are mostly distributed ranging from -0.9 to -0.2 in
the original VSE++ with 87.8% and 92.6% probability.

Qualitative results of image and sentence retrieval.
Fig. 8 and 9 display several retrieval examples on image and

sentence retrieval, which can qualitatively indicate the learned
distance measure between image and text. Compared with
the anchor branch, the target branch by our DBL is capable
of better recognizing cross-modal contents, and effectively
distinguishing the correct results from various distractions with
similar semantics, which validates the powerful applicability
and matching capability of our DBL strategy.

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a novel Deep Boosting Learning
(DBL) strategy to seek a powerful modeling capability by
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imposing an adaptive and dynamic boosting mechanism for
image-text matching task. Specifically, we first plumb the
model property and data representation thoroughly, which in
turn facilitates the learning process with appropriate regula-
tions in a boosting manner. Extensive experiments on two
benchmark datasets validate that our DBL further enlarges
the insufficient variations within triplets and exploits the op-
timal feature and distance metrics across modalities. Besides,
we discover that DBL consistently improves various popular
frameworks by a large margin, confirming its general effective-
ness and flexible applicability in image-text matching field. As
one of the peer-to-peer strategies, DBL goes deeper than many
related cooperative methods by learning margin knowledge to
gain greater benefits under the same training and inference
schemes, from which the community may get inspiration. In
the future, we would like to incorporate them simultaneously
in self-branch boosting and cross-branch imitating manners.
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