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Abstract—Age of Information (AoI) is an emerging metric used
to assess the timeliness of information, gaining research interest
in real-time multicast applications such as video streaming and
metaverse platforms. In this paper, we consider a dynamic
multicast network with energy constraints, where our objective
is to minimize the expected time-average AoI through energy-
constrained multicast routing and scheduling. The inherent com-
plexity of the problem, given the NP-hardness and intertwined
scheduling and routing decisions, makes existing approaches
inapplicable. To address these challenges, we decompose the orig-
inal problem into two subtasks, each amenable to reinforcement
learning (RL) methods. Subsequently, we propose an innovative
framework based on graph attention networks (GATs) to effec-
tively capture graph information with superior generalization
capabilities. To validate our framework, we conduct experiments
on three datasets including a real-world dataset called AS-
733, and show that our proposed scheme reduces the average
weighted AoI by 62.9% and reduces the energy consumption by
at most 72.5% compared to baselines.

I. INTRODUCTION

A. Background and Motivations

Real-time multicast applications, such as video streaming
[1] and intelligent transportation systems [2], have expe-
rienced significant growth in recent times. These applica-
tions require timely updates to ensure accurate and up-to-
date information availability for critical tasks like decision-
making and system control. While delay is a commonly used
metric in traditional networks [3], it is now recognized that
ensuring timely updates is distinct from simply minimizing
delay [4]. Consequently, there is a need for a metric that
captures the timeliness aspect of information dissemination.
The concept of Age of Information (AoI) has emerged as
a promising metric in various domains, including learning
and network protocols [5]. AoI quantifies the freshness of
information possessed by a monitor about a specific entity
or process, which has been identified as a suitable metric for
evaluating the performance of multicast networks [6], making
it particularly relevant for real-time multicast applications. It
has been shown that AoI is the most important metric for
evaluating the Quality of Service (QoS) in some scenarios
[7].

Multicast, a vital communication paradigm in networks,
facilitates the efficient dissemination of information from a

source to multiple destinations. Recent research has exten-
sively investigated the applications of multicast in various
scenarios. For instance, optimizing the multicast Quality of
Experience (QoE) is crucial for enhancing video streaming
sessions [8]. One of the primary problems lies in the routing
process, which entails determining the optimal paths from the
source to destinations. The routing problem falls within the
domain of Combinatorial Optimization (CO) problems, such
as the Steiner tree problem [9], known for their NP-hardness,
rendering them computationally demanding to solve in large-
scale networks.

Due to the inherently distributed feature of network sys-
tems, only local information is available for a centralized
controller, making it challenging to optimize the routing
process. Fortunately, recent advances in Software Defined
Networking (SDN) enabled the intelligent control of network
devices [10]. SDN is a network architecture that separates the
control plane from the data plane, where the control plane is
centralized and is responsible for managing network resources
and programming the network dynamically. The centralized
controller has a global view of the network by monitoring
and collecting the real-time network state (e.g., packets) and
configurations. The above features ensure that the solutions
given by intelligent algorithms (e.g., AI-based algorithms) can
be implemented in real-world scenarios.

Furthermore, real-world networks often operate under en-
ergy constraints, where the overall energy consumption of
the network is limited. This introduces additional complexity
to the problem, as there exists a trade-off between energy
consumption and AoI [11]. Consequently, certain existing
algorithms (e.g., [12]) become inapplicable. Some studies
have proposed scheduling algorithms to optimize AoI [6].
However, they tend to overlook the routing problem, which
is also crucial for AoIs. Hence, there is a clear demand for a
novel multicast scheme that offers a comprehensive solution
to optimize AoI in energy-constrained multicast networks.

In this paper, we aim to answer the following main ques-
tion: How should one design multicast scheduling and routing
algorithms to make the optimal tradeoffs between AoI and
energy consumption?
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B. Key Challenges

We now summarize the key challenges of answering the
above problem as follows:

1) Coupled Decision Variables. In a long-term multicast
process, multicast scheduling and routing are inter-
twined, both exerting impact on the AoIs of destina-
tions.

2) Energy Constraints. Real-world applications often im-
pose energy constraints on the network. This introduces
a trade-off between energy consumption and AoI.

3) Hidden Graph Information. Traditional methods are
inefficient when extracting relevant graph features due
to the non-Euclidean nature of graphs.

4) NP-hardness. Multicast routing algorithms usually fall
into the realm of CO problems, which are computation-
ally intractable for large-scale networks.

One promising solution approach to overcoming the above
challenges includes Reinforcement Learning (RL) methods,
which are promising for approximating the optimal solutions
of NP-hard problems via learning from environments [13].
Hence, we further prompt the following question: How should
one design an RL framework to address the problem of
coupled decision variables and capture the graph information
of a multicast network?

C. Solution Approach and Contributions

To answer the above questions, we summarize our solution
approach and main contributions as follows:

• Joint Multicast Scheduling and Routing Problem: We
tackle the complex task of joint multicast routing and
scheduling, accounting for energy constraints and possi-
ble network dynamics. To the best of our knowledge, this
is the first work to consider the problem of minimizing
AoI in joint multicast scheduling and routing.

• Hierarchical RL Framework. To address challenges 1,
2 and 4, we decompose the original problem into two
subtasks and introduce a hierarchical RL framework. The
first subtask involves selecting destinations, while the
second subtask generates multicast trees.

• A Novel Graph Attention Network. To overcome
challenges 3 and 4, we propose a novel kind of Graph
Attention Network (GAT) to extract graph information
based on the attention mechanism.

• Performance Evaluation. We validate our approach on
three datasets, including a real-world dataset called AS-
733. TGMS outperforms other baselines and achieves an
average AoI reduction of 62.9% while maintaining the
energy consumption within the constraint.

II. SYSTEM MODEL

A. Network Description

We consider a multicast network that operates for an infinite
horizon of slotted time. See an illustrative example in Fig. 1.
The network topology at time t is denoted as Gt = {Vt, Et},
where Vt represents the set of nodes and Et represents the
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Fig. 1. An Example of a Multicast Network. The nodes are connected by
links with different costs. At the beginning of each time slot, the source
generates update packets, which are then forwarded to destinations by routers.

set of undirected links. The nodes in the network can be
categorized into three distinct types:

• The Source Node. A source node generates updates for
a multicast group1 continuously without restrictions.

• Router Nodes. Router nodes are responsible for for-
warding update packets to destinations.

• Destination Nodes. Destination nodes are expected to
receive update packets from the source node. The set of
destinations at time t is denoted as Ut ⊂ Vt.

A packet can be transmitted from node i to node j if the
link (i, j) exists in Et, which takes one time slot with an
energy cost of Ci,j . The multicast process can be described
as follows: at the beginning of each time slot, the source node
generates multiple update packets, which are then transmitted
between router nodes, eventually reaching the destination
nodes. Note that packets traveling through different transmis-
sion paths may not arrive at the destination simultaneously.
To analyze the AoI of destinations, we initially define the AoI
of update packets. Let Pt = {0, 1, . . . , p, . . . } denotes the set
of packets at time t, the AoI of packet p can be defined as:

Âp(t) = t− tp,∀t ≥ tp, (1)

where tp denotes the time when packet p is generated. That is,
Âp(t) grows linearly with time. Suppose that each destination
can receive only one packet during a single time slot. The AoI
of a destination u ∈ Ut is defined as:

Au(t) =

{
Âp(t), if du,p(t) = 1,

Au(t− 1) + 1, otherwise,
(2)

where du,p(t) is an indicator that represents whether packet
p arrives at destination u at time t. If packet p arrives at
destination u at time t, du,p(t) = 1; otherwise, du,p(t) = 0.
As shown in Fig. 2, if a destination u receives a packet at
time t, Au(t) is updated to be the AoI of the received packet
at that time. Otherwise, Au(t) grows linearly with time.

The AoIs of destinations are closely intertwined with the
routing decisions. In this paper, we adopt the use of multicast

1This scenario can also be extended to accommodate multiple multicast
groups, where each group has its source node.



Fig. 2. An Example of the AoI. tk denotes the time when the k-th packet is
generated while t′k denotes the time when it arrives. The AoI of destination
u is updated to be the AoI of the received packet (3 in this case) at time t′k ,
otherwise, it grows linearly with time.

trees to represent routing decisions as commonly done in
classical multicast routing problems [9]. A tree is defined as
a connected acyclic undirected graph. Accordingly, we define
a multicast tree Tt of network Gt as Tt = {VT

t , ETt }, where
VT
t ⊆ Vt denotes the set of included nodes and ETt ⊆ Et

denotes the set of links. To establish the relation between the
AoIs and multicast trees, we refer to the following lemma:

Lemma 1 ([14]). Any two vertices in a tree can be connected
by a unique simple path.

Considering the multicast process described and the store-
and-forward mechanism [15], we can derive that the time
required for a packet to reach destination u is equal to the
number of hops between the source and destination u in a
multicast tree Tt, denoted as hTt(u). Then Eq. (2) can be
rewritten as:

Au(t+ hTt
(u)) =

{
hTt(u), if u ∈ VT

t ,

Au(t+ hTt
(u)− 1) + 1, otherwise.

(3)
Here, Au(t + hTt

(u)) will be updated to exactly hTt
(u)

when a packet generated at t arrives at destination u at time
t+ hTt(u), given that u is included in the multicast tree Tt.
Thus, Au(t) is influenced by two factors: (i) the frequency of
which destination u is updated; (ii) the AoI of arrived packets,
i.e., hTt

(u). Both factors are determined by multicast trees.
Therefore, a proper multicast tree is essential for optimizing
AoIs. In addition, some scenarios bring new influence factors,
which are discussed in the following sections.

B. Network Dynamics

A real network usually exhibits dynamic behavior. For in-
stance, in wireless networks, there are topology changes from
node mobility or link instability. We assume that the network
topology at time t is generated by a random process, which
is independent of the past. This assumption is reasonable in
many scenarios (e.g., [16]). We first define a link indicator
σ(e, t) as follows:

σ(e, t) =

{
1, if link e ∈ Et,
0, otherwise.

(4)

For a network, the distribution of links at time t is denoted as
σ(t) ∈ Ξ, where Ξ denotes all possible network topologies.

σ(t) evolves according to a stationary ergodic process:∑
σ∈Ξ

p(σ) = 1, p(σ) > 0,∀σ ∈ Ξ. (5)

The statistical property of the process above depends on
specific network scenarios, which are often difficult to obtain.
We assume that the process is unknown in priority. In the
subsequent sections, we will show how our proposed ap-
proach handles such dynamic scenarios naturally by making
decisions on discrete time slots in model design and imple-
mentation.

C. Energy-efficient Multicast Scheduling

In real networks, energy is a critical resource that needs
to be managed efficiently. Here we propose a scheme to
balance the energy consumption and AoIs, which we refer to
as “multicast scheduling” in this paper. Specifically, consider
a long-term energy budget denoted by W which constrains
the average energy consumption. Let C(Tt) denote the energy
consumption of a multicast tree Tt, our goal is to find
multicast trees that minimize the AoIs while satisfying the
energy constraint. Formally, we formulate this problem as
follows:

OP: min
T

lim sup
T→∞

1

T
ET

[
T∑

t=0

∑
u∈Ut

ωuAu(t)

]
, (6a)

s.t. lim
T→∞

1

T
ET

[
T∑

t=0

C(Tt)

]
≤W, (6b)

where T = {Tt|t = 0, 1, · · · , T} is a sequence of multicast
trees generated over time, ωu ∈ (0, 1) represents the impor-
tance of a destination u ∈ Ut. In other words, if we view the
above problem as a sequential decision-making problem, we
aim to find a policy π to determine Tt as a function of the
network state {Tτ ,Gτ , A(τ)|0 ≤ τ ≤ t− 1}. Given the set of
destinations Ut, define the solution space of multicast trees
including Ut as Ω(Ut), the problem above can be rewritten
as:

DP: max
λ≥0

inf
U′,T

(
lim

T→∞

1

T
ET

[
T∑

t=0

∑
u∈Ut

ωuAu(t)+

λ(

T∑
t=0

C(Tt)− TW )

])
,

s.t. Tt ∈ Ω(U ′
t),∀t.

(7)
where λ is the Lagrangian multiplier corresponding to Eq.
(6b). The large and discrete solution space and the mu-
tual influence between decision variables make the problem
challenging to solve. Therefore, we reformulate the original
problem into two subproblems.

III. PROBLEM REFORMULATION

Our main approach is to decompose Eq. (6) into two
subproblems. The first subproblem involves identifying the
set of destinations that should be updated at each time slot



and is referred to as the scheduling subproblem. The second
subproblem entails finding an optimal multicast tree for the
selected destinations and is known as the tree-generating
subproblem. Each of them can be formulated as an MDP
and solved by RL methods.

A. Problem Decomposition

The two subproblems are formulated as follows:

Definition 1 (Scheduling Subproblem). Given a network Gt,
find a sequence U ′ = {U ′

t|t = 0, 1, . . . , T} of destination sets
U ′
t ∈ Ut to:

P1: max
λ≥0

inf
U′

lim
T→∞

1

T

T∑
t=0

g(λ,U ′
t) (8)

where g(λ,U ′
t) is given by the optimal values of the following

tree-generating subproblem.

Definition 2 (Tree-generating Subproblem). Given a net-
work Gt and a set of destinations U ′

t ∈ Ut, find a multicast
tree Tt = {VT

t , ETt } that:

P2: min
Tt

(
lim

T→∞

1

T
ETt

[
T∑

t=0

∑
u∈Ut

ωuAu(t)+

λ(

T∑
t=0

C(Tt)− TW )

])
,

s.t. Tt ∈ Ω(U ′
t).

(9)

We can observe the equivalence between two subproblems
and the original problem. In addition, the problem P1 and P2
can be both regarded as sequential decision-making problems,
which can be formulated as MDPs. We first focus on problem
P1 and define MDP M1 = {S1,A1, f1, r1} as follows:

• States: The state st is defined as:

st = {Gt,ot}, st ∈ S1, (10)

where ot = {xt, et} denotes the features at time slot t,
including node features xt and link features et.

• Actions: The action is a set of destinations, i.e.:

at = {U ′
t|U ′

t ⊆ Ut}, at ∈ A1. (11)

• The transition function f1 is unknown in priority.
• Rewards: To assess the network’s quality at time slot t,

we introduce a quality function q1(st):

q1(st) = −
∑
u∈Ut

ωuAu(t)− λ(C(Gt)−W ), (12)

the reward function r1 : S1 ×A1 → R is defined as:

r1(st, at) = q1(st)− q1(st−1). (13)

Remark: By discretizing time, we can obtain the network state
at each time slot and make individual decisions. Therefore,
we naturally address the challenge of network dynamics.

Fig. 3. Relationship between two Subtasks. M1 is responsible for selecting
destinations, which is utilized by M2 to generate multicast trees.

B. Tree-generating MDP

To tackle problem P2, notice that a multicast tree is
composed of nodes and links. To approach this, we initiate
with an empty set and incrementally add nodes and links
in a virtual timescale. Specifically, we introduce a virtual
timescale τ and a partial solution Pτ = {VP

τ , EPτ } with a
source node at τ = 0. An MDP M2 = {S2,A2, f2, r2} is
defined as follows:

• States: The state sτ consists of network features and a
partial solution Pτ , defined as 2:

sτ = {Gt,ot,Pτ}, sτ ∈ S2. (14)

When the selected destinations U ′
t are covered by Pτ , sτ

will be a terminal state.
• Actions: The action aτ is a neighbor of Pτ , defined as:

aτ = v, v ∈ N (Pτ ), aτ ∈ A2, (15)

where N (Pτ ) represents the neighbor nodes of Pτ . A
link (v∗τ , aτ ), v

∗
τ ∈ Pτ will be uniquely selected as

described in section IV and added to Pτ along with node
aτ .

• The transition function f2 is unknown in priority.
• Rewards: The quality function q2(sτ ) can be defined as:

q2(sτ ) =
∑

u∈U ′
t∩VP

τ

ωuAu(t)

hPτ
(u)
− λ(C(Pτ )−W ), (16)

where hPτ (u) is the number of hops between the source
and destination u in Pτ . Subsequently, the reward func-
tion r2 : S2 ×A2 → R is defined as:

r2(sτ , aτ ) = q2(sτ )− q2(sτ−1). (17)

Therefore, the original problem can be solved by solvingM1

andM2 sequentially, which is illustrated in Fig. 3. To achieve
this, we propose an algorithm called Tree Generator-based
Multicast Scheduling (TGMS).

IV. TREE GENERATOR-BASED MULTICAST SCHEDULING

Our proposed approach consists of a tree generator and a
scheduler, both utilizing graph embedding methods and DRL
techniques.

2sτ is actually the abbreviation of st,τ .



A. Graph Embedding Methods

Having a comprehensive understanding of the graph topol-
ogy is essential to make informed decisions in network opti-
mization problems. Graph embedding methods (e.g., GNNs)
have demonstrated their efficacy in various CO problems [17].
Some studies focus on the attention mechanism in GNNs,
which allows nodes to selectively aggregate information
from neighbors (e.g., [18]). Based on these observations, we
propose a novel GAT with guaranteed contraction mapping
properties to extract graph information, which is defined as
follows:

ϕ(hi,hj) = aTLeakyReLU(W1(hi+hj)+W2ei,j), (18a)

αij =
exp(ϕ(hi,hj))∑

k∈Ni∪{i} exp(ϕ(hi,hk))
, (18b)

fGAT(hi,x) =
1

∥W1∥
(αii(W1hi +W3xi)

+
∑
j∈Ni

αij(W1hj +W3xj)),
(18c)

Here, hi ∈ Rd denotes the embedding vector of node i, xi

denotes the node features of i, ei,j denotes the link features of
(i, j) and LeakyReLU(·)3 is an activation function. The new
representation of node i is obtained by a weighted sum of
neighbors’ node embeddings using αij . Hence, we effectively
disseminate information through the graph and aggregate node
embeddings.

B. Model Design

Recall that the action space of M1 (see Eq. (11)) is
excessively large4, making it impractical for RL algorithms
to efficiently explore. To tackle this challenge, we arrange the
destinations Ut in descending order of their weighted AoIs,
and then select a part of the destinations. However, the size
of Ut varies across different networks, rendering it difficult to
determine a fixed value. To overcome this issue, we devise an
agent with a continuous action space. Specifically, we utilize
a model to predict the mean and standard deviation of a
Gaussian distribution, which are then employed to sample the
fraction of destinations to be selected. The forwarding process
of the scheduler can be summarized as follows:

H
(l+1)
t = fGAT({h(l)

t,i}i∈Vt
), (19a)

h̃t =
1

|V|

|V|∑
i=1

h
(L)
t , (19b)

µ = W1LeakyReLU(W2h̃t), (19c)

σ = W3LeakyReLU(W4h̃t), (19d)
π1(at|st) = N (µ, σ), (19e)

V1(st) = W5LeakyReLU(W6h̃t). (19f)

The initial graph embedding h0 is generated by combining
the graph topology and features, which is updated by the

3LeakyReLU(x) = max(αx, x) where α is a hyparamater.
4The dimension of |A2| is 2|Ut|.

𝑡𝑡 + 1

𝜏𝜏 + 1

Fig. 4. The System Architecture of TGMS. A scheduler is performed to select
a set of destinations, which are utilized by the tree generator to generate a
multicast tree.

GAT defined by Eq. (18a)-(18c). Following this, the outputs
are passed through a pooling layer serving to aggregate
global information (see Eq. (19b)). Finally, the resulting graph
embeddings are fed into two distinct heads: (i) a policy head
responsible for predicting the mean and standard deviation of
a Gaussian distribution (see Eq. (19c)-(19e)); and (ii) a critic
head tasked with predicting the expected value of the current
state (see Eq. (19f)). For the tree generator, we employ similar
graph embedding methods as those utilized in the scheduler
(see (19a)-(19b))). The difference lies in the heads as follows:

π2(aτ |sτ ) = log softmax(W′
1σ(W

′
2H

(L)
τ )), (20a)

V2(sτ ) = W′
3fLeakyReLU(W

′
4h̃τ ), (20b)

where the policy π2(aτ |sτ ) is masked to ensure valid actions.
One remaining question is that when an action aτ is sampled
from π2(aτ |sτ ), it is possible for aτ to have multiple links
with Pτ . To address this, we select the link with the minimum
cost from the set of candidate links, i.e.:

(v∗τ , aτ ) = arg min
v∈Pτ ,(v,aτ )∈EP

τ

Cv,aτ
. (21)

This approach effectively reduces the complexity of the tree
generator while constraining the cost of Pτ . Importantly,
it does not alter the solution space of P2. The system
architecture of our approach is illustrated in Fig. 4.

V. PERFORMANCE EVALUATION

Due to the lack of existing research on the proposed
problem, we conduct extensive experiments to evaluate the
performance of our approach. To validate the generalization
ability of our approach, we consider three datasets of different
graph topologies as follows. One of the datasets is called
AS-733, which is collected from the University of Oregon
Route Views Project [19]. We randomly select 240 graphs for
training and 60 graphs for testing, where the testing graphs are



Fig. 5. Average Weighted AoI of AS-733 under W1.

Fig. 6. Energy Consumption of AS-733 under W2.

unseen during training. Each graph will be trained or tested
for 100 time slots. We randomly select 5 seeds and record the
results with the mean and standard deviation. The following
algorithms are considered as baselines:

• Random: A fraction m of nodes are randomly selected
as destinations. When generating a multicast tree, we
randomly select a valid node with its minimum-cost link.

• Greedy: A 0.5 fraction of sorted destinations are greed-
ily selected. When generating a multicast tree, we greed-
ily select a valid link with minimum cost.

Consider a set of energy constraints W1 = {3, 4, 5, 6, 7} for
graph size |V| = 60, we compare the average weighted AoI
under different energy constraints. From Fig. 5, we conclude
that TGMS has a superior performance compared to the
baselines. When restricting energy consumption, TGMS can
achieve a lower weighted AoI. Specifically, TGMS reduces
the average weighted AoI by 57.1% and 68.7% compared to
the greedy and random baselines, respectively.

Next, we evaluate the energy consumption under different
energy constraints on different sizes of graphs. Consider
another set of energy constraints W2 = {4, 6, 9, 11, 13}
for graph sizes |V| = {20, 40, 60, 80, 100}, respectively. We
maintain a similar weighted AoI for all algorithms and com-
pare the energy consumption. The results are shown in Fig. 6.
We observe that TGMS achieves a lower energy consumption
compared to the baselines. Specifically, TGMS reduces the
energy consumption by 75.7% and 69.3% compared to the
random and greedy baselines, respectively. The additional
experiments can be found in the appendix of [20].

VI. CONCLUSION

In this paper, we have proposed a novel hierarchical RL
architecture including a GAT-based graph embedding method.
It concludes with two agents: (i) a scheduler that selects a set
of destinations while meeting an average power constraint,
and (ii) a tree generator for generating multicast trees. We
compare with several baselines and confirm that TGMS
outperforms them in terms of AoI reduction and energy
efficiency.
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APPENDIX

A. Literature Review

Multicast routing poses a significant challenge in various
scenarios, including ad hoc networks [21] and Internet of
Things (IoTs) systems [22]. It also gains research interest in
cooperative games [23]. Optimal solutions for both multicast
routing and scheduling have been extensively studied and
established in these contexts. However, obtaining such so-
lutions becomes non-trivial in stochastic systems. To address
the challenges stemming from unknown network dynamics,
researchers have proposed deep RL algorithms to optimize
multicast performance in a centralized manner (e.g., [24]).
Despite the success of these works in reducing the multicast
delay, these approaches are NOT readily applied to the
age-minimal multicast problem due to the aforementioned
challenges of coupling decision variables and complicated
graph structure.

The concept of AoI was initially introduced by Kaul et al.
[4] and has since garnered significant attention in wireless
scenarios (e.g., [25], [26], [27], [28]) and queue theory (e.g.,
[29], [30], [31]). In the context of multicast networks, a
substantial body of research has primarily concentrated on
optimizing and analyzing stopping schemes to manage AoI.
For instance, [6] considered deadlines in multicast AoI opti-
mization, [32], [33], [34] explored AoI in multi-hop multicast
networks, albeit without considering energy consumption.

On the other hand, other studies have delved into leveraging
DRL methods to optimize the AoI in diverse scenarios,
including UAV-assisted systems (e.g., [35], [36], [37]), RF-
powered networks (e.g., [38]) and IoTs systems (e.g., [39]).
This line of work mainly focuses on optimal resource alloca-
tion and trajectory design to achieve AoI optimization. [40]
presented a graph-based approach in the context of multicast
schemes in satellite networks. However, they did not consider
the timeliness of the multicast process. On a different front,
[11] conducted a study about the trade-offs between AoI and
energy efficiency, while they overlooked the impact of net-
work topology. Similarly, [41] focused on making scheduling
decisions based on predetermined routings, without taking
into account energy consumption. Of utmost importance,
all of the aforementioned approaches [40], [11], [41] did
not address the challenge of coupled multicast routing and
scheduling decisions. Consequently, these approaches are not
directly applicable to tackle our considered problem.

B. Algorithm Details

The pseudo-code of the TGMS algorithm is described in
Algorithm 1. The pseudo-code of our employed RL algorithm
is described in Algorithm 2. We make a convergence analysis
of our algorithm in Section F.

C. Experiment Setting

Due to the lack of existing datasets for our problem,
we built an environment for training and testing, where
three datasets of different graph topologies are considered as
follows:

Algorithm 1 Tree Generator-based Multicast Scheduling
(TGMS)
Input: A network graph G0 and its features o0

Output: Multicast trees T
1: t← 0.
2: while t < T do
3: Get state st = {Gt,ot}.
4: Compute π(at, st) and V (st).
5: Sort Ut in descending order of ωuAu(t).
6: Sample at ∼ π(at, st) and select U ′

t ∈ Ut.
7: Initialize τ ← 0 and partial solution Pτ .
8: while sτ is not a terminal state do
9: Get state sτ = {Gt,ot,Pτ}.

10: Compute π(aτ , sτ ) and V (sτ ).
11: Sample aτ ∈ N (Pτ ) from π(aτ , sτ ).
12: Pτ ← select a link (v∗τ , aτ ).
13: τ ← τ + 1.
14: end while
15: T ← Multicast with Pτ .
16: t← t+ 1.
17: end while
18: return multicast trees T

Algorithm 2 Advantage Actor-Critic (A2C) with Batch Nor-
malization
Input: A batch of episodes B = {δ0, δ1, . . . , δb, . . . } with
δb = {s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT }
Parameter: θ - parameter of the actor, ω - parameter of
the critic, λ - Lagrangian multiplier, ρ - ratio of entropy
loss

Rb ← Calculate returns of each episode δb.
R← Combine Rb into a single batch.
b← 0.
while b < |B| do
Rb ← (Rb − µR)/σR.
t← 0.
while t < T do

At ← Rb,t − Vω(st).
dθ ← dθ +∇θ(log πθ(at|st)At + ρHθ).
dω ← dω + ∂(R− V (st;ω))2/∂ω.
λ← C(Tt)−W
t← t+ 1.

end while
b← b+ 1.

end while

• ER-Graphs: The Erdos-Renyi (ER) random graphs are
a type of graphs where each pair of nodes is connected
with a fixed probability p. It is widely used in the
performance evaluation of multicast algorithms (e.g., in
[42]). We set the link connection probability p = 6/|V|.

• BA-Graphs: In Barabasi-Albert (BA) graphs, each
newly introduced node connects to m pre-existing nodes.
This connection process is governed by a probability



that is directly proportional to the number of links
the existing nodes already possess. This characteristic
endows the BA random graphs with a ’scale-free’ qual-
ity. Commonly, these graphs find significant application
within multicast systems. (e.g., in [43]). We set m = 2
in our experiment.

• AS-733: The Autonomous Systems (AS)-733 dataset
is a real-world dataset collected from the University
of Oregon Route Views Project [19]. It contains 733
abstracted graphs of Autonomous Systems.

For each one of the three datasets we mentioned, we consider
five different graph sizes |V| = {20, 40, 60, 80, 100}. For each
graph size, we randomly sample 240 graphs for training and
60 graphs for testing. For each graph, we randomly select a
source node and a fraction of destinations δd = 0.3. Some
examples of the above datasets are shown in Fig. 7, 8 and 9,
respectively.

Fig. 7. An Example of ER-Graphs with |V| = 40. The links are randomly
connected, where the degree of each node is approximately the same.

Fig. 8. An Example of BA-Graphs with |V| = 40. The links are connected
according to the preferential attachment mechanism. The difference in
degrees is relatively small.

Module Parameter Value

A2C Training Interval 20
Discount factor (γ) 0.99

Network
Hidden dims 64

Attention heads 5
Dropout rate 0.3

Optimizer

Type AdamW
Actor Learning Rate 2× 10−6

Critic Learning Rate 8× 10−7

Momentum 0.9
Centered gradient True

Gradient norm 0.5

LR Scheduler

Type CosineAnnealing
Warm restarts True

T0 2
Tmult 10
ηmin 10−8

TABLE I
SCHEDULER SETTING

Fig. 9. An Example of AS-733 with |V| = 40. The links are connected
according to the real-world network topology. The difference in degrees is
relatively large.

The meaning of using three types of graph topologies is
to test the generalization ability and robustness of TGMS.
While the EA-Graphs and BA-Graphs may not coincide with
real-world networks, the experiment results still exhibit the
performance of our model. Subsequently, We create some
initial node features and link features on the above network
topologies. We randomly assign a weight ωu ∈ (0, 1) and an
initial AoI Au(0) ∈ [1, 5] for every destination u ∈ U0. The
sum of weights

∑
u ωu is ensured to be 1. The energy cost

of each link is randomly assigned in the range (0, 1).

D. Model Setting, Training and Testing

The parameters for the scheduler, tree generator and La-
grangian multiplier are shown in Table I, II and III, re-
spectively. The unit of training interval is the time slot. All
modules are trained from scratch for 100 time slots for each
graph from the training dataset. The model is tested for 100
time slots per graph of the testing dataset. We use PyGraph
2.4.0 to implement TGMS, which is trained on NVIDIA
GeForce RTX 3090 and tested on AMD EPYC 7763 CPU
@1.50GHz with 64 cores under Ubuntu 20.04.6 LTS.

We use the following metrics to evaluate the performance
of multicast algorithms:



Module Parameter Value

A2C Training Interval 1
Discount factor (γ) 0.99

Network
Hidden dims 64

Attention heads 5
Dropout rate 0.3

Optimizer

Type AdamW
Actor Learning Rate 10−6

Critic Learning Rate 4× 10−7

Momentum 0.9
Centered gradient True

Gradient norm 0.5

LR Scheduler

Type CosineAnnealing
Warm restarts True

T0 2
Tmult 10
ηmin 10−8

TABLE II
TREE GENERATOR SETTING

Parameter Value
Init Value 0.05

Training Interval 100
Learning Rate 10−5

TABLE III
LAGRANGIAN MULTIPLIER SETTING

• Weighted Average AoI (A): The weighted average
AoI is the objective of problem OP, i.e., A =
1
T

∑T
t=1

∑
u∈Ut

ωuAu(t).
• Average Energy Cost (C): The average energy cost

is mentioned in the constraint of problem OP, i.e.,
C = 1

T

∑T
t=1 C(Tt). For an energy-efficient algorithm,

C should be kept lower than a given energy limit W .
We compare TGMS with some baselines as follows:

• Greedy Algorithm: We employ a greedy algorithm for
both subtasks. In the scheduling subtask, we select a 0.5
fraction of destinations with the highest weighted AoI.
In the tree-generating subtask, we greedily select the link
with the minimum cost from the set of candidate links.
When one of the selected destinations is in the candidate
nodes, we select it and choose the link as described in our
approach. For each type of graph topology, we choose
δgd ∈ [0.2, 0.4, 0.6, 0.8, 1.0]. The results are shown in
Table IV, V and VI.

• Random Algorithm: We also adopt a random algorithm
as a baseline. Specifically, the fraction of selected des-
tinations is sampled from a uniform distribution U(0, 1)
in the scheduling process. The nodes of the multicast
tree are also randomly selected from the neighbors of
the partial solution until all selected destinations are
included. The results are shown in Table. VII.

From the results, we observe that the greedy algorithm
performs well on ER-Graphs, but it is not robust on BA-
Graphs and AS-Graphs. The reason is related to the symmetry
of graph topologies. Due to the symmetry property of ER
graphs, when the number of selected destinations increases,
the energy costs of the greedy algorithm increase linearly and
the average weighted AoI decreases almost linearly. However,
the distribution of nodes’ degrees in BA-Graphs is uneven.

|V|
δgd 0.2 0.4 0.6 0.8 1.0

20
A 1.005 0.625 0.514 0.461 0.372
C 1.454 2.004 2.434 2.897 3.534

40
A 0.601 0.395 0.338 0.297 0.244
C 3.469 4.815 6.322 6.825 7.257

60
A 0.483 0.323 0.281 0.244 0.209
C 5.808 8.592 9.987 11.229 12.165

80
A 0.405 0.278 0.233 0.201 0.161
C 7.474 10.896 13.515 15.337 16.834

100
A 0.298 0.222 0.199 0.179 0.144
C 12.227 15.961 18.018 20.246 21.764

TABLE IV
GREEDY ALGORITHM ON ER-GRAPHS.

|V|
δgd 0.2 0.4 0.6 0.8 1.0

20
A 1.195 0.924 0.866 0.802 0.886
C 4.861 5.622 6.020 6.390 6.878

40
A 0.532 0.447 0.367 0.339 0.340
C 9.173 11.861 13.333 13.324 13.731

60
A 0.345 0.284 0.268 0.251 0.252
C 15.613 19.459 20.688 21.836 22.159

80
A 0.320 0.256 0.238 0.229 0.232
C 23.589 26.396 28.790 30.246 31.030

100
A 0.222 0.189 0.171 0.164 0.146
C 27.614 30.529 32.466 34.073 33.506

TABLE V
GREEDY ALGORITHM ON BA-GRAPHS.

|V|
δgd 0.2 0.4 0.6 0.8 1.0

20
A 0.877 0.499 0.382 0.320 0.241
C 1.181 1.969 2.600 3.131 4.252

40
A 0.529 0.426 0.427 0.412 0.410
C 9.553 11.355 12.869 13.377 13.858

60
A 0.316 0.198 0.157 0.156 0.138
C 9.464 12.184 12.780 13.729 15.055

80
A 0.212 0.150 0.134 0.126 0.114
C 20.456 23.360 25.242 26.365 27.450

100
A 0.153 0.114 0.101 0.098 0.095
C 23.309 27.815 30.474 32.825 33.707

TABLE VI
GREEDY ALGORITHM ON AS-GRAPHS.

|V|
DS ER BA AS

20
A 0.547 0.613 0.392
C 5.120 6.807 5.879

40
A 0.304 0.286 0.292
C 12.933 16.355 15.439

60
A 0.231 0.193 0.157
C 20.263 25.783 23.595

80
A 0.177 0.166 0.101
C 28.261 35.821 33.274

100
A 0.147 0.126 0.092
C 37.034 45.797 42.658

TABLE VII
RANDOM ALGORITHM ON ALL DATASETS.



|V|
DS ER BA AS

20
A 0.495 0.900 0.409
C 2.315 3.761 2.278
W 2 4 2

40
A 0.288 0.306 0.378
C 6.807 8.368 9.218
W 6 9 9

60
A 0.249 0.215 0.257
C 8.084 15.434 18.595
W 8 15 18

80
A 0.171 0.140 0.573
C 11.821 22.337 17.789
W 12 23 18

100
A 0.188 0.099 0.158
C 18.034 22.797 22.622
W 18 23 20

TABLE VIII
TGMS ALGORITHM

When the number of selected destinations increases, the
energy costs of the greedy algorithm hardly increase and the
decrease in the average weighted AoI is also not obvious. In a
real-world network, when the number of selected destinations
increases, the energy costs of the greedy algorithm increase
slowly. The decrease in the average weighted AoI is obvious
when the graph is small, but it is not obvious when the graph
is large.

For the random algorithm, it performs poorly on all
datasets. The reason is that the random algorithm does not
consider the network topology and node features. When the
graph is large, the random scheduler tends to select almost
all links, which leads to a large energy cost.

The results of TGMS are shown in Table VIII. We find
that TGMS can achieve a lower average weighted AoI than
the greedy algorithm, while the energy consumption is also
lower. When testing TGMS on other graph topologies, we
observe similar results, which exhibits the robustness of our
approach.

E. Insights of Reward Functions

Here we provide some insights into the reward functions
we adopted in our formulated MDPs. We start by calculating
the cumulative reward of M1:

R1 =

T∑
t=0

γt−1r1(st, at)

= r1(s0, a0) +

T∑
t=1

γt(q1(st)− q1(st−1))

γ=1
==== r1(s0, a0) + q1(sT )− q1(s0)

= −
∑
u∈Ut

ωuAu(T )− λ(C(TT )−W ),

(22)

where we set q1(s0) = r1(s0, a0) and assume the discount
factor γ = 1. Comparing the RHS of Eq. (22) with problem
DP, we observe that maximizing R1 is similar to solving
problem DP. The difference is that problem DP aims to min-

imize a long-term objective, which is naturally decomposed
as the reward function r1.

To understand the reward function ofM2, we first analyze
how much a multicast tree Tt can reduce the AoI of a
destination. Denote ∆Au(t, t+ hTt(u)) as the AoI reduction
of destination u during time [t, t+ hTt

(u)], we have:

∆Au(t, t+ hTt
(u))

= A+
u (t, t+ hTt

(u))−A−
u (t, t+ hTt

(u))

=

hTt (u)∑
k=0

(Au(t) + k)−

hTt (u)−1∑
k=0

(Au(t) + k) + hTt
(u)


= Au(t),

(23)
where A+

u (t, t+hTt
(u)) and A−

u (t, t+hTt
(u)) denotes the AoI

of destination u during time [t, t + hTt
(u)] before and after

the multicast tree Tt is generated, respectively. That means
whatever the multicast tree is, the AoI of a destination will be
reduced by Au(t) after hTt(u) time slots. Therefore, the mean
AoI reduction of a destination u during time [t, t + hTt

(u)]
is:

1

hTt
(u)

∆Au(t, t+ hTt
(u)) =

Au(t)

hTt
(u)

(24)

Then, we calculate the cumulative reward of M2 as:

R2 =

T∑
t=0

γt−1r2(st, at)

= r2(s0, a0) +

T∑
t=1

γt(q2(st)− q2(st−1))

γ=1
==== r2(s0, a0) + q2(sT )− q2(s0)

=
∑

u∈U ′
t∩VP

τ

ωuAu(t)

hPτ
(u)
− λ(C(Pτ )−W ).

(25)

Comparing Eq. (24) and the RHS of Eq. (25), we claim
that maximizing R2 is similar to maximizing the average
weighted AoI reduction of destinations U ′

t ∩ VP
τ during time

[t, t+hPτ
(u)]. Note that solely maximizing R2 may not equal

solving problem DP. However, by combining two MDPs, we
can obtain a solution that is close to the optimal solution of
problem DP.

F. Theorems and Proofs

In this section, we provide theorems and proofs for the
properties of our proposed algorithms. For the MDPM2, we
have the following Proposition:

Proposition 1. In M2, the partial solution Pτ is always a
multicast tree.

Proof. The tree generator repeatedly adds a node that has not
been chosen before, which means the node is connected to Pτ

with at most one link. Therefore, Pτ is acyclic. Additionally,
Pτ is connected due to the selection of neighbors, thus Pτ is
a connected graph. Therefore, Pτ is a tree.



For the proposed algorithm, we wonder how GAT influ-
ences the performance and the convergence property of our
model. We observe that the tree generator and the scheduler
have similar structures. Therefore, our main idea is to analyze
a model consisting of GAT layers and linear layers. For the
GAT defined as below:

ϕ(hi,hj) = aTLeakyReLU(W1(hi+hj)+W2ei,j), (26a)

αij =
exp(ϕ(hi,hj))∑

k∈Ni∪{i} exp(ϕ(hi,hk))
, (26b)

fGAT(hi,x) =
1

∥W1∥
(αii(W1hi +W3xi)

+
∑
j∈Ni

αij(W1hj +W3xj)),
(26c)

we have the following theorem:

Theorem 1. For any undirected graph G = {V, E}, given a
mapping fGAT defined in Eq. (26c), if the attention coefficients
αij are symmetric, i.e., αij = αji. Then fGAT(·,x) is a
contraction mapping for any initial node embeddings, i.e.:

d(fGAT(H,x), fGAT(H
′,x)) ≤ d(H,H′), (27)

where H = {h0,h1, . . . ,h|V|} is the matrix of node embed-
dings, d is a distance metric with respect to H, defined as
d(H,H′) = ∥

∑
i∈V(hi − h′

i)∥.

Proof. Let node embeddings H = {h0,h1, . . . ,h|V|} and
H′ = {h′

0,h
′
1, . . . ,h

′
|V|}. From Eq. (26c), we have:

d(fGAT(H,x), fGAT(H
′,x))

= ∥
∑
i∈V

(fGAT(hi,x)− fGAT(h
′
i,x))∥

= ∥
∑
i∈V

1

∥W1∥
(αii(W1hi +W3xi)

+
∑
j∈Ni

αij(W1hj +W3xj)− αii(W1h
′
i +W3xi)

−
∑
k∈Ni

αik(W1h
′
k +W3xk))∥

=
1

∥W1∥
∥
∑
i∈V

(αiiW1(hi − h′
i) +

∑
j∈Ni

αijW1hj

−
∑
k∈Ni

αikW1h
′
k∥

=
1

∥W1∥
∥W1

∑
i∈V

(αii(hi − h′
i) +

∑
k∈Di

αki(hi − h′
i))∥

αij=αji
=======

1

∥W1∥
∥W1

∑
i∈V

(αii +
∑
k∈Di

αik)(hi − h′
i)∥

=
1

∥W1∥
∥W1

∑
i∈V

(αii +
∑
j∈Ni

αij)(hi − h′
i)∥

≤ ∥
∑
i∈V

(hi − h′
i)∥ = d(H,H′).

(28)

Therefore, the mapping fGAT(·,x) is a contraction mapping.

We have some remarks on the above theorem: (a) Accord-
ing to Banach’s fixed-point theorem, the mapping fGAT(H,x)
has a unique fixed point for any initial node embeddings
H, meaning that the GAT can map the node features to a
stable state. (b) In our design, the GAT is used to lower the
dimension of node embeddings, which can be regarded as a
dimension reduction technique with the ability to capture the
importance of nodes. (c) We can view the output of GAT as a
new representation of the network state with noise, which can
be utilized for the subsequent linear layers. Specifically, let
H∗ be the fixed point of fGAT(H,x), we have sNoisy = H∗.
For simplicity, denote sN as the noisy state for the subsequent
linear neural networks.

G. Convergence of Algorithm 2

Based on the above analysis, we provide a convergence
theorem of Algorithm 2. We first introduce some assumptions
as follows.

Assumption 1. Suppose all reward functions r and the
parameterized policy πθ satisfy the following conditions:
(a) r is bounded, i.e.:

−R ≤ r(s, a) ≤ R,∀(s, a) ∈ S ×A. (29)

(b) ∇ log πθ(a|s) is Lθ-Lipschitz and bounded 5, i.e.:

∥∇ log πθ1
(a|s)−∇ log πθ2

(a|s)∥ ≤ Lθ∥θ1 − θ2∥, (30)

∥∇ log πθ(a|s)∥ ≤ Bθ,∀θ1, θ2 ∈ Rd, (31)

where Lθ, Bθ are constants.

Assumption 2. Suppose the critic satisfies the following
condition:
(a) The critic is approximated by a linear function Vω(s) =
ϕ(s)⊤ω, where ϕ(s) is the feature vector of state s and ω is
the parameter of the critic.
(b) The feature mapping ϕ(s) has a bounded norm |ϕ(s)| ≤ 1.
(c) Vω(s) is bounded, i.e.: |Vω(s)| ≤ Bω , where Bω is a
constant.

Remark: The assumption 2 holds because we divide the
critic into two parts: the graph attention network and the
linear function, where the former is proved to be a contraction
mapping in theorem 1.

Then we have the following convergence theorem.

Theorem 2 (Convergence of Algorithm 2). Suppose Assum-
tions 1 and 2 holds, given the sequence of critic below:

E(t) = 2

t

t∑
k=τ

E[∥ω∗ − ωk∥2]. (32)

If it is bounded, then we have the following convergence:

min
τ≤k≤t

E[∥∇J(θk)∥2] = O(
E(t)
τ

) +O( 1

τσ
) (33)

5The gradient of the policy is bounded by the gradient clipping technique.



Here we provide a proof of the above theorem. Consider
the following state-value function:

vπθ
(s) = E at∼πθ(·|st),

st+1∼Pπθ
(·|st,at)

[

∞∑
t=0

γtr(st, at)|s0 = s], (34)

where Pπθ
(·|st, at) is the transition probability under policy

πθ. Suppose we aim to maximize the expected state value of
the initial state s0. The objective function can be denoted as:

J(θ) := vπθ
(s0). (35)

Obviously, we have |J(θ)| < R
1−γ . According to the policy

gradient theorem [44], the expected value of ∇J(θ) can be
written as:

∇J(θ) = Es∼µθ,a∼πθ
[Aπθ

(s, a)∇ log πθ(a|s)], (36)

where Aπθ
(s, a) = r(s, a) − vπθ

(s, a) represents the ad-
vantage value function under policy πθ. Notice that vπθ

is the true value function under policy πθ, which is un-
known in practice. Therefore, as Assumption 2 states, we
consider a linear-approximated critic. That means we can
obtain an approximated advantage value function Ât(st, at) =
r(st, at)−Vω(st), where ω is the parameter of the critic. Then
the gradient of J(θ) can be approximated by:

∇Ĵ(θ) = Es∼µθ,a∼πθ
[Âπθ

(s, a)∇ log πθ(a|s)], (37)

and ∇Ĵ(θ) is bounded as follows:

Lemma 2 (Bound of Approximated Policy Gradient). Under
Assumption 1 and 2, the policy gradient ∇Ĵ(θ) is bounded,
i.e.:

∥∇Ĵ(θ)∥ ≤ (R+Bω)Bθ. (38)

Proof: The approximated advantage value function Ât(st, at)
can be written as:

Ât(st, at) = r(st, at)− ϕ(st)
⊤ω

≤ |r(st, at)|+ |ϕ(st)⊤ω| ≤ R+Bω,
(39)

which implies:

∥Ât(st, at)∇ log πθ(at|st)∥ ≤ (R+Bω)Bθ. (40)

□

Now we analyze the approximation error of ∇Ĵ(θ). First,
introduce the following lemma:

Lemma 3 (Lipschitz-Continuity of Policy Gradient [45]).
Under Assumption 1, the policy gradient ∇J(θ) is Lipschitz
continuous with some constant L > 0, i.e.:

∥∇J(θ1)−∇J(θ2)∥ ≤ L∥θ1 − θ2∥. (41)

According to Lemma 3 and Eq. (1.2.19) from [46], we
have:

J(θ2) ≥ J(θ1) + ⟨∇J(θ1),θ2 − θ1⟩ −
L

2
∥θ1 − θ2∥2, (42)

where ⟨·, ·⟩ denotes the dot product of two vectors. The actor
of Algorithm 2 is updated by:

θa
t+1 = θa

t + αtÂt(st, at)∇ log πθt
(at|st), (43)

Substitute (43) into (42) yields:

J(θt+1) ≥ J(θt) + αt ⟨∇J(θt),∇Ĵ(θt)⟩ −
Lα2

t

2
∥∇Ĵ(θt)∥2.

(44)
Here, we focus on the second term on the right-hand side of
the equation above, which can be decomposited as:

⟨∇J(θt),∇Ĵ(θt)⟩
= ⟨∇J(θt), ϕ(st)⊤(ω∗ − ωt)∇ log πθt

(at|st)⟩
+ ⟨∇J(θt), (v(st)− ϕ(st)

⊤ω∗)∇ log πθt(at|st)⟩
+ ⟨∇J(θt),∇Ĵ(θt)−∇J(θt)⟩+ ⟨∇J(θt),∇J(θt)⟩

(45)
We can view the first term on the RHS of (45) as the
error of the critic, the second term as the error from linear
function approximation of the critic and the third term as
the Markovian noise. Therefore, the above equation can be
rewritten as:

⟨∇J(θt),∇Ĵ(θt)⟩
= ΦEC(θt) + ΦLFA(θt) + ΦM (θt) + ∥∇J(θt)∥2,

(46)

We will analyze the bounds of these terms in the following.
First, ΦEC(θt) measures the distance between the optimal
paramater ω∗ and the current parameter ωt, which is bounded
as follows:

Lemma 4 (Error of Critic). Given Assumption 2, we have:

E[ΦEC(θt)] ≥ −Bθ

√
E[∥∇J(θt)∥2]

√
E[∥ω∗ − ωt∥2]

(47)
Proof: From Cauchy inequality and Eq. (31), we have:

⟨∇J(θt), ϕ(st)⊤(ω∗ − ωt)∇ log πθt
(at|st)⟩

≥ −∥∇J(θt)∥∥ϕ(st)⊤(ω∗ − ωt)∥∥∇ log πθt(at|st)∥
≥ −∥∇J(θt)∥∥ω∗ − ωt∥∥∇ log πθt(at|st)∥
≥ −Bθ∥∇J(θt)∥∥ω∗ − ωt∥.

(48)

Taking the expectations of both sides yields the result. □

Then we analyze the approximation error between the
optimal parameter ω∗ and the parameter ωt. Suppose there
is an approximation error bound ϵv > 0 that ∥E[ϕ(s)⊤ω∗ −
v(s)]∥ ≤ ϵv , we have:

Lemma 5 (Error of Linear Function Approximation).

E[ΦLFA(θt)] ≥ −ϵvBθE[∥∇J(θt)∥]. (49)

Proof: From Cauchy inequality, we have:

⟨∇J(θt), (v(st)− ϕ(st)
⊤ω∗)∇ log πθt

(at|st)⟩
≥ −∥∇J(θt)∥∥v(st)− ϕ(st)

⊤ω∗∥∥∇ log πθt
(at|st)∥

≥ −ϵvBθ∥∇J(θt)∥.
(50)

Taking the expectations of both sides yields the result. □



Suppose the Markovian noise is bounded, i.e., there exists
ϵm > 0 that −ϵm ≤ ΦM (θt) ≤ ϵm. Substitute the inequalities
above into Eq. (46) yields:

E[⟨∇J(θt),∇Ĵ(θt)⟩]
≥ −Bθ

√
E[∥∇J(θt)∥2]

√
E[∥ω∗ − ωt∥2]

− ϵvBθE[∥∇J(θt)∥]− ϵm + E[∥∇J(θt)∥2].
(51)

Substitute Eq. (51) into Eq. (44) and take the expectation of
both sides yields:

E[J(θt+1)− J(θt)]

≥ −αtBθ

√
E[∥∇J(θt)∥2]

√
E[∥ω∗ − ωt∥2]

− αtϵvE[∥∇J(θt)∥]− αtϵm + αtE[∥∇J(θt)∥2]−
Lα2

tB
2
j

2
,

(52)
where Bj = (R + Bω)Bθ. Rearrange the terms and divide
both sides by αt yields:

(E∥∇J(θt)∥ −
ϵv
2
)2 ≤ 1

αt
E[J(θt+1)− J(θt)]

+Bθ

√
E[∥∇J(θt)∥2]

√
E[∥ω∗ − ωt∥2] +

LαtB
2
j

2

+ ϵm +
ϵ2v
4
.

(53)

Summing both sides over k from τ to t, we have:
t∑

k=τ

(E∥∇J(θk)∥ −
ϵv
2
)2 ≤

t∑
k=τ

1

αk
E[J(θk+1)− J(θk)]

+Bθ

t∑
k=τ

√
E[∥∇J(θk)∥2]

√
E[∥ω∗ − ωk∥2]

+
LB2

j

2

t∑
k=τ

αk + (t− τ + 1)(ϵm +
ϵ2v
4
).

(54)
For the first term of RHS of Eq. (54), we have:

t∑
k=τ

1

αt
E[J(θk+1)− J(θk)]

=

t−1∑
k=τ

(
1

αk
− 1

αk+1
)E[J(θk+1)]−

1

ατ
E[J(θτ )]

+
1

αt
E[J(θt+1)]

≤
t−1∑
k=τ

(
1

αk
− 1

αk+1
)

R

1− γ
+

1

ατ

R

1− γ
+

1

αt

R

1− γ

=
2R

ατ (1− γ)

(55)

Choose αt = cα/(1 + t)σ and substitute it into the above
equation yields:

LB2
j

2

t∑
k=τ

αk ≤
LB2

j

2

t−τ∑
k=0

αk =
LB2

j cα

2

t−τ∑
k=0

1

(1 + k)σ

≤
LB2

j cα

2

∫ t−τ+1

0

x−σdx ≤
LB2

j cα

2(1− σ)
(t− τ + 1)1−σ

(56)

Substitute the above two inequalities into (54) and divide both
sides by t− τ + 1, we have:

1

t− τ + 1

t∑
k=τ

(E∥∇J(θk)∥ −
ϵv
2
)2

≤ Bθ

t− τ + 1

t∑
k=τ

√
E[∥∇J(θk)∥2]

√
E[∥ω∗ − ωk∥2]

+
2R

ατ (1− γ)(t− τ + 1)
+

LB2
j cα

2(1− σ)

1

(t− τ + 1)σ

+ ϵm +
ϵ2v
4
.

(57)

Assume t > 2τ − 1, two terms on the RHS of Eq. (57) can
be bounded as follows:

2R

ατ (1− γ)(t− τ + 1)
=

2cαR

(1 + τ)σ(t− τ + 1)
≤ 2cαR

(1 + τ)στ
.

(58)
LB2

j cα

2(1− σ)

1

(t− τ + 1)σ
≤

LB2
j cα

2(1− σ)

1

τσ
(59)

Here, we analyze the first term on the RHS of Eq. (57). By
Cauchy-Schwarz inequality, we have:

Bθ

t− τ + 1

t∑
k=τ

√
E[∥∇J(θk)∥2]

√
E[∥ω∗ − ωk∥2]

≤ Bθ

t− τ + 1

√√√√ t∑
k=τ

E[∥∇J(θk)∥2]

√√√√ t∑
k=τ

E[∥ω∗ − ωk∥2]

(60)
Assume the bound of approximation error of the critic ϵv
satisfies ϵv < 2E∥∇J(θk)∥, substitute it into LHS of Eq.
(57) yields:

1

t− τ + 1

t∑
k=τ

(E∥∇J(θk)∥ −
ϵv
2
)2

≤ 1

t− τ + 1

t∑
k=τ

E∥∇J(θk)∥2
(61)

Denote X(t) := 1/(t− τ + 1)
∑t

k=τ E[∥∇J(θk)∥2] and
Y (t) := 1/(t− τ + 1)∑t

k=τ E[∥ω∗−ωk∥2], put the above inequalities into Eq. (57)
yields:

X(t) ≤ 2Bθ

√
X(t)

√
Y (t) +O( 1

τσ
), (62)

which is equivalent to:

(
√

X(t)−Bθ

√
Y (t))2 ≤ O( 1

τσ
) +B2

θY (t). (63)

According to the monotonicity of the square root function,
we have: √

X(t) ≤
√
O( 1

τσ
) + 2Bθ

√
Y (t). (64)

Note that if A < B + C and A, B, C are non-negative, then
A2 ≤ B2 + C2. Therefore:

X(t) ≤ O( 1

τσ
) + 4B2

θY (t) (65)



For Y (t), we have:

Y (t) :=
1

(t− τ + 1)

t∑
k=τ

E[∥ω∗ − ωk∥2]

≤ 2

t

t∑
k=τ

E[∥ω∗ − ωk∥2]
(66)

Finally, substitute the above inequalities into Eq. (57) yields:

min
τ≤k≤t

E[∥∇J(θk)∥2] ≤
1

t− τ + 1

t∑
k=τ

E[∥∇J(θk)∥2]

≤ Bθ

t− τ + 1
2BθY (t) +

2cαR

(1 + τ)σ(t− τ + 1)
+

LB2
j cα

2(1− σ)

1

τσ
+ ϵm +

ϵ2v
4

= O(E(t)
τ

) +O( 1

τσ
)

(67)

The proof is completed. □
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