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Spectral Kernels and Holomorphic Morse Inequalities
for Sequence of Line Bundles

Yueh-Lin Chiang

ABSTRACT. Given a sequence of Hermitian holomorphic line bundles (L, h;) over a
complex manifold M which may not be compact, we generalize the scaling method in
to study the asymptotic behavior of the Bergman kernels and spectral kernels with
respect to the space of global holomorphic sections of L;, with (0, ¢)-forms. We derive
the leading term of the Bergman and spectral kernels under the local convergence as-
sumption in the sequence of Chern curvatures c; (L, hy,), inspired by [6]. The manifold
M may be non-Kahler and ¢;(Lg, hy) may be negative or degenerate. Moreover, we
establish the Lj-asymptotic version of Demailly’s holomorphic Morse inequalities as an

application to compact complex manifolds.
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1. Introduction

For a holomorphic Hermitian line bundle (L, h’) over a Hermitian complex manifold
M, the asymptotic behavior of the Bergman kernel for high tensor power L* := L% has
been extensively studied for a long time (cf.[[],[21,[31,[51,[71,091,01131,016]). In [5],
the author adopted a simple scaling method to study the large & behavior of Bergman
and spectral kernels of L* with (0, ¢)-forms and obtain the leading term. In this paper,
inspired by the work of Coman, Lu, Ma, and Marinescu [6], we generalize the method
in [5] and consider a more general context, a sequence of line bundles. That is, we
must replace the line bundles {L*},cy with a sequence of line bundles {L; }ren.

The scaling method has been used in many different geometric objects. In CR ge-
ometry, Hsiao and Zhu [[14] established the asymptotic behavior of the heat kernel for
the Kohn Laplacian and proved the Morse inequalities of the CR manifolds. Similarly,
in real geometry, Chen [4] employed this technique to study the heat kernel of real
manifolds and provided a new proof of the classical Morse inequalities. As mentioned
above, the author obtained the semi-classical asymptotic of Bergman and spectral
kernels in complex geometry. This technique is relatively simple and does not require
complicated analytical tools. For this reason, various geometric objects can be studied
using this technique.

In the present paper, we establish the local uniform estimate for the scaled Bergman
and spectral kernels in Chapter 2l Moreover, the outcome is also valid for Schwartz
kernels with respect to bounded operators of the type defined in (2.14). In Section 3.1+
Section 3.3 we prove the local convergence of the scaled Bergman and spectral kernels,
which is the main result of this paper. In Section [3.4], we offer a more straightforward
idea to prove the asymptotic of Bergman kernel by the Heat kernel method under the
global large spectral gap condition (cf. Assumption[3.1]).

1.1. Set-up and the main results. Let {(Ly, h;)};>, be a sequence of Hermitian
holomorphic line bundles over a Hermitian complex manifold (M, w) where w is a pos-
itive Hermitian (1, 1)-form. For an open set U C M, denote by Q%¢(U, L;) the space of
smooth L;-valued (0, ¢)-forms over U and by Q29(U, L;,) the subspace of Q%4(U, L) con-
sisting of elements with compact support in U. Suppose s, is a local holomorphic non-
vanishing section of L, then we can relate s, to a weight function ¢, with |s;|,, = e™2?*.
The Chern curvature form ¢, (L, hy) is locally given by the (1, 1)-form:

n 2
(1.1) (L) = ——— 200, = L 3 L

i >J
(2m) T = 020077 dz Az
i,7=1

Here, n is the complex dimension of M. There is a fibrewise Hermitian inner product
(| )w,n, OM TN @ L, given by

(1.2) (M ® Sk|n2 @ Sk)wn, = <771|n2>we_2¢’“ where 7; € Qo’q(M).

We also denote (-|-).¢, := (:|-)w,n, for convenience. Let L2 , (U, T*®9M ® L) be the
completion of QY%(U, L;) with respect to the inner product (-|-)u.¢, = [;;(:[")w,,dVer
Here, dV, is the volume form 7. Denote || - ||, as the induced norm. Next, the Lj-
valued Cauchy-Riemann operator is denoted by 9} : Q%4(M, L;) — Q%4+1(M, L), and
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by 07" : Q%4(M, L) — Q*9~1(M, L;,) the formal adjoint of 7" with respect to (-|-),.4, -
If the manifold is compact, we denote
39 . O0,q q+1
%O,q(M’ Lk) — Kel:ak 1 Q (Ma Lk) — Q (M, Lk) ’
Rang 09=1 : QOa=1( M, L) — QO%4(M, Ly)
which is the Dolbeault cohomology. We now fix a point p € M and make the assumption
inspired by [6].

AssuMPTION 1.1. There exists an open set D containing p such that
Cilei(Ly,hy) = R+0(1) on D inthe ¥*-topology,

where (Y is a sequence of real numbers with C, — oco. Here, R is a Hermitian (1, 1)-
form, which may not be positive or non-degenerate.

Now, we identify the form R with the Hermitian matrix R € €°°(D, End(T"9 M)
such that for each U,V € Tz(l’O)M, ze€ M,

(1.3) (R(z)U|V),, = (R(2),U A V),

where (-, -) is the natural pairing of 7%V M and T*Y) M. We introduce the main appli-
cation of this paper and start by the notation of ¢-index set.

DEFINITION 1.1. Denote p € M(q) if f%(p) is non-degenerate at p and has exactly ¢
negative eigenvalues and n — ¢ positive eigenvalues. Also, we define

M(<q):= |J M@)cMm
]:07 ,q
THEOREM 1.1 (L,-version holomorphic Morse inequalities). Let (M, w) be a compact
complex manifold and (Ly, hy) be sequence of Hermitian holomorphic line bundles over M.
If there exists a sequence C}, — oo such that Assumption [L1] holds for D = M, then we
have the following asymptotic estimates as k — oo:

e (Weakly Morse inequality)

Ck)n/ R
— —\dV,, + o((Cy)"™).
32 ) o etV + ol

™

(1.4) dim #%(M, L) < (

Moreover, if the spectral gap condition ( which will be defined later in Def [L.2)
holds on M, the equality above holds.
e (Strong Morse inequality)

I . . Cr\" R"
1.5 —1)7 dim %7 (M, Ly) < <—’“) / <—) dv, C)™).
(1.5) ;O< Pdim M L) < \ g ) [ () Vet el@)")

If the spectral gap condition (cf. Def[L.2) holds on M, then the equality holds.
e (Asymptotic Riemann-Roch theorem) In the case q = n, the equality in (I.5) holds

and hence
(1.6) zn:(—l)j dim %M, L) = % n/ E Vv, + o((Cy)")
‘ 5=0 o 2m M \W" N o

Here, note that 2(z) = 0if R(z) is degenerate, and M (< n) = {z € M; R(z) is non-degenerate}.
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We now formulate the main results of this paper. Define the Kodaira Laplacian
Of : Dom O € L2, (M, T"YM @ Ly) — L2, , (M, T M @ Ly),

which is the Gaffney extension (cf.[17] or [2.9). For any non-negative constant ¢ > 0,
denote
PE (z,w) € €% (M x M, (T""YM @ Ly) B (T M ® L))

as the spectral kernel which is the Schwartz kernel of the spectral projection
P =Ty (Of): L2, (M, T M & LF) — &I__ = Rang 1jq(0}),

where 1 ((J}) is the functional calculus of the indicator function 1, with respect
to the Kodaira Laplacain O0¢ (cf.[3, Chapter 2] or (2I3)). Here, (T*"9M ® L) X
(79 )M ® Ly) is the vector bundle over M x M whose fiber at (z,w) € M x M is the
space of linear transformation from 7200 @ L | to T 0D e Ly, |.. Moreover, the
projection
Pli= Pl L2, (M, T°"YM @ L) — Ker O0f,

at the lowest level ¢ = 0 is called the Bergman projection. The Bergman kernel P!(z, w) :=
B, (z,w) is the Schwartz kernel of P/. From now on, we fix a point p € M and accept

the assumption[I.Tl We can take D as a complex chart centered on p such that
(1.7) w(0)=v=1Y dz' Adz' ; R(0)=> 2X,dz' AdZ'.
=1 =1

Note that {),,} are the eigenvalues of R(p) defined in (I.3). In the case p € M(q), we
assume \;, < Ofori =1,--- ,gand \;, > 0 fori = ¢+ 1,--- ,n. Next, we take the
sequence of non-vanishing holomorphic sections s; of L; over D defined by (2.2). We
can localize the spectral kernel P/ (z,w) in D x D with respect to s, by writing P}/ .(z, w)
as

0.8 PE(2,w) = PE (2, w)su(2) © (su(w))"
Here, P{"}(z,w) is an element in (D x D, T*©9 M RT*9 M). Moreover, We denote
P (z,w) = PBl;(z,w) for the Bergman kernel case.

DEFINITION 1.2 (local small spectral gap condition). For any ¢ € {0,--- ,n} and an
open set D C M, we say D has local small spectral gap condition with respect to {C}}
if there exist d € N and C > 0 such that for all large enough £,

(1.9) (I = PHull? g0 < CC)(Ofu | w),,, , forall ue (D, Ly).
The main theorems describe the asymptotic behavior of scaled spectral kernels of

forms with energy lower than (C},)~¢ for some d € N. First, we state the case p ¢ M(q):

THEOREM 1.2 (main theorem for vanishing case). Let d € N. If p ¢ M (q), then
z W

V. VG,
Moreover, for the Bergman kernel case (Cy,) " P>*(z/+/Ck, w/~+/C}), we also have the prop-
erty of vanishing.

(1.10) (C) P,y -al

) — 0, in ¢"°-topology.

Next, we state the main theorem for the case p € M(q).
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THEOREM 1.3 (main theorem for non-vanishing case). Let d € N. If p € M(q), then
the scaled kernel (Cy) "P!? (2/v/Ck,w/+/Cy) converges to

k,(Cy)=
‘Alp..~>\np| Q(Zq 1|>\_p|—i i+zn Aipl i—i_zn [Aipll i‘2 1 . a a
L S———C i=117,pl2W i=q+1 [Nipl2TW i=1 1Ai,p|[|W dz*N- - -NdZ? — A AN—),
i ! Az A AdEB (G A+ A
: : . 0 :
in ¢°°-topology. Here, we identify (dz' A --- N dz?) @ (=— A --- A ——) as a section of
ow? ow1

T+ X T+0.9C" oyer C" deﬁned by

0 0
n (dz A AN dZY) ® n(ﬁ ARV @) for all n e T*O9Cn,

Moreover, if the local small spectral gap condition (cf. Def. [[.2) holds, the scaled Bergman
kernel (Cy) " P (2/v/Cy, w/+/C}) has the same asymptotic.

We next discuss the applications of the main theorems. Note that
BEp,p) = PL(2/V O w/V Cr) | (zw)=(0,0) -

Since Ly ® (Ly)* = C, we can identify P/ (p,p) with an element of End(7, 09 0r) and
observe that

Fo(p.p) = B (p.p).
By the main theorems,

C\" | R"
PI?,(Ck)*d(p’p) = (2_;) _(p)

wn
If spectral gap condition (cf. Def. holds, we also have

Pl(p.p) = (g—;) : (p)

We get an asymptotic of the index density:

i , 0 5 i
Larg(P)( A2 A+ AdZ) @ (5 Ao A 5] +0((Ch)"):

L

wn ' ILM(q)(p)(dzl A NdZ) @ (i ARERERA i) +0((Cr)").

ow' w1

C\" | R™
(1.11) TrP]i(Ck)fd(p,p) = (2—;) F(p)' L) (p) +o((Cr)™), as k — oo.
Also, if the spectral gap condition holds,
. Ci\" | R" N
(1.12) TrP(p,p) = o F@) “La)(p) +0((Cr)"), ask — oo.

To apply the results to index theory, we need the local uniform bounds:

THEOREM 1.4 (Corollary [2.7] Section 2.5]). For any compact set K C D, there exists
a constant C; independent of k such that

(1.13) sup ‘(Ck)_”Pg(Ck),N(z, z)‘ < Ck.
z€K ’

Also, the result holds for the Bergman kernel case.

Combining (I.I1I), (I.13), and dominated convergence theorem, we have the fol-
lowing result:

COROLLARY 1.5 (Local holomorphic Morse inequalities). Fix d € N. Let (M,w) be a
complex manifold, and (L, hy) be a sequence of Hermitian holomorphic line bundles over
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M. If there exists a sequence C}, — oo such that Assumption [I 1] holds on an open set D ,
then for any compact set K C V, we have

Cp\" R" "
/ Trqu(C y-a(z,2)dVi(2) = <%) /K ‘F‘ “LaggdVi + o((Cy)"), as k — oo.

Moreover, the equality holds for [, TrP/(z, z)dV,,(z) if the spectral gap condition (Def. [L.2)
holds on D.

PROOF OF THEOREM [L.1]. We apply the result to compact complex manifolds. By the
Hodge theorem,
dim s#%(M, L) = dim Ker .

We obtain the formula

(1.14) dim "M, L) = / TrPY(z, 2)dV,,(2)

Moreover, :

(1.15) dim 27" (M, Ly,) < dim &) /M TP o))-alz,2)dVi(2).
If the spectral gap condition (Def. holds for D = M, we observe that
(1.16) Kerd! = é",f<(c - for a large enough d € N.

This means that the first equality in (I.I5) holds. To see the weak Morse inequality

(T.4), we apply Corollary[I.5] and identities (1.14),(L.135), and (1.16). Next, note that
R™ R"
—1)9— = — f M(q).
(=1)1 Iwn (p)] o (p), for pe M(q)
To prove the strong Morse inequality (1.5), we can use the linear algebra result from
Demailly [11, Lemma 4.2] or [15, Lemma 3.2.12] and have

q q

D (=1 dim % (M, L) <> (=1 dim & _ )

=0 =0
By considering the complex (&} (- or) and combining the identities (LI5) and (1.16),
we obtain the strong holomorphic Morse inequality. Finally, by the fact that

i . - i
0—>éa£<c)d/KerDO—>éakl< /Keer—> == &l /KerD”—>0

is an exact sequence, we can deduce

n

Z(_l)q dim (@@kqé(ck)_d/Ker DZ) = 0.

q=0
Hence,
q n
D (=1 dim A (M, Ly) = (1) dim &0 = / TrPY ¢ )-a(2, 2)dVo(2).
=0 q=0 M
By the main theorems, we derive the asymptotic Riemann-Roch theorem (I.6). O

We refer readers to the book [15] of X. Ma and G. Marinescu for a comprehensive
study of Bergman kernel and holomorphic Morse inequalities.
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2. Localization and scaling method

2.1. Notations. Let (M,w) be a complex manifold with dim¢cM = n where w is a
positive Hermitian (1, 1)-form. w induces a fibrewise Hermitian inner product (-|-),, on
the vector bundle of (0, q)-forms, 7*(>9 M. For an open set U C M, denote by € (U)
the space of smooth functions on U and by ¢>°(U) the subspace of ¥>°(U) consisting
of elements with compact support in U. Let Q%4(U) be the space of smooth (0, ¢)-forms
over U and Q%9(U) be the subspace of Q%¢(U) whose elements have compact support in
U. Let L2 (U, T*©9 M) be the completion of Q%(U) with respect to the inner product
(|)ww = [ (|)wdV.,, where dV, := w"/n! is the volume form. If A is a bounded linear
map from L2 (U, T*9 M) to itself, denote || A, as the operator norm.

For a holomorphic Hermitian line bundle (L, ") over M, let s be a local holomor-
phic trivializing section of L over an open subset U of M. The Hermitian metric h”
locally corresponds to a weight function ¢ : U — R such that [s|?, = e **. Denote
by (:])¢ = (:|-)pz the fibrewise Hermitian inner product h” on L for convenience.
Let (-|'), be the fibrewise Hermitian inner product of L @ 79 )M induced by h*
and w ( cf. [L2). Let Q%(U, L) be the space of L-valued smooth (0, ¢)-forms with
domain U and Q%4(U, L) be the subspace of Q%(U, L) whose elements have compact
support in U. Define L2 ,(U, T**9M ® L) to be the completion of Q0¢(U, L) with re-
spect to the inner product (-|-)u 40 = [;;(:[)wedV.-. If Ais a bounded linear map from
L2 (U, T+©9)M ® L) to itself, denote || A, 4 as the operator norm. Sometimes, we
may drop U and write || - ||,.4 := || - ||w.,0 if there is no risk of ambiguity.

For a holomorphic complex chart ¢ : D € M — (D) C C", we locally have
the complex coordinate z = (z!,---,2"). We denote Ny := N U {0} and adopt the
standard notation 2 for multi-index o = (v, ,a,) € (Np)". We say that a multi-
index I = (iy,--- ,i,) € (Ny)? is strictly increasing if 1 < i; < --- < i, < n and denote
dzl :=dzv N+ NdZ. A (0, g)-form u on M can be locally written as

!/
uly= Z ur(z)dz",
H1=q
where >’ means that the summation is performed only over strictly increasing multi-
indices. We denote by dm the standard Lebesgue measure on C". For r > 0, we denote
B(r) := {z € C"; |z| < r} to be the open ball centered at 0 € C" with radius r.

2.2. Localization. Recall that we fix a point p € M and make Assumption [L.1l To
localize the problem, we take D as a holomorphic complex chart ¢ : D — (D) C C"
such that ¢(p) = 0 and

(2.1) w(0)=V-1) d Adz' ; R(0)=) 2\dz' AdZ.
i=1 =1

Without loss of generality, we may assume that D is pseudoconvex, ¢(D) is convex and
identify D with (D) and p with 0 by abuse of notation. We now construct a sequence
of non-vanishing holomorphic sections of L, over D by the approach in [6, Lemma 2.1].
Let o}, be the non-vanishing section of L, — D that is parallel with respect to the Chern
connenction VZ* along the segments {t -0+ (1 —¢) - q | t € [0,1]} for all ¢ € D. Let
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I',, be the connection form of V** with respect to 0. That is, Vo, = T, ® 0. Let
(VEx)%1 be the (0, 1)-part of the Chern connection. We have (VL#)%! = § where 0 is the
standard Cauchy-Riemann operator. We see

=0 ((VLk)O’lak) = (0(I's,)"") @ o) — (L)' A (T)" @ 0 = O(Iy,) ! = 0.

By the d-Poincaré lemma, there exist functions f, € ¢>=(V) such that df, = (I, )"".
Define

Sy = e Tray,.
Note that 95, = e~/ ((I',,)*' — (V*)%!) 64, = 0 which means 3, are holomorphic sec-
tions. Next, we restrict the domain V' of 5, to an open ball and assume B(1) C V for
convenience. Let ¢, be the weight function of §,. By multiplying a constant on §;, we
may assume ¢ (0) = 0 and have the expansion:

=3 (L= + 20

=1
n 2"’ 2~ 2~
o > ( 0k ()12 + %(O)Z%j + M(O)zizﬂ) + Ou(|2).

0zt077

ij=1
We denote Oy, as the k-dependent big-O notation, which means that the values of the
constants in the big-O estimates depend on the parameter k. Set

Fi(z) = 2 Z 822823 E

=1 2,7=1

which are holomorphic functions and let
(2.2) sk = e Tkg,.
In this way, we denote by ¢, the weight functions of s, and get

=3 M2 @ + Onll2?),

ij=1

1 2
where \;; ; := o 88,22223 (0). By Assumption [I.1] we observe that
{)\kij = Ck(52>\ -+ €kyi,j where €kyij — O(Ck);
Ox(l2*) = CLO(|2*).

Here, ¢, ; is a sequence of numbers which satisfy ¢ ; ;C, ' — 0. We now define

n
=D AP
=1

and then we can write

(2.3) gbk(z) = quf)o(z) + Z €k7i7j2i2j + CkO(|Z|3) where €kij = O(Ck)

i,j=1
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2.3. Scaling method. To begin with, we define the scaled metric ¢ and scaled
Hermitian form w) which are defined on B(/C}) C C" by

Siw(2) :=¢k<¢%€> and  wgy(z) = w W)

respectively. Denote by wy the standard Hermitian form /-1  dz" A dz* on C". By
the identity (2.3) and the fact that w(0) = wy(0), we have the property:

PROPOSITION 2.1 (convergence of scaled metrics).
(2.4) by — po and  wgy — wo  in €7-topology.

The convergent rates in (2.4) smoothly depend on the point p chosen before, since ¢ and w
are smooth on the manifold M.

Inspired by this fact, we define the scaled line bundles

Ly — B(/Cy)

which are trivial line bundles with trivializing holomorphic sections
z

= si(—==) : B(\/C Ly ~ L.

S(k)(z> Sk(\/c—k) ( k) — L (k)
The scaled line bundle has a scaled metric induced by A ). That is,
(s (2) |50 (2)) gy = (50 (2)IS01) (2) ) e, = €720,

We have a fibrewise inner product (-|-)u,, .4, on the vector bundle 7*9C" © L, over
B(y/C}) induced by scaled metric A and scaled Hermitian form w;). That is,

<771 & S(k) |772 ® S(k)>w(k)7¢(k) (Z> = <771 (Z)\772(2)%(;@)67%(“@)7
for all n; € Q%4(B(\/Cy)). By changing variables, we have the unitary identifications:
(2.5) L4, (B(), T"OOM @ L) = L2, |, (B(V/Cy), T"IC" @ L) by
N R Sk <> C'k_n/Qn(z/\/Ck) ® Sk,

and
(2.6) L2(B(1), T*M) = 12, (B(\/Cy), T**0C") by

0 Cn(z/V/C).
Moreover, there are unitary identifications:
(2.7) L2, (B(1),T""9M @ Ly,) = L2(B(1), T M) by

N s e %,

and
28) L0, (BOOD),TOVC" @ Lyy) = L, (B(/C). T+ C") by

1N & Sk <> e"b(k)n.

The four unitary maps introduced above form a commute diagram.
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2.4. Scaled Laplacians and the elliptic estimates. The [,-valued Cauchy-Riemann
operator is denoted by

Ot : Domd} C L2 , (M, T VM @ Ly) — L2 , (M, T* VM & Ly),
where Dom 9} := {u € L2 , (M, T*"OM @ Ly); Ofu € L2, , (M, T M @ L) }. Denote
O : Domdf* C L2 5 (M, T*M @ Ly) — L2 , (M, TV @ Ly)
as the adjoint of 9¢ " with respect to (-|-),.4,. The Kodaira Laplacian [I{ is defined by
Of = o0l +07 190" : Dom O € L2, (M, T M®Ly) — L2, (M, 7"V M®Ly).
This is the Gaffney extension of [J; where Dom [ is given by (cf.[17])
(2.9) Domf := {u € Dom d? N Dom I¢* | O%u € Dom JP* and I%*u € Dom I '}.

By the identification (2.7), we can translate differential operators acting on sections
of T~C9M ® Ly, |p) into operators acting on sections of 79 Al |p;). Define the
localized Cauchy-Riemann operator  , : Q*¢(B(1)) — Q%¢*!(B(1)) such that

0p(n @ si) = e (ne™ %) @ sy,
Let 9} - Q%(B(1)) — Q%~1(B(1)) be the operator such that
" (n @ s) = €™ (e ™) ® sp.

Since (Z.7) is unitary, we see that 9}, is the formal adjoint of 9] ; with respect to (--)..
Denote by 9 the standard Cauchy-Riemann operator acting on smooth sections of (0, ¢)-
forms and by 9%* the formal adjoint of 9 with respect to (-|-),,. We have
Oo=0"+ ) A 5 O = 05" + ((Der)N)L,
where ((0¢y)A)? is the fibrewise adjoint of the wedge operator (J¢;)A : Q%11 — Q04
with respect to (-|-),,.The localized Kodaira Laplacian is defined by
O, o= 01, Oy + OO, - Q%(B(1)) — Q°(B(1)).

In the same manner, the L ;)-valued Cauchy-Riemann operator is denoted by
Oy + QHUB(V Cr), Liwy) = QY BV Cr), Ly ),

which is defined by 5&) (n® sw) = (%) @ s for all n € Q*4(B(y/Cy)). Denote
Oy + Q¥(B(V/ Cr), Liwy) — QY B(VCy), Lixy)

to be the formal adjoint of 53;)1 with respect to (-|) Next, we consider the scaled

localized Cauchy-Riemann operator

Ty o+ LUB(VCr)) = QT B(VC)),
which is defined by égk)(n ® S(ry) =: e¢<k)5(qk)7s(ne*¢<k>) ® s(x)- On the other hand, define

0. - QU(B(VC) = Q7 H(B(v/Cr))

LOBION
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by O (n @ spy) =1 e?®IF] (ne”?®) @ s which is the formal adjoint of Jf,, ; with
respect to () Since (2.8) is unitary, we have similar identities:

Wik *
Opys = 07+ @) A+ 1 O =0 + (06N, -
The scaled localized Kodaira Laplacian is given by
Ng—1 7g,* Aq+1,% 5 . , / , /
D?k),s = a(qk),sagk),s + a(ql;g,s a(qlc),s : QOCI(B( Ck)) - QO q<B( C ))

We have the relations:

(2.10)
- 1 . 1 .
(O s 1) Ckz):\/—c—kag,s(u( Ciz)) 5 (0w Ckz):\/—C_k s (u(v/Ci2)).
Hence,
q 1 q
(2.11) (D(kmu)( Giz) = GOk (u(V/Ci2))

Next, we consider the model case C" equipped with the weight function ¢ = > | A;|2|?
and standard Hermitian form w, = v/—1)_ dz* A dz'. The wight function ¢, defines a
Hermitian metric on the trivial line bundle C — C" with [1]3 (z) = e 2*(). We can
define the fiberwise Hermitian metric (-|-),, 4, on T*®9C" @ C — C" with respect to wy
and ¢,. Let

d¢ :Domdl c L2, (C", T*9IC" ® C) — L?

wo,%0 wo,%0

(Cn’ T*,(O,q)(cn ® C)

be the Cauchy-Riemann operator with values in the trivial line bundle and let 9% be
the formal adjoint of 9 with respect to (|-).,.4,- Denote by

(2.12)

08 = 908 + 97 *9¢ : Dom ¢ ijo,d)o((C”,T*’(O’q)(C”) — Lim%((ﬁ", 709
the Kodaira Laplacian. In the same way, we define the localized Kodaira Laplacian [
by
(2.13)

08, =04, ogr + 00t o8, DomOf, L2 (C", T*®9C") — L2 (C", 7o),
where
58,3 = 07+ (Odo) N\ ; 58:: = 53’0* + ((5%)/\):0.
Form e Rand u =", _, uidz" € Q¥9(C"), we adopt the Sobolev norm || - ||,,, as

ol = 3 ( [ -+ lermiaerante)
II=g €
where @;(§) == (2m)™"/? [, us(x)e"*"dm. For an open set U C C", the Sobolev space
Wm(U, T*(0-9Cn) is the Banach space given by the completion of Q%?(U) with respect to
|- |lm. Moreover, when m = 0, || - ||o coincides with the standard L?>-norm || - ||.,, induced
by the standard Hermitian form w,. Hence, we know W(U, T*(®9C") is a Hilbert space
with its inner product given by
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By (2.4), we deduce that the coefficients of Lj;, ; converge to the ones of [Jj, local
uniformly in ¥*°-topology and simply write D‘(]km — 0§ .- By the elliptic estimate, we
have the following Lemma:

LEMMA 2.2 (k-uniform elliptic estimate). For any bounded domain U and integers
m € N, there is a constant C'(U, p) which is continuously dependent on p chosen before and
independent of k such that

lulm < C(U,p) (lullo + 1) )" ulo)

for all uw € W2™(U, T*©-9C") and large enough k.

2.5. Scaled kernels and uniform bounds. To begin with, we start with the spectral
theorem:

THEOREM 2.3. [8| theorem 2.5.1] Let P : Dom P C H — H be a self-adjoint operator
on a Hilbert space H. Then there exists a spectrum set SpecP C R, a finite measure ;. on
SpecP x N and a unitary operator

H :H — Lj,(SpecP x N)
with the following properties: Set h : Spec P x N — R by h(s,n) := s. Then an element
feHisinDom P ifand only if h - H(f) € L?(SpecP x N, du). In addition, we have

Pf=H'o(h-Hf) forall f<c Dom P.

Based on Theorem [2.3] we know that [J] has the spectrum set Spec 0} C [0, c0) and
there is a unitary map

H/,Z:L2

W,d)k

(M, T*9M @ Ly) — L3,

(Spec [0{ x N)
such that
Oiu = (H{)™" o (h- Hiw),
for all v € Dom[J]. From now on, we let a} : [0,00) — R be a sequence of real-valued
functions such that
aj(s,n):=aj(s) € Léuk(SpecDZ x N).
Define

(2.14) AL L2, (M T5OOM @ Ly) — L, (M, T M @ L)

to be the sequence of self-adjoint bounded linear maps defined by

(2.15) Al = (Hy) ' o (af(s,n) - H}).

We call A} the functional calculus of a] and write A} = a{((J{). Define
Al(z,w) € € (M x M; (T*"9M ® L) R (T M ® L;)*)

to be Schwartz kernels of A}, which we assume to be smooth. For such A, we scale
the smooth kernels Aj(z, w) in the open ball B(1). First, define the localized kernel
A¥(z,w) € €°(B(1) x B(1), 709 M R T*09 M) by

Al (2, w) = AL (2, w)s(2) @ (sw(w))".
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The scaled kernels Af}](2,w) € €(B(v/Cy) x B(VCy), T**9C* B T-"9C") are de-
fined by

By (2.7), we define the localized mapAj , : L2(B(1), T~©9M) — L2(B(1), T*9) M)
by

(A7 (e7%n)) @ sp = e P AL(n @ sp).
Also, by (2.6), we set the scaled localized map A‘(]k)ﬁ acting on Li(k) (B(v/Cy), T+09Cn)
by

(2.16) (A%.n) (VCiz) = Af (n(v/Ci2)).

Denote by A ((z,w) and Af, (z,w) as localized kernel and scaled localized kernel
which are the Schwartz kernels of AZJ and A((Ik),s’ respectively. The relations between
the kernels introduced above are given by

2.17) Azﬁ(z,w) :e_¢k(z)AZ’s(z,w)e¢k(w) ;AL (z,w) :e_¢<k>(z)A‘(1,;S)(z,w)e¢<k>(w),

(k),s
and B "
q _ —n A4
A(k),s(zaw) =G, Ak,s(\/—c—kv \/—C—k)-

For any u € Q%4(B(+/Cy)), we denote u; := C}"/?u(y/Crz) and observe the fact that
uy, € Q%9(B(1)) € Q%4(M). By changing variable,

1A sl Bven = 1A% sukllopay < 1ARE™ ur @ sp)llognr < 1AL o lle™ ur © sillwg,

= [ Akllosllurllo sy = 1Aklwoll el b/cm,

where || A}, is the operator norm of Aj. This computation tells us that the operator
norms of Afj , Aj ; and Aj have the following relations:

(2.18) 1A%, Mo mven = 1AL s < IAL s

Next, since w is positive and smooth on the compact set D, there exist positive constants
C1(p) and Cs(p) that continuously depend on the point p chosen before such that

(2.19) Cl(pwunmB(\/C_k) < |’u|’w(k),B(\/C_k) < 02(29)’\“’\%,3(\/@)7
for all u € Q%4(B(\/C})) and k € N. Hence, we can treat

Al o L2 (B(VCr), THOC™) — L2 (B(V/Cy), TH9C")
a bounded map with the following estimate:

(2.20) CrP)IAG) sllwo.Bver) < 1A% sllww.Bvan < Co(P) ALy <llwo,Bver)-

Moreover, by (2.4), for any bounded domain U € C" and ¢ > 0, there exists ko(p) € N
depending on p and is locally constant with respect to p such that

(2.21) (1= ) (V)] < | 0)u0]| < 0+ (0 0)unol,
for all u,v € Q%(U) and k > ko(p). Hence, we also have

(2.22) (1= A% nw < 1AL Jow < (L4 AL nor
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for all k > ko(p). We now extend our estimation of the operator norm of Aj, | to the
context of Sobolev space. For m, k € N, we define the number N,, ; by

8 m
Npj := sup (F) ai(s),
s€[0,00) “Ek

where A} = af(0]). Lemma [2.4] and Theorem [2.5] introduced later are adapted from
[5, Theorem 3.4, Theorem 3.5].

LEMMA 2.4 (k-dependent smoothing property). Fix y and p in €>°(C") and an integer
m € N. There exists a constant C(x, p, m, p) that continuously depends on p chosen before
such that

XAy pullzm < COx, pym, p) (1A lw.sr + Nowge + Name) 12l —2m,
for all w € W72m(C, T*©9C") and k € N with supp x Usupp p C B(v/C}).

PROOF. We assume u € Q%¢(C") by density argument. We choose U as a bounded
open domain such that supp x U supp p C U. By Lemma and (2.19),

(2:23) XAl pullon < O m,p) (1KAG pullo + IX (TG, )" AL pulls)

< O, m,p) (KA ol mien) + KO )" ALy wmwmfg,

where Y is a cut-off function with supp y C supp x C U. By (lm and (2.19),

(2.24) ||XA(lg Pl Brver) < A wsemllollog, < CP)IALw.gpllulo-
By (2.11) and (2.16), we have

(2.25) (C"/Z(Dq )mAqk) pu) (VCrz) =C.™ (DZ’S)mszspkuk(z).

where uy, := C,’:/ *u(v/Crz) and py := p(v/Crz). By changing variables, we get
@260 11(0.)" Ayl sen = 16 ()™ AL ooz
By the unitary identification (2.7) and the fact that A} = o} (O07),

(2.27) 1C ™ (OF )" AL prunllo.say < NCT™ (O™ AL (pre® we @ 5i) llugpnr

< Norlloee® ux @ sllwgpr = Nl prtine || 51)-

By changing variables again (or the identity (2.7)) and (2.19), we have

(2.28) loxukllw, 51y = llpullwy, < Cp)lullo.
Combining (2.23)-(2.28), we have another constant C'(U, m, p) such that
(2.29) X AT spullam < CUm, p) ([ Afllwgr + Nowso) ullo.

Now, our goal is to dominate the right-hand side of (2.23) by ||u|| 2. It remains to
prove the following claim:

CLAIM. There exists C(U, m,p) > 0 which continuously depends on p such that
(2.30) 1XAG) spullo < CWU,m, p) ([ ARllw.gr + Nonso) ]| -2m;
@31 O, )"AL, ulle < CUm, D) (1AL gy + Nami)ltl] 2.
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To prove the claim, we take advantage of the duality property of Sobolev spaces. Let
v € Q%4(C") and denote v;,(z) := 2/22)( Cr2), Xk(2) = X(v/Cxz) and py = p(v/Ci2).
By the unitary identifications (2.6), (2.7), and the self-adjointness of A7, we have

(2.32)
(XA((]k)ﬁqu) - (XkAzﬁpke‘bkuk ® sple? v, ® sk)

W(k)> Wi, P, M

= (e¢kuk ® sk|pkAZ>2ke¢’“vk ® Sk)w@;wM = <u|pA
To estimate the right-hand side above, by (2.21]), we see
(ol i), |5 [(ulo Al 50) |
“(k)

Next, we use the duality of Sobolev space and write
@34) | (ulpAfy 50, | < lull-amlloAfy 20llam S (1A oo + N [l -2mlloll,

where the last inequality is from (2.29). By (2.32)-(2.34)) and the fact that v is arbitrary,
we have

(2.33)

IXAG spullo S (AElw.6r + Non )22l -2m-
All the estimates < above continuously depend on p and also depend on U and m. This
proves the inequality (2.3Q). For the proof of (2.31), we adopt the same way and fix
a test section v € Q2¢(C") again. Then, we mimic the process above to get the
following estimate:

(2.35) (@) ALy pulo) S (ulp(@f),)"AG) F0).
By duality of Sobolev space,
(2.36) | (oD ™ ALy 50 1 el a0 A (T ) ol

By repeating the process (2.23)-(2.29), we have

(2.37) [lpA% (O )" Wllam S 15A% (T, )50l + 160, )™ A (T )™ wlo
S ([Akllw.er + Nami)l[vllo

We combine (2.35)-(2.37) and get

(2.38) 1200 )™ A% pullo S (1AL s, + Vo) a2

since v is arbitrary. This proves the inequality (2.31)). By (2.23), and (2.31), the
theorem follows. Note that all the estimates above originate from the local behavior
of w and ¢ on manifold M. We can see that the estimate continuously depends on the
point p chosen at the beginning. O

Next, we represent AEZ)) ,(z,w) as the form:

' ~ 0
AR smw) = D0 AR © (),

w
[1=|J]=q

where A%’j(z,w) € € (B(v/Ci) x B(v/Cy)).
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THEOREM 2.5. (The local estimate) For any bounded domain U C C", ¢ € N and
strictly increasing multi-indices I, J € (Ny)9, there exists C (¢, U, p) such that

A5 o)

%)Z(UXU) < C(f U p) (||AZ:||W7¢I@ + Nm,k + N2m,k) i

for all m € N with 2m > ¢+ n and k € N. Here, C'(¢,U, p) continuously depends on the
point p chosen at the beginning. Here, |- |4t is the usual ¢"-norm with domain U x U.

PROOF. Denote = and y as the underlying real coordinates of the complex coordi-
nates z and w of C" ~ R?", Let «, 8 € (Np)? be the multi-indices such that |«| + |3| < /.
We start from the approximation of identity. For any fixed point y, € U, we set f; as
an approximation of identity with its mass concentrated at y, as [ — oo. For example,
let f, = I"f(\/I(y — 1)) where f € €>(U;[0,00)) and Ji; fdm = 1. By the property of
approximation of identity; it is sufficient to dominate the following:

s | [ doj Al Awdm(n)
z€U,leN

We aim to find an estimate independent of k£ and the point y, € U chosen above. By
integration by part, we only need to consider

oup (02 [ AL )0 fiw)dm ().
U

zeU,leN

Choose y € €>°(U) with U ¢ U and y |y= 1. By Sobolev inequality, since 2m > |a| + 1,

sup X0 [ A (2,) (@A) dm(w)] < sup [l x (0 £)d=") o
zeU,leN U lEN

Note that [f(€)] < | fyen e filx)dm(z)] = O(1) and hence |(9°f))| < [€]*fi] <
|€|181. Since 2m > | 3| + n, we have

10 £z | am < / (1+ €2 ¢ Pldm = O(1).

2n

After combining this fact with Lemma [2.4] we know that

Ix ALy X7 f)dz [lom S (||A ol + Nk + NQm,k) 18° f1)dz" || ~om
= O([| A%y slwse + Nk + Nom)-

We apply the result to the spectral kernel by setting A} := P/ (Cr)-42 which has
functional calculus a] = 1y ,)-a. The operator norm ||P j-dllw.gp.0 s clearly less
than or equal to 1 and N,,; < (Ck) d-1 For Bergman kernels, set Al = P! with

function calculus aj = 1. Note that || P/||.¢,,» < 1 and N, = 0 for all m and k.

DEFINITION 2.1 (Notations of spectral and Bergman kernels). Fix d € N. We let
Al = P! . and take Pq’s )_d(z, w) = AL®(z,w) which is given by

k,(Cr)™
Pl s = Plicy asv(2) © (su(w)".

k,(Ch)—



SPECTRAL KERNELS AND HOLOMORPHIC MORSE INEQUALITIES FOR SEQUENCE OF LINE BUNDLES 17

Define the scaled spectral kernel by

¢, - —n D@, z w
P(k)v(Ck)‘d(z’w) = (C) Pk7(ck)_d(\/0_k’ \/@)
Also, we denote by
q A q . q . Aq
Prcos = Aes 5 o onmas = Aws

the localized spectral projection and the scaled localized spectral projection, respec-
tively. Furthermore, we define the localized spectral kernels and the scaled localized
spectral kernels by

Pl;]’(ck),dﬁ(z,w) = Al (z,w) ng)v(ck),dvs(z,w) = A?k)7s(z,w),

respectively. On the other hand, we set A] = P/ and denote P"°(z,w) := A{’(z,w).
Define the scaled Bergman kernel as

Eiy(z,w) = (Cp) "B

zw )
VG VG

Also, we define the localized Bergman projection P, := Aj _ and the scaled localized
Bergman projection P&) = A‘(Ikm. Denote the localized Bergman kernel and the

S

scaled localized Bergman kernel by

P,gvs(z,w) = szs(z,w) : P(qk (z,w) := Aqk)’s(z,w),

)8 (

respectively.

By the identity (2.17), we have the relations

(2.39) P(qlé)s,((}k)fd (z,w) = eqs(k)(Z)P(q/c),(Ck)*d,s(z’ w)eﬂb(k)(w);
(2.40) Pii(z,w) = ?WOPL (2 w)e "0,

By Theorem [2.5] we have the following corollaries:

COROLLARY 2.6 (The local uniform bounds for Bergman and spectral kernels). In
the localization process introduced before, the scaled spectral kernels

By cn-as5w) = OB oy -a (2/V O, w/V/ C)
are locally uniformly bounded in the €*°-topology on C" x C™. The result also holds for

the scaled localized Bergman kernel P&M(z, w).

Moreover, since the constant in Theorem [2.5] continuously depends on p, we can
insert (z,w) = (0,0) = (p,p), { = 0 and fix U = B(1l) in Theorem to get the
following result:

COROLLARY 2.7 (local uniform bounds on the diagonal). Fix d € N. For any compact
set K C D, there exists a constant C independent of k such that

(2.41) sup (Ck)’"Pg”s (p,p)| < Ck.

C.)—d
oy (Ck)

Also, the result holds for Bergman kernel case.
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3. Asymptotics of Bergman and spectral kernels

We are going to prove the main theorems (cf. Theorem [1.2] Theorem [1.3) from
Section [3.1] to Section [3.3] We will repeat the process in Chapter 4] with context-
specific modifications. In Section 3.4] we will present an idea to show the Bergman
kernel asymptotic under a stronger spectral gap condition (cf. Assumption 3.1I). Be-
fore embarking on the proof of main theorems, we need to investigate the extended
Laplacian on C" and establish the spectral gap.

3.1. Spectral gaps of the extended Laplacians on C". In this section, we will
extend the scaled localized Laplacian D‘(Jk) which is defined on B(y/C}) to the whole

,S

C". The extended localized Laplacian is identical to D?k) . in B((C)°) where € will be
determined later in Section First, by (2.3), we note that

APl JER
GD 0w~ dolaaryem) < e <69 = ol ap oy < € N

where | - |425(/cr) is the usual €*-norm with domain B(\/Cy).

From now on, we fix a cut-off function denoted by y € €>°(C") such that its support
is contained within the ball B(2), and is identical to 1 on the ball B(1). Let us choose a
number ¢ such that 0 < € < 1/6 and define the extended metric data on C" by

) oute)

z

(Cr)e

Gy (2) = X1y o 4) + (1 —x

and the extended Hermitian form by

z

sl =g o) + (1= x(gy) ) o)

By (3.I) and e < 1/6, we have the uniform convergences
(3.2) ’Q;(k) — 9o

Denote

w2 (Cn) — 0.

— 0 and ’(Ij(k) — W

@2(Cn)

Dy - QVI(CT) = QOTFH(CY) 5 O, QM(C) — QPN (C)

to be the extended localized Cauchy-Riemann operator and its formal adjoint, given by

Thyo = 0"+ D) A 5 O, =8+ ((06a)n)

W(k)

respectively. Here, 53’;;) is the formal adjoint of 97 with respect to (- Denote

Wik

Ot = 0,605 + 0w 50 - DomOf | C LE (C", T-9C") — L2 (C", T*)C")

as the Gaffney extension of the localized Kodaira Laplacian with respect to the Hermit-
ian form @) and the weight function ¢). It follows immediately from the constructions
that 9, , = 9, ., 9y = 9y, and Of) . = O, | in B((Cy)°). Reasonably, we call the

(k),s
DE’I:) , extended Laplacian.
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Suppose \; < Oforalli =1,--- ,q0; \; >0foralli = ¢y +1,---,n. Then there
exists a constant ¢ > 0 such that for all z € C",
P Py
02107 07107
The following results tell us these estimates create a uniform lower bound of the first
eigenvalue of DE’;),S.

(3.3)

(2) < —c Vi=1,---,q and

(2) >c Vi=qo+1,-

LEMMA 3.1. For q # qq, there is a constant ¢ > 0 such that for all u € Dom D?,:) o
(B0l w). o, = W5l + 1,0l 2 el
Therefore, || (ullag, > cllullay, -
PROOF. Note that for u € Q%4(C"), we use (3.2) to get

G4 0wl = 10+ @A) ul, 2 1 (0+ @dw)A) ul?,;

1070012, = 1 (85, + @)y, ) ull2, 2 1 (5 + (00, ) ul?,

Let u = fdz! for some f € €>°(C") and I € (Ny)? be a strictly increasing multi-
index. Since ¢ # qo, there exists i € {1,---,n} such that at least one of the following
two cases holds:

e 1 ¢ [and \; <0;
e;cand \; > 0.

If the first case holds,

- of | of 0w, Of 0w ;
2 S 2 ur
(84 @A) ull, > / n\ S P am— | n<85i+ o f)(azﬁ 20 )i
3f 6¢ of 0o
(3.5) fowan o7 am
By integration by part, we get the equations |, | 8{ 2dm = [, |T|2dm and
Z ZZ
of 0w . OF 0duy ,Pu . OF 0dpy L Of 0y
= [ -2 — L
= L e / rmre fazz 5~ 5 gm0
|8¢(’“ 2| £]2 — ¢(’“ )| > 0 into (B5),
o8 ¢(k . 0Py
. > 2 > - - . . % .
GO (0 @6uwn)ul, > 2 [ 17PT A dm  —int (82@2, I1£12,,
On the other hand, if the second case holds,
5 S+ of | 9w of 0y -
* * 2 > o
1 (32, + @du)ns, ) ulE, > [ (=55 + GR35 + T2 am
i dow ,0f 0w 8% p
(3.7) / |8z2 822 0z f@zi 0z 1 | [fdm
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By integration by part again, we have |, |¥|2d = fcn | 2alm and
ZZ
0f acz(k) of 0bay , O ¢>(k af 35(;3) _Of 004,
/n oiar Joiaa m_/ W om0zt am oz oz g o™
0
Combining equations above and \%\ | ¢(k | IfI?2—=2|f || || ¢(k \

_ 0
B8 (2 + @) ully =2 [ 17 ?; m 2 inf <782?521>||f||%<m-

By (B:4),(3.6) and (3.8), we have completed the proof for the case u € Q%4(C"). Next,
we can prove the lemma by density argument. The density argument here is somehow
technical and based on the Friedrich’s Lemma (cf.[10, Chapter 7, Lemma 3.3]). For
the details of approximation, readers may consult [12, Lemma 5]. O

COROLLARY 3.2. For q # qo, the extended Laplacians D(k) is bijective and has inverses

N{ - L3, (C", 7**9C") — Dom OUf;

(k),s
which is a k-uniformly bounded operator.

PROOF. According to Lemma [3.1] D‘(],:) . is injective. To show the surjectivity, we
choose an arb1trary v € L (C", T%09C") and consider the linear functional 7, on

Rang D , given by

w(k)(

%(D?,:)?S u) = (u| U)a}(k) Yu € Dom D?k)

N ]l :
Lemma [3.J] implies that ||7,[|z,, < ——® for a constant ¢ independent of v and k.
c
By the Hahn-Banach Theorem, the functional 7, can be extended to a bounded linear
functional on L2 (C" T+ Cn) with the same norm. By Riesz representation theorem,

there exists a representatlve v e L2 (Cr,T+09C") such that

w (k) (
(] v)g,, = To(O0 u) = (D?,:Lsu | v) ,, YuEDom Ol

This means D? 1.0 = v which proves the surjectivity. Define NV . such that N/v = ©.

Lemma [3.1limplies || V/||z,, < C for a constant C' independent of k. O

We have shown that when ¢ # ¢y, the extended Laplacian D‘(]k)ﬁ has a uniform
spectral gap spec DE’,:)?S C e, 00) for a positive constant ¢ independent of k. Next, in the
case g = ¢g, we should prove that the uniform spectral gap also holds in the sense that
spec U , € {0} U [¢,00). Define

Eq

(k),s w(k) ((Cn T Oq)(cn) — Ker DqN C L2 (C"’T*v(O#I)Cn)

(k),s Wk)

to be the Bergman projection. The following representation of égk) , is standard.
THEOREM 3.3. (Hodge decomposition) We have the expression

(3.9) B, =1d aqo /o 13‘10 o a%“ *N%“a‘fo on Q%9(C").

Here, N} is the inverse of the Laplacian [J]; established in Corollary
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PROOF. Note that
Dt(zz; (Id _éqo—quo—léqm _ 8(1]2)4-81 *Nq°+18q£)7 )

= 5‘<k>,35€‘k> + ak) R 5 O, sa(k o 1a(k — O, sék sé@),quOHé(k),s

:é(k),sé@) +8k) sa(k 5 Dq/(;) slNNqO 18k)s a(k Dqg;rslNNig()Hé(k),s

= .5 05).0 + Ty wOtiys — (s Dy o + Ty Oi).6) = 0.
So the right-hand side of ([3.9) has its image in Ker D(k) . It remains to show that
Rang (8",2) N 18",2)’ - 6q°+1 ‘N q““@",g) 8) L KerOfy,- Now, given u € Q%4(C") and
v € Ker O

(h.» Since 6(k U= 8(;?)751) =0,

(PN 0y = O N 0)u | 0)

W(k)

= (Nzi’rlé(k),su | 5&)&) + (Nzi’“lé(k),su | 5(/~c>,sv>~ =0.

“(k)

“(k)

0

We now deduce some identities which will be frequently utilized. Compute that

3 * —1 5« Sk 5 % —1 5% S —1 5%
190,505, s NE° ™ Oy sll2,, = (8(k),sa(k),sa(k),sNIgO iy, st | Ny, NI a(k),su)

D(k)
1~ —1 3% A —1 3%
= (DO VI gt | D NI )

W(k)

S A A —1 3%
= (8(k),sa(k),su | Oy« Vi’ a(k),su> =0,

W(k)

for all u € Q%% (C"). Similarly, we can compute that ||6 8 (k), N%“a(k Su||w( o =0 for
all u € Q% (C"). Hence, we have

(3.10) Otk s Oy o NE 1.

+ T O s N 9y =0 on Q2(CT).
Moreover, we can apply the two equations above to see that

B1D) T 0o NP T = Ty 3 OsOy N s = Dy om0 Q20(CY).

THEOREM 3.4 (uniform spectral gap). There exists a constant c independent of k such
that

1B o — ull2,, < e (19 ul3,, + 108, ul2, ) on Qe (C).
PROOF. By Lemma [3.3]
Bl — 1=~ INpT gl — Giet NR Tl on Q00 (C").
Given u € Q2% (C"),

08 AN gl = (NP 0 et | 0 B s N g )
W(k)

—1 5« * —1 3%
< HNqO a(k),sUHov(k>H (k),sa(k),sN/gO a(k),suH‘D(k)

QDH
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The last inequality is from Corollary[3.2]and (3.11)). Symmetrically, we can show that
Aqo+1,x +15 2 3 2

The two estimates above imply the theorem. O

3.2. Proof of main theorems. Since all the arguments in this section are valid for
both the scaled localized Bergman kernel P&)7S(Z’, w) and the scaled localized spectral
kernel P(qu (Ck),dﬁ(z, w). For simplicity, we represent both the scaled localized spectral
and Bergman kernels as P}, (z,w) in this section.

Recall Corollary By the Arzela-Ascoli Theorem, we know that every subse-
quence of P&m(z, w) has a convergent subsequence in the ¥*°-topology. To show that
ng)vs(z, w) is itself a uniformly convergent sequence, it suffices to show that every con-
vergent subsequence of P&)’S(z, w) converges to the same limit.

To prove the main theorems, we assume that P(‘jg)ﬁ(z, w) converges locally uniformly
to PI(z,w) in the #*°-topology. Although we do not yet know the kernel section
PJ(z,w), we will demonstrate that it must be the Bergman kernel Fj ,(z,w) in the model
case on C", which will be introduced later. If that is the case, then we have proved the
main theorems by Theorem [3.5] and identities (2.39), (2.40).

We now formulate the Bergman kernel in the model case. Recall the Laplacian [}
and the localized Laplacian [Jj , defined in and (2.13), respectively. Denote by
Py(z,w) the Bergman kernel of [Jj and by Py (z,w) the localized Bergman kernel of
05 .- Note that

P (z,w) = e~ PI(z, w)e® ™),
Forq e {1,---,n} and a € (Ny)", denote

Z;“ — (gl)al o (27)0 (zq+1)aq+1 e (2M)om,

We now introduce a theorem that describes the Bergman kernel in the model case.

THEOREM 3.5. [5, Theorem 4.2] Consider the trivial vector bundle T**9C"@C — C"
endowed with the standard Hermitian form wy and the weight function ¢q. In the case
p € M(q), we assume \; < 0 for all i < g and \; > 0 for all i > q. The localized Bergman
kernel Py ,(z,w) of the model case is given by

AL Aal st st It I 2) g1 20y @ (2 0
o at (dZ'A---NdZ )®(aw1/\---/\awq).

Furthermore,
2'04‘ )\ atl n 7
(T, = \/I],zs‘e— i M GELA A A ey
T

is the orthonormal basis of Ker (0f , C L2 (C*,T*©9C").
However, if p ¢ M(q), then

Ker (0§ , = {0} and hence B((fg(z, w) = 0.

We now begin by translating PJ(z, w) from an unknown kernel section to an operator
that acts on the Hilbert space L? (C", T+®9C").
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DEFINITION 3.1. Define the integral operator P? as
Plu(z) ::/ Pi(z, w)u(w)dm(w) forall u e LiO(C",T*’(O’q)C").
Clearly, the integral converges by the assumption P&m(z, w) — Pi(z,w).
LEMMA 3.6 (Well-definition of the integral operator). The integral operator
P2 (cn, 709cm) — 2 (cr, 709 cm)
is a bounded linear map with its operator norm smaller than 1.

PROOF. Let u,v € Q%4(C") and U C C" be a bounded open set containing supp u
and supp v. Note that

(v | Ptu) / / )Pz, w)u(w)) w22 dm(w)dm (z).

Let ¢ > 0. By the fact that P(k)’s(z, w) — P4(z,w) local uniformly, the above integral can
be dominated as
(v | P(q,g)ﬁu) .

for large enough k. By inserting Aj = P/ in (2.18) and applying (2.22) and the fact
| P\l < 1, we have

)

(v | Piu), | < (1+¢)

(v P@),su)wO] < 0| Pyl < 1+ )0

for large enough k. Since ¢ > 0 and v are arbitrary, we have ||P%ul|,, < |[u|l.,- The
Lemma follows by density argument. O

LEMMA 3.7. PZ1is a bounded linear map
Pg: L2 (Cr, T+ 09C") — Ker Of ..
PROOF. We may assume u € Q%9(C") by density argument and fix a cut-off func-

tion y € Q%(C"). By the fact 0. — 06, locally uniformly and the assumption

ng) <Z7w) - Psq(sz)’

IXE6 s Plullo S XD Pl stello =

U

To complete the proof of the main theorems, by the uniqueness of Schwartz kernels,
it remains to prove that
pPo: L2 (Ch,T09C™) — Ker OF
is an orthogonal projection. By Lemma [3.7] it is left to prove the following statement
(see [18], theorem 3.1 in section 3.1]):
STATEMENT 3.1. Plu = u for all u € Ker [Jj

3.3. Proof of Statement [3.1} In the case p ¢ M(q), Theorem tells us that
Ker 0§, = {0}, and therefore P is a zero map by Lemma [3.7. Consequently, State-
ment [3.1] automatically holds. We have completed the proof of the main theorem for
the vanishing case (cf. Theorem [1.2)).
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We now focus on proving the case p € M(q). First, for the spectral projection

q : .
Pk7(ck),d, we have the estimate:

(3.12) | (Id _pe

,C’(Ck)_d) Woonr < (C)*(Olulu),, , forall ue QWM. Ly).

In this section, we assume the spectral gap condition (cf. Def[I.2) in the case of Bergman
kernel and continue the convention of notation in Section We use the notation P/
to represent both the Bergman projection P/ and the spectral projection P,i (C)-d- Simi-
larly, P! (z,w) represents both the localized Bergman kernel P/ (2, w) and the localized
spectral kernel P,g’(ck),d7s(z,w). Also, ng),s(z, w) represents both the scaled localized
Bergman kernel P&)7S(Z’, w) and the scaled localized spectral kernel P&)’ (Ck),d78(z, w). By
and spectral gap condition (cf. Def[I.2]) for the case of Bergman kernel, we can
write

(3.13) | (Ad =P ull? 4 0 S (Co) (Ofu | w) for all uw € Q%9(D, Ly,).

w,Pp, M

The spectral and Bergman kernels share the same estimate (3.13]). The remaining proof
for the main theorem (cf. Theorem [1.3)) is valid for both the Bergman and the spectral
kernels. We now embark on the proof. By rearrangement, let \; < 0 foralli =1, --- ¢
and \; >0foralli=¢+1,--- ,n. For a € (Ny)", denote

2;1 — (gl)al .. (5q)aq (zq+1)aq+1 .. (Zn)an_

By theorem [B.5] to show the Statement 3.1] for p € M (g), we may assume that u is of
the form

U = Z?ei e ‘)\iHZi‘QdZI’
where I := (1,--- ,¢q). We adopt the settings in Section [3.1] It is important to note that
in the construction of &) and gg(k), we impose the condition that 0 < ¢ < 1/6. Now, we

require
1 1

n+1'6

0 < e < min{

The reason is in the proof of Theorem

We now establish the notations of cut-off functions. Recall that x € €>(C") is
the cut-off function fixed at the beginning of Section B.Il Choose p € €>°(C") as
another cut-off function such that suppp C {z € C;2/7 < |z < 1} and p = 1 on
{z € C;3/7 < |z| < 6/7}. Construct a sequence of cut-off functions by

7z ~ Tz Z
(3.14) X (2) ::X((Ck)e) s Xnk(2) :zx(g(ck)e) ; pe(2) :zp((Ck)E).

1.

Observe that
supp xx C {z € C; |2| < (2/7)(Cy)} 5 suppxi C {2z €C; |2] < (6/7)(Cr)".}

The derivatives of y, are supported in the annuli {z € C; (3/7)(Cy)¢ < |z| < (6/7)(Ck)¢}
and the support of p, are in the annuli {z € C; (2/7)(Cy)® < |z| < (Ck)}. Next, we
define

(3.15) Uk) = Xk ng)’s X#U.

Our objective is to show the convergence ugy — uin L2 (C", T*©9C") as k — oc.
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LEMMA 3.8.

(3.16) 5319),3“(2) + 5?5,3“(2)

1
:O R —
ai%ion

PROOF. Denote u =: fdz' where f = z0e~ X1 MI='F Denote a;(2) and as(2) as

) for |z] < (Cy)".

wo

the absolute maximum of the coefficients of the differential operators 5(,?)73 — 0+ and

(s — J; - at a point z € C", respectively. By (3.I), we can see that

2° +1
lai(2)] <
en
Because any derivatives of u decay exponentially as |z| goes to infinity, there is a con-
stant ¢ > 0 such that
~ 341 ~ ~ 341
@ = Bou(a)| S e ana (@5, - Gy utn)| g B e,

wo Vi (k). ’ wo VO

for all z € C". Since |z|3¢~“*” is a bounded function, we have completed the proof. [

Y|zl <2(Cp)° and  ai(2)| =0 V2| > 2(Cy).

LEMMA 3.9. |lu@g) — ¢llw, = 0 as k — oo.

PROOF. Note that [lug) — ullw, S lug) — Xrulloy, + [[Xxu — ullz,,. The second term
tends to zero by dominated convergence theorem. For the first term,

gy = Xrtullagy = IX6(Bly i = wlag < 1By xiu = ullag,
< 1By oxwe = xutllag, + [xwu = ulla,-

Since the second term on the right-hand side tends to zero, we only need to estimate
1By Xkt — Xktl[o, - By Theorem 3.4

13 X = xwullz,, S 100 sxwulls, + 10w, sxkull3,,, -

It remains to claim ||6(,C st“Hw(k) — 0 and ||8 k), SXkun(k) — 0. For ||5(k),stU||%<k), we

compute that 8(k axEu = (Oxx) Au+ Xk@ (k),s¢ and then

1By xeul?,, < / Busl2, Vi, + /
{lz[<Cy/T} {Cg /7<|2|<2C5 )T}

5/ |5(k)78u|iodm+/ |u|iodm
{l21<2C5 /7 (s /7<|2|<2C5 )7}

Clearly, the second term | (Gt j7<]2l<205 7} |u|2,dm tends to zero. By Lemma [3.8]and the
setting ¢ < 1/(2n), the first term can be dominated by

/{Z<2C£/7}

— 0. We can show [|9j,, ,xxtl|z,, — 0in same way. [

(Oxk) A w+ XuOhsul3, Ve,

2 )Qne

dm < (Ci
wo ~ k

5@) u

We have proven ||(9(k sXwull3,

In the next step, we will display Pj, u@) —u@) — 0in L3 (C", T*09C"). First, we

need to verify the following Lemma:

(U(k) (
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LEMMA 3.10. Consider the functional Pké?k),st 2 (k)
For any d € N, the operator norms have the asymptotic:

kB xllzg, = O((C)™)

“(k)

PROOF. For any u € Q%¢(C"), by Theorem 3.3]
(3.17) pBly it = pe (Id 0. NE B — D0 N D) Xk
= — 0, N 8( k) s XKU — Pkg(k),sNgHé{k),stu-

Now, we first aim to estimate ||Pk5*k 3N2+15(k),stu”cD(k)- Observe that

Hpka(k NI 3(k sxrullz,, = (pka(k NI 3(k Xkt | prd zg),s]szﬂg(k),stU)~

“(k)

= (N;?Hé(k),sxw \ 5(1@,s/)zéfk),sN/?Hé(k),stu)

W(k)

= (ﬁkN;Z 3(k) sXEU | 8k) spka( k), NI 3(/@75)(1&&)~

W(k)
~ 12 ~ = 12
< RN Oty sty 190), 52050y, s N Oy, s Xk

where p;, € €>°(C") is another cut-off function such that supp p O supp px and supp N
supp xx = 0. By direct computation,

8 (k), Sp,ﬁ(k N 8(k SsXEU = (8pk) N 8(k Nq 8(k SsXEU T+ p,ﬁ(k 8 N 8 (k),s Xk U
= (8/%) A a(k),sNIg a(lc),stU + pka(k),stu
= (51)2) A 5zkk),leg+15(k),stu7

where the second equality is from (3.11I) and the third is by the fact that supp p, N
supp xx = (. We apply this computation to continue the previous estimate and get

(3.18)
|’pk8(k),lez+1a(k)78Xku”%(k) < 15N Oy s xwullog, 1) A Oy NI Oy s Xt
e~ 12 B :* 12
S (Cn) N6 N By s xwttll g 19800y NI Oty s Xkl

where the term (C),)~¢ arises during the computation of dp,. Moreover, the sequence
pr can be taken to satisfy the condition sup,_; [0%p| < (Cy)~° since suppp C {z €
C",2/7C5 < |z| < Cf}. To conduct an iteration process, we need to show the following
claim:

CLAIM. There exists p, € €>°(C") with supp pr D supp pr and supp py N supp xx =
such that sup,_, 0%p1| S (Cy)~ and

- 1 -~ -~
[ Ay, s Xw o0 10K Oy Nt 8( ) s Xkl z
—en = 12 ~ :* 12
S (Cr) o NE Oy, s il |60y « N Oty s Xt |-

To show the claim, by Lemma [3.1] we get

_ 15 ~ _ 15 :* B 12
1AL NET Ay, s Xl oy S 10k),5 Pk N Ay, s Xkl oy + ||a(k),stN;Z+ Ay, s Xkl -

(C7, T00Cn) = [2(C", T,
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Moreover, we compute directly that

Or),sP NI 0y s xw = (Opr) A N 0y sxatt + 0wy s N Oy s = () A N Oy sxeus
=, _ =~ apk i ~ - =, =~
a(k),s/)kleJrla(k),stu =— Z<8z dz' N, )" N13+18(k)7st“ + pka(k),leerla(k)vSXku'

Substitute these equations into the estimate and then dominate ||V ,‘j“é(k),sxkung(k) by

~ 1 k —1 * 1 ~ * 1
1(0p1) A NI 0 sxiullag, + 111D (5,97 Nag ) N Oy sxwtullag, + 11600 o N Oy sXite |y,
=1

—en 2 12 ~
S (CR)~ARNE Dty sxkllagey + 17650, Ni Oty axate

for some p, as described above. So,

~ 1 ~ ~ :* 1 ~
56N Ok s Xkl | 5600y N Oty s Xwttl
—€|| 5 15 z o 15 z 2, 15
S (Cr) Nl ok NE wy s xwtll gy 1oy s NI Oy s x|y + 110600 s NI Dy s xuul[3, -
For the last term of the right-hand side, we replace the pj, by j; in (3.18) and get

e = 12 = :* 12
||pk8k)sN O Lokt 2, S (C) ™l peNET 0 sxwullag 1950 s N Oy s Xkl -

Combining the above estimates, we have completed the claim. Next, by (3.18) and
iterating the claim, we can conclude that for any integer d € N, there exists a constant
C and py, € €>°(C™) with supp pr D supp pr and supp px N supp xx = 0 such that

A% 1 1 3 13
160 N 3(k>,s><ku||w<k) (Co) = 5N Oy Xkl 15600 SN Oy s Xkl -

Finally, we need to show the following fact:

CLAIM. For all v € Q%4(C")

~ 12 12
100, s NE ™ Oy 0oy < Mollagy 5 INET Oy svllay S Iollag-

For the first term, by (3.11), we compute that

||a(k Nq+ k)7sv||w<k) (NH (k),sV | a(k 8&),31\@3“5(@78“) = <N13+15(k),sv | é(k)vs”>

W (k) D (k)

:* 1 ~ :* 1 ~
= (N Do 1 0) < 1070y, NE O 0l 10

- lz)-

We get ”5@),5]\7 g*lé(k),svﬂa,(k) < ||v| The second term follows by Lemma 3.1] that

’@(m'
||le+ a(k),SUH@(k) 5 ||8(/€)78]\/vlzJr a(k)7sv||@(k) + ||8(lc),s]\/vlzJr a(k)7sv||®(k)

A 15
- ”a(k),SN/ng 8(/@78@”@(1@) < ”U

HGJ(k) )

since é(kLSN ,Zﬂé(k)ﬁ = 0. We completed the proof of the second claim. After combining
all the above results, we know that for any integer d € N, there exists a constant C' such
that

(3.19) ||p 5k) qu+ a( ,SXkuH@(k) < C(Ck)_dHuH@(k)
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Symmetrically, we can literally repeat the process to show the analogous statement:

(3.20) 100y, s NI Oy Xl S C(Cr) ™l
Then the lemma follows by (3.17), (3.19), (3.20) and a density argument. O

COROLLARY 3.11. Forall d € N,

PROOF. Recall the fact that 8(k =0 and 8 (s = 0

8(k SUR) = (8)@) A B( b, XkU X,ﬁ(k (ks XEU = (8)@) A B( ). X Us

n

x OXk s 1oin v A 5
Ny B(k) Xkt + Xk a(k (), XBU = Z( -(dZ' )G, ) Bl X
=1

A aik =1
Oy sU(k) = — 2 ﬁ(d ) 0

Observe that derivatives of y, are supported in the annuli {B(Ck)E JT < |z| < 6(Cy)/7}
and p, = 1 on the annuli. We can see

1mstoolZ,, S Bl ool 5 185 w2y, S loeBl xeulZ,
By Lemma [3.10, we can immediately derive the corollary. O

THEOREM 3.12.
1 PGy <ty — g llogy — 0, as k — oo.

PROOF. Define uy(z) := (Ci)"?ugy(v/Ciz) € Q24(B(1)) C Q%(M). Then we have

1 PGy sty = Uikl Bven) = 1P stk — tllw,5)-
By (2.7) and (BjED,
1P qur — ull? gy = [1PEe? ur @ si — e up @ sil|2
< (Cp)? (DZed”“uk ® sp | e up ® Sk)w
= (CO* (197 unll?, + 107 suxll2)
= (C})4+D (”53* 2+ ]\8k>8 k)]\i) -0
The last equality is by (2.10), and the last convergence is from Corollary B.11l O

Before overcoming the Statement [3.1] for the case p € M(q), we need another
Lemma:

LEMMA 3.13. For any v € Q%9(C"),

(v | Py s Xrtt — Psqu) — 0, ask— oco.

wo

PROOF. Let v € Q%4(C™). For any fixed positive integer ny € N, observe that for
large enough k, we can estimate that

(U ‘ P&)ysxku N Pgu)wo‘ =

(01 (Pl ok = P2

+ [0l | (FGy Xk = P (Xno = D]l

wo
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Moreover, by (2.18) and (2.20), we see P&)ﬁxk — PZ are uniformly bounded linear map

on the space L? (C", T+(*9C"). Given an arbitrary number ¢ > 0, we can fix n, large
enough such that

[0l [ ( Py sXi — PO (Xng — Dullwy < /2 forallk € N.

Furthermore, by the assumption that P(qk)vs(z, w) — Py (2, w) locally uniformly,

—0 as k— oo.

(v 1 (P oxk = PT)xat)

wo

Finally, combining the estimates above, we obtain < ¢ for large

(U\P&MXW — Psqu>
enough k. O

wo

We are now ready to complete the proof of the Statemant [3.] for the case p € M(q).

PROOF OF STATEMANT [3.I]FOR p € M(q). By Theorem [3.5] we may assume that u
is of the form u = 22e~ = MI='"dz! for some o € Nj by density argument. By (2.18),
(2.20) and Lemma [3.9] and the decrease of u,

B2 [FG) Ooew = wm) o S Ixew — v lluy < Ixaw = vl + llu = ugllwy, = 0.

To show Piu = u, let v € Q%9(C") and observe that

(v | Plu—u), = (v | Py — P(qk)ﬁxku)wo + (v | Py s (Xku — u(k)))

wo

+ (v | Py sUik) — “<’“)>w0 + (v uw —u),, -

By Lemma 3.9 Theorem[3.12] Lemma[3.13]and (3.21)), the right-hand side of the above
equation must tend to zero. O

REMARK 3.1. In the function case ¢ = 0, we may obtain the same result by the
process in [5, Section 4.3] under spectral gap conditions of a suitable exponential
rate (cf. [5, Def. 1.3]) and replace k by C;.

3.4. Heat kernel proof for Bergman kernel asymptotic. In this section, we pro-
vide an idea to establish a simpler proof of main theorems (Theorem [I.2], Theorem [I.3)
under a stronger spectral gap condition as follows:

AssuMPTION 3.1 (Global large spectral gap condition ). Denote the global spectral
gap ¢, by
¢, = inf (spec Of — {0})
and assume it satifies the large condition:
lim inf 2—]’; > 0.

As we have already proven main theorems in the previous sections, we will not go
into all the details, especially in the asymptotic of Heat kernels. Instead, we will focus
on the application of Heat kernels to Bergman kernels.

Define the Heat operator H}/(t) : L2 , (M, T* M ® L) — L , (M, T*9M ® Ly)
which is the functional calculus of ¢~*" with respect to [J7. Define the Heat kernel
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H}(t,z,w) as the Schwartz kernel of H/(t). Recall the construction in Chapter [2] we
now consider the case

Al(z,w) = Hg(i,z,w).
Cr

To apply Theorem [2.5, we compute that
Npi = sup (2)"e & S,
s€[0,00) Ck
Moreover, the operator norm of H,Z(Cik, z,w) is less than or equal to one. All estimates
smoothly depend on the parameter ¢. Hence, we have the following corollary:

COROLLARY 3.14. (The local uniform bounds for Heat kernels) In the localization pro-
cess introduced in Section the scaled Heat kernels

Cy " HE (t/Chy 2/ Crow//Cy)

are locally uniformly bounded in the € *-topology on R™ x C" x C".

Similarly to the idea in the Bergman kernel case, we assume that the scaled Heat
kernel Hjj, (t/Ck,z,w) converges to a kernel section Hg*(t, z, w) in the ¢"**-topology.
Next, we may follow the limiting process as Chen presented in [4] Section 3.4] and get
the result that H{ (t, z,w) must be the Heat kernel in the model case of C" equipped
with the weight function ¢, and the standard Hermitian form w,. We conclude the
following theorem without proof.

THEOREM 3.15. [4}, Section 3.4] Denote H{(t,z,w) as the Heat kernel with respect
to the Kodaira Laplacian [§ on C" as considered in Theorem Then the scaled heat
kernels Hjy, (t/Cy, z,w) converge to Hg(t, z, w) in €>-topology on R* x C" x C".

(M, TODNM @ L) — L?

W,¢k

Next, we set an operator Af(t) : L2 (M, T*ODM @ Ly)
by
A4(t) = HI(t/Cy) — P

Then, Aj(t) is the functional calculus of

q —as
ail(t,s) = (1 — 1[0702}(5)) e Sk’

with respect to O¢. Here, ¢, is the global spectral gap (cf. Assumption B.I). Let
Al(t, z,w) be the Schwartz kernel of Af(¢). By Theorem [2.5] the ¥*-norm for some
¢ € N is locally dominated by

sup [af(t,s)| + sup [<i>m+<i>ﬂm] al(t,s) < <ec‘—’2t+t—m+t—2m) < VO,
$€[0,00) s€[0,00) Ck Ck

for some N(¢) € N depending on /. Here, we use the Assumption [3.1 We deduce that
for any ¢ € N and bounded domain U C C", there exists N(¢,U) € N such that

A | s

ctuxu) ™

Finally, we derive that

= 0.
CL(UxU)

lim limsup |Af, (z,y)

=00 koo
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Observe that

Hiy (6 z,w) = Py (z,w) + Al (z,0).

(k),s (
Hence,
. q — P4 =
tlg& hgl_)s;}p ‘H(k),s<t7 Zw) P(k‘)ﬁ('z’ w) CUXU) 0
By Theorem [3.15] we have
L . q — P4
0= tlgglo kh—>nolo ‘H(k),s(t’ 0 P(k)ﬁ(z’ w) CHUXU)

(2,w)

= lim )Hgs(t, z,w) — lim P}
' CHUXU)

t—o00 k—o0 (k),s

This tells us limy_, o H (¢, 2, w) = limy_,o P(qk) .(z,w) in €>~-topology. Here, we assume
limy_ oo P(qk) .(z,w) exists. To prove the main theorems for Bergman kernel, it is sufficient
to show the following Lemma:

LEMMA 3.16. We have the convergence
: q _ q
tlir?o HO,s(t7 2 w) - PO,s(Za w)v

local uniformly in ¢ °°-topology on C" x C".

SKETCH OF THE PROOF. First, we need a spectral gap for the model case. We set
M = C" with the standard Hermitian form w = wy, and consider the sequence trivial
line bundle L, over C" with the quadratic weight function ¢, = Cyr¢o. We apply the
results in Section [3.1] to the case set above. Thus, é(k) = ¢ and Wy = wo. If the
curvature is non-degenerate, that means \; # 0 foralli = 1,--- , n. By Theorem 3.4}, we
have the global spectral gap on C" as follows:

(3.22) ¢ := inf(specd{ — {0}) > 0.

Moreover, if the curvature is degenerate, that means \; = 0 for some i = 1,--- ,n. We
can also obtain by and (3.7) in the proof of Lemma [3.1]

Now, we have the global spectral gap for the model case on C" with the weight
function ¢y and Hermitian form wy. To show the lemma, we repeat the proof of Lemma
2.4l and Theorem [2.5] Define

At x,y) == H{(t, z,w) — Py(z,y)
which is the Schwartz kernel of the functional calculus of af where
ad == (1 = Lp,q(s))e ™.
As introduced in Section [2.5] we consider the localized kernels
Ag,s(tv Z, y) = Hg,s(tv 2, w) - P()q,s(xa y)

Our goal is to show that Af (¢, x,y) — 0 in ¥>-topology as ¢t — oco. Let x and p be
two cut-off functions in C" and ¢ € N. By the process in the proof of Lemma [2.4] and
Theorem [2.5] we can see that

(@) (A8 (t2,9)) P oo
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is dominated by (up to constants depending on y,p, and /) the operator norms of
1S IC8 Al 108,A48,,08,1l on L2 (C", TH9C™).

The operator norms above can be bounded by

—tc —ts 2 —ts
s sup se s sup s-e s

s>c s>c

(&

respectively. Since all quantities are O(t~V) for some N € N, they tend to zero uniformly
as t goes to infinity.
0
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