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Spectral Kernels and Holomorphic Morse Inequalities
for Sequence of Line Bundles

Yueh-Lin Chiang

ABSTRACT. Given a sequence of Hermitian holomorphic line bundles (Lk, hk) over a

complex manifold M which may not be compact, we generalize the scaling method in

[5] to study the asymptotic behavior of the Bergman kernels and spectral kernels with

respect to the space of global holomorphic sections of Lk with (0, q)-forms. We derive

the leading term of the Bergman and spectral kernels under the local convergence as-

sumption in the sequence of Chern curvatures c1(Lk, hk), inspired by [6]. The manifold

M may be non-Kähler and c1(Lk, hk) may be negative or degenerate. Moreover, we

establish the Lk-asymptotic version of Demailly’s holomorphic Morse inequalities as an

application to compact complex manifolds.
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1. Introduction

For a holomorphic Hermitian line bundle (L, hL) over a Hermitian complex manifold

M , the asymptotic behavior of the Bergman kernel for high tensor power Lk := L⊗k has

been extensively studied for a long time (cf.[1],[2],[3],[5],[7],[9],[13],[16]). In [5],

the author adopted a simple scaling method to study the large k behavior of Bergman

and spectral kernels of Lk with (0, q)-forms and obtain the leading term. In this paper,

inspired by the work of Coman, Lu, Ma, and Marinescu [6], we generalize the method

in [5] and consider a more general context, a sequence of line bundles. That is, we

must replace the line bundles {Lk}k∈N with a sequence of line bundles {Lk}k∈N.

The scaling method has been used in many different geometric objects. In CR ge-

ometry, Hsiao and Zhu [14] established the asymptotic behavior of the heat kernel for

the Kohn Laplacian and proved the Morse inequalities of the CR manifolds. Similarly,

in real geometry, Chen [4] employed this technique to study the heat kernel of real

manifolds and provided a new proof of the classical Morse inequalities. As mentioned

above, the author [5] obtained the semi-classical asymptotic of Bergman and spectral

kernels in complex geometry. This technique is relatively simple and does not require

complicated analytical tools. For this reason, various geometric objects can be studied

using this technique.

In the present paper, we establish the local uniform estimate for the scaled Bergman

and spectral kernels in Chapter 2. Moreover, the outcome is also valid for Schwartz

kernels with respect to bounded operators of the type defined in (2.14). In Section 3.1-

Section 3.3, we prove the local convergence of the scaled Bergman and spectral kernels,

which is the main result of this paper. In Section 3.4, we offer a more straightforward

idea to prove the asymptotic of Bergman kernel by the Heat kernel method under the

global large spectral gap condition (cf. Assumption 3.1 ).

1.1. Set-up and the main results. Let {(Lk, hk)}∞k=1 be a sequence of Hermitian

holomorphic line bundles over a Hermitian complex manifold (M,ω) where ω is a pos-

itive Hermitian (1, 1)-form. For an open set U ⊂ M , denote by Ω0,q(U, Lk) the space of

smooth Lk-valued (0, q)-forms over U and by Ω0,q
c (U, Lk) the subspace of Ω0,q(U, Lk) con-

sisting of elements with compact support in U . Suppose sk is a local holomorphic non-

vanishing section of Lk, then we can relate sk to a weight function φk with |sk|hk
= e−2φk .

The Chern curvature form c1(Lk, hk) is locally given by the (1, 1)-form:

(1.1) c1(Lk, hk) = − 1

(2π)
· 2∂̄∂φk =

1

π

n∑

i,j=1

∂2φk

∂zi∂z̄j
dzi ∧ dz̄j .

Here, n is the complex dimension of M . There is a fibrewise Hermitian inner product

〈·|·〉ω,hk
on T ∗,(0,q)M ⊗ Lk given by

(1.2) 〈η1 ⊗ sk|η2 ⊗ sk〉ω,hk
= 〈η1|η2〉ωe−2φk where ηi ∈ Ω0,q(M).

We also denote 〈·|·〉ω,φk
:= 〈·|·〉ω,hk

for convenience. Let L2
ω,φk

(U, T ∗,(0,q)M ⊗ Lk) be the

completion of Ω0,q
c (U, Lk) with respect to the inner product (·|·)ω,φk

:=
∫
U
〈·|·〉ω,φk

dVω.

Here, dVω is the volume form ωn

n!
. Denote ‖ · ‖ω,φk,U as the induced norm. Next, the Lk-

valued Cauchy-Riemann operator is denoted by ∂̄qk : Ω0,q(M,Lk) → Ω0,q+1(M,Lk), and
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by ∂̄q,∗k : Ω0,q(M,Lk) → Ω0,q−1(M,Lk) the formal adjoint of ∂̄q−1
k with respect to (·|·)ω,φk

.

If the manifold is compact, we denote

H
0,q(M,Lk) :=

Ker ∂̄qk : Ω0,q(M,Lk) → Ωq+1(M,Lk)

Rang ∂̄q−1 : Ω0,q−1(M,Lk) → Ω0,q(M,Lk)
,

which is the Dolbeault cohomology. We now fix a point p ∈M and make the assumption

inspired by [6].

ASSUMPTION 1.1. There exists an open set D containing p such that

C−1
k c1(Lk, hk) = R + o(1) on D in the C

∞-topology,

where Ck is a sequence of real numbers with Ck → ∞. Here, R is a Hermitian (1, 1)-

form, which may not be positive or non-degenerate.

Now, we identify the form R with the Hermitian matrix R̂ ∈ C ∞(D,End(T (1,0)M))

such that for each U, V ∈ T
(1,0)
z M , z ∈M ,

(1.3) 〈R̂(z)U |V 〉ω = 〈R(z), U ∧ V̄ 〉,
where 〈·, ·〉 is the natural pairing of T ∗,(1,1)M and T (1,1)M . We introduce the main appli-

cation of this paper and start by the notation of q-index set.

DEFINITION 1.1. Denote p ∈ M(q) if R̂(p) is non-degenerate at p and has exactly q

negative eigenvalues and n− q positive eigenvalues. Also, we define

M(≤ q) :=
⋃

j=0,··· ,q
M(j) ⊂M.

THEOREM 1.1 (Lk-version holomorphic Morse inequalities). Let (M,ω) be a compact

complex manifold and (Lk, hk) be sequence of Hermitian holomorphic line bundles over M .

If there exists a sequence Ck → ∞ such that Assumption 1.1 holds for D = M , then we

have the following asymptotic estimates as k → ∞:

• (Weakly Morse inequality)

(1.4) dimH
0,q(M,Lk) ≤

(
Ck

2π

)n ∫

M(q)

∣∣R
n

ωn

∣∣dVω + o((Ck)
n).

Moreover, if the spectral gap condition ( which will be defined later in Def 1.2)

holds on M , the equality above holds.

• (Strong Morse inequality)

(1.5)

q∑

j=0

(−1)j dimH
0,j(M,Lk) ≤

(
Ck

2π

)n ∫

M(≤q)

(
Rn

ωn

)
dVω + o((Ck)

n).

If the spectral gap condition (cf. Def 1.2) holds on M , then the equality holds.

• (Asymptotic Riemann-Roch theorem) In the case q = n, the equality in (1.5) holds

and hence

(1.6)

n∑

j=0

(−1)j dimH
0,q(M,Lk) =

(
Ck

2π

)n ∫

M

(
Rn

ωn

)
dVω + o((Ck)

n).

Here, note that Rn

ωn (z) = 0 ifR(z) is degenerate, andM(≤ n) = {z ∈ M ;R(z) is non-degenerate}.
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We now formulate the main results of this paper. Define the Kodaira Laplacian

�q
k : Dom�q

k ⊂ L2
ω,φk

(M,T ∗,(0,q)M ⊗ Lk) → L2
ω,φk

(M,T ∗,(0,q)M ⊗ Lk),

which is the Gaffney extension (cf.[17] or 2.9). For any non-negative constant c ≥ 0,

denote

P q
k,c(z, w) ∈ C

∞ (M ×M, (T ∗,(0,q)M ⊗ Lk)⊠ (T ∗,(0,q)M ⊗ Lk)
)

as the spectral kernel which is the Schwartz kernel of the spectral projection

P q
k,c := 1[0,c] (�

q
k) : L

2
ω,φk

(M,T ∗,(0,q)M ⊗ Lk) → E
q
k,≤c := Rang 1[0,c](�

q
k),

where 1[0,c] (�
q
k) is the functional calculus of the indicator function 1[0,c] with respect

to the Kodaira Laplacain �q
k (cf.[3, Chapter 2] or (2.15)). Here, (T ∗,(0,q)M ⊗ Lk) ⊠

(T ∗,(0,q)M ⊗ Lk) is the vector bundle over M ×M whose fiber at (z, w) ∈ M ×M is the

space of linear transformation from T
∗,(0,q)
w M ⊗Lk |w to T

∗,(0,q)
z M ⊗Lk |z. Moreover, the

projection

P q
k := P q

k,0 : L
2
ω,φk

(M,T ∗,(0,q)M ⊗ Lk) → Ker�q
k,

at the lowest level c = 0 is called the Bergman projection. The Bergman kernel P q
k (z, w) :=

P q
k,0(z, w) is the Schwartz kernel of P q

k . From now on, we fix a point p ∈ M and accept

the assumption 1.1. We can take D as a complex chart centered on p such that

(1.7) ω(0) =
√
−1

n∑

i=1

dzi ∧ dz̄i ; R(0) =

n∑

i=1

2λi,pdz
i ∧ dz̄i.

Note that {λi,p} are the eigenvalues of R̂(p) defined in (1.3). In the case p ∈ M(q), we

assume λi,p < 0 for i = 1, · · · , q and λi,p > 0 for i = q + 1, · · · , n. Next, we take the

sequence of non-vanishing holomorphic sections sk of Lk over D defined by (2.2). We

can localize the spectral kernel P q
k,c(z, w) inD×D with respect to sk by writing P q

k,c(z, w)

as

(1.8) P q
k,c(z, w) = P q,s

k,c (z, w)sk(z)⊗ (sk(w))
∗,

Here, P q,s
k,c (z, w) is an element in C ∞(D×D, T ∗,(0,q)M⊠T ∗,(0,q)M). Moreover, We denote

P q,s
k (z, w) := P q,s

k,0(z, w) for the Bergman kernel case.

DEFINITION 1.2 (local small spectral gap condition). For any q ∈ {0, · · · , n} and an

open set D ⊂ M , we say D has local small spectral gap condition with respect to {Ck}
if there exist d ∈ N and C > 0 such that for all large enough k,

(1.9) ‖ (I − P q
k )u‖2ω,φk,M

≤ C(Ck)
d (�q

ku | u)ω,φk,D
for all u ∈ Ω0,q

c (D,Lk).

The main theorems describe the asymptotic behavior of scaled spectral kernels of

forms with energy lower than (Ck)
−d for some d ∈ N. First, we state the case p /∈M(q):

THEOREM 1.2 (main theorem for vanishing case). Let d ∈ N. If p /∈M(q), then

(1.10) (Ck)
−nP q,s

k,(Ck)−d(
z√
Ck

,
w√
Ck

) → 0, in C
∞-topology.

Moreover, for the Bergman kernel case (Ck)
−nP q,s

k (z/
√
Ck, w/

√
Ck), we also have the prop-

erty of vanishing.

Next, we state the main theorem for the case p ∈M(q).
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THEOREM 1.3 (main theorem for non-vanishing case). Let d ∈ N. If p ∈ M(q), then

the scaled kernel (Ck)
−nP q,s

k,(Ck)−d(z/
√
Ck, w/

√
Ck) converges to

|λ1,p · · ·λn,p|
πn

e2(
∑q

i=1 |λi,p|z̄iwi+
∑n

i=q+1 |λi,p|ziw̄i−
∑n

i=1 |λi,p||wi|2)(dz̄1∧· · ·∧dz̄q)⊗(
∂

∂w̄1
∧· · ·∧ ∂

∂w̄q
),

in C ∞-topology. Here, we identify (dz̄1 ∧ · · · ∧ dz̄q) ⊗ (
∂

∂w̄1
∧ · · · ∧ ∂

∂w̄q
) as a section of

T ∗,(0,q)Cn ⊠ T ∗,(0,q)Cn over Cn defined by

η 7→ (dz̄1 ∧ · · · ∧ dz̄q)⊗ η(
∂

∂w̄1
∧ · · · ∧ ∂

∂w̄q
) for all η ∈ T ∗,(0,q)

C
n.

Moreover, if the local small spectral gap condition (cf. Def. 1.2) holds, the scaled Bergman

kernel (Ck)
−nP q,s

k (z/
√
Ck, w/

√
Ck) has the same asymptotic.

We next discuss the applications of the main theorems. Note that

P q,s
k,c (p, p) = P q,s

k,c (z/
√
Ck, w/

√
Ck) |(z,w)=(0,0) .

Since Lk ⊗ (Lk)
∗ = C, we can identify P q

k,c(p, p) with an element of End(T
∗,(0,q)
p M) and

observe that

P q
k,c(p, p) = P q,s

k,c (p, p).

By the main theorems,

P q
k,(Ck)−d(p, p) =

(
Ck

2π

)n ∣∣∣∣
Rn

ωn
(p)

∣∣∣∣ · 1M(q)(p)(dz̄
1 ∧ · · · ∧ dz̄q)⊗ (

∂

∂w̄1
∧ · · · ∧ ∂

∂w̄q
) + o((Ck)

n).

If spectral gap condition (cf. Def. 1.2) holds, we also have

P q
k (p, p) =

(
Ck

2π

)n ∣∣∣∣
Rn

ωn
(p)

∣∣∣∣ · 1M(q)(p)(dz̄
1 ∧ · · · ∧ dz̄q)⊗ (

∂

∂w̄1
∧ · · · ∧ ∂

∂w̄q
) + o((Ck)

n).

We get an asymptotic of the index density:

(1.11) TrP q
k,(Ck)−d(p, p) =

(
Ck

2π

)n ∣∣∣∣
Rn

ωn
(p)

∣∣∣∣ · 1M(q)(p) + o((Ck)
n), as k → ∞.

Also, if the spectral gap condition holds,

(1.12) TrP q
k (p, p) =

(
Ck

2π

)n ∣∣∣∣
Rn

ωn
(p)

∣∣∣∣ · 1M(q)(p) + o((Ck)
n), as k → ∞.

To apply the results to index theory, we need the local uniform bounds:

THEOREM 1.4 (Corollary 2.7, Section 2.5). For any compact set K ⊂ D, there exists

a constant C̃K,ℓ independent of k such that

(1.13) sup
z∈K

∣∣∣(Ck)
−nP q

k,(Ck)−N (z, z)
∣∣∣ ≤ C̃K .

Also, the result holds for the Bergman kernel case.

Combining (1.11), (1.13), and dominated convergence theorem, we have the fol-

lowing result:

COROLLARY 1.5 (Local holomorphic Morse inequalities). Fix d ∈ N. Let (M,ω) be a

complex manifold, and (Lk, hk) be a sequence of Hermitian holomorphic line bundles over
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M . If there exists a sequence Ck → ∞ such that Assumption 1.1 holds on an open set D ,

then for any compact set K ⊂ V , we have
∫

K

TrP q
k,(Ck)−d(z, z)dVω(z) =

(
Ck

2π

)n ∫

K

∣∣R
n

ωn

∣∣ · 1M(q)dVω + o((Ck)
n), as k → ∞.

Moreover, the equality holds for
∫
K

TrP q
k (z, z)dVω(z) if the spectral gap condition (Def. 1.2)

holds on D.

PROOF OF THEOREM 1.1. We apply the result to compact complex manifolds. By the

Hodge theorem,

dimH
0,q(M,Lk) = dimKer�q

k.

We obtain the formula

(1.14) dimH
0,q(M,Lk) =

∫

M

TrP q
k (z, z)dVω(z)

Moreover,

(1.15) dimH
0,q(M,Lk) ≤ dim E

q
k,≤(Ck)−d =

∫

M

TrP q
k,(Ck)−d(z, z)dVω(z).

If the spectral gap condition (Def. 1.2) holds for D =M , we observe that

(1.16) Ker�q
k = E

q
k,≤(Ck)−d for a large enough d ∈ N.

This means that the first equality in (1.15) holds. To see the weak Morse inequality

(1.4), we apply Corollary 1.5, and identities (1.14),(1.15), and (1.16). Next, note that

(−1)q|R
n

ωn
(p)| = Rn

ωn
(p), for p ∈M(q).

To prove the strong Morse inequality (1.5), we can use the linear algebra result from

Demailly [11, Lemma 4.2] or [15, Lemma 3.2.12] and have

q∑

j=0

(−1)j dimH
0,j(M,Lk) ≤

q∑

j=0

(−1)j dim E
j
k,≤(Ck)−d .

By considering the complex (E •
k,(Ck)−d , ∂̄

•
k) and combining the identities (1.15) and (1.16),

we obtain the strong holomorphic Morse inequality. Finally, by the fact that

0 −→ E
0
k,≤(Ck)−d

/
Ker�0

k

∂̄0
k−→ E

1
k,≤(Ck)−d

/
Ker�1

k

∂̄1
k−→ · · · ∂̄

n−1
k−→ E

n
k,≤(Ck)−d

/
Ker�n

k

∂̄n
k−→ 0

is an exact sequence, we can deduce

n∑

q=0

(−1)q dim
(
E

q
k,≤(Ck)−d

/
Ker�q

k

)
= 0.

Hence,
q∑

j=0

(−1)j dimH
0,j(M,Lk) =

n∑

q=0

(−1)q dim E
q
k,≤(Ck)−d =

∫

M

TrP q
k,(Ck)−d(z, z)dVω(z).

By the main theorems, we derive the asymptotic Riemann-Roch theorem (1.6). �

We refer readers to the book [15] of X. Ma and G. Marinescu for a comprehensive

study of Bergman kernel and holomorphic Morse inequalities.
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2. Localization and scaling method

2.1. Notations. Let (M,ω) be a complex manifold with dimCM = n where ω is a

positive Hermitian (1, 1)-form. ω induces a fibrewise Hermitian inner product 〈·|·〉ω on

the vector bundle of (0, q)-forms, T ∗,(0,q)M . For an open set U ⊂ M , denote by C ∞(U)

the space of smooth functions on U and by C ∞
c (U) the subspace of C ∞(U) consisting

of elements with compact support in U . Let Ω0,q(U) be the space of smooth (0, q)-forms

over U and Ω0,q
c (U) be the subspace of Ω0,q(U) whose elements have compact support in

U . Let L2
ω(U, T

∗,(0,q)M) be the completion of Ω0,q
c (U) with respect to the inner product

(·|·)ω,U :=
∫
U
〈·|·〉ωdVω, where dVω := ωn/n! is the volume form. If A is a bounded linear

map from L2
ω(U, T

∗,(0,q)M) to itself, denote ‖A‖ω,U as the operator norm.

For a holomorphic Hermitian line bundle (L, hL) over M , let s be a local holomor-

phic trivializing section of L over an open subset U of M . The Hermitian metric hL

locally corresponds to a weight function φ : U → R such that |s|2hL = e−2φ. Denote

by 〈·|·〉φ := 〈·|·〉hL the fibrewise Hermitian inner product hL on L for convenience.

Let 〈·|·〉ω,φ be the fibrewise Hermitian inner product of L ⊗ T ∗,(0,q)M induced by hL

and ω ( cf. 1.2). Let Ω0,q(U, L) be the space of L-valued smooth (0, q)-forms with

domain U and Ω0,q
c (U, L) be the subspace of Ω0,q(U, L) whose elements have compact

support in U . Define L2
ω,φ(U, T

∗,(0,q)M ⊗ L) to be the completion of Ω0,q
c (U, L) with re-

spect to the inner product (·|·)ω,φ,U :=
∫
U
〈·|·〉ω,φdVω. If A is a bounded linear map from

L2
ω,φ(U, T

∗,(0,q)M ⊗ L) to itself, denote ‖A‖ω,φ,U as the operator norm. Sometimes, we

may drop U and write ‖ · ‖ω,φ := ‖ · ‖ω,φ,M if there is no risk of ambiguity.

For a holomorphic complex chart ψ : D ⊂ M → ψ(D) ⊂ Cn, we locally have

the complex coordinate z = (z1, · · · , zn). We denote N0 := N ∪ {0} and adopt the

standard notation zα for multi-index α = (α1, · · · , αn) ∈ (N0)
n. We say that a multi-

index I = (i1, · · · , iq) ∈ (N0)
q is strictly increasing if 1 ≤ i1 < · · · < iq ≤ n and denote

dz̄I := dz̄i1 ∧ · · · ∧ dz̄iq . A (0, q)-form u on M can be locally written as

u |V=
∑′

|I|=q

uI(z)dz̄
I ,

where
∑′

means that the summation is performed only over strictly increasing multi-

indices. We denote by dm the standard Lebesgue measure on Cn. For r > 0, we denote

B(r) := {z ∈ Cn; |z| < r} to be the open ball centered at 0 ∈ Cn with radius r.

2.2. Localization. Recall that we fix a point p ∈ M and make Assumption 1.1. To

localize the problem, we take D as a holomorphic complex chart ψ : D → ψ(D) ⊂ Cn

such that ψ(p) = 0 and

(2.1) ω(0) =
√
−1

n∑

i=1

dzi ∧ dz̄i ; R(0) =
n∑

i=1

2λidz
i ∧ dz̄i.

Without loss of generality, we may assume that D is pseudoconvex, ψ(D) is convex and

identify D with ψ(D) and p with 0 by abuse of notation. We now construct a sequence

of non-vanishing holomorphic sections of Lk over D by the approach in [6, Lemma 2.1].

Let σk be the non-vanishing section of Lk → D that is parallel with respect to the Chern

connenction ∇Lk along the segments {t · 0 + (1 − t) · q | t ∈ [0, 1]} for all q ∈ D. Let
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Γσk
be the connection form of ∇Lk with respect to σk. That is, ∇Lkσk = Γσk

⊗ σk. Let

(∇Lk)0,1 be the (0, 1)-part of the Chern connection. We have (∇Lk)0,1 = ∂̄ where ∂̄ is the

standard Cauchy-Riemann operator. We see

0 = ∂̄
(
(∇Lk)0,1σk

)
=
(
∂̄(Γσk

)0,1
)
⊗ σk − (Γσk

)0,1 ∧ (Γσk
)0,1 ⊗ σk ⇒ ∂̄(Γσk

)0,1 = 0.

By the ∂̄-Poincaré lemma, there exist functions fk ∈ C ∞(V ) such that ∂̄fk = (Γσk
)0,1.

Define

s̃k := e−fkσk.

Note that ∂̄s̃k = e−fk
(
(Γσk

)0,1 − (∇Lk)0,1
)
σk = 0 which means s̃k are holomorphic sec-

tions. Next, we restrict the domain V of s̃k to an open ball and assume B(1) ⊂ V for

convenience. Let φ̃k be the weight function of s̃k. By multiplying a constant on s̃k, we

may assume φ̃k(0) = 0 and have the expansion:

φ̃k(z) =
n∑

i=1

(
∂φ̃k

∂zi
(0)zi +

∂φ̃k

∂z̄i
(0)z̄i

)

+
1

2!

n∑

i,j=1

(
∂2φ̃k

∂zi∂zj
(0)zizj +

∂2φ̃k

∂zi∂z̄j
(0)ziz̄j +

∂2φ̃k

∂z̄i∂z̄j
(0)z̄iz̄j

)
+Ok(|z|3).

We denote Ok as the k-dependent big-O notation, which means that the values of the

constants in the big-O estimates depend on the parameter k. Set

Fk(z) :=
n∑

i=1

∂φ̃k

∂zi
(0)zi +

n∑

i,j=1

∂2φ̃k

∂zi∂zj
(0)zizj ,

which are holomorphic functions and let

(2.2) sk := e−Fk s̃k.

In this way, we denote by φk the weight functions of sk and get

φk(z) =
n∑

i,j=1

λk,i,jz
iz̄j +Ok(|z|3),

where λk,i,j :=
1

2!

∂2φ̃k

∂zi∂z̄j
(0). By Assumption 1.1, we observe that

{
λk,i,j = Ckδ

i
jλi + εk,i,j where εk,i,j = o(Ck);

Ok(|z|3) = CkO(|z|3).

Here, εk,i,j is a sequence of numbers which satisfy εk,i,jC
−1
k → 0. We now define

φ0(z) :=

n∑

i=1

λi|zi|2,

and then we can write

(2.3) φk(z) = Ckφ0(z) +

n∑

i,j=1

εk,i,jz
iz̄j + CkO(|z|3) where εk,i,j = o(Ck).
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2.3. Scaling method. To begin with, we define the scaled metric φ(k) and scaled

Hermitian form ω(k) which are defined on B(
√
Ck) ⊂ Cn by

φ(k)(z) := φk(
z√
Ck

) and ω(k)(z) := ω(
z√
Ck

),

respectively. Denote by ω0 the standard Hermitian form
√
−1
∑n

i=1 dz
i ∧ dz̄i on Cn. By

the identity (2.3) and the fact that ω(0) = ω0(0), we have the property:

PROPOSITION 2.1 (convergence of scaled metrics).

(2.4) φ(k) → φ0 and ω(k) → ω0 in C
∞-topology.

The convergent rates in (2.4) smoothly depend on the point p chosen before, since φ and ω

are smooth on the manifold M .

Inspired by this fact, we define the scaled line bundles

L(k) → B(
√
Ck)

which are trivial line bundles with trivializing holomorphic sections

s(k)(z) := sk(
z√
Ck

) : B(
√
Ck) → Lk ≃ L(k).

The scaled line bundle has a scaled metric induced by h(k). That is,

〈s(k)(z)|s(k)(z)〉φ(k)
:= 〈s(k)(z)|s(k)(z)〉h(k)

= e−2φ(k)(z).

We have a fibrewise inner product 〈·|·〉ω(k),φ(k)
on the vector bundle T ∗,(0,q)Cn ⊗L(k) over

B(
√
Ck) induced by scaled metric h(k) and scaled Hermitian form ω(k). That is,

〈η1 ⊗ s(k)|η2 ⊗ s(k)〉ω(k),φ(k)
(z) = 〈η1(z)|η2(z)〉ω(k)

e−2φ(k)(z),

for all ηi ∈ Ω0,q(B(
√
Ck)). By changing variables, we have the unitary identifications:

L2
ω,φk

(B(1), T ∗,(0,q)M ⊗ Lk) ∼= L2
ω(k),φ(k)

(B(
√
Ck), T

∗,(0,q)
C

n ⊗ L(k)) by(2.5)

η ⊗ sk ↔ C
−n/2
k η(z/

√
Ck)⊗ s(k),

and

L2
ω(B(1), T ∗,(0,q)M) ∼= L2

ω(k)
(B(
√
Ck), T

∗,(0,q)
C

n) by(2.6)

η ↔ C
−n/2
k η(z/

√
Ck).

Moreover, there are unitary identifications:

L2
ω,φk

(B(1), T ∗,(0,q)M ⊗ Lk) ∼= L2
ω(B(1), T ∗,(0,q)M) by(2.7)

η ⊗ sk ↔ e−φkη,

and

L2
ω(k),φ(k)

(B(
√
Ck), T

∗,(0,q)
C

n ⊗ L(k)) ∼= L2
ω(k)

(B(
√
Ck), T

∗,(0,q)
C

n) by(2.8)

η ⊗ s(k) ↔ e−φ(k)η.

The four unitary maps introduced above form a commute diagram.
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2.4. Scaled Laplacians and the elliptic estimates. The Lk-valued Cauchy-Riemann

operator is denoted by

∂̄qk : Dom ∂̄qk ⊂ L2
ω,φk

(M,T ∗,(0,q)M ⊗ Lk) → L2
ω,φk

(M,T ∗,(0,q+1)M ⊗ Lk),

where Dom ∂̄qk := {u ∈ L2
ω,φk

(M,T ∗,(0,q)M⊗Lk); ∂̄
q
ku ∈ L2

ω,φk
(M,T ∗,(0,q)M⊗Lk)}. Denote

∂̄q,∗k : Dom ∂̄q,∗k ⊂ L2
ω,φk

(M,T ∗,(0,q)M ⊗ Lk) → L2
ω,φk

(M,T ∗,(q−1) ⊗ Lk)

as the adjoint of ∂̄q−1
k with respect to (·|·)ω,φk

. The Kodaira Laplacian �
q
k is defined by

�q
k := ∂̄q+1,∗

k ∂̄qk+∂̄
q−1
k ∂̄q,∗k : Dom�q

k ⊂ L2
ω,φk

(M,T ∗,(0,q)M⊗Lk) → L2
ω,φk

(M,T ∗,(0,q)M⊗Lk).

This is the Gaffney extension of �
q
k where Dom�

q
k is given by (cf.[17])

(2.9) Dom�q
k := {u ∈ Dom ∂̄qk ∩ Dom ∂̄q,∗k | ∂̄qku ∈ Dom ∂̄q,∗k and ∂̄q,∗k u ∈ Dom ∂̄q−1

k }.
By the identification (2.7), we can translate differential operators acting on sections

of T ∗,(0,q)M ⊗ Lk |B(1) into operators acting on sections of T ∗,(0,q)M |B(1). Define the

localized Cauchy-Riemann operator ∂̄qk,s : Ω
0,q(B(1)) → Ω0,q+1(B(1)) such that

∂̄qk(η ⊗ sk) = eφk ∂̄qk,s(ηe
−φk)⊗ sk.

Let ∂̄q,∗k,s : Ω
0,q(B(1)) → Ω0,q−1(B(1)) be the operator such that

∂̄q,∗k (η ⊗ sk) = eφk ∂̄q,∗k,s(ηe
−φk)⊗ sk.

Since (2.7) is unitary, we see that ∂̄q,∗k,s is the formal adjoint of ∂̄qk,s with respect to (·|·)ω.

Denote by ∂̄q the standard Cauchy-Riemann operator acting on smooth sections of (0, q)-

forms and by ∂̄q,∗ω the formal adjoint of ∂̄q with respect to (·|·)ω. We have

∂̄qk,s = ∂̄q + (∂̄φk) ∧ · ; ∂̄q,∗k,s = ∂̄q,∗ω + ((∂̄φk)∧)∗ω,
where ((∂̄φk)∧)∗ω is the fibrewise adjoint of the wedge operator (∂̄φk)∧ : Ω0,q−1 → Ω0,q

with respect to 〈·|·〉ω.The localized Kodaira Laplacian is defined by

�q
k,s := ∂̄q−1

k,s ∂̄
q,∗
k,s + ∂̄q+1,∗

k,s ∂̄qk,s : Ω
0,q(B(1)) → Ω0,q(B(1)).

In the same manner, the L(k)-valued Cauchy-Riemann operator is denoted by

∂̄q(k) : Ω
0,q(B(

√
Ck), L(k)) → Ω0,q+1(B(

√
Ck), L(k)),

which is defined by ∂̄q(k)(η ⊗ s(k)) = (∂̄qη)⊗ s(k) for all η ∈ Ω0,q(B(
√
Ck)). Denote

∂̄q,∗(k) : Ω
0,q(B(

√
Ck), L(k)) → Ω0,q−1(B(

√
Ck), L(k))

to be the formal adjoint of ∂̄q−1
(k) with respect to (·|·)ω(k),φ(k)

. Next, we consider the scaled

localized Cauchy-Riemann operator

∂̄q(k),s : Ω
0,q(B(

√
Ck)) → Ω0,q+1(B(

√
Ck)),

which is defined by ∂̄q(k)(η ⊗ s(k)) =: eφ(k) ∂̄q(k),s(ηe
−φ(k))⊗ s(k). On the other hand, define

∂̄q,∗(k),s : Ω
0,q(B(

√
Ck)) → Ω0,q−1(B(

√
Ck))
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by ∂̄q,∗(k)(η ⊗ s(k)) =: eφ(k) ∂̄q,∗(k),s(ηe
−φ(k)) ⊗ s(k) which is the formal adjoint of ∂̄q(k),s with

respect to (·|·)ω(k)
. Since (2.8) is unitary, we have similar identities:

∂̄q(k),s = ∂̄q + (∂̄φ(k)) ∧ · ; ∂̄q,∗(k),s = ∂̄q,∗ω(k)
+ ((∂̄φ(k))∧)∗ω(k)

.

The scaled localized Kodaira Laplacian is given by

�q
(k),s := ∂̄q−1

(k),s∂̄
q,∗
(k),s + ∂̄q+1,∗

(k),s ∂̄
q
(k),s : Ω

0,q(B(
√
Ck)) → Ω0,q(B(

√
Ck)).

We have the relations:

(2.10)

(∂̄q(k),su)(
√
Ckz) =

1√
Ck

∂̄qk,s(u(
√
Ckz)) ; (∂̄q,∗(k),su)(

√
Ckz) =

1√
Ck

∂̄q,∗k,s(u(
√
Ckz)).

Hence,

(2.11)
(
�q

(k),su
)
(
√
Ckz) =

1

Ck
�q

k,s(u(
√
Ckz)).

Next, we consider the model case Cn equipped with the weight function φ0 =
∑n

i=1 λi|zi|2
and standard Hermitian form ω0 =

√
−1
∑
dzi ∧ dz̄i. The wight function φ0 defines a

Hermitian metric on the trivial line bundle C → Cn with |1|2φ0
(z) = e−2φ0(z). We can

define the fiberwise Hermitian metric 〈·|·〉ω0,φ0 on T ∗,(0,q)Cn⊗C → Cn with respect to ω0

and φ0. Let

∂̄q0 : Dom ∂̄q0 ⊂ L2
ω0,φ0

(Cn, T ∗,(0,q)
C

n ⊗ C) → L2
ω0,φ0

(Cn, T ∗,(0,q)
C

n ⊗ C)

be the Cauchy-Riemann operator with values in the trivial line bundle and let ∂̄q,∗0 be

the formal adjoint of ∂̄q0 with respect to (·|·)ω0,φ0. Denote by

(2.12)

�q
0 := ∂̄q−1

0 ∂̄q,∗0 + ∂̄q+1,∗
0 ∂̄q0 : Dom�q

0 ⊂ L2
ω0,φ0

(Cn, T ∗,(0,q)
C

n) → L2
ω0,φ0

(Cn, T ∗,(0,q)
C

n)

the Kodaira Laplacian. In the same way, we define the localized Kodaira Laplacian �q
0,s

by

(2.13)

�q
0,s := ∂̄q−1

0,s ∂̄
q,∗
0,s + ∂̄q+1,∗

0,s ∂̄q0,s : Dom�q
0,s ⊂ L2

ω0
(Cn, T ∗,(0,q)

C
n) → L2

ω0
(Cn, T ∗,(0,q)

C
n),

where

∂̄q0,s := ∂̄q + (∂̄φ0)∧ ; ∂̄q,∗0,s := ∂̄q,∗ω0
+ ((∂̄φ0)∧)∗ω0

.

For m ∈ R and u =
∑′

|I|=q uIdz̄
I ∈ Ω0,q

c (Cn), we adopt the Sobolev norm ‖ · ‖m as

‖u‖2m :=
∑′

|I|=q

(∫

Cn

(1 + |ξ|2)m|ûI(ξ)|2dm(ξ)

)
,

where ûI(ξ) := (2π)−n/2
∫
Cn uI(x)e

−iξ·xdm. For an open set U ⊂ Cn, the Sobolev space

Wm
c (U, T ∗,(0,q)Cn) is the Banach space given by the completion of Ω0,q

c (U) with respect to

‖ · ‖m. Moreover, when m = 0, ‖ · ‖0 coincides with the standard L2-norm ‖ · ‖ω0 induced

by the standard Hermitian form ω0. Hence, we know W 0
c (U, T

∗,(0,q)Cn) is a Hilbert space

with its inner product given by

(·|·)0 := (·|·)ω0.
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By (2.4), we deduce that the coefficients of �
q
(k),s converge to the ones of �

q
0,s local

uniformly in C ∞-topology and simply write �q
(k),s → �q

0,s. By the elliptic estimate, we

have the following Lemma:

LEMMA 2.2 (k-uniform elliptic estimate). For any bounded domain U and integers

m ∈ N, there is a constant C(U, p) which is continuously dependent on p chosen before and

independent of k such that

‖u‖2m ≤ C(U, p)
(
‖u‖0 + ‖(�q

(k),s)
mu‖0

)

for all u ∈ W 2m
c (U, T ∗,(0,q)Cn) and large enough k.

2.5. Scaled kernels and uniform bounds. To begin with, we start with the spectral

theorem:

THEOREM 2.3. [8, theorem 2.5.1] Let P : DomP ⊂ H → H be a self-adjoint operator

on a Hilbert space H. Then there exists a spectrum set SpecP ⊂ R , a finite measure µ on

SpecP × N and a unitary operator

H : H → L2
dµ(SpecP × N)

with the following properties: Set h : SpecP × N → R by h(s, n) := s. Then an element

f ∈ H is in DomP if and only if h ·H(f) ∈ L2(SpecP × N, dµ). In addition, we have

Pf = H−1 ◦ (h ·Hf) for all f ∈ Dom P.

Based on Theorem 2.3, we know that �q
k has the spectrum set Spec�q

k ⊂ [0,∞) and

there is a unitary map

Hq
k : L2

ω,φk
(M,T ∗,(0,q)M ⊗ Lk) → L2

dµk
(Spec �q

k × N)

such that

�q
ku = (Hq

k)
−1 ◦ (h ·Hq

ku),

for all u ∈ Dom�
q
k. From now on, we let aqk : [0,∞) → R be a sequence of real-valued

functions such that

aqk(s, n) := aqk(s) ∈ L2
dµk

(Spec�q
k × N).

Define

(2.14) Aq
k : L2

ω,φk
(M,T ∗,(0,q)M ⊗ Lk) → L2

ω,φk
(M,T ∗,(0,q)M ⊗ Lk)

to be the sequence of self-adjoint bounded linear maps defined by

(2.15) Aq
k := (Hk)

−1 ◦ (aqk(s, n) ·Hq
k) .

We call Aq
k the functional calculus of aqk and write Aq

k = aqk(�
q
k). Define

Aq
k(z, w) ∈ C

∞ (M ×M ; (T ∗,(0,q)M ⊗ Lk)⊠ (T ∗,(0,q)M ⊗ Lk)
∗)

to be Schwartz kernels of Aq
k, which we assume to be smooth. For such Aq

k, we scale

the smooth kernels Aq
k(z, w) in the open ball B(1). First, define the localized kernel

Aq,s
k (z, w) ∈ C ∞(B(1)× B(1), T ∗,(0,q)M ⊠ T ∗,(0,q)M) by

Aq
k(z, w) =: Aq,s

k (z, w)sk(z)⊗ (sk(w))
∗.
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The scaled kernels Aq,s
(k)(z, w) ∈ C

∞(B(
√
Ck) × B(

√
Ck), T

∗,(0,q)Cn ⊠ T ∗,(0,q)Cn) are de-

fined by

Aq,s
(k)(z, w) := C−n

k Aq,s
k (

z√
Ck

,
w√
Ck

).

By (2.7), we define the localized mapAq
k,s : L2

ω(B(1), T ∗,(0,q)M) → L2
ω(B(1), T ∗,(0,q)M)

by (
Aq

k,s(e
−φkη)

)
⊗ sk = e−φkAq

k(η ⊗ sk).

Also, by (2.6), we set the scaled localized map Aq
(k),s acting on L2

ω(k)
(B(

√
Ck), T

∗,(0,q)Cn)

by

(2.16)
(
Aq

(k),sη
)
(
√
Ckz) = Aq

k,s(η(
√
Ckz)).

Denote by Aq
k,s(z, w) and Aq

(k),s(z, w) as localized kernel and scaled localized kernel

which are the Schwartz kernels of Aq
k,s and Aq

(k),s, respectively. The relations between

the kernels introduced above are given by

(2.17) Aq
k,s(z, w) = e−φk(z)Aq,s

k (z, w)eφk(w) ; Aq
(k),s(z, w) = e−φ(k)(z)Aq,s

(k)(z, w)e
φ(k)(w),

and

Aq
(k),s(z, w) = C−n

k Aq
k,s(

z√
Ck

,
w√
Ck

).

For any u ∈ Ω0,q
c (B(

√
Ck)), we denote uk := Ck

n/2u(
√
Ckz) and observe the fact that

uk ∈ Ω0,q
c (B(1)) ⊂ Ω0,q

c (M). By changing variable,

‖Aq
(k),su‖ω(k),B(

√
Ck)

= ‖Aq
k,suk‖ω,B(1) ≤ ‖Aq

k(e
φkuk ⊗ sk)‖ω,φk,M ≤ ‖Aq

k‖ω,φk
‖eφkuk ⊗ sk‖ω,φk

= ‖Aq
k‖ω,φk

‖uk‖ω,B(1) = ‖Aq
k‖ω,φk

‖u‖ω(k),B(
√
Ck)
,

where ‖Aq
k‖ω,φk

is the operator norm of Aq
k. This computation tells us that the operator

norms of Aq
(k),s, A

q
k,s and Aq

k have the following relations:

(2.18) ‖Aq
(k),s‖ω(k),B(

√
Ck)

= ‖Aq
k,s‖ω,B(1) ≤ ‖Aq

k‖ω,φk,M .

Next, since ω is positive and smooth on the compact set D, there exist positive constants

C1(p) and C2(p) that continuously depend on the point p chosen before such that

(2.19) C1(p)‖u‖ω0,B(
√
Ck)

≤ ‖u‖ω(k),B(
√
Ck)

≤ C2(p)‖u‖ω0,B(
√
Ck)
,

for all u ∈ Ω0,q(B(
√
Ck)) and k ∈ N. Hence, we can treat

Aq
(k),s : L

2
ω0
(B(
√
Ck), T

∗,(0,q)
C

n) → L2
ω0
(B(
√
Ck), T

∗,(0,q)
C

n)

a bounded map with the following estimate:

(2.20) C1(p)‖Aq
(k),s‖ω0,B(

√
Ck)

≤ ‖Aq
(k),s‖ω(k),B(

√
Ck)

≤ C2(p)‖Aq
(k),s‖ω0,B(

√
Ck)
.

Moreover, by (2.4), for any bounded domain U ⊂ Cn and ε > 0, there exists k0(p) ∈ N

depending on p and is locally constant with respect to p such that

(2.21) (1− ε) |(u, v)ω0,U | ≤
∣∣∣(u, v)ω(k),U

∣∣∣ ≤ (1 + ε) |(u, v)ω0,U | ,

for all u, v ∈ Ω0,q
c (U) and k > k0(p). Hence, we also have

(2.22) (1− ε)‖Aq
(k),s‖ω0,U ≤ ‖Aq

(k),s‖ω(k),U ≤ (1 + ε)‖Aq
(k),s‖ω0,U ,
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for all k > k0(p). We now extend our estimation of the operator norm of Aq
(k),s to the

context of Sobolev space. For m, k ∈ N, we define the number Nm,k by

Nm,k := sup
s∈[0,∞)

(
s

Ck

)maqk(s),

where Aq
k = aqk(�

q
k). Lemma 2.4 and Theorem 2.5 introduced later are adapted from

[5, Theorem 3.4, Theorem 3.5].

LEMMA 2.4 (k-dependent smoothing property). Fix χ and ρ in C ∞
c (Cn) and an integer

m ∈ N. There exists a constant C(χ, ρ,m, p) that continuously depends on p chosen before

such that

‖χAq
(k),sρu‖2m ≤ C(χ, ρ,m, p) (‖Aq

k‖ω,φk
+Nm,k +N2m,k) ‖u‖−2m,

for all u ∈ W−2m
c (Cn, T ∗,(0,q)Cn) and k ∈ N with suppχ ∪ supp ρ ⊂ B(

√
Ck).

PROOF. We assume u ∈ Ω0,q
c (Cn) by density argument. We choose U as a bounded

open domain such that suppχ ∪ supp ρ ⊂ U . By Lemma 2.2 and (2.19),

‖χAq
(k),sρu‖2m ≤ C(U,m, p)

(
‖χ̃Aq

(k),sρu‖0 + ‖χ̃(�q
(k),s)

mAq
(k),sρu‖0

)
(2.23)

≤ C̃(U,m, p)
(
‖χ̃Aq

(k),sρu‖ω(k),B(
√
Ck)

+ ‖χ̃(�q
(k),s)

mAq
(k),sρu‖ω(k),B(

√
Ck)

)
,

where χ̃ is a cut-off function with suppχ ⊂ supp χ̃ ⊂ U . By (2.18) and (2.19),

(2.24) ‖χ̃Aq
(k),sρu‖ω(k),B(

√
Ck)

≤ ‖Aq
k‖ω,φk,M‖ρu‖ω(k)

≤ C(p)‖Aq
k‖ω,φk,M‖u‖0.

By (2.11) and (2.16), we have

(2.25)
(
C

n/2
k (�q

(k),s)
mAq

(k),sρu
)
(
√
Ckz) = C−m

k

(
�

q
k,s

)m
Aq

k,sρkuk(z).

where uk := C
n/2
k u(

√
Ckz) and ρk := ρ(

√
Ckz). By changing variables, we get

(2.26) ‖
(
�q

(k),s

)m
Aq

(k),sρu(z)‖ω(k),B(
√
Ck)

= ‖C−m
k

(
�q

k,s

)m
Aq

k,sρkuk‖ω,B(1).

By the unitary identification (2.7) and the fact that Aq
k = aqk(�

q
k),

‖C−m
k

(
�q

k,s

)m
Aq

k,sρkuk‖ω,B(1) ≤ ‖C−m
k (�q

k)
mAq

k

(
ρke

φkuk ⊗ sk
)
‖ω,φk,M(2.27)

≤ Nm,k‖ρkeφkuk ⊗ sk‖ω,φk,M = Nm,k‖ρkuk‖ω,B(1).

By changing variables again (or the identity (2.7)) and (2.19), we have

(2.28) ‖ρkuk‖ω,B(1) = ‖ρu‖ω(k)
≤ C(p)‖u‖0.

Combining (2.23)-(2.28), we have another constant C(U,m, p) such that

(2.29) ‖χAq
(k),sρu‖2m ≤ C(U,m, p)(‖Aq

k‖ω,φk
+Nm,k)‖u‖0.

Now, our goal is to dominate the right-hand side of (2.23) by ‖u‖−2m. It remains to

prove the following claim:

CLAIM. There exists C(U,m, p) > 0 which continuously depends on p such that

‖χ̃Aq
(k),sρu‖0 ≤ C(U,m, p)(‖Aq

k‖ω,φk
+Nm,k)‖u‖−2m;(2.30)

‖χ̃(�q
(k),s)

mAq
(k),sρu‖0 ≤ C(U,m, p)(‖Aq

k‖ω,φk
+N2m,k)‖u‖−2m.(2.31)
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To prove the claim, we take advantage of the duality property of Sobolev spaces. Let

v ∈ Ω0,q
c (Cn) and denote vk(z) := C

n/2
k v(

√
Ckz), χ̃k(z) := χ̃(

√
Ckz) and ρk := ρ(

√
Ckz).

By the unitary identifications (2.6), (2.7), and the self-adjointness of Aq
k, we have

(
χ̃Aq

(k),sρu|v
)
ω(k),U

=
(
χ̃kA

q
k,sρke

φkuk ⊗ sk|eφkvk ⊗ sk
)
ωk,φk,M

(2.32)

=
(
eφkuk ⊗ sk|ρkAq

kχ̃ke
φkvk ⊗ sk

)
ω,φk,M

=
(
u|ρAq

(k),sχ̃v
)
ω(k),U

.

To estimate the right-hand side above, by (2.21), we see

(2.33)

∣∣∣∣
(
u|ρAq

(k),sχ̃v
)
ω(k)

∣∣∣∣ .
∣∣∣
(
u|ρAq

(k),sχ̃v
)
0

∣∣∣ .

Next, we use the duality of Sobolev space and write

(2.34)
∣∣∣
(
u|ρAq

(k),sχ̃v
)
0

∣∣∣ ≤ ‖u‖−2m‖ρAq
(k),sχ̃v‖2m . (‖Aq

k‖ω,φk
+Nm,k)‖u‖−2m‖v‖0,

where the last inequality is from (2.29). By (2.32)-(2.34) and the fact that v is arbitrary,

we have

‖χ̃Aq
(k),sρu‖0 . (‖Aq

k‖ω,φk
+Nm,k)‖u‖−2m.

All the estimates . above continuously depend on p and also depend on U and m. This

proves the inequality (2.30). For the proof of (2.31), we adopt the same way and fix

a test section v ∈ Ω0,q
c (Cn) again. Then, we mimic the process (2.32) above to get the

following estimate:

(2.35)
(
χ̃(�q

(k),s)
mAq

(k),sρu|v
)
0
.
(
u|ρ(�q

(k),s)
mAq

(k),sχ̃v
)
0

By duality of Sobolev space,

(2.36) |
(
u|ρ(�q

(k),s)
mAq

(k),sχ̃v
)
0
|. ‖u‖−2m‖ρAq

(k),s(�
q
(k),s)

mχ̃v‖2m.

By repeating the process (2.23)-(2.29), we have

‖ρAq
(k),s(�

q
(k),s)

mχ̃v‖2m . ‖ρ̃Aq
(k),s(�

q
(k),s)

mχ̃v‖0 + ‖ρ̃(�q
(k),s)

mAq
(k),s(�

q
(k),s)

mχ̃v‖0(2.37)

. (‖Aq
k‖ω,φk

+N2m,k)‖v‖0
We combine (2.35)-(2.37) and get

(2.38) ‖χ̃(�q
(k),s)

mAq
(k),sρu‖0 . (‖Aq

k‖ω,φk
+N2m,k)‖u‖−2m,

since v is arbitrary. This proves the inequality (2.31). By (2.23), (2.30) and (2.31), the

theorem follows. Note that all the estimates above originate from the local behavior

of ω and φ on manifold M . We can see that the estimate continuously depends on the

point p chosen at the beginning. �

Next, we represent A
(q)
(k),s(z, w) as the form:

A
(q)
(k),s(z, w) =

∑′

|I|=|J |=q

Aq,I,J
(k),s (z, w)dz̄

I ⊗ (
∂

∂w̄
)J ,

where Aq,I,J
(k),s (z, w) ∈ C ∞(B(

√
Ck)× B(

√
Ck)).
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THEOREM 2.5. (The local estimate) For any bounded domain U ⊂ Cn, ℓ ∈ N and

strictly increasing multi-indices I, J ∈ (N0)
q, there exists C(ℓ, U, p) such that

∣∣∣Aq,I,J
(k),s (z, w)

∣∣∣
C ℓ(U×U)

≤ C(ℓ, U, p) (‖Aq
k‖ω,φk

+Nm,k +N2m,k) ,

for all m ∈ N with 2m ≥ ℓ + n and k ∈ N. Here, C(ℓ, U, p) continuously depends on the

point p chosen at the beginning. Here, | · |C ℓ(U×U) is the usual C ℓ-norm with domain U×U .

PROOF. Denote x and y as the underlying real coordinates of the complex coordi-

nates z and w of Cn ≃ R2n. Let α, β ∈ (N0)
q be the multi-indices such that |α|+ |β| ≤ ℓ.

We start from the approximation of identity. For any fixed point y0 ∈ U , we set fl as

an approximation of identity with its mass concentrated at y0 as l → ∞. For example,

let fl = lnf(
√
l(y − y0)) where f ∈ C ∞

c (U ; [0,∞)) and
∫
U
fdm = 1. By the property of

approximation of identity, it is sufficient to dominate the following:

sup
x∈U,l∈N

|
∫

U

∂αx∂
β
yA

q,I,J
(k),s (x, y)fl(y)dm(y)|.

We aim to find an estimate independent of k and the point y0 ∈ U chosen above. By

integration by part, we only need to consider

sup
x∈U,l∈N

|∂αx
∫

U

Aq,I,J
(k),s (x, y)∂

β
y fl(y)dm(y)|.

Choose χ ∈ C ∞
c (Ũ) with U ⊂ Ũ and χ |U≡ 1. By Sobolev inequality, since 2m ≥ |α|+ 1,

sup
x∈Ũ,l∈N

|χ∂αx
∫

U

Aq,I,J
(k),s (x, y)(∂

β
y fl(y))dm(y)| ≤ sup

l∈N
‖χAq

(k),sχ
(
(∂βfl)dz̄

J
)
‖m.

Note that |f̂l(ξ)| . |
∫
R2n e

−
√
−1x·ξfl(x)dm(x)| = O(1) and hence |(̂∂βfl)| . |ξ||β||f̂l| .

|ξ||β|. Since 2m ≥ |β|+ n, we have

‖(∂βfl)dz̄J‖−2m .

∫

R2n

(1 + |ξ|2)−m|ξ||β|dm = O(1).

After combining this fact with Lemma 2.4, we know that

‖χAq
(k),sχ(∂

βfl)dz̄
J‖2m .

(
‖Aq

(k),s‖ω,φk
+Nm,k +N2m,k

)
‖(∂βfl)dz̄J‖−2m

= O(‖Aq
(k),s‖ω,φk

+Nm,k +N2m,k).

�

We apply the result to the spectral kernel by setting Aq
k := P q

k,(Ck)−d , which has

functional calculus aqk = 1[0,(Ck)−d]. The operator norm ‖P q
k,(Ck)−d‖ω,φk,M is clearly less

than or equal to 1 and Nm,k ≤ (Ck)
−d−1. For Bergman kernels, set Aq

k := P q
k with

function calculus aqk = 1{0}. Note that ‖P q
k‖ω,φk,M ≤ 1 and Nm,k = 0 for all m and k.

DEFINITION 2.1 (Notations of spectral and Bergman kernels). Fix d ∈ N. We let

Aq
k = P q

k,(Ck)−d and take P q,s
k,(Ck)−d(z, w) := Aq,s

k (z, w) which is given by

P q
k,(Ck)−d = P q,s

k,(Ck)−dsk(z)⊗ (sk(w))
∗.
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Define the scaled spectral kernel by

P q,s
(k),(Ck)−d(z, w) := (Ck)

−nP q,s
k,(Ck)−d(

z√
Ck

,
w√
Ck

).

Also, we denote by

P q
k,(Ck)−d,s

:= Aq
k,s ; P q

(k),(Ck)−d,s
:= Aq

(k),s

the localized spectral projection and the scaled localized spectral projection, respec-

tively. Furthermore, we define the localized spectral kernels and the scaled localized

spectral kernels by

P q
k,(Ck)−d,s

(z, w) := Aq
k,s(z, w) ; P q

(k),(Ck)−d,s
(z, w) := Aq

(k),s(z, w),

respectively. On the other hand, we set Aq
k = P q

k and denote P q,s
k (z, w) := Aq,s

k (z, w).

Define the scaled Bergman kernel as

P q,s
(k)(z, w) := (Ck)

−nP q,s
k (

z√
Ck

,
w√
Ck

).

Also, we define the localized Bergman projection P q
k,s := Aq

k,s and the scaled localized

Bergman projection P q
(k),s := Aq

(k),s. Denote the localized Bergman kernel and the

scaled localized Bergman kernel by

P q
k,s(z, w) := Aq

k,s(z, w) ; P q
(k),s(z, w) := Aq

(k),s(z, w),

respectively.

By the identity (2.17), we have the relations

P q,s
(k),(Ck)−d(z, w) = eφ(k)(z)P q

(k),(Ck)−d,s
(z, w)e−φ(k)(w);(2.39)

P q,s
(k)(z, w) = eφ(k)(z)P q

(k),s(z, w)e
−φ(k)(w).(2.40)

By Theorem 2.5, we have the following corollaries:

COROLLARY 2.6 (The local uniform bounds for Bergman and spectral kernels). In

the localization process introduced before, the scaled spectral kernels

P q
(k),(Ck)−d,s

(z, w) = C−n
k P q

k,(Ck)−d,s
(z/
√
Ck, w/

√
Ck)

are locally uniformly bounded in the C ∞-topology on Cn × Cn. The result also holds for

the scaled localized Bergman kernel P q
(k),s(z, w).

Moreover, since the constant in Theorem 2.5 continuously depends on p, we can

insert (z, w) = (0, 0) = (p, p), ℓ = 0 and fix U = B(1) in Theorem 2.5 to get the

following result:

COROLLARY 2.7 (local uniform bounds on the diagonal). Fix d ∈ N. For any compact

set K ⊂ D, there exists a constant C̃K independent of k such that

(2.41) sup
p∈K

∣∣∣(Ck)
−nP q,s

k,(Ck)−d(p, p)
∣∣∣ ≤ C̃K .

Also, the result holds for Bergman kernel case.
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3. Asymptotics of Bergman and spectral kernels

We are going to prove the main theorems (cf. Theorem 1.2, Theorem 1.3) from

Section 3.1 to Section 3.3. We will repeat the process in [5, Chapter 4] with context-

specific modifications. In Section 3.4, we will present an idea to show the Bergman

kernel asymptotic under a stronger spectral gap condition (cf. Assumption 3.1). Be-

fore embarking on the proof of main theorems, we need to investigate the extended

Laplacian on Cn and establish the spectral gap.

3.1. Spectral gaps of the extended Laplacians on Cn. In this section, we will

extend the scaled localized Laplacian �q
(k),s which is defined on B(

√
Ck) to the whole

Cn. The extended localized Laplacian is identical to �
q
(k),s in B((Ck)

ǫ) where ǫ will be

determined later in Section 3.3. First, by (2.3), we note that

∣∣φ(k) − φ0

∣∣
C 2(B(

√
Ck))

≤ C
|z|3 + 1√

Ck

;
∣∣ω(k) − ω0

∣∣
C 2(B(

√
Ck))

≤ C ′ |z| + 1√
Ck

,(3.1)

where | · |C 2(B(
√
Ck))

is the usual C 2-norm with domain B(
√
Ck).

From now on, we fix a cut-off function denoted by χ ∈ C ∞
c (Cn) such that its support

is contained within the ball B(2), and is identical to 1 on the ball B(1). Let us choose a

number ǫ such that 0 < ǫ < 1/6 and define the extended metric data on Cn by

φ̃(k)(z) := χ(
z

(Ck)ǫ
)φ(k)(z) +

(
1− χ(

z

(Ck)ǫ
)

)
φ0(z)

and the extended Hermitian form by

ω̃(k)(z) := χ(
z

(Ck)ǫ
)ω(k)(z) +

(
1− χ(

z

(Ck)ǫ
)

)
ω0(z).

By (3.1) and ǫ < 1/6, we have the uniform convergences

(3.2)
∣∣∣φ̃(k) − φ0

∣∣∣
C 2(Cn)

→ 0 and
∣∣ω̃(k) − ω0

∣∣
C 2(Cn)

→ 0.

Denote

˜̄∂q(k),s : Ω
0,q(Cn) → Ω0,q+1(Cn) ; ˜̄∂q,∗(k),s : Ω

0,q(Cn) → Ω0,q−1(Cn)

to be the extended localized Cauchy-Riemann operator and its formal adjoint, given by

˜̄∂q(k),s = ∂̄q + (∂̄φ̃(k)) ∧ · ; ˜̄∂q,∗(k),s = ∂̄q,∗ω̃(k)
+
(
(∂̄φ̃(k))∧

)∗
ω̃(k)

,

respectively. Here, ∂̄q,∗ω̃(k)
is the formal adjoint of ∂̄q with respect to (·|·)ω̃(k)

. Denote

�
q∼
(k),s =

˜̄∂∗(k),s
˜̄∂(k),s +

˜̄∂(k),s
˜̄∂∗(k),s : Dom�

q∼
(k),s ⊂ L2

ω0
(Cn, T ∗,(0,q)

C
n) → L2

ω0
(Cn, T ∗,(0,q)

C
n)

as the Gaffney extension of the localized Kodaira Laplacian with respect to the Hermit-

ian form ω̃(k) and the weight function φ̃(k). It follows immediately from the constructions

that ∂̄q(k),s ≡ ˜̄∂q(k),s, ∂̄
q,∗
(k),s ≡ ˜̄∂q,∗(k),s and �q∼

(k),s ≡ �q
(k),s in B((Ck)

ǫ). Reasonably, we call the

�
q∼
(k),s extended Laplacian.
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Suppose λi < 0 for all i = 1, · · · , q0 ; λi > 0 for all i = q0 + 1, · · · , n. Then there

exists a constant c > 0 such that for all z ∈ Cn,

(3.3)
∂2φ̃(k)

∂zi∂z̄i
(z) < −c ∀ i = 1, · · · , q0 and

∂2φ̃(k)

∂zi∂z̄i
(z) > c ∀ i = q0 + 1, · · · , n.

The following results tell us these estimates create a uniform lower bound of the first

eigenvalue of �q∼
(k),s.

LEMMA 3.1. For q 6= q0, there is a constant c > 0 such that for all u ∈ Dom�q∼
(k),s,

(
�q∼

(k),su | u
)
ω̃(k)

= ‖ ˜̄∂(k),su‖2ω̃(k)
+ ‖ ˜̄∂∗(k),su‖2ω̃(k)

≥ c‖u‖2ω̃(k)
.

Therefore, ‖�q∼
(k),su‖ω̃(k)

≥ c‖u‖ω̃(k)
.

PROOF. Note that for u ∈ Ω0,q
c (Cn), we use (3.2) to get

‖ ˜̄∂(k),su‖2ω̃(k)
= ‖

(
∂̄ + (∂̄φ̃(k))∧

)
u‖2ω̃(k)

& ‖
(
∂̄ + (∂̄φ̃(k))∧

)
u‖2ω0

;(3.4)

‖ ˜̄∂∗(k),su‖2ω̃(k)
= ‖

(
∂̄∗ω̃(k)

+ (∂̄φ̃(k))∧∗
ω̃(k)

)
u‖2ω̃(k)

& ‖
(
∂̄∗ω0

+ (∂̄φ̃(k))∧∗
ω0

)
u‖2ω0

.

Let u = fdz̄I for some f ∈ C ∞
c (Cn) and I ∈ (N0)

q be a strictly increasing multi-

index. Since q 6= q0, there exists i ∈ {1, · · · , n} such that at least one of the following

two cases holds:

• i /∈ I and λi < 0;

• i ∈ I and λi > 0.

If the first case holds,

‖
(
∂̄ + (∂̄φ̃(k))∧

)
u‖2ω0

≥
∫

Cn

| ∂f
∂z̄i

+
∂φ̃(k)

∂z̄i
f |2 dm =

∫

Cn

(
∂f

∂z̄i
+
∂φ̃(k)

∂z̄i
f)(

∂f̄

∂zi
+
∂ ¯̃φ(k)

∂zi
f̄)dm

=

∫

Cn

| ∂f
∂z̄i

|2 + f̄
∂f

∂z̄i
∂ ¯̃φ(k)

∂zi
+ f

∂f̄

∂zi
∂φ̃(k)

∂z̄i
+ |∂φ̃(k)

∂z̄i
|2|f |2dm.(3.5)

By integration by part, we get the equations
∫
Cn |

∂f

∂z̄i
|2dm =

∫
Cn |

∂f

∂zi
|2dm and

∫

Cn

f̄
∂f

∂z̄i
∂ ¯̃φ(k)

∂zi
+ f

∂f̄

∂zi
∂φ̃(k)

∂z̄i
dm =

∫

Cn

−2|f |2 ∂
2φ̃(k)

∂zi∂z̄i
− f

∂f̄

∂z̄i
∂ ¯̃φ(k)

∂zi
− f̄

∂f

∂zi
∂φ̃(k)

∂z̄i
dm.

Applying these two equations and | ∂f
∂zi

|2 + |∂φ̃(k)

∂z̄i
|2|f |2 − 2|f || ∂f

∂zi
||
∂φ̃(k)

∂z̄i
| ≥ 0 into (3.5),

(3.6) ‖
(
∂̄ + (∂̄φ̃(k))∧

)
u‖2ω0

≥ −2

∫

Cn

|f |2 ∂
2φ̃(k)

∂zi∂z̄i
dm & − inf

(
∂2φ̃(k)

∂zi∂z̄i

)
‖f‖2ω̃(k)

.

On the other hand, if the second case holds,

‖
(
∂̄∗ω0

+ (∂̄φ̃(k))∧∗
ω0

)
u‖2ω0

≥
∫

Cn

(− ∂f

∂zi
+
∂φ̃(k)

∂zi
f)(− ∂f̄

∂z̄i
+
∂
¯̃
φ(k)

∂z̄i
f̄)dm

=

∫

Cn

| ∂f
∂zi

|2 − f̄
∂f

∂zi
∂ ¯̃φ(k)

∂z̄i
− f

∂f̄

∂z̄i
∂φ̃(k)

∂zi
+ |∂φ̃(k)

∂zi
|2|f |2dm.(3.7)
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By integration by part again, we have
∫
Cn |

∂f

∂zi
|2dm =

∫
Cn |

∂f

∂z̄i
|2dm and

∫

Cn

−f̄ ∂f
∂zi

∂ ¯̃φ(k)

∂z̄i
− f

∂f̄

∂z̄i
∂φ̃(k)

∂zi
dm =

∫

Cn

2|f |2 ∂
2φ̃(k)

∂zi∂z̄i
+ f

∂f̄

∂zi
∂ ¯̃φ(k)

∂z̄i
+ f̄

∂f

∂z̄i
∂φ̃(k)

∂zi
dm.

Combining equations above and | ∂f
∂z̄i

|2 + |∂φ̃(k)

∂zi
|2|f |2 − 2|f || ∂f

∂z̄i
||
∂φ̃(k)

∂zi
| ≥ 0,

(3.8) ‖
(
∂̄∗ω0

+ (∂̄φ̃(k))∧∗
ω0

)
u‖2ω0

≥ 2

∫

Cn

|f |2 ∂
2φ̃(k)

∂zi∂z̄i
dm & inf

(
∂2φ̃(k)

∂zi∂z̄i

)
‖f‖2ω̃(k)

.

By (3.4),(3.6) and (3.8), we have completed the proof for the case u ∈ Ω0,q
c (Cn). Next,

we can prove the lemma by density argument. The density argument here is somehow

technical and based on the Friedrich’s Lemma (cf.[10, Chapter 7, Lemma 3.3]). For

the details of approximation, readers may consult [12, Lemma 5]. �

COROLLARY 3.2. For q 6= q0, the extended Laplacians �
q∼
(k),s is bijective and has inverses

N q
k : L2

ω̃(k)
(Cn, T ∗,(0,q)

C
n) → Dom�q∼

(k),s

which is a k-uniformly bounded operator.

PROOF. According to Lemma 3.1, �q∼
(k),s is injective. To show the surjectivity, we

choose an arbitrary v ∈ L2
ω̃(k)

(Cn, T ∗,(0,q)Cn) and consider the linear functional Tv on

Rang �q∼
(k),s given by

Tv(�
q∼
(k),s u) = (u | v)ω̃(k)

∀u ∈ Dom �q∼
(k),s.

Lemma 3.1 implies that ‖Tv‖ω̃(k)
≤

‖v‖ω̃(k)

c
for a constant c independent of v and k.

By the Hahn-Banach Theorem, the functional Tv can be extended to a bounded linear

functional on L2
ω̃(k)

(Cn, T ∗,(0,q)Cn) with the same norm. By Riesz representation theorem,

there exists a representative ṽ ∈ L2
ω̃(k)

(Cn, T ∗,(0,q)Cn) such that

(u | v)ω̃(k)
= Tv(�

q∼
(k),su) =

(
�q∼

(k),su | ṽ
)
ω̃(k)

∀u ∈ Dom �q∼
(k),s.

This means �q∼
(k),sṽ = v which proves the surjectivity. Define N q

k such that N q
kv = ṽ.

Lemma 3.1 implies ‖N q
k‖ω̃(k)

≤ C for a constant C independent of k. �

We have shown that when q 6= q0, the extended Laplacian �q∼
(k),s has a uniform

spectral gap spec �
q∼
(k),s ⊂ [c,∞) for a positive constant c independent of k. Next, in the

case q = q0, we should prove that the uniform spectral gap also holds in the sense that

spec �q∼
(k),s ⊂ {0} ∪ [c,∞). Define

B̃q
(k),s : L

2
ω̃(k)

(Cn, T ∗,(0,q)
C

n) → Ker �q∼
(k),s ⊂ L2

ω̃(k)
(Cn, T ∗,(0,q)

C
n)

to be the Bergman projection. The following representation of B̃q
(k),s is standard.

THEOREM 3.3. (Hodge decomposition) We have the expression

(3.9) B̃q0
(k),s = Id− ˜̄∂q0−1

(k),sN
q0−1
k

˜̄∂q0,∗(k),s − ˜̄∂q0+1,∗
(k),s N q0+1

k
˜̄∂q0(k),s on Ω0,q

c (Cn).

Here, N q
k is the inverse of the Laplacian �q∼

k,s established in Corollary 3.2.
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PROOF. Note that

�q0∼
(k),s

(
Id− ˜̄∂q0−1

(k),sN
q0−1
k

˜̄∂q0,∗(k),s − ˜̄∂q0+1,∗
(k),s N q0+1

k
˜̄∂q0(k),s

)

= ˜̄∂(k),s
˜̄∂∗(k),s +

˜̄∂∗(k),s
˜̄∂(k),s − ˜̄∂(k),s

˜̄∂∗(k),s
˜̄∂(k),sN

q0−1
k

˜̄∂∗(k),s − ˜̄∂∗(k),s
˜̄∂(k),s

˜̄∂∗(k),sN
q0+1 ˜̄∂(k),s

= ˜̄∂(k),s
˜̄∂∗(k),s +

˜̄∂∗(k),s
˜̄∂(k),s − ˜̄∂(k),s�

q0−1∼
(k),s N q0−1

k
˜̄∂∗(k),s − ˜̄∂∗(k),s�

q0+1∼
(k),s N q0+1

k
˜̄∂(k),s

= ˜̄∂(k),s
˜̄∂∗(k),s +

˜̄∂∗(k),s
˜̄∂(k),s − ( ˜̄∂(k),s

˜̄∂∗(k),s +
˜̄∂∗(k),s

˜̄∂(k),s) = 0.

So the right-hand side of (3.9) has its image in Ker�q∼
(k),s. It remains to show that

Rang
(
˜̄∂q0−1
(k),sN

q0−1
k

˜̄∂q0,∗(k),s − ˜̄∂q0+1,∗
(k),s N q0+1

k
˜̄∂q0(k),s

)
⊥ Ker�q0∼

(k),s. Now, given u ∈ Ω0,q
c (Cn) and

v ∈ Ker�q0∼
(k),s, since ˜̄∂∗(k),sv = ˜̄∂(k),sv = 0,

(
( ˜̄∂(k),sN

q0−1
k

˜̄∂∗(k),s − ∂̄∗N q0+1
k ∂̄)u | v

)
ω̃(k)

=
(
N q0−1

k
˜̄∂(k),su | ˜̄∂∗(k),sv

)
ω̃(k)

+
(
N q0+1

k
˜̄∂(k),su | ˜̄∂(k),sv

)
ω̃(k)

= 0.

�

We now deduce some identities which will be frequently utilized. Compute that

‖ ˜̄∂(k),s ˜̄∂∗(k),sN q0−1
k

˜̄∂∗(k),su‖2ω̃(k)
=
(
˜̄∂∗(k),s

˜̄∂(k),s
˜̄∂∗(k),sN

q0−1
k

˜̄∂∗(k),su | ˜̄∂∗(k),sN q0−1
k,s

˜̄∂∗(k),su
)
ω̃(k)

=
(
˜̄∂∗(k),s�

q0−1∼
(k),s N q0−1

k
˜̄∂∗(k),su | ˜̄∂∗(k),sN q0−1

k
˜̄∂∗(k),su

)
ω̃(k)

=
(
˜̄∂∗(k),s

˜̄∂∗(k),su | ˜̄∂∗(k),sN q0−1
k

˜̄∂∗(k),su
)
ω̃(k)

= 0,

for all u ∈ Ω0,q0
c (Cn). Similarly, we can compute that ‖ ˜̄∂∗(k),s ˜̄∂(k),sN

q0+1
k

˜̄∂(k),su‖2ω̃(k)
= 0 for

all u ∈ Ω0,q0
c (Cn). Hence, we have

(3.10) ˜̄∂(k),s
˜̄∂∗(k),sN

q0−1
k

˜̄∂∗(k),s = 0 ; ˜̄∂∗(k),s
˜̄∂(k),sN

q0+1
k

˜̄∂(k),s = 0 on Ω0,q0
c (Cn).

Moreover, we can apply the two equations above to see that

(3.11) ˜̄∂∗(k),s
˜̄∂(k),sN

q0−1
k

˜̄∂∗(k),s =
˜̄∂∗(k),s ; ˜̄∂(k),s

˜̄∂∗(k),sN
q0−1
k

˜̄∂(k),s =
˜̄∂(k),s on Ω0,q0

c (Cn).

THEOREM 3.4 (uniform spectral gap). There exists a constant c independent of k such

that

‖B̃q0
(k),su− u‖2ω̃(k)

≤ c
(
‖ ˜̄∂q0,∗(k),su‖2ω̃(k)

+ ‖ ˜̄∂q0(k),su‖2ω̃(k)

)
on Ω0,q0

c (Cn).

PROOF. By Lemma 3.3,

B̃q0
(k),s − I = − ˜̄∂q0−1

(k),sN
q0−1
k

˜̄∂q0,∗(k),s − ˜̄∂q0+1,∗
(k),s N q0+1

k
˜̄∂q0(k),s on Ω0,q0

c (Cn).

Given u ∈ Ω0,q0
c (Cn),

‖ ˜̄∂q0−1
(k),sN

q0−1
k

˜̄∂q0,∗(k),su‖2ω̃(k)
=
(
N q0−1

k
˜̄∂∗(k),su | ˜̄∂∗(k),s ˜̄∂(k),sN q0−1

k
˜̄∂∗(k),su

)
ω̃(k)

≤ ‖N q0−1
k

˜̄∂∗(k),su‖ω̃(k)
‖ ˜̄∂∗(k),s ˜̄∂(k),sN q0−1

k
˜̄∂∗(k),su‖ω̃(k)

. ‖ ˜̄∂∗(k),su‖2ω̃(k)
.
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The last inequality is from Corollary 3.2 and (3.11). Symmetrically, we can show that

‖ ˜̄∂q0+1,∗
(k),s N q0+1

k
˜̄∂q0(k),su‖2ω̃(k)

≤ c‖ ˜̄∂q0(k),su‖2ω̃(k)
.

The two estimates above imply the theorem. �

3.2. Proof of main theorems. Since all the arguments in this section are valid for

both the scaled localized Bergman kernel P q
(k),s(z, w) and the scaled localized spectral

kernel P q
(k),(Ck)−d,s

(z, w). For simplicity, we represent both the scaled localized spectral

and Bergman kernels as P q
(k),s(z, w) in this section.

Recall Corollary 2.6. By the Arzela-Ascoli Theorem, we know that every subse-

quence of P q
(k),s(z, w) has a convergent subsequence in the C

∞-topology. To show that

P q
(k),s(z, w) is itself a uniformly convergent sequence, it suffices to show that every con-

vergent subsequence of P q
(k),s(z, w) converges to the same limit.

To prove the main theorems, we assume that P q
(k),s(z, w) converges locally uniformly

to P q
s (z, w) in the C ∞-topology. Although we do not yet know the kernel section

P q
s (z, w), we will demonstrate that it must be the Bergman kernel P q

0,s(z, w) in the model

case on Cn, which will be introduced later. If that is the case, then we have proved the

main theorems by Theorem 3.5, and identities (2.39), (2.40).

We now formulate the Bergman kernel in the model case. Recall the Laplacian �q
0

and the localized Laplacian �
q
0,s defined in (2.12) and (2.13), respectively. Denote by

P q
0 (z, w) the Bergman kernel of �q

0 and by P q
0,s(z, w) the localized Bergman kernel of

�q
0,s. Note that

P q
0,s(z, w) = e−φ0(z)P q

0 (z, w)e
φ0(w).

For q ∈ {1, · · · , n} and α ∈ (N0)
n, denote

zαq := (z̄1)α1 · · · (z̄q)αq(zq+1)αq+1 · · · (zn)αn .

We now introduce a theorem that describes the Bergman kernel in the model case.

THEOREM 3.5. [5, Theorem 4.2] Consider the trivial vector bundle T ∗,(0,q)Cn⊗C → Cn

endowed with the standard Hermitian form ω0 and the weight function φ0. In the case

p ∈ M(q), we assume λi < 0 for all i ≤ q and λi > 0 for all i > q. The localized Bergman

kernel P q
0,s(z, w) of the model case is given by

|λ1 · · ·λn|
πn

e2(
∑q

i=1 |λi|z̄iwi+
∑n

i=q+1 |λi|ziw̄i)−
∑n

i=1 |λi|(|zi|2+|wi|2)(dz̄1∧· · ·∧dz̄q)⊗(
∂

∂w̄1
∧· · ·∧ ∂

∂w̄q
).

Furthermore,

{Ψα :=

√
2|α|[λ]α+1

πnα!
zαq e

−
∑n

i=1 |λi||zi|2dz̄1 ∧ · · · ∧ dz̄q}α∈Nn
0

is the orthonormal basis of Ker�q
0,s ⊂ L2

ω0
(Cn, T ∗,(0,q)Cn).

However, if p /∈M(q), then

Ker�q
0,s = {0} and hence B

(q)
0,s(z, w) ≡ 0.

We now begin by translating P q
s (z, w) from an unknown kernel section to an operator

that acts on the Hilbert space L2
ω0
(Cn, T ∗,(0,q)Cn).
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DEFINITION 3.1. Define the integral operator P q
s as

P q
s u(z) :=

∫

Cn

P q
s (z, w)u(w)dm(w) for all u ∈ L2

ω0
(Cn, T ∗,(0,q)

C
n).

Clearly, the integral converges by the assumption P q
(k),s(z, w) → P q

s (z, w).

LEMMA 3.6 (Well-definition of the integral operator). The integral operator

P q
s : L2

ω0
(Cn, T ∗,(0,q)

C
n) → L2

ω0
(Cn, T ∗,(0,q)

C
n)

is a bounded linear map with its operator norm smaller than 1.

PROOF. Let u, v ∈ Ω0,q
c (Cn) and U ⊂ Cn be a bounded open set containing supp u

and supp v. Note that

(v | P q
s u)ω0

=

∫

U

∫

U

〈v(z)|P q
s (z, w)u(w)〉ω02

2ndm(w)dm(z).

Let ε > 0. By the fact that P q
(k),s(z, w) → P q

s (z, w) local uniformly, the above integral can

be dominated as ∣∣(v | P q
s u)ω0

∣∣ ≤ (1 + ε)

∣∣∣∣
(
v | P q

(k),su
)
ω0

∣∣∣∣ ,

for large enough k. By inserting Aq
k = P q

k in (2.18) and applying (2.22) and the fact

‖P q
k‖ω,φk

≤ 1, we have
∣∣∣∣
(
v | P q

(k),su
)
ω0

∣∣∣∣ ≤ ‖v‖ω0‖P q
(k),s‖ω0,U‖u‖ω0 ≤ (1 + ε)‖v‖ω0‖u‖ω0,

for large enough k. Since ε > 0 and v are arbitrary, we have ‖P q
s u‖ω0 ≤ ‖u‖ω0. The

Lemma follows by density argument. �

LEMMA 3.7. P q
s is a bounded linear map

P q
s : L2

ω0
(Cn, T ∗,(0,q)

C
n) → Ker�q

0,s.

PROOF. We may assume u ∈ Ω0,q
c (Cn) by density argument and fix a cut-off func-

tion χ ∈ Ω0,q
c (Cn). By the fact �q

(k),s → �q
0,s locally uniformly and the assumption

P q
(k),s(z, w) → P q

s (z, w),

‖χ�q
0,sP

q
s u‖0 . ‖χ�q

(k),sP
q
(k),su‖0 = 0.

�

To complete the proof of the main theorems, by the uniqueness of Schwartz kernels,

it remains to prove that

P q
s : L2

ω0
(Cn, T ∗,(0,q)

C
n) → Ker�q

0,s

is an orthogonal projection. By Lemma 3.7, it is left to prove the following statement

(see [18, theorem 3.1 in section 3.1]):

STATEMENT 3.1. P q
s u = u for all u ∈ Ker�q

0,s.

3.3. Proof of Statement 3.1. In the case p /∈ M(q), Theorem 3.5 tells us that

Ker�q
0,s = {0}, and therefore P q

s is a zero map by Lemma 3.7. Consequently, State-

ment 3.1 automatically holds. We have completed the proof of the main theorem for

the vanishing case (cf. Theorem 1.2).
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We now focus on proving the case p ∈ M(q). First, for the spectral projection

P q
k,(Ck)−d , we have the estimate:

(3.12) ‖
(
Id−P q

k,(Ck)−d

)
u‖ω,φk,M ≤ (Ck)

d (�q
ku|u)ω,φk,M

for all u ∈ Ω0,q
c (M,Lk).

In this section, we assume the spectral gap condition (cf. Def.1.2) in the case of Bergman

kernel and continue the convention of notation in Section 3.2. We use the notation P q
k

to represent both the Bergman projection P q
k and the spectral projection P q

k,(Ck)−d . Simi-

larly, P q
k,s(z, w) represents both the localized Bergman kernel P q

k,s(z, w) and the localized

spectral kernel P q
k,(Ck)−d,s

(z, w). Also, P q
(k),s(z, w) represents both the scaled localized

Bergman kernel P q
(k),s(z, w) and the scaled localized spectral kernel P q

(k),(Ck)−d,s
(z, w). By

(3.12) and spectral gap condition (cf. Def 1.2) for the case of Bergman kernel, we can

write

(3.13) ‖ (Id−P q
k )u‖2ω,φk,M

. (Ck)
d (�q

ku | u)ω,φk,M
for all u ∈ Ω0,q

c (D,Lk).

The spectral and Bergman kernels share the same estimate (3.13). The remaining proof

for the main theorem (cf. Theorem 1.3) is valid for both the Bergman and the spectral

kernels. We now embark on the proof. By rearrangement, let λi < 0 for all i = 1, · · · , q
and λi > 0 for all i = q + 1, · · · , n. For α ∈ (N0)

n, denote

zαq := (z̄1)α1 · · · (z̄q)αq(zq+1)αq+1 · · · (zn)αn .

By theorem 3.5, to show the Statement 3.1 for p ∈ M(q), we may assume that u is of

the form

u = zαq e
−∑n

i=1 |λi||zi|2dz̄I ,

where I := (1, · · · , q). We adopt the settings in Section 3.1. It is important to note that

in the construction of ω̃(k) and φ̃(k), we impose the condition that 0 < ǫ < 1/6. Now, we

require

0 < ǫ < min{ 1

2n+ 1
,
1

6
}.

The reason is in the proof of Theorem 3.9.

We now establish the notations of cut-off functions. Recall that χ ∈ C
∞
c (Cn) is

the cut-off function fixed at the beginning of Section 3.1. Choose ρ ∈ C ∞
c (Cn) as

another cut-off function such that supp ρ ⊂ {z ∈ C; 2/7 < |z| < 1} and ρ ≡ 1 on

{z ∈ C; 3/7 < |z| < 6/7}. Construct a sequence of cut-off functions by

(3.14) χk(z) := χ(
7z

(Ck)ǫ
) ; χ̃k(z) := χ(

7z

3(Ck)ǫ
) ; ρk(z) := ρ(

z

(Ck)ǫ
).

Observe that

suppχk ⊂ {z ∈ C; |z| < (2/7)(Ck)
ǫ} ; supp χ̃k ⊂ {z ∈ C; |z| < (6/7)(Ck)

ǫ.}
The derivatives of χ̃k are supported in the annuli {z ∈ C; (3/7)(Ck)

ǫ < |z| < (6/7)(Ck)
ǫ}

and the support of ρk are in the annuli {z ∈ C; (2/7)(Ck)
ǫ < |z| < (Ck)

ǫ}. Next, we

define

(3.15) u(k) := χ̃k B̃
q
(k),s χku.

Our objective is to show the convergence u(k) → u in L2
ω0
(Cn, T ∗,(0,q)Cn) as k → ∞.
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LEMMA 3.8.

(3.16)
∣∣∣ ˜̄∂q(k),su(z)

∣∣∣
ω0

+
∣∣∣ ˜̄∂q,∗(k),su(z)

∣∣∣
ω0

= O(
1√
Ck

) for |z| < (Ck)
ǫ.

PROOF. Denote u =: fdz̄I where f = zαq e
−∑n

i=1 |λi||zi|2. Denote a1(z) and a2(z) as

the absolute maximum of the coefficients of the differential operators ˜̄∂(k),s − ∂̄0,s and
˜̄∂∗(k),s − ∂̄∗0,s at a point z ∈ Cn, respectively. By (3.1), we can see that

|ai(z)| .
|z|3 + 1√

Ck

∀ |z| < 2(Ck)
ǫ and |ai(z)| = 0 ∀ |z| > 2(Ck)

ǫ.

Because any derivatives of u decay exponentially as |z| goes to infinity, there is a con-

stant c > 0 such that
∣∣∣( ˜̄∂(k),s − ˜̄∂0,s)u(z)

∣∣∣
ω0

.
|z|3 + 1√

Ck

e−c|z|2 and
∣∣∣( ˜̄∂∗(k),s − ˜̄∂∗0,s)u(z)

∣∣∣
ω0

.
|z|3 + 1√

Ck

e−c|z|2,

for all z ∈ Cn. Since |z|3e−c|z|2 is a bounded function, we have completed the proof. �

LEMMA 3.9. ‖u(k) − u‖ω0 → 0 as k → ∞.

PROOF. Note that ‖u(k) − u‖ω0 . ‖u(k) − χ̃ku‖ω̃(k)
+ ‖χ̃ku − u‖ω̃(k)

. The second term

tends to zero by dominated convergence theorem. For the first term,

‖u(k) − χ̃ku‖ω̃(k)
= ‖χ̃k(B̃

q
(k),sχku− u)‖ω̃(k)

≤ ‖B̃q
(k),sχku− u‖ω̃(k)

≤ ‖B̃q
(k),sχku− χku‖ω̃(k)

+ ‖χku− u‖ω̃(k)
.

Since the second term on the right-hand side tends to zero, we only need to estimate

‖B̃q
(k),sχku− χku‖ω̃(k)

. By Theorem 3.4,

‖B̃q
(k),sχku− χku‖2ω̃(k)

. ‖ ˜̄∂∗(k),sχku‖2ω̃(k)
+ ‖ ˜̄∂(k),sχku‖2ω̃(k)

.

It remains to claim ‖ ˜̄∂∗(k),sχku‖2ω̃(k)
→ 0 and ‖ ˜̄∂(k),sχku‖2ω̃(k)

→ 0. For ‖ ˜̄∂(k),sχku‖2ω̃(k)
, we

compute that ˜̄∂(k),sχku = (∂̄χk) ∧ u+ χk
˜̄∂(k),su and then

‖ ˜̄∂(k),sχku‖2ω̃(k)
≤
∫

{|z|<Cǫ
k
/7}

| ˜̄∂k,su|2ω̃(k)
dVω̃(k)

+

∫

{Cǫ
k
/7<|z|<2Cǫ

k
/7}

|(∂̄χk) ∧ u+ χk
˜̄∂k,su|2ω̃(k)

dVω̃(k)

.

∫

{|z|<2Cǫ
k
/7}

| ˜̄∂(k),su|2ω0
dm+

∫

{Cǫ
k
/7<|z|<2Cǫ

k
/7}

|u|2ω0
dm.

Clearly, the second term
∫
{Cǫ

k
/7<|z|<2Cǫ

k
/7} |u|2ω0

dm tends to zero. By Lemma 3.8 and the

setting ǫ < 1/(2n), the first term can be dominated by
∫

{|z|<2Cǫ
k
/7}

∣∣∣ ˜̄∂(k),su
∣∣∣
2

ω0

dm .
(Ck)

2nǫ

Ck
→ 0.

We have proven ‖ ˜̄∂(k),sχku‖2ω̃(k)
→ 0. We can show ‖ ˜̄∂∗(k),sχku‖ω̃(k)

→ 0 in same way. �

In the next step, we will display P q
(k),su(k)−u(k) → 0 in L2

ω̃(k)
(Cn, T ∗,(0,q)Cn). First, we

need to verify the following Lemma:
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LEMMA 3.10. Consider the functional ρkB̃
q
(k),sχk : L2

ω̃(k)
(Cn, T ∗,(0,q)Cn) → L2

ω̃(k)
(Cn, T ∗,(0,q)Cn).

For any d ∈ N, the operator norms have the asymptotic:

‖ρkB̃q
(k),sχk‖ω̃(k)

= O((Ck)
−d)

PROOF. For any u ∈ Ω0,q
c (Cn), by Theorem 3.3,

ρkB̃
q
(k),sχku = ρk

(
Id− ˜̄∂∗(k),sN

q+1
k

˜̄∂(k),s − ˜̄∂(k),sN
q−1
k

˜̄∂∗(k),s

)
χku(3.17)

= −ρk ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku− ρk
˜̄∂(k),sN

q+1
k

˜̄∂∗(k),sχku.

Now, we first aim to estimate ‖ρk ˜̄∂∗(k),sN
q+1
k

˜̄∂(k),sχku‖ω̃(k)
. Observe that

‖ρk ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku‖2ω̃(k)
=
(
ρk

˜̄∂∗(k),sN
q+1
k

˜̄∂(k),sχku | ρk ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku
)
ω̃(k)

=
(
N q+1

k
˜̄∂(k),sχku | ˜̄∂(k),sρ2k ˜̄∂∗(k),sN q+1

k
˜̄∂(k),sχku

)
ω̃(k)

=
(
ρ̃kN

q+1
k

˜̄∂(k),sχku | ˜̄∂(k),sρ2k ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku
)
ω̃(k)

≤ ‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ ˜̄∂(k),sρ2k ˜̄∂∗(k),sN q+1

k
˜̄∂(k),sχku‖ω̃(k)

,

where ρ̃k ∈ C ∞
c (Cn) is another cut-off function such that supp ρ̃k ⊃ supp ρk and supp ρ̃k∩

suppχk = ∅. By direct computation,

˜̄∂(k),sρ
2
k
˜̄∂∗(k),sN

q+1
k

˜̄∂(k),sχku = (∂̄ρ2k) ∧ ˜̄∂∗(k),sN
q+1
k

˜̄∂(k),sχku+ ρ2k
˜̄∂(k),s

˜̄∂∗(k),sN
q+1
k

˜̄∂(k),sχku

= (∂̄ρ2k) ∧ ˜̄∂∗(k),sN
q+1
k

˜̄∂(k),sχku+ ρ2k
˜̄∂(k),sχku

= (∂̄ρ2k) ∧ ˜̄∂∗(k),sN
q+1
k

˜̄∂(k),sχku,

where the second equality is from (3.11) and the third is by the fact that supp ρk ∩
suppχk = ∅. We apply this computation to continue the previous estimate and get

‖ρk ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku‖2ω̃(k)
≤ ‖ρ̃kN q+1

k
˜̄∂(k),sχku‖ω̃(k)

‖(∂̄ρ2k) ∧ ˜̄∂∗(k),sN
q+1
k

˜̄∂(k),sχku‖ω̃(k)

(3.18)

. (Ck)
−ǫ‖ρ̃kN q+1

k
˜̄∂(k),sχku‖ω̃(k)

‖ρ̃k ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku‖ω̃(k)
,

where the term (Ck)
−ǫ arises during the computation of ∂̄ρk. Moreover, the sequence

ρ̃k can be taken to satisfy the condition sup|α|=1 |∂αρ̃k| . (Ck)
−ǫ since supp ρ̃ ⊂ {z ∈

Cn; 2/7Cǫ
k < |z| < Cǫ

k}. To conduct an iteration process, we need to show the following

claim:

CLAIM. There exists ˜̃ρk ∈ C ∞
c (Cn) with supp ˜̃ρk ⊃ supp ρ̃k and supp ˜̃ρk ∩ suppχk = ∅

such that sup|α|=1 |∂α ˜̃ρk| . (Ck)
−ǫ and

‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ρ̃k ˜̄∂∗(k),sN q+1

k
˜̄∂(k),sχku‖ω̃(k)

. (Ck)
−ǫ‖ ˜̃ρkN q+1

k
˜̄∂(k),sχku‖ω̃(k)

‖ ˜̃ρk ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku‖ω̃(k)
.

To show the claim, by Lemma 3.1, we get

‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
. ‖ ˜̄∂(k),sρ̃kN q+1

k
˜̄∂(k),sχku‖ω̃(k)

+ ‖ ˜̄∂∗(k),sρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
.
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Moreover, we compute directly that

˜̄∂(k),sρ̃kN
q+1
k

˜̄∂(k),sχku = (∂̄ρ̃k) ∧N q+1
k

˜̄∂(k),sχku+ ρ̃k
˜̄∂(k),sN

q+1
k

˜̄∂(k),sχku = (∂̄ρ̃k) ∧N q+1
k

˜̄∂(k),sχku;

˜̄∂∗(k),sρ̃kN
q+1
k

˜̄∂(k),sχku = −
n∑

i=1

(
∂ρ̃k
∂zi

dz̄i∧ω̃(k)
)∗N q+1

k
˜̄∂(k),sχku+ ρ̃k

˜̄∂∗(k),sN
q+1
k

˜̄∂(k),sχku.

Substitute these equations into the estimate and then dominate ‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
by

‖(∂̄ρ̃k) ∧N q+1
k

˜̄∂(k),sχku‖ω̃(k)
+ ‖

n∑

i=1

(
∂ρ̃k
∂zi

dz̄i∧ω̃(k)
)∗N q+1

k
˜̄∂(k),sχku‖ω̃(k)

+ ‖ρ̃k ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku‖ω̃(k)

. (Ck)
−ǫ‖ ˜̃ρkN q+1

k
˜̄∂(k),sχku‖ω̃(k)

+ ‖ ˜̃ρk ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku‖ω̃(k)
,

for some ˜̃ρk as described above. So,

‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ρ̃k ˜̄∂∗(k),sN q+1

k
˜̄∂(k),sχku‖ω̃(k)

. (Ck)
−ǫ‖ ˜̃ρkN q+1

k
˜̄∂(k),sχku‖ω̃(k)

‖ ˜̃ρk ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku‖ω̃(k)
+ ‖ ˜̃ρk ˜̄∂∗(k),sN q+1

k
˜̄∂(k),sχku‖2ω̃(k)

.

For the last term of the right-hand side, we replace the ρk by ˜̃ρk in (3.18) and get

‖ ˜̃ρk ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku‖2ω̃(k)
. (Ck)

−ǫ‖ ˜̃̃ρkN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ ˜̃̃ρk ˜̄∂∗(k),sN q+1

k
˜̄∂(k),sχku‖ω̃(k)

.

Combining the above estimates, we have completed the claim. Next, by (3.18) and

iterating the claim, we can conclude that for any integer d ∈ N, there exists a constant

C and ρ̃k ∈ C ∞
c (Cn) with supp ρ̃k ⊃ supp ρk and supp ρ̃k ∩ suppχk = ∅ such that

‖ρk ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku‖2ω̃(k)
. (Ck)

−d‖ρ̃kN q+1
k

˜̄∂(k),sχku‖ω̃(k)
‖ρ̃k ˜̄∂∗(k),sN q+1

k
˜̄∂(k),sχku‖ω̃(k)

.

Finally, we need to show the following fact:

CLAIM. For all v ∈ Ω0,q
c (Cn)

‖ ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sv‖ω̃(k)
≤ ‖v‖ω̃(k)

; ‖N q+1
k

˜̄∂(k),sv‖ω̃(k)
. ‖v‖ω̃(k)

.

For the first term, by (3.11), we compute that

‖ ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sv‖2ω̃(k)
=
(
N q+1

k
˜̄∂(k),sv | ˜̄∂(k),s ˜̄∂∗(k),sN q+1

k
˜̄∂(k),sv

)
ω̃(k)

=
(
N q+1

k
˜̄∂(k),sv | ˜̄∂(k),sv

)
ω̃(k)

=
(
˜̄∂∗(k),sN

q+1
k

˜̄∂(k),sv | v
)
ω̃(k)

≤ ‖ ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sv‖ω̃(k)
‖v‖ω̃(k)

.

We get ‖ ˜̄∂∗(k),sN
q+1
k

˜̄∂(k),sv‖ω̃(k)
≤ ‖v‖ω̃(k)

. The second term follows by Lemma 3.1 that

‖N q+1
k

˜̄∂(k),sv‖ω̃(k)
. ‖ ˜̄∂(k),sN q+1

k
˜̄∂(k),sv‖ω̃(k)

+ ‖ ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sv‖ω̃(k)

= ‖ ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sv‖ω̃(k)
≤ ‖v‖ω̃(k)

,

since ˜̄∂(k),sN
q+1
k

˜̄∂(k),s = 0. We completed the proof of the second claim. After combining

all the above results, we know that for any integer d ∈ N, there exists a constant C such

that

(3.19) ‖ρk ˜̄∂∗(k),sN q+1
k

˜̄∂(k),sχku‖ω̃(k)
≤ C(Ck)

−d‖u‖ω̃(k)
.
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Symmetrically, we can literally repeat the process to show the analogous statement:

(3.20) ‖ρk ˜̄∂(k),sN q+1
k

˜̄∂∗(k),sχku‖ω̃(k)
. C(Ck)

−d‖u‖ω̃(k)
.

Then the lemma follows by (3.17), (3.19), (3.20) and a density argument. �

COROLLARY 3.11. For all d ∈ N,

‖ ˜̄∂∗(k),su(k)‖2ω̃(k)
+ ‖ ˜̄∂(k),su(k)‖2ω̃(k)

= O((Ck)
−d), as k → ∞.

PROOF. Recall the fact that ˜̄∂(k),sB̃
q
(k),s = 0 and ˜̄∂∗(k),sB̃

q
(k),s = 0.

˜̄∂(k),su(k) = (∂̄χ̃k) ∧ B̃q
(k),sχku+ χ̃k

˜̄∂(k),sB̃
q
(k),sχku = (∂̄χ̃k) ∧ B̃q

(k),sχku;

˜̄∂∗(k),su(k) = −
n∑

i=1

∂χ̃k

∂zi
(dz̄i) ∧∗

ω̃(k)
B̃q

(k),sχku+ χ̃k
˜̄∂∗(k),sB̃

q
(k),sχku = −

n∑

i=1

(
∂χ̃k

∂zi
(dz̄i)∧∗

ω̃(k)
)B̃q

(k),sχku.

Observe that derivatives of χ̃k are supported in the annuli {3(Ck)
ǫ/7 < |z| < 6(Ck)

ǫ/7}
and ρk ≡ 1 on the annuli. We can see

‖ ˜̄∂(k),su(k)‖2ω̃(k)
. ‖ρkB̃q

(k),sχku‖2ω̃(k)
; ‖ ˜̄∂∗(k),su(k)‖2ω̃(k)

. ‖ρkB̃q
(k),sχku‖2ω̃(k)

.

By Lemma 3.10, we can immediately derive the corollary. �

THEOREM 3.12.

‖P q
(k),su(k) − u(k)‖ω(k)

→ 0, as k → ∞.

PROOF. Define uk(z) := (Ck)
n/2u(k)(

√
Ckz) ∈ Ω0,q

c (B(1)) ⊂ Ω0,q
c (M). Then we have

‖P q
(k),su(k) − u(k)‖ω(k),B(

√
Ck)

= ‖P q
(k),suk − uk‖ω,B(1).

By (2.7) and (3.13),

‖P q
k,suk − uk‖2ω,B(1) = ‖P q

k e
φkuk ⊗ sk − eφkuk ⊗ sk‖2ω,B(1)

. (Ck)
d
(
�q

ke
φkuk ⊗ sk | eφkuk ⊗ sk

)
ω

= (Ck)
d
(
‖∂̄q,∗k,suk‖2ω + ‖∂̄qk,suk‖2ω

)

= (Ck)
(d+1)

(
‖∂̄q,∗(k),su(k)‖2ω + ‖∂̄q(k),su(k)‖2ω

)
→ 0.

The last equality is by (2.10), and the last convergence is from Corollary 3.11. �

Before overcoming the Statement 3.1 for the case p ∈ M(q), we need another

Lemma:

LEMMA 3.13. For any v ∈ Ω0,q
c (Cn),

(
v | P q

(k),sχku− P q
s u
)
ω0

→ 0, as k → ∞.

PROOF. Let v ∈ Ω0,q
c (Cn). For any fixed positive integer n0 ∈ N, observe that for

large enough k, we can estimate that
∣∣∣∣
(
v | P q

(k),sχku− P q
s u
)
ω0

∣∣∣∣ ≤
∣∣∣∣
(
v | (P q

(k),sχk − P q
s )χn0u

)
ω0

∣∣∣∣
+ ‖v‖ω0‖(P q

(k),sχk − P q
s )(χn0 − 1)u‖ω0.



SPECTRAL KERNELS AND HOLOMORPHIC MORSE INEQUALITIES FOR SEQUENCE OF LINE BUNDLES 29

Moreover, by (2.18) and (2.20), we see P q
(k),sχk −P q

s are uniformly bounded linear map

on the space L2
ω0
(Cn, T ∗,(0,q)Cn). Given an arbitrary number ε > 0, we can fix n0 large

enough such that

‖v‖ω0‖(P q
(k),sχk − P q

s )(χn0 − 1)u‖ω0 < ε/2 for all k ∈ N.

Furthermore, by the assumption that P q
(k),s(z, w) → P q

0,s(z, w) locally uniformly,
∣∣∣∣
(
v | (P q

(k),sχk − P q
s )χn0u

)
ω0

∣∣∣∣→ 0 as k → ∞.

Finally, combining the estimates above, we obtain

∣∣∣∣
(
v|P q

(k),sχku− P q
s u
)
ω0

∣∣∣∣ < ε for large

enough k. �

We are now ready to complete the proof of the Statemant 3.1 for the case p ∈M(q).

PROOF OF STATEMANT 3.1 FOR p ∈M(q). By Theorem 3.5, we may assume that u

is of the form u = zαq e
−∑ |λi||zi|2dz̄I for some α ∈ Nn

0 by density argument. By (2.18),

(2.20) and Lemma 3.9 and the decrease of u,

‖P q
(k),s(χku− u(k))‖ω0 . ‖χku− u(k)‖ω0 ≤ ‖χku− u‖ω0 + ‖u− u(k)‖ω0 → 0.(3.21)

To show P q
s u = u, let v ∈ Ω0,q

c (Cn) and observe that

(v | P q
s u− u)ω0

=
(
v | P q

s u− P q
(k),sχku

)
ω0

+
(
v | P q

(k),s(χku− u(k))
)
ω0

+
(
v | P q

(k),su(k) − u(k)

)
ω0

+
(
v | u(k) − u

)
ω0
.

By Lemma 3.9, Theorem 3.12, Lemma 3.13 and (3.21), the right-hand side of the above

equation must tend to zero. �

REMARK 3.1. In the function case q = 0, we may obtain the same result by the

process in [5, Section 4.3] under spectral gap conditions of a suitable exponential

rate (cf. [5, Def. 1.3]) and replace k by Ck.

3.4. Heat kernel proof for Bergman kernel asymptotic. In this section, we pro-

vide an idea to establish a simpler proof of main theorems (Theorem 1.2, Theorem 1.3)

under a stronger spectral gap condition as follows:

ASSUMPTION 3.1 (Global large spectral gap condition ). Denote the global spectral

gap c′k by

c′k := inf (spec �
q
k − {0})

and assume it satifies the large condition:

lim inf
c
′

k

Ck
> 0.

As we have already proven main theorems in the previous sections, we will not go

into all the details, especially in the asymptotic of Heat kernels. Instead, we will focus

on the application of Heat kernels to Bergman kernels.

Define the Heat operator Hq
k(t) : L

2
ω,φk

(M,T ∗,(0,q)M ⊗Lk) → L2
ω,φk

(M,T ∗,(0,q)M ⊗Lk)

which is the functional calculus of e−st with respect to �q
k. Define the Heat kernel
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Hq
k(t, z, w) as the Schwartz kernel of Hq

k(t). Recall the construction in Chapter 2, we

now consider the case

Aq
k(z, w) = Hq

k(
t

Ck
, z, w).

To apply Theorem 2.5, we compute that

Nm,k = sup
s∈[0,∞)

(
s

Ck

)me
− s

Ck
t
. t−m.

Moreover, the operator norm of Hq
k(

t
Ck
, z, w) is less than or equal to one. All estimates

smoothly depend on the parameter t. Hence, we have the following corollary:

COROLLARY 3.14. (The local uniform bounds for Heat kernels) In the localization pro-

cess introduced in Section 2.5, the scaled Heat kernels

C−n
k Hq

k,s(t/Ck, z/
√
Ck, w/

√
Ck)

are locally uniformly bounded in the C ∞-topology on R+ × Cn × Cn.

Similarly to the idea in the Bergman kernel case, we assume that the scaled Heat

kernel Hq
(k),s(t/Ck, z, w) converges to a kernel section Hq,s

0 (t, z, w) in the C ∞-topology.

Next, we may follow the limiting process as Chen presented in [4, Section 3.4] and get

the result that Hq
0,s(t, z, w) must be the Heat kernel in the model case of Cn equipped

with the weight function φ0 and the standard Hermitian form ω0. We conclude the

following theorem without proof.

THEOREM 3.15. [4, Section 3.4] Denote Hq
0(t, z, w) as the Heat kernel with respect

to the Kodaira Laplacian �q
0 on Cn as considered in Theorem 3.5. Then the scaled heat

kernels Hq
(k),s(t/Ck, z, w) converge to Hq

0(t, z, w) in C ∞-topology on R+ × Cn × Cn.

Next, we set an operator Aq
k(t) : L

2
ω,φk

(M,T ∗,(0,q)M ⊗Lk) → L2
ω,φk

(M,T ∗,(0,q)M ⊗Lk)

by

Aq
k(t) := Hq

k(t/Ck)− P q
k .

Then, Aq
k(t) is the functional calculus of

aqk(t, s) :=
(
1− 1[0,c′

k
](s)
)
e
− t

Ck
s
,

with respect to �q
k. Here, c

′

k is the global spectral gap (cf. Assumption 3.1). Let

Aq
k(t, z, w) be the Schwartz kernel of Aq

k(t). By Theorem 2.5, the C ℓ-norm for some

ℓ ∈ N is locally dominated by

sup
s∈[0,∞)

|aqk(t, s)|+ sup
s∈[0,∞)

[
(
s

Ck
)m + (

s

Ck
)2m
]
aqk(t, s) ≤

(
e
− c′

k
Ck

t
+ t−m + t−2m

)
. t−N(ℓ),

for some N(ℓ) ∈ N depending on ℓ. Here, we use the Assumption 3.1. We deduce that

for any ℓ ∈ N and bounded domain U ⊂ Cn, there exists N(ℓ, U) ∈ N such that
∣∣∣Aq

(k),s(t, x, y)
∣∣∣
C ℓ(U×U)

. t−N(ℓ,U).

Finally, we derive that

lim
t→∞

lim sup
k→∞

∣∣∣Aq
(k),s(x, y)

∣∣∣
C ℓ(U×U)

= 0.
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Observe that

Hq
(k),s(t, z, w) = P q

(k),s(z, w) + Aq
(k),s(z, w).

Hence,

lim
t→∞

lim sup
k→∞

∣∣∣Hq
(k),s(t, z, w)− P q

(k),s(z, w)
∣∣∣
C ℓ(U×U)

= 0.

By Theorem 3.15, we have

0 = lim
t→∞

lim
k→∞

∣∣∣Hq
(k),s(t, z, w)− P q

(k),s(z, w)
∣∣∣
C ℓ(U×U)

= lim
t→∞

∣∣∣Hq
0,s(t, z, w)− lim

k→∞
P q
(k),s(z, w)

∣∣∣
C ℓ(U×U)

.

This tells us limt→∞Hq
0,s(t, z, w) = limk→∞ P q

(k),s(z, w) in C
∞-topology. Here, we assume

limk→∞ P q
(k),s(z, w) exists. To prove the main theorems for Bergman kernel, it is sufficient

to show the following Lemma:

LEMMA 3.16. We have the convergence

lim
t→∞

Hq
0,s(t, z, w) = P q

0,s(z, w),

local uniformly in C ∞-topology on Cn × Cn.

SKETCH OF THE PROOF. First, we need a spectral gap for the model case. We set

M = Cn with the standard Hermitian form ω = ω0, and consider the sequence trivial

line bundle Lk over Cn with the quadratic weight function φk = Ckφ0. We apply the

results in Section 3.1 to the case set above. Thus, φ̃(k) = φ0 and ω̃(k) = ω0. If the

curvature is non-degenerate, that means λi 6= 0 for all i = 1, · · · , n. By Theorem 3.4, we

have the global spectral gap on Cn as follows:

(3.22) c := inf(spec�q
0 − {0}) > 0.

Moreover, if the curvature is degenerate, that means λi = 0 for some i = 1, · · · , n. We

can also obtain (3.22) by (3.5) and (3.7) in the proof of Lemma 3.1.

Now, we have the global spectral gap for the model case on Cn with the weight

function φ0 and Hermitian form ω0. To show the lemma, we repeat the proof of Lemma

2.4 and Theorem 2.5. Define

Aq
0(t, x, y) := Hq

0(t, z, w)− P q
0 (x, y)

which is the Schwartz kernel of the functional calculus of aq0 where

aq0 := (1− 1[0,c](s))e
−ts.

As introduced in Section 2.5, we consider the localized kernels

Aq
0,s(t, x, y) := Hq

0,s(t, z, w)− P q
0,s(x, y).

Our goal is to show that Aq
0,s(t, x, y) → 0 in C ∞-topology as t → ∞. Let χ and ρ be

two cut-off functions in Cn and ℓ ∈ N. By the process in the proof of Lemma 2.4 and

Theorem 2.5, we can see that
∣∣χ(x)

(
Aq

0,s(t, x, y)
)
ρ(y)

∣∣
C ℓ(Cn×Cn)
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is dominated by (up to constants depending on χ,ρ, and ℓ) the operator norms of

‖Aq
0,s‖, ‖�q

0,sA
q
0,s‖, ‖�q

0,sA
q
0,s�

q
0,s‖ on L2

ω0
(Cn, T ∗,(0,q)

C
n).

The operator norms above can be bounded by

e−tc, sup
s≥c

se−ts, sup
s≥c

s2e−ts,

respectively. Since all quantities areO(t−N) for someN ∈ N, they tend to zero uniformly

as t goes to infinity.

�
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