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Abstract SMT-based program analysis and verification often involve
reasoning about program features that have been specified using quan-
tifiers; incorporating quantifiers into SMT-based reasoning is, however,
known to be challenging. If quantifier instantiation is not carefully con-
trolled, then runtime and outcomes can be brittle and hard to predict.
In particular, uncontrolled quantifier instantiation can lead to unexpec-
ted incompleteness and even non-termination. E-matching is the most
widely-used approach for controlling quantifier instantiation, but when
axiomatisations are complex, even experts cannot tell if their use of E-
matching guarantees completeness or termination.

This paper presents a new formal model that facilitates the proof, once
and for all, that giving a complex E-matching-based axiomatisation to
an SMT solver, such as Z3 or cvch, will not cause non-termination. Key
to our technique is an operational semantics for solver behaviour that
models how the E-matching rules common to most solvers are used to
determine when quantifier instantiations are enabled, but abstracts over
irrelevant details of individual solvers. We demonstrate the effectiveness
of our technique by presenting a termination proof for a set theory ax-
iomatisation adapted from those used in the Dafny and Viper verifiers.

Keywords: SMT solving - Quantifiers - Termination proofs - E-matching.

1 Introduction

SMT-based program analysis and verification have advanced dramatically in the
past two decades. These advances have been partly fuelled by major improve-
ments in SAT and SMT solving techniques, as well as their implementations in
state-of-the-art solvers such as Z3 [21] and cvch [2]. Leveraging these advances
in SMT, a huge number of program analysis and verification tools have been
based on SMT, including for example Dafny [16], Why3 [12] and Viper [23].
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Such tools must translate a wide range of program features into SMT quer-
ies that model these domain-specific concerns. While some theories relevant to
problem features (e.g. linear arithmetic [21I]) are natively supported by SMT
solvers, most problem features must be modelled by aziomatisation.

Axiomatising problem features involves introducing uninterpreted sorts, un-
interpreted functions on these sorts, and (crucially) quantified azioms that define
the intended meaning of these features. For instance, one can model sets of in-
tegers by introducing a sort Set for sets, uninterpreted functions member and
diff to represent set membership and set difference respectively, and quantified
axioms such as Vs, so : Set, « : Int. member(x, s2) — ~member(x, diff(s1, s2)).

Such modelling to SMT is expressive, but makes heavy use of quantifiers that
must be instantiated during SMT solving. But quantifier instantiation in SMT
notoriously presents notable challenges, potentially causing slow performance
and even non-termination, as well as unexpectedly-failing proofs [4/18]. Worse
still, latent quantifier instantiation issues may not surface on all runs, but cause
a “butterfly effect” [I5], meaning that unrelated changes to an input problem
may lead to substantial changes in solver behaviour along these lines.

To manage these issues, solvers allow quantifiers to be annotated with instan-
tiation triggers (a.k.a. instantiation patterns). Triggers specify (possibly mul-
tiple) shapes of ground terms that must be known (occur in the current proof
context, modulo known equalities) to enable a quantifier instantiation. This
method of guiding quantifier instantiation is referred to as E-matching [8)j24)
and is supported by virtually all modern SMT solvers.

However, selecting appropriate triggers is an art. The choice requires expert-
ise in managing a fine balance: not too restrictive, to avoid insufficient quantifier
instantiations, and not too permissive, to prevent excessive instantiations. Subtle
issues can easily lead to the same hard-to-debug issues even for the most talented
of SMT artists [I5/18], and even when successful it is unclear how one can know
that the chosen triggers are guaranteed to work in future.

The ideal aim is to achieve both instantiation completeness and instantiation
termination. Instantiation completeness means that all necessary quantifier in-
stantiations for a proof can be made by the solver. Instantiation termination
means that the solver will never endlessly explore infinitely many quantifier in-
stantiations. In this paper, we focus on instantiation termination /!

Failures of instantiation termination stem from matching loops: the problem-
atic scenario of a quantifier instantiation (possibly indirectly) leading to learning
new terms that cause further instantiations of the same quantifier, leading to a
potentially endless loop. Matching loops can cause non-termination, but (prob-
lematically, for debugging) may only do so on some runs (in case heuristics in
the solver arrive at the necessary facts “in time”).

Our paper enables proving that matching loops have been avoided altogether.
We present a high-level formal model of E-matching-based quantifier instanti-

! Instantiation termination can be trivially achieved by pathological trigger choices
that prevent all instantitions (similar to proving a function terminating under a false
precondition). However, such axiomatisations are not useful (or used) in practice.
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ation that suffices to prove once and for all that a given set of trigger-annotated
quantifiers, when combined with any possible ground facts, guarantees instanti-
ation termination, thereby ensuring the absence of matching loops. Our model
is designed to be broadly applicable because it models the core E-matching
rules common to most solvers, but abstracts over implementation details where
individual solvers make different choices. Our model enables a new kind of ter-
mination proof, allowing axiomatisation users to independently construct these
proofs and confidently pursue terminating responses to ground theory queries.
Our main technical contributions are as follows:

1. We develop a formal model for reasoning about instantiation termination in
E-matching-based axiomatisations. The model abstracts from solver imple-
mentation details but accounts for essential features for termination proofs.

2. We validate the practical utility of our formal model by using it to prove
instantiation termination of a challenging set theory axiomatisation adapted
from the cores of those used in the Dafny and Viper verifiers.

3. We outline a methodology for constructing instantiation termination proofs
using our model. Our methodology involves classifying quantifiers according
to certain characteristics, using these to incrementally define and refine a
progress measure that eventually supports the whole axiomatisation.

Our research draws inspiration from Dross et al’s [I1] prior formalisms for
quantifier instantiation via E-matching. To the best of our knowledge, their work
represents the sole formal attempt in this space before ours. However, we find
their formalism incompatible with our goals: we elaborate on this point in Sec.

2 Problem Statement

We begin with a basic grounding in E-matching, and use this to lay out the most
important challenges a formal model needs to address to be useful in practice.

2.1 Quantifier Instantiation via E-matching

Quantiﬁers@ are crucial for effectively modelling external problem features as an
SMT problem. However, when determining whether such a first-order problem
is satisfiable, an SMT solver must contend with quantifiers ranging over infinite
sorts. A successful proof will (and need) only involve finitely many instantiations
of the quantifiers, but selecting these is in general undecidable. Most solvers
provide E-matching as the main means of guiding instantiation.

E-matching requires each quantifier to be associated with instantiation trig-
gers (a.k.a. instantiation patterns). Triggers consist of terms containing the quan-
tified variables, and prescribe that instantiations should only be made when
ground terms of matching shape(s) arise in the current proof search.

2 We use the term quantifier (also) as a synonym for quantified formula, and quantifier
body to refer to the subformula that falls within the scope of a quantifier.
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During a proof search, SMT solvers maintain and update the currently-known
ground terms and (dis)equalities on them in an efficient congruence-closure
data structure called an E-graph. This information enables E-matching [20124)—
matching modulo currently-known equalities—of known terms against quantifier
triggers, which enables new instantiations, and of potential instantiations against
previous ones, which prevents redundant instantiations.

Example 1. Consider the set theory axiom presented early in Sec.[Il now annot-
ated with triggers (written comma-separated inside square brackets)ﬁ:

Vs1, 82, x. [diff(s1, $2), member(zx, s2)] member(x, s2) — —~member(x, diff(s1, s2))

The trigger consists of two terms, diff(s1,s2) and member(x, s2); a multi-term
trigger prescribes that terms matching all (here, both) patterns must be known
for some instantiation of the quantified variables. If so, the corresponding in-
stantiation of the quantifier itself will be made: the instantiated quantifier body
will be treated as a newly-derived fact (typically, a clause), and the solver will
also record that this instantiation has been made (to avoid doing so again).

Suppose that an E-graph represents the congruence closure of the facts:
member(t,a)=T, diff(b,c)#b and a=c. E-matching will find a successful match
against the trigger above; although it might seem that there is no consistent pair
of terms here, the equality a = ¢ means that (modulo equalities) we can consider
the terms member(t,a) and diff(b, a) as known in the E-graph, which match the
triggers under the instantiation s;—b, se—a and x+—t. The corresponding in-
stantiation of the quantifier body yields —member(t, a) V —member(t, diff(b, a)).
Subsequently, the same quantifier cannot be instantiated with e.g. s1+—b, so—c
and z—t since, again modulo equalities, this is an equivalent instantiation.

Ezxample 2. Consider the same quantifier, with a different trigger, within the
context of a different E-graph that represents the congruence closure of the
facts: member(t,a) = T and member(t,b) = T.

Vs1, s2, x. [member(x, s1), member(x, s2)]
member(x, s3) — —~member(x, diff(s1, $2))

Now four instantiations are enabled: one for each pair of member applications
in our current model (and E-graph): e.g. instantiating s;+—a, so—b and x+—t or
s1—b, sor>a and x—t. All four will be made: they are different choices since
we don’t know that a = b. The second, for example, causes the new clause
(rewritten as a disjunction) ~member(t, a)V—-member(t, diff(b, a)) to be assumed.
This doesn’t change the E-graph (which is populated only by assumed literals);
clauses are kept separately in the prover state. However, case-splitting on this
clause may lead to the literal =member(t, diff(a,b)) being added. At this point,
five new quantifier instantiations will be enabled; the number of pairs of member
applications has increased. In fact, by alternately instantiating this quantifier
and case-splitting on newly-learned clauses, we can uncover new instantiations
indefinitely, in a so-called matching loop.

3 For brevity, sorts on quantified variables are omitted in this example and hereafter.
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These first examples show that the choice of triggers affects instantiation
behaviour, and that modelling instantiations requires considering not only initial
terms, but also facts learned during proof search and case-splitting choices.

Ezample 3. Consider the following “subset elimination” axiom (also from the
set theory we tackle later) with nested quantifiers:

Vs1, 2. [subset(s1, s2)] subset(s1, s2) —
(Vz.[member(z, s1)][member(x, s2)] member(x, s1) — member(z, s2))

The inner quantifier has two triggers, defining alternative conditions for instan-
tiation (a term of either shape is sufficient). Note that these triggers depend on
the outer-quantified variables s; and s2, and thus their instantiations.

Instantiating an outer quantifier expands the current quantifiers for instan-
tiations. In this example, instantiating the outer quantifier (Vsq, sz2....) results
in a clause that includes a copy of the inner quantifier (Vz....); case-splitting
on this clause can cause the copy to be assumed, effectively adding one more
quantifier for future instantiations. As such, the instantiation of nested quanti-
fiers dynamically introduces new quantifiers, adding complexity to establishing
termination arguments—one must be able to identify and predict the quantifiers
that will be dynamically introduced.

2.2 Objectives for a Formal Model of E-Matching

Given the difficulty of choosing quantifier triggers and knowing that their in-
stantiations can never continue forever, our objective is to provide formal and
usable means of proving such E-matching termination proofs once-and-for-all.
Rather than attempt to capture the precise behaviour of a specific solver and
its configuration, we want a model that abstracts over the behaviours of any
reasonable implementation of E-matching, while still being sufficiently precise
for the proofs to work and be reasonable to construct in practice.
The design of a model for E-matching must address multiple challenges:

1. How should (intermediate) solver states and the transitions between them
be modelled, avoiding over-fitting to specific solver choices while retaining
clear and pertinent information suitable for understandable proofs?

2. How should equality-related information and reasoning be captured, given
their central nature (for defining enabled matches) but the complexities of
the data structures employed in real implementations?

3. How can nested quantifiers (cf. Example B]), whose instantiation can intro-
duce new quantifiers on the fly, be supported?

4. How can we make the model extensible to more-complex future applications
(e.g. axiomatisations whose termination depends on theory reasoning)?

5. How can a formal model enable formal proofs with manageable complexity?

We present our model, designed to address these challenges in the next sec-
tion; we demonstrate its applicability for termination proofs in Sec. @l
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3 An Operational Semantics for E-matching

We develop our formal model in the style of a small-step operational semantics,
a popular choice for programming languages. In this operational style, states
represent intermediate points of a proof search, while transitions represent solver
steps; non-determinism abstracts over choices specific solvers make. With this
design, our desired notion of instantiation termination can be recast as a familiar
style of termination proof, albeit against a semantics with novel core details.

3.1 Preliminaries

Our syntax for formulas is based around a generalisation of conjunctive nor-
mal form, used internally in SMT algorithms; we assume all formulas are pre-
converted to this form (existential quantifiers are eliminated by Skolemisation).

Definition 1 (Formula Syntax). We assume a pre-defined set of atoms@, n-
cluding equalities on terms ty = to. A literal [ is either an atom or its negation.
The grammars of extended literals ¢, extended clauses C' and extended con-
junctive normal form (ECNF) formulas A are as follows:

¢:::l|(V?.mA)m Cu=¢|CVC A=C|ANA

H
Here, (V' .[T|A)! denotes a tagged quantifier: the (possibly-multiple) variables

T are bound, the (possibly multiple) trigger sets T are each marked with square
brackets and positioned before the quantifier body A, and fa is a tag used to
identify this particular quantifier.

As presented in Example [[l a trigger set T is a (non-empty) set of terms,
written comma-separated. There are additional requirements: each trigger set
must contain each quantified variable at least once, and each term must contain
at least one quantified variable. Furthermore, each term must contain at least
one uninterpreted function application and no interpreted function symbols such
as equalities. These restrictions are common for SMT solvers.

When quantifier tags are not relevant, we omit them for brevity.

3.2 States

As illustrated in Examples [l and Bl both case-splitting and quantifier instanti-
ation steps are crucial to our problem; we define our semantics around these two
kinds of transitions. Furthermore, we must abstractly capture information rel-
evant for deciding E-matching questions, tracking in particular which terms and
equalities are known (modulo currently known equalities), and which quantifier
instantiations have already been made.

4 The pre-defined atoms come from the first-order signature of the problem in question.
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Definition 2 (States). States s € STATE are defined as follows:
s=(W,AE)|O| L

where ¢ and L are distinguished symbols for saturated and inconsistent states,
W (the current quantifiers) is a set of tagged quantifiers, A (the current clauses)
is a set of extended clauses, and E (the current E-state) is explained below.

For simple applications of our semantics, the set of current quantifiers remains
fixed, but for problems with nested quantifiers (e.g. Example B)), it may grow
as a solver runs. As we show, which instantiations are immediately enabled is
definable in terms of both the current quantifiers and the current E-state. The
current clauses, on the other hand, generate new literals for the E-state via case-
splitting; new extended clauses may be added as a consequence of quantifier
instantiations.

The inconsistent and saturated states represent two different termination
conditions for traces in our semantics: the former due to logical inconsistency,
and the latter due to all quantifier instantiations having been exhausted.

3.3 E-interfaces

Each solver maintains its own implementation of E-graphs to efficiently rep-
resent and query the currently-known ground terms modulo congruences and
known equalities. Rather than formalising such an implementation, we devise an
abstraction called an E-interface, capturing the operations and expected math-
ematical properties of E-graph implementations.

Definition 3 (E-interface Judgements). An E-interface E' is a set of equal-
ities and disequalities on termsﬁ We write E' lFinown t to express that the ground
term t is known in the E-interface E'; we write E' I t; ~ ty to express that
the ground terms t; and t are known equal in E'. These two judgements are
(mutually recursively) defined by (the least fized-point of) the derivation rules:

tlthEEI EI”—thtl
————— (EQ-IN ——— (EQ-SYM
Ellktlwtz(Q ) EIIHthz(Q )
E! |- t1 ~ to E'IF to ~ t3 (E' TRAN) EX IFknown t(E KN REFL)
EUIF t, ~ f3 ¢ B r~i

)

EQ-KN-SUB
ETF gy, oatn) ~ g (oot ,tn)( @ )
EI |Ft1Nt2 EI |Fknowng(-- ,ti,...)

EYFt; ~t: EYlrknown g (F1y - -y tiye sty
—— (KN-EQ -
El ”_known t1 ( ) El ”_known ti

(KN-SUB)

The judgement E' I t; o to represents t; and to being known disequal in E';
the judgement E' |- L represents that E' is inconsistent (in the logical sense);
cf. Appx. [Al

5 A positive or negative non-equational literal, P, is added to the E-interface via
P =T or P= 1, respectively; T # L is preloaded into all E-interfaces.
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E-interfaces are equivalent if they agree on these judgements in all cases. When
a proof step adds new literals, we must be able to extend our E-interfaces.

Definition 4 (E-interface Extension). For a set of equality and disequality
literals L, the update of an E-interface E' with L, denoted E'< L, is a minimal
E-interface which satisfies all E-interface judgements that E' does, while also
satisfying EY -1 for all 1 € L.

We call a set of terms a basis of E' if each element is a representative of a
different equivalence classﬁ induced by the EUIF ¢, ~ t5 relation on the terms
known in E'. As we shall see in the next section, equivalence classes are relevant
for defining which quantifier instantiations can be made after which.

3.4 E-histories, E-states, E-matching

As illustrated in Example [l E-matching against triggers does not suffice to de-
termine whether a quantifier instantiation should be considered enabled; we must
also determine whether the instantiation is considered redundant given previous
ones. We record previous instantiations using our next formal ingredient:

Definition 5 (E-histories and E-states). An E-history EY is a set of pairs
(each denoted (fo : ?)) in our formalism: the first element is a tag (identify-
ing a quantifier), and the second is a vector of ground terms (representing an
instantiation of the corresponding quantifier).

An E-state (cf. Def.[@) E is a pair (E*, EY) of E-interface and E-history.

Recall that E-states are a component of the states in our formalism. The E-
interface captures the current known terms and equality information, while the
E-history represents sufficient information to reject redundant instantiations.

Definition 6 (History-Enabled E-matches). Given a candidate pair (fo : 7)
(of tag ta and vector of terms T ), the E-state E enables (fo: 7), written

FE kst (fo: i , if: for every pair (fo : 7 € EY, at least one of the pointwise
o (8 ) if: f y pair (4 ) f the p

equalities r; ~ 7 is not known in E'.

Example 4. Revisiting Example [Il suppose the tag of the quantifier is f7 and
FE is the E-state containing the example literals. The first instantiation s;+—b,
sor—ra and x—t is represented in our formal model by adding (47 : (b, a,t)) to
the E-history, resulting in a new E-state, say E’. The second candidate match
s1+—b, sg—c and x>t is not enabled in E’ since the three pointwise equalities
between instantiated terms are all known in E’.

With the help of the above ingredients, we formally characterise E-matching:

6 What we refer to as an equivalence class in this paper is known as a congruence class
in the literature.
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Definition 7 (E-matf_lging). For a given state (W, A, E), the judgement
(W, A, E) Fraten (VZ.[T|A) ST defines which instantiations (using terms 7 )
of which quantifiers (VZ.[T|A")¥ are enabled by E-matching rules, as follows:

(V?.mA')ﬁa eW T is one trigger set of ﬁ
E" Finown £ [7/7] E gt (o 7)
(W, A, E) Fanaten (VT [T]A"Yio <7

We write (W, A, E) Hmatch to mean no instantiations are enabled in this state.

E-matching bFatcn requires (1) a quantifier in the current state, (2) the trigger
set ? with replacement terms 7 for quantified variables Z to be known in E',
and (3) that this potential match is enabled in the E-state E. Note that (2)
implies the terms 7 to match against the quantified variables of one trigger set
" to be known in the current E-interface E'.

3.5 State Transitions
The last main ingredient of our formal model is the definition of state transitions.

Definition 8 (State Transitions). The (single step) state transition relation
— C STATE X STATE is defined by the union of the following cases:

®C¢§{¢Z|O€A, Wl,E{chrifyC;Ois"'\/(bi\/"'}
WQ = W1 @] ﬁlterv (@) Eé = E{ < ﬁlterlit (@) E;I = E{—I
<W17A7E1> — <W27A7E2>

(SPLIT)

&(BOT)
(W,AE) — L

EYW L W, E' lbyeity C for every C € A (W, A, E) Fmaten
(W,AE) — ¢

(SAT)

__)
(W1, A1, E1) Fmaten (V2 [T) A )fe <7
A12 = All [?/7] A/12 = ﬁlterv (A12) U ﬁlterht (A12)
Ay = AU (A12\AY,)  Wa = Wy Ufiltery (Ar2) B}
E} = El afiltery, (A12) EN = EM g (fo: 7)
(Wi, Ay, Er) — (Wa, Az, E3)

where filtery and filteryy; filter sets of extended literals into only those which are
quantifiers or only those which are simple literals, respectively; the judgement
W, E' IFyerity C holds if: for some disjunct ¢; of C, either ¢; is a tagged quantifier
from W, or ¢; is a literal that E* knows.

(INST)

Our transition relation — consists of case-splitting steps, steps that deduce
inconsistent states, steps that deduce saturated states, and quantifier instanti-
ation steps, corresponding to rules (SPLIT), (BOT), (SAT) and (INST) respectively.
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We allow a case-splitting transition to non-deterministically select any non-
empty subset of the disjuncts in the unverified current clauses—those that have
not been proved true yet. A case-splitting transition must make progress towards
satisfying the clauses. We do not impose restrictions on the order in which un-
verified clauses are chosen, nor on the number of disjuncts assumed within a
clause, provided that progress is being made

We model case-splitting as non-deterministic. Recall Example 2] where the
clause ~member(t,a) V ~member(t, diff(a, b)) is learnt. Subsequently, the solver
can choose to assume either one or both of the disjuncts; generally, it can choose
to assume neither disjunct as long as it selects at least one disjunct from some
other unsatisfied clause. Here, the disjuncts are ground terms (which are added
to the E-state); in general, some could be new quantifiers to record.

Our IFyerify judgement checks if a provided clause is satisfied (i.e. at least one
disjunct is assumed in the current state). If all current clauses are satisfied, and
the E-interface is not inconsistent, and there are no candidate E-matches, the
(sAT) rule applies and transitions to the saturated state (). Conversely, if the
current E-interface is inconsistent, the (BOT) rule transitions to the inconsistent
state (L); if there are candidate E-matches, the (INST) rule applies.

The instantiation rule (INST) relies on the Fyatcn judgement to select a can-
didate E-match. The effect of an instantiation transition involves adding quan-
tifiers and literals occurring as unit clauses in the quantifier body to the current
quantifiers Wy and E-interface E}, respectively; any remaining non-unit clauses
are added to the current clauses A;. Finally, the E-history Ei' is updated to
record this instantiation.

In practice, common SMT solvers such as cvch [2] perform quantifier in-
stantiation both (1) up-front and (2) in phases interleaved with other solver
steps. In particular, the latter is essential for many applications: most quanti-
fier instantiations lead to e.g. clauses requiring context-aware case-splitting via
DPLL/CDCL. Our model effectively capture both processes through its unres-
tricted interleavings of quantifier instantiation and case-splitting steps.

In retrospect, Sec. to have tackled design challenges #1 and #2 (cf.
Sec. [2.2). We address #3 and #4 in the next two subsections, respectively.

3.6 Nested Quantifiers

Example Bl demonstrates that instantiating nested quantifiers can introduce new
quantifiers on the fly. To effectively argue for termination regarding these instan-
tiations (as will be discussed in Sec. Hl), one must be able to identify and predict
these dynamically introduced quantifiers. To facilitate this, we employ a tagging
system that is capable of handling nested structures (cf. Appx. [A] for details).
Each quantifier in an axiomatisation is labelled with a distinct tag. The tag for
any non-nested quantifier or the outermost quantifier of any nested quantifier is
not parameterised. An inner quantifier that occurs in a nested quantifier has its

7 Our model allows simulating efficient propagation-based restrictions of case-splitting,
but does not require it; restricting to this case would be possible if needed.
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tag parameterised by all of its outer-quantified variables. Instantiating an outer
quantifier produces a copy of the quantifier body in which (among other changes)
tags of all inner quantifiers that are parameterised by this outer-quantifier are
updated to reflect this instantiation. In Example[3] we label the outer and inner
quantifiers with tags funion-elim and funion-elim(s, $2), respectively. When the
outer quantifier is instantiated with s;+—a and se+—b, a copy of the quantifier
body in which the inner quantifier is tagged with funion-elim(a, b) is introduced.

To further mitigate redundancy in quantifier instantiation, our semantics
supports two additional optimisations. First, a quantifier is only permitted to
join the current quantifiers W if its tag is known to be distinct from the tags
of existing quantifiers in W, modulo equivalence on the parameters of the tags,
as assessed in the current E-interface. This criterion prevents adding redundant
quantifiers into W. Second, the relation of history-enabled E-matches I lever-
ages the current E-interface to verify the uniqueness of tags—once again, modulo
equivalence on tag parameters—before enabling an E-match. An E-match is en-
abled only if no quantifier with an equivalent tag has been instantiated with an
equivalent match previously (cf. Appx. [Al for related definitions).

3.7 Theory-Specific Reasoning

Although our rules do not yet account for (interpreted) theory reasoning (as
performed by theory solvers in a typical SMT solver design). Our small-step
semantics is intentionally chosen to easily accommodate future extensions: “hot-
plugging” new kinds of primitive transitions is straightforward, and will not dis-
turb the existing formal rules (e.g. for quantifier instantiations or case-splitting).
Similarly to our E-interfaces for abstracting of E-graph details, we plan to do
this in a way which abstracts over the effects of theory deduction steps, without
exposing the solver-specific internals. For example, we can add deduction steps
which extend the E-interface with new terms and/or (dis)equalities, based on a
valid deduction within, say, an integer theory.

Just as for quantifier instantiations, it may be necessary for some applications
to guarantee that theory reasoning is performed under some fairness conditions
(e.g. that inconsistencies detectable by a theory solver are not infinitely post-
poned). Imposing custom fairness constraints on the traces of our semantics for
specific examples can be achieved in a standard way for small-step semantics.

While it is clear that extensions to theory solving will be straightforward,
we chose the case study for this paper to be a complex and practically-relevant
axiomatisation which nonetheless does not rely on external theory solvers.

4 Proving Instantiation Termination for E-matching

We now apply our model to prove instantiation termination for a practical E-
matching-based axiomatisation. First, we briefly present our set theory axiomat-
isation, adapted from Dafny and Viper. We then demonstrate our methodology
for constructing instantiation termination proofs using our model.
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4.1 Axiomatisation for Set Theory

To assess our formal model, we tackle formal proofs of instantiation termination
for axiomatisations currently employed by state-of-the-art verification tools, spe-
cifically targeting set theory in this paper. Set theory, despite the known chal-
lenges associated with its quantifier instantiation, is extensively used in verifiers.

Drawing from the axioms used by Dafny [I7] and Viper [26], we aim to
construct an axiomatisation that (1) faithfully models the core of set theory,
(2) supports various encodings of set theory used by verifiers, and (3) strives
to maintain a balance on triggers to ensure instantiation termination without
harming instantiation completeness.

Our axiomatisation involves 12 uninterpreted functions, representing a broader
range of set operations than our counterparts of Dafny and Viper. Cardinality
constraints are entirely removed due to their dependency on external linear arith-
metic solvers (cf. Sec. B.7 for explanation). Refer to Appx. and for a full
presentation of our axiomatisation and comparison with theirs.

Dafny and Viper typically use complex “iff” statements to define set opera-
tions, restricting trigger flexibility as they must apply in both directions of “iff”.
Inspired by proof systems for formal logic, we redefine set operations using du-
als of introduction and elimination axioms, allowing for independent triggers for
each axiom of the same set operation, thereby enhancing trigger flexibility.

Ezample 5. Below is our elimination rule for set union, named (union-elim), al-
lowing for more alternative triggers than the counterpart from Dafny and Viper.

Vs1, $2, @. [member(x, union(sy, s2))]
[union(s1, s2), member(x, s1)] [union(s1, s2), member(x, s2))
member (z, union (s1, s2)) — member(z, s1) V member(z, s3)

Our axiomatisation overall has more permissive triggers, which provides more
flexibility for instantiation, but also increases the risk of non-termination. That
instantiation termination holds for our axiomatisation means that Dafny and
Viper’s more restrictive triggers are not necessary to ensure termination.

4.2 Progress Measure

To prove instantiation termination for an axiomatisation, it suffices to prove
that querying any set of ground literals on the axiomatisation cannot lead to an
infinite trace in our formal semantics. The proof argument is parametric with
respect to the ground literaldd in the initial state. Drawing inspiration from
program reasoning [7I25], we identify a suitable measure on solver states and
then establish its decrease at appropriate steps in a well-founded manner.

This method leverages the specific features of the axioms under consideration.
We analyse our set theory axioms and classify them by two criteria: (1) Would
instantiating the axiom potentially generate new equivalence class of terms, i.e.
new terms modulo equalities? (2) Does the axiom have nested quantifiers?

8 In fact, the termination argument can be generalised to the ground clauses in the
initial state.
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Non-generative quantifiers. We call a quantifier non-generative if its instanti-
ations yield neither new quantifiers nor new equivalence classes of terms. The
majority of our set theory axioms are non-generative.

For instance, the (union-elim) axiom from Example [l when instantiated
with s1—a, sa—b and x—t, yields —member (t, union (a,b)) V member(t,a) V
member(t,b), without introducing new equivalence classes of terms. This is be-
cause all of ¢, a, b and union(a, b) are subterms of the matched trigger and hence
known. Bool-sorted terms never add new equivalence classes (cf. Def. B]).

Instantiating a non-generative axiom reduces the amount of enabled E-matches
by at least one because, on the one hand, history-enabled E-matches (cf. Def. [
prevent instantiating the same quantifier with equivalent matches; on the other
hand, instantiating a non-generative axiom does not introduce new quantifiers or
new equivalence classes, thereby not expanding the match pool. This suggests:

Idea 1 Define the progress measure to be about the amount of enabled E-matches.

Generative quantifiers. A quantifier is generative if its instantiations may in-
troduce new equivalence classes of terms. Four of our set theory axioms are
generative: each may create new applications of Skolem functions on instanti-
ation. For instance, the following (subset-intro) axiom, when instantiated, may
create a new term Skgs(s1, s2) for some sets s; and ss:

Vs1, s2. [subset(s, s2)] (subset(s1, s2) V member(Skss(s1, $2),81)) A
(subset(sy, s2) V ~member(Skss(s1, $2), $2))

Similarly, axioms for introducing extensional quality on sets, establishing set
disjointness, and introducing a predicate to check if a provided set is empty—
namely (equal-sets-intro), (disjoint-intro), and (isEmpty-intro-1), respectively—
can each produce new applications of Skolem functions: Skeq(s1,s2), Ska;i(s1, $2),
and Sk;(s), respectively (cf. Appx. [Cl for details).

Generative axioms, by introducing new equivalence classes of terms, may
expand the pool of E-matches, including those enabled. We thereby suggest:

Idea 2 Predict new equivalence classes of terms introduced by instantiating gen-
erative axioms; incorporate these forecasts to estimate enabled E-matches.

Nested quantifiers. The third category, nested quantifiers, consists of axioms
with nested quantifiers. This category includes three axioms, namely (subset-
elim) from Example ] an axiom named (disjoint-elim) for eliminating set dis-
jointness, and an axiom named (isEmpty-elim-1) for eliminating the predicate
that checks if a provided set is empty (cf. Appx. for their definitions).

Although nested quantifiers do not introduce new equivalence classes of
ground terms, their instantiations can create new quantifiers. These new quan-
tifiers can each have their own set of enabled E-matches, effectively raising the
total amount of enabled E-matches. To tackle this issue, we suggest:

Idea 3 Anticipate quantifiers that could emerge from instantiating nested quan-
tifiers; include these forecasts to refine the estimation of enabled E-matches.
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In practice, provided that these ideas are respected, one can often define
simpler termination measures via over-approximations of these candidate in-
stantiations (provided this over-approximation remains finite and decreasing).

Formalising a practical progress measure. A basis of an E-interface is a repres-
entation of the known equivalence classes. We define its overapproximation to
include potential new equivalence classes introduced by generative axioms.

Definition 9 (Overapproximation of Basis for Set Theory). Suppose B is
a basis of an E-interface. The functions O1(B) and Oz(B) denote overapprozim-
ations for the Set(T)-sorted and T-sorted elements within basis B, respectively,
to accommodate new expected equivalence classes of terms.

O1(B) = filterse(r) (B)
O4(B) = filtery(B) U Skys(01(B), O1(B)) U Skeg(O1(B), 01 (B))
U Skai(O1(B), 01(B)) U Skie(O:1(B))

Here filter goy (1) and filterr take a basis and select its Set(T)-sorted and T-sorted

elements, respectively; each Sk is lifted from the corresponding Sk to support sets.

The potential new terms introduced by generative axioms are all T-sorted Skolem
terms. Thus predictions are solely performed by Oz(B), not by O1(B).

Note that the results of these two overapproximations are guaranteed to be
finite. E-interface bases always remain finite: elements are added (at most) for
the new terms introduced in a step. Since our construction filters and e.g. maps
Skolem functions over these finite sets, its results are finite. Leveraging this
overapproximation of equivalence classes, we estimate enabled E-matches.

Definition 10 (Overestimation of Enabled E-matches for Set Theory).
Consider an arbitrary state (W, A, E). Let B be a basis of the E-interface E'.
Define an overestimation of the enabled E-matches for s from B as follows:

P(<W3A7E> aB) = { - Piriy - - 'apﬁ‘rj(7)7'- }

where pyr, and py. (7 each denote a set of tuples that overapprozimate the en-
abled E-matches from the basis B to the quantifiers with tags §r; and i7; (7),
respectively; each tag i7; identifies an original axiom within W, and each ﬁTj(?)
identifies a quantifier introduced by instantiating the (outer) quantifier of an
original aziom t7; with terms T from the approzimations O1(B) or Oa(B).

To clarify, examples for each category are presented as follows; the remaining
quantifiers shall adhere to the same pattern.

— A non-generative axiom:

Piunion-elim = (51, 527$)

S1,82 € Ol(B), S OQ(B),
E IFinst (Bunion-elim : (s1, s2,))
— A generative axiom:

Pisubset-intro = {(Sla 52) | 81,82 € Ol (B)7 E |Finst (ﬁsubset—intm : (Sla 52))}
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— A nested quantifier:
Dysubset-elim = {(51,52) | 81,82 € O1(B); E lFins; (fsubset-elim : (s1,52))}
— A quantifier introduced by instantiating a nested quantifier:
Pisubset-elim(a,b) = 12 | € O2(B); E lFing; (fsubset-elim(a,b) : x)}
where a,b € O1(B).

We define a progress measure for our set theory axiomatisation. The first and
foremost ingredient of our progress measure is an overestimation on the amount
of enabled E-matches. We anticipate that this overestimation strictly descents
after each instantiation step and does not ascend after each case-splitting step.
The second ingredient is the amount of unverified current clauses, which we
expect to descent by at least one after each case-splitting step. The result of the
progress measure is a lexicographically ordered pair of the above two ingredients.

Definition 11 (Progress Measure for Set Theory). We define the progress
measure M : STATE — (NU{—=11})2, as follows, where ||-|| denotes cardinality.

( >l [{C € Al W.E" Wreriry C}||> if s = (W, A,E)
M(s)= 4 \WEPUWAE).D)
N and B is a basis for E'

(—1, —1) ifs=1ord

Inconsistent or saturated states are assigned (the smallest) measures (—1,—1).
The order on (NU{—1}) is the natural extension of that on N.

4.3 Invariants and Termination Theorem

Drawing on program reasoning, we anticipate classical techniques such as induc-
tion variants can be employed to termination proofs. We maintain two kinds of
induction variants: general-purpose and problem-specific invariants.
General-purpose invariants uphold the integrity of our formal semantics, re-
maining valid across all applications. For example, the E-history E™ of an ar-
bitrary state s = (W, A, F) must be up to date w.r.t. the current quantifiers
W and E-interface E'. That is, for every pair (§7 : 7) from EY, there exists a

__)
quantifier V?.[T]A from W whose tag is #7, the dimension of 7 is equal to that

of 7, E" lFenown 7, and E' Fenown ? [7/] for some trigger set ? from ﬁ
(cf. Appx. [A] for more invariants.)

Problem-specific invariants are tailored to the distinct features of each prob-
lem, focusing on preserving properties of solver states that are reachable from
certain initial setups, and tracing the origins of terms in intermediate states, cru-
cial for complex axiomatisations like set theory. For example, consider an arbit-
rary intermediate state (W, A, E), for each extended clause in A with the form of
—~member (t, union (a, b)) V member(t, a) vV member(t,b), (funion-elim : (a, b, t)) €
E™ holds, where axiom (union-elim) is defined as per Example [ This invariant
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concerns the origins of the extended clauses in the current clauses A. Case-
splitting on a current clause (e.g. the one above) may seem to introduce a new
term, but this invariant indicates that this term is not new—it is equal to a
known term that triggered a prior instantiation, as tracked by the E-history EH.
This ensures a traceable lineage for each clause, linking it back to a specific
quantifier in the E-history. (cf. Appx. [Bl for more invariants.)

We finally define the instantiation termination theorem for set theory, proven
by induction on traces leveraging both general-purpose and set-theory-specific
invariants. Note that termination is proved against an arbitrary set of ground
literals—this works because our progress measure and invariants are defined
parametrically with the current state. Given these right invariants and termina-
tion measure, the proof is straightforward (cf. Appx.[B]). This theorem guarantees
the absence of matching loops in this axiomatisation; users of this axiomatisation
hence can confidently seek terminating answers to ground theory queries.

Theorem 1 (Instantiation Termination for Set Theory). Suppose L is an
arbitrary set of ground literals. The initial state is s = (Wy, Ao, Ep), where Wy
is our aziomatisation for set theory with tags, Ao =0, E} = 0< L, and Ef = 0.
Any sequence of transitions from the initial state sy, where — defined in Sec.
represents the transition relation, has a finite length.

5 Related Work

For the purpose of program verification, where SMT solvers are used to prove
unsatisfiability, E-matching is widely used to handle quantifiers. The idea of
E-matching dates back to Nelson [24], which was first put into practice in Sim-
plify [8]. Since then, efficient handling of E-matching-based quantifier instanti-
ations has been studied by, e.g. de Moura and Bjgrner [20] for Z3, Ge et al. [13]
for CVC3, Bansal et al. [I] for Z3 and CVC4, and Moskal et al. [I9] for Fx7.
When satisfiable results and their models are of interest, model-based quantifier
instantiation (MBQI) [14] can be used to handle quantifiers.

Dross et al. [QII0/TI] formally define and reason about instantiation termin-
ation in a similar context. They define a novel logic with first-class triggers,
introduce instantiation trees as algebraic objects to help define termination, and
provide an ingenious technique for showing, for their implementation in Alt-Ergo,
that finding a single finite instantiation tree is sufficient for termination.

Despite being a powerful tool for numerous deep meta-theoretic results [9],
we believe that applying a formal inductive construction of instantiation trees for
larger examples would be complex in practice: existing examples focus instead on
bounds for the sets of terms ever generatable by a solver run. These arguments
closely relate to our inductive termination proofs over traces. Our work enables
detailed formal proofs based directly on such familiar notions from program
reasoning, including inductive invariants and well-founded measures.

The approach of this prior work also requires restrictions on solver behaviour,
including fairness of quantifier instantiation, and eager application of theory
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deductions (via entailments in their custom logic)ﬁ. Our operational model and
termination proofs do not require or build in such assumptions. Still, restrict-
ing our traces (e.g. with fairness constraints) would be simple to do if desired
for specific applications. Our weak assumptions make our approach (extended
with appropriate theory deduction steps) applicable to SMT solvers broadly;
solvers such as Z3 [2I] and CVC5 [2] commonly interleave theory reasoning and
quantifier instantiation in (bounded or exhaustive) rounds of multiple steps.
The Axiom Profiler [4] leverages Z3 log files to provide comprehensive sup-
port for analysing quantifier instantiations. The tool focuses on helping users
effectively understand and debug problematic solver runs, rather than proving
their absence. It was validated by empirical evidence rather than formal proofs.
Existing works on the termination of SMT transition systems [3I5/6/22] demon-
strate that divergence is prevented by ensuring all new terms derive from a
finite basis. In contrast, in our work, a finite basis does not imply termination—
the basis can grow. At a high level these works prove that certain solver as-
pects always terminate. However, E-matching cannot have this property; instead
it places the onus on the author of an axiomatisation to achieve termination
through careful selection of axioms and triggers, motivating a user-facing model.

6 Conclusion and Future Work

We have shown a novel model for E-matching as widely employed in SMT solv-
ers, abstracting over solver details while enabling detailed and formal proofs
of instantiation termination. Our model has been shown to apply directly and
rigorously to the kinds of axiomatisations used in practical verification tools.

In future work, we would like to explore axiomatisations that rely on more-
restricted characteristics of a solver, such as fairness of instantiation selection or
theory reasoning steps. Similarly to our E-interfaces, we will investigate suitable
abstractions over theory solver interactions incorporated into a proof search.

While instantiation termination is a much sought-after property, the com-
plementary problem of guaranteed instantiation completeness is a natural next
target to investigate with our novel operational model, which may require us to
also explore various fairness restrictions of our model’s transition relation.
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A An Operational Semantics for E-matching

Definition 12 (Terms, Atoms and Literals). Let VAR be a set of variables,
F be a set of function symbols, and P be a set of predicate symbols. Function and
predicate symbols have their arities and types of their parameters intrinsically
specified.

Define the set of terms as follows:

t € TERM

te=a|cl| f(ty,..., tn)

where x ranges over variables VAR, ¢ over nullary function symbols in F, and f
over function symbols in F with arity n > 1.
Define the set of atoms (a.k.a. atomic formulas) as follows:

p € ATOM

p:J—|(t1:t2)|P(t177tn)

where L is logical falsehood, = is logical equalitﬂ, and P ranges over predicate
symbols in P with arity n > 1.
Define the set of literals as follows:

l € LITERAL
l =D | -p
As a convention, T denotes =L, and t1 # to denotes =(t1 = t2).

Definition 13 (Tags). We assume a set of pre-defined primitive tags, denoted
PTAG. Define the set of tags as follows:

ir € TaG

i1 = 7o | ﬂT(?)

where 19 € PTAG.
We typically use §7 and ta to denote a tag.

Remark 1. We assume that a global mechanism exists to generate fresh and
unique tags, in accordance with standard practice.

10 Togical equality is treated differently from normal predicates and comes with special
properties defined by equality axioms regarding reflexivity, symmetry, transitivity,
substitution for functions, and substitution for predicates.
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Definition 14 (Formulas, (Tagged) Quantifiers, and Triggers). Define
the set of formulas as follows:

A € FORMULA
— \ f7
Aus=I1|ANA|AVA|A— A (v?.[T]A)

— A\ #7 —
Here, (V?.[T]A) represents a tagged quantifier, i.e. a quantifier V@ .[T|A
identified by its tag 47 € TAG.
A quantifier V?.[‘T—jA is short for Vrq,...,xn.[T1]...[Tm])A. The (possibly-

multiple) variables 7 are bound; the (possibly-multiple) trigger sets T' are each
marked with square brackets and positioned before the quantifier body A.
A trigger set T is a (non-empty) set of terms, written comma-separated, and

adhere to the following conditions when occurring in a quantifier V?.[T]A:

1. The trigger set T must contain each quantified variable 0f7 at least once;

2. Each term of the trigger set T'must contain at least one quantified variable
of T

3. Each term of the trigger set T must contain at least one uninterpreted func-
tion application and no interpreted function symbols such as equalities.

Remark 2. A multi-term trigger set prescribes that terms matching all terms of
the trigger set must be known for some instantiation of the quantified variables,
whereas multiple trigger sets prescribe alternative conditions for instantiation
such that matching one trigger set is sufficient to trigger an instantiation.

Remark 3. When quantifier tags are not relevant, we omit them for brevity.

Definition 15 (Extended Literals, Extended Clauses and Extended CNF
Formulas). Define extended literals, extended clauses and extended conjunct-
ive normal form (ECNF) formulas as follows:

¢ € EXTLITERAL C € EXTCLAUSE A € EXTCNF

¢ u=1] (V?.ﬁA)ﬁT
C=¢|CVC
A=C|ANA

If Ais Cy A -+ A Cy, we may represent A as a conjunctive set N{C1,...,Cp}
or {C1,...,Cp}. If C is 1 V -+ V ¢y, we may represent C' as a disjunctive set

V{1, .. on} or {o1,....dn}.

Remark 4. We assume all formulas are pre-converted to ECNF. In particular,
existential quantifiers have been eliminated by Skolemisation.

Remark 5. We sometimes retain logical implications, denoted —, in our ex-
amples to help clarify the meaning of the formulas, although they can be elim-
inated easily.
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Definition 16 (Filters on Extended Literals). Define filter functions filtery
and filtery;; to filter sets of extended literals into only those which are quantifiers
or only those which are simple literals, respectively.

filtery (@) = {(b | ¢ € D, is of the form (V?.[‘T—iA)ﬁT}

filteryiy (P) = {¢ | ¢ € §,¢ € LITERAL}

Proposition 1. For any set of extended literals @, filtery (@) U filtery, () = P
and filtery () N filtery; (P) = 0.

Definition 17 (Constraints on Quantifier Tags). An aziomatisation for
theory T with tags, denoted Wr, is a set of tagged quantifiers that adhere to the
following conditions:

1. Each quantifier (including each appearing in a nested quantifier) in the az-
iomatisation Wr is labelled with a distinct tag.

2. The tag for any non-nested quantifier or the outermost quantifier of any
nested quantifier is not parameterised. That is, for any tagged quantifier
(V?.ﬁA)ﬁT € Wr, its tag §7 is a primitive tag.

8. An inner quantifier that occurs in a nested quantifier has its tag paramet-
erised by all of its outer-quantified variables.

4. Instantiating an outer quantifier produces a copy of the quantifier body in
which (among other changes) tags of all inner quantifiers that are paramet-
erised by this outer-quantifier are updated to reflect this instantiation.

Definition 18 (States). States are defined as follows:
s € STATE

s=(W,AE)|O| L

where { and L are distinguished symbols for saturated and inconsistent states,
W (the current quantifiers) is a set of tagged quantifiers, A (the current clauses)
is a set of extended clauses, and E (the current E-state) is defined later.

Definition 19 (E-interface Judgements). An E-interface E' € EINTER is a
set of literals. We write E' lFinown t to express that the ground term t is known
in the E-interface E'; we write E' IF t; ~ ty to express that the ground terms
t1 and to are known equal in E'; we write E' I+ t; Lty to express that the
ground terms t, and ty are known disequal in E'; we write E' I- L to express
that the E-interface E' is inconsistent. These four judgements are defined by the
following derivation rules:

E'lFtn~t

EI ”_known t

ty1 ~ty € FL EMIF tg ~
EVIFty ~ty (BQ-IN)

t1
——  (EQ-SYM
B, ~ 1, Pes™)
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E'lty ~ty  E'IFty ~tg
EVIF ty ~ t3

(EQ-TRAN)

Ellkknownt
EllFt~t
EUlFt; ~t EYrgnown 9 (F1y oo tiy oo stn)
E1 “—g(tl,...,ti,...,tn)Ng(tl,...,t/i,...7tn)

(EQ-KN-REFL)

(EQ-KN-SUB)

EI“—thtg EI”—knowng(...,ti,...)
ET |y t (KN'EQ) El Iy i (KN—SUB)
E'l-t Lt
t) Lty € E E'lFty £ty
i, 210, (NEQ-IN) Tt 7, (NEQ-SYM)

E'lFti bty EllFty~ts

EUlFty o t3 (NEQ-EQ)

E'lFty ~ty EVlFty bty
ETF L (BOT)

Remark 6. E-interfaces are equivalent if they agree on these judgements in all
cases.

Definition 20 (E-interface Extension). For a set of equality and disequality
literals L, the update of an E-interface E' with L, denoted E'< L, is a minimal
E-interface which satisfies all E-interface judgements that E' does, while also
satisfying EVI- 1 for all 1 € L.

Definition 21 (E-interface Judgements (Lifted)). We lift the E-interface
judgements to support vectors of terms as follows:

EI I ? ~ ? SUppOSE t—1> = (tll,t12, BN ,tln) and t—2> = (t21,t22, e ,th)- EI [+

t1 ~ to if and only if EVIF ty; ~ to; for everyi € {1,...,n}.

E' Fenown 7 Suppose 7 = (t1,t2, .oy tn). B lFown 7 if and only if B Finown
t; for everyi € {1,...,n}.
EI I ? '74 ? Suppose t—1> = (tll,tlg, N ,tln) and t—2> = (tgl,tgg, ce ,tzn). EI I

t—f ol t—; if and only if EV |- t1; o to; for everyi € {1,...,n}.

Definition 22 (E-interface: Candidate Basis). We call a set of terms B a
candidate basis of ET if for every t, if E' lFinown t, then there exists somet; € B
such that EYIF t ~ t;.

We typically use B to represent a candidate basis of E' .
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Definition 23 (E-interface: Basis). We call a set of terms {t1,...,t,} a basis
of E' if
1. for every t; € {t1,...,tn}, EXlFknown ti;
2. for every ti,t; € {t1,...,tn} wherei # j, E' |- t; ~t; does not hold;
3. for every t, if EY IFinown t, then there exists some t; € {t1,...,t,} such that
ElIFt~t;.

A basis for E' is also referred to as a set of representatives of equivalence classes

of terms known in E'. We (also) use Bgx to represent a basis of E'.

Remark 7. Intuitively, a basis of E' is a minimal set of known terms in E' such
that any known term in E' must be equivalent to exactly one of them.

Proposition 2. If E'I- ] ~ #3 and E' C EY, then E I 11 ~ L.
Proposition 3. If E' Iff t_f ~ t_2> and E' D E{, then E{ I3 t_f ~ t_2>
Proposition 4. If Bg is a candidate basis for E', then there exists By, C Bp
such that Bl is a basis for E'.

Proposition 5. For any E-interface E', all its bases have the same cardinality.

Definition 24 (E-interface: Equivalence of Tags). We write E' IF f11 ~ fi7o
to express that the tags {71 and 472 are equivalent in E'. The judgement is defined
as follows:
fro = 74
ETIF 7o ~ 874
E'lfr ~4r, E'RE ~T

B in@) ~ i)

Note that E' IF t_f ~ t_2> refers to the E-interface judgement that terms t_f
and ty are known equal in E'.

where #70, §70€ PTAG (PRIM)

Definition 25 (E-histories). An E-history E¥! € EHIST is a set of pairs (each
denoted (fo: 7) ) in our formalism: the first element is a tag (identifying a
quantifier), and the second is a vector of ground terms (representing an instan-
tiation of the corresponding quantifier).

Definition 26 (E-states). An E-state E is a pair (E', EM) of E-interface and
E-history.

Definition 27 (History-Enabled E-matches). Given a candidate pair (fo : 7)
(of tag fa and vector of terms 7), the E-state E enables (fa : 7), written
E lbinst (fa: 7)), if: for every pair (ﬂoz : ?) e EY E'W 7 ~ 77

Remark 8. E' | T~ 77 in the definition above uses a lifted version of an E-
interface judgement IF, defined in Def. 2Tl An equivalent definition is to replace
this with the following: at least one of the pointwise equalities r; ~ r; is not
known in E'.
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Definition 28 (History-Enabled E-matches (Optimised)). Given a can-
didate pair (fo: 7) (of tag to and vector of terms T ), the E-state E enables

(b : 7)), written E g (fo: 7)), if: for every pair (ﬂT : 7) € EY such that

E'lFfa~tr, BV 7 ~ o
Note that the equivalence of tags E' I fo ~ $7 is defined in Def. [ZJ.

Remark 9. The above optimised version is not included in the main contents of
the paper.

Definition 29 (E-history Extension). Let E¥! € EHistT. Updating E® with
a pair (fo: 7) is defined as follows:

Eva(ta:7)=EYU{(fa:7)}

Remark 10. Since E™ < (fo: ?) occurs immediately after verifying F IFjpg
(fo: 7) within a single quantifier instantiation transition, the pair (fa: 77)
cannot be redundant for E*. The definition of being “redundant” is in line with
the version of Ikt employed.

Definition 30 (Verified Extended Clauses). An extended clause ¢1V- -V oy,
is verified by a set of quantifiers W and an E-interface E', written W, E¥ IFyerity
@1V -V oy, if there is some ¢; where 1 < ¢ < n, such that one of the following
is satisfied:

fa
— ¢; 1s a tagged quantifier (V?.ﬁAu) ew;
- ¢z 18 tl = tg and EI I+ tl ~ tg,’
— ¢z 18 tl 75152 and EI I+ tl 74t2.
Definition 31 (Updating Current Quantifiers). Let W = {v!™ .. o™ ..}

1 )
i

where each v;" is a tagged quantifier. Updating W with a tagged quantifier viT
with the help of an E-interface ' is defined as follows:

W< (v, E") = WU {v*}

The E-interface E' a redundant parameter of this update operation. We may
instead write W U {v*T} to specifically refer to this version of updating current
quantifiers.

By convention of overloading, we lift the above relation to support W< (45, EI)
where @ = { L } s a set of tagged quantifiers.

Definition 32 (Updating Current Quantifiers (Optimised)). Let W =

{vﬁn, . ..vgﬂ, ...} where each vfn is a tagged quantifier. Updating W with a

tagged quantifier vi7 with the help of an E-interface ' is defined as follows:
wu {vﬁ"} if there does not exist any vfn eWw
W« (vﬂT, EI) = such that E' I 1 ~ #7;

W otherwise

By convention of overloading, we lift the above relation to support W < (43, EI)
where ¢ = { VL LA } is a set of tagged quantifiers.
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Remark 11. The above optimised version is not included in the main contents
of the paper.

jife
Definition 33 (E-matching). The judgement (W, A, E) Fatch (V?.[‘T—jA’) a7
defines, for a given state (W, A, E), which instantiations (using terms T ) of

N
which quantifiers (V?.[T]A') are enabled, according to the rules of E-matching,
as follows:

— fo —
(V?.[T]A’) eW T is one trigger set of [T

E! IFnown ? (?) [?/7] B Finst (ﬁa : 7)

(W, A, E) Finaten (v?.[ﬁA/) T

We write (W, A, E) Vmaten to mean no instantiations are enabled in this state

(W, A E).

Definition 34 (State Transitions). The (single step) state transition relation
— is defined as follows:

— C STATE X STATE
(Z)C@g {¢z | CEAu WluE{ U’Lverifycu C is \/(bzv}
Wy =Wi« (ﬁlterv (D), E{) Eé = E{ < filtery, (D) Eg = EF (sPLIT)
<W17 A7 E1> — <W27 Au E2>
E'IF L (80T)
(W,AE) — L
E'W L W,E'Iryerity C for every C € A (W, A, E) Hmaten (saT)

(Wh, A, E1) Frate (v?.[‘ﬁ An)”“ .

A12 = All [?/7] A/12 = ﬁlterv (A12) U ﬁlterht (A12)
A2 = Al U (Alg\A/12) WQ = W1 < (ﬁlterv (Alg) s E{)
E} = El afiltery, (A1) EN = EM g (fo: 7)
<W15 A17 E1> — <W2a A27 E2>

(INST)

Remark 12. Regarding W> = Wi < (filtery (@) , E}) in the (SPLIT) rule : Select
all tagged quantifiers from &. Joining these tagged quantifiers with the current
quantifiers W with the help of the current E-interface E] yields Wy. We provide
two definitions (cf. Def. BIl and [32) for updating the current quantifiers, one of
which (cf. Def. B2) is optimised to rule out redundant quantifiers.

Regarding Wy = Wi < (filtery (A12) , £7) in the (INST) rule: Select all tagged
quantifiers from Ai5. Joining these tagged quantifiers with the current quantifiers
W1 with the help of the current E-interface E} yields Wo. We have provided two
definitions (cf. Def. BIland [B2) for updating the current quantifiers, one of which
(cf. Def. B2) is optimised to rule out redundant quantifiers.
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Definition 35 (Injection Function). Let L be a set of ground literals. We
write inj (L) to denote an initial E-state constructed from L. The injection func-
tion is defined as follows:

inj : P (LITERAL) — ESTATE

inj(L)=(0<L,0)

Definition 36 (General-purpose Invariants). Suppose the initial state is
so = (W, 0,inj (L)), where Wy is an aziomatisation for a theory with tags, and
L is an arbitrary set of ground literals from the same theory.

For an arbitrary intermediate state s = (W, A, E), define the general-purpose

invariant Ig (s, 80) to be a conjunction of the following predicates:

1.

10.

11.

(Quantifiers have distinct tags). Iq.qr (s,s0), which holds iff: quantifiers
in current quantifiers W have distinct tags, i.e., i1 Z #1o for every two
VT 0T e Wowhere v #£ W™

(No unit clauses in A). Ig.Na (8, 80), which holds iff: none of the extended
clauses in A is a unit clause, i.e., for every C € A, C is not of the form

{o}.

(E-history up-to-date with quantifiers). Ig.rq (S, so), which holds iff: the cur-

rent E-history EY is up to date w.r.t. the current quantifiers W, i.e., for

every pair (fo : ?) from E-history EY, there exists a quantifier V?.ﬁA’

from W whose tag is fa and the dimension of? 1s equal to that of 7.

(E-history up-to-date with E-interface). Ig.gr (8, So), which holds iff: the cur-

rent E-history E™ is update to date w.r.t. the current E-interface E', i.e., for

every pair (fa: 7)) from E-history EY, there exists a quantifier V' .[T|A’

from W whose tag is fo, E' IFinown 7 and E' Frnown ? [7/2] for some
— —

trigger set t from [T.

(History-enabled E-matches with equal terms). Ig.ug (8, so), which holds iff:

i E e (672 7), BUF T ~ 1, then E lFinst (ﬁT : 7).

(Known terms on basis). Ig.xs (8, 50), which holds iff: if B Finown T, then

for any basis of E', denoted Bp, there exists ' = (ri,... 7}, ... rh) with

each r’ € By, and EMIF 7 ~ 7

(E-interface grows). Igac (s, so), which holds iff: if s —s ', then (E')' is a

conservative extension of E' | i.e., E' C (E')".

(E-history grows). Ig.uc (s, s0), which holds iff: if s — ', then (E')" is a

conservative extension of EX, i.e., E® C (E")".

(Quantifiers grow). Ig.qa (s, so0), which holds iff: if s — &', then W’ is a

conservative extension of W, i.e., W C W',

(Clauses grow). Ig.cc (8, So), which holds iff: if s — §', then A’ is a con-

servative extension of A, i.e., A C A’.

(Verified clauses remain verified). Ig.vv (s, so), which holds iff: suppose s —

s, if C € A and W, E' lbyenigy C, then C € A" and W', (E")" IFyerity C.
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Proposition 6. Suppose the initial state is so = (Wo,0,inj (L)), where Wy is
an axiomatisation for a theory with tags, and L is an arbitrary set of ground
literals from the same theory. If so —* s, then Ig (s, so) holds.

Proof. The proof is straightforward by induction on the trace of s9 —™* s.

B Proving Instantiation Termination for Set Theory

Functions|Types

member |T x Set(T') — Bool
subset Set(T) x Set(T) — Bool
union Set(T) x Set(T) — Set(T)
inter Set(T) x Set(T) — Set(T)
diff Set(T) x Set(T) — Set(T)
add T x Set(T) — Set(T')
remove |T x Set(T) — Set(T)
isEmpty |Set(T') — Bool

empty () — Set(T)

singleton |T' — Set(T)

disjoint |Set(T') x Set(T)) — Bool
equal Set(T') x Set(T") — Bool

Figure 1. Functions in Our Axiomatisation for Set Theory

We prove instantiation termination for our axiomatisation of set theory. Our
axiomatisation has employed 12 uninterpreted functions, as illustrated in Fig. [T}
The full axiomatisation is available in Appx. [C.1l

Definition 37 (Tagging Quantifiers). In our aziomatisation for set theory,
each azxiom is identified by its own name as a tag. The inner quantifiers of nested
quantifiers are tagged as follows:

— The inner quantifier of axiom (subset-elim,)

Vs1, s2. [subset(s1, s2)] —subset(s1, s2)V
(Vz.[member(z, s1)][member(x, s2)] ~member(x, s1) V member(z, s2))

is tagged with fsubset-elim(sy, s2).
— The inner quantifier of axiom (disjoint-elim)

Vs1, s2. [disjoint(sy, s2)] ~disjoint(s1, $2)V
(V. [member(x, s1)] [member(x, s2)] ~member(x, s1) V ~member(z, s3))

is tagged with fdisjoint-elim(s1, $2).
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— The inner quantifier of axiom (isEmpty-elim-1)
Vs. [isEmpty(s)] —isEmpty(s) V (Va.[member(x, s)] ~member(z, s))
is tagged with tisEmpty-elim-1(s).

Definition 38 (Overapproximation of Basis). Suppose B is a basis of an
E-interface. The functions O1(B) and O2(B) denote overapprozimations for the
Set(T')-typed and T-typed elements within basis B, respectively.

O1(B) = filterg.y1)(B)
05 (B) = filterp(B)

U Skss(01(B), 01(B)) U Skeg(O1(B), O1(B))
U Skgi(01(B), 01(B)) U Skie(O:1(B))

Here filter goy1) and filtery take a basis and select its Set(T)-typed and T'-typed

elements, respectively; each Sk is lifted from the corresponding Sk to support sets.

The O; function selects terms from B that are of type Set(T); the Oy function
selects terms from B that are of type T' and uses terms of type Set(T') to compose
Skolem terms of type T

Proposition 7. Both O1 and Os are monotonic with respect to C.

Proposition 8. If B is a basis of an E-interface E', then O1(B) U O2(B) is a
candidate basis of E'.

Definition 39 (Overestimation of Enabled E-matches). Consider an ar-
bitrary state s = (W, A, E). Let B be a basis of the E-interface E'. Define an
overestimation of the enabled E-matches for state s from basis B as follows. We
call the defined set a P-estimation, and each of its element a p-term.

P((W,A,E),B) = {...pm,...,pﬁﬁ(7),...}

Here pgr, and py, 5y each denote a set of tuples that overapproximate the enabled
E-matches from the basis B to the quantifiers labelled with tags f1; and §7; (7),
respectively. Each tag #7; identifies an original axiom from W, and each tag
Hq(?) identifies a quantifier introduced by instantiating the (outer) quantifier
of an original (nested) aziom t7; with terms T from the approzimations O (B)
or O2(B).

To clarify, examples for each category are presented as follows; the remaining
quantifiers shall adhere to the same pattern.

— A non-generative axiom:

Piunion-elim = (81, S?ax)

S1,82 € Ol(B),:E S OQ(B), }

E IFingt (funion-elim : (s1, 2, x))
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— A generative aziom:

) _ (S s ) 81782601(3),
PYsubset-intro L2200 B lbinst (gsubset-intro : (s1,$2))
— A nested axziom:
o 81,82601(3),
Pasubset-ctim = 4 (1, 52) E IFingt (fsubset-elim : (s1,s2))

— A quantifier introduced by instantiating a nested aziom:
Ptsubset-elim(a,b) = {.I | T e 02(3)7 E lFinst (ﬂsubset-elim(a, b) : :I:)}
where a,b € O1(B)

To further clarify, there are Oﬁol(B)H p-terms of the form pysupsei-ectim(a,b) With
different a,b € O1(B), each of which corresponds to one quantifier introduced
by instantiating the nested aziom (subset-elim) with s1—a and sa—b. Note that
|O1(B)|| means the cardinality of the set O1(B), and Cﬁol(B)” means the 2-
combination of ||O1(B)]|.

Definition 40 (Overestimation on Amount of Enabled E-matches). Define
an overestimation on the amount of the enabled E-matches, denoted X', as a
function from STATE to NU{—1} as follows:

> Ipll if s = (W, A, E) and B is a basis for E*
peP((W,A,E),B)
Y(s) =191 ifs=1
-1 ifs=9
where ||-|| denotes set cardinality.

Definition 41 (Amount of Unverified Current Clauses). Define the amount
of unverified current clauses, denoted O, as a function from STATE to NU{—1}
as follows:

|[{C € A| W, E" fyerity C}|| if s = (W, A, E)

O(s)=<¢ -1 ifs=1
-1 ifs=9
where ||-|| denotes set cardinality.

Definition 42 (Progress Measure). Define the progress measure, denoted M,
as a function from STATE to (NU{—1})? as follows:

where (X(s), ©(s)) is lexicographically ordered.

Definition 43 (General-purpose Invariants). Cf. Def. 50



Quantifier tag 7 vte(z) z [T]
empty member(@—emptyy (not V1) z [member(z, empty())]
singleton-intro-1 memberlersingletontzy) (not V1) T [singleton(x)]
singleton-intro-2 member(y, singleton(z)) Vo # vy T,y [member(y, singleton(z))]
singleton-elim —member(y, singleton(z)) Vo =y T,y [member(y, singleton(z))]

. [member(y, s), add(x, s)]
add-intro-1 member(y, add(z, s)) V ~member(y, s) 8,2,y [member(y, add(z, $))]
wrebeintro-2 membereaddlersyy (not V1) s, T ladd(z, s)]

— [rember(y, add(z, 3]
add-intro-3 member(y, add(z,s)) Vy # x S, T, Y [member(y, s), add(z. s)]
— - [member(y, add(z, )
add-elim —member(y, add(x, s)) V (x = y) V member(y, s) S, T, Y [member(y, s), add(z. s)]
Lo . [union(s1, s2), member(z, s1)]
union-intro-1 member (x, union (s1, s2)) V "member(x, s1) 1,92 8| [ omber(a, union(s1, s))]
Lo . lunion(si, s2), member(x, s2))
union-intro-2 member (x, union (s1, s2)) V "member(z, s2) 1,92 8| [ omber(s, union(s1, s3))]
[member(xz, union(si, s2))]
union-elim  [—member(z, union (s1, s2)) V member(z, s1) V member(z, s2)|s1, s2, x| [union(s1, s2), member(z, s1)]
[union(si, s2), member(z, s2)]
. s —disjoint(s1, s2) V (diff(union(si, s2),s1) = s2) .
union-disjoint - 81, 82 [union(s1, s2)]
—disjoint(s1, s2) V (diff(union(s1, s2), s2) = s1)
[member(x, s1), inter(s1, s2)]
inter-intro member(z, inter(s1, s2)) V ~member(x, s1) V —member(z, s2)|s1, s2, x| [member(zx, s2), inter(sy, s2)]
[member(z, inter(s1, s2))]
—member(x, inter(s1, s2)) V. member(z, s1) [member(z, s1), inter(s1, 52)]
inter-elim s1, 82, x| [member(z, s2), inter(s1, s2)]
[member(z, inter(s1, s2))]
—member(x, inter(s1, s2)) V. member(zx, s2)
union-right tE OO T s ——ttonle sy (not V) 81, 82 [union(union(s1, s2), s2)]
union-left iRl aRtoRs s =—unientsreoy (not V1) S1, 82 [union(s1, union(si, s2))]
inter-right rter(interts T s —irtertsrrset (not V1) 81, 82 [inter(inter(s1, s2), s2)]
inter-left rter(srirter{s e r——irtertsrrset (not V1) 81, 82 [inter(s1, inter(s1, s2))]

Figure 2. Disjunctions Lookup Table (1)

Suryoyew-1 Jo UOIYRUTULIQ], UOIJLIJURISU] dAOIJ O} [OPOIN [eUWLIO] Y

1€
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Quantifier tag 7 vto(T) | z | [T]
[member(x, s1), diff(s1, s2)]
diff-intro member(z, diff(s1, s2)) V ~member(z, s1) V member(x, s2) 81, 82, x| [member(z, s2), diff(s1, s2)]
[member(z, diff(s1, s2))]
—member(z, diff(s1, s2)) V member(z, s1) [member(x, s1), diff(s1, s2)]
diff-elim 51,82, x| [member(x, s2), diff(s1, s2)]
member(x, diff(s1, s
—member(x, diff(s1, s2)) V -member(x, s2) : i i1, 52))]
subset-intro (Sk) subset(s1, s2) V member(Skss(s1, s2), s1) S1, S2 [subset(s1, 52)]
subset(s1, s2) V ~member(Skss(s1, s2), s2) S1, 82 12
o . j —subset(sy, s2)V
subset-elim (nested) (Vz.[member(z, s1)][member(z, s2)] ~member(z, s1) V member(z, s2)) | *17%2 [subset(s1, 52)]
subset-elim(a, b) where
(a,8) —member(z,a) V member(z,b) T [memll))er(z, Z)]
a,b € O1(B) [member(z,b)]
. equal(sy, s2) V member(Skeq(s1, s2), s1) V member(Skeq(s1, s2), s2)
equal-sets-intro (Sk) 51,82 lequal(sy, s2)]
equal(sy, s2) V ~member(Skeq(s1, s2), s1) V ~member(Skeq(s1, s2), s2)
equal-sets-extensionality —equal(s1, s2) V s1 = sa S1, 82 lequal(sy, s2)]
disjoint(s1, Y ber(Skq;(s1, s2),
disjoint-intro (Sk) zsyozn (81, 52) V member(Sk(s1, 82), $1) 51,82 [disjoint(s1, s2)]
disjoint(s1, s2) V member(Skgj(s1, s2), s2)
L . —disjoint(s1, s2)V L
disjoint-elim (nested) (V. [member(z, s1)] [member(z, s2)] ~“member(z, s1) V ~member(z, s2)) | 12 [disjoint(s1, s2)]
disjoint-elim(a, b) where b .
! be O( (B)) —member(z, a) V ~member(z, b) x [[zzzbZ:gi' Z;]]

a, 1 )
remove-intro-1 y =z V —-member(y, s) V member(y, remove(z, s)) S, T,y [Trs;nrszz%g;sz";;j.z;o;(];(ms,);])]
remove-intro-2 memberlaremoveles)y (not V1) s, x [remove(z, s)]
remove-intro-3 —member(y, remove(x, s)) Vy # x s, T [Trsznrzzz(;(yy,s)re:zﬁoel();(,z);)]

~member(y, remove(z, s)) V'y # 2 [member(y, s), remove(z, s)]

remove-elim 8T Y | [member(y, remove(x, s))]

—member(y, remove(x, s)) V member(y, s)
isEmpty-intro-1 (Sk) isEmpty(s) V member(Skie(s), s) s [isEmpty(s)]
. . . isEmpty(s
isEmpty-intro-2 isEmpty(s) V —equal(s, empty()) s [eqLal(s. ipeng;tz;]())]
isEmpty-elim-1 (nested) —isEmpty(s) V Va.[member(x, s)] ~member(x, s) s [isEmpty(s)]
isEmpty-elim-1(a
R4 (@) —member(eray (not V1) T [member(z, a)]
where a € O1(B)
isEmpty-elim-2 —isEmpty(s) V equal(s, empty()) s LisEmpty(s)]

[equal(s, empty())]

Figure 3. Disjunctions Lookup Table (2)
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Definition 44 (Problem-specific Invariants). Suppose the initial state is
so = (W, 0, Ey), where Wy is our aziomatisation for set theory with each quan-
tifier tagged as specified by Def. [34, Ey = inj (L), and L is an arbitrary set of
ground literals from set theory.

For an arbitrary intermediate state s = (W, A, E), define the problem-specific
invariant Ip(s, sg) to be a conjunction of the following predicates:

1. (Origins of clauses). Ip.0c (s, So), which holds iff: for each extended clause

in A in the form of Vt¢(2)[7/z] where Vto(T) matches at least one
entry of the VYo(Z) column of Fig.[@ and @, (t7: 7) € EY holds for the
quantifier identified by 47 as implied by the same entry. To clarify, here are
some examples.

(a) For each extended clause in A of the form —member (t, union(a,b)) V

(b)

(c)

(d)

member(t,a) V member(t,b), (funion-elim : (a,b,t)) € E™ holds, where
aziom (union-elim) is defined as follows:

Vs1, S2, .

[member(z, union(s1, s2))]

[union(s1, $2), member(x, s1)] [union(s1, s2), member(x, s2))
—member (x, union (s1, s2)) V member(x, s1) V member(x, s3)

For each extended clause in A of the form subset(a,b)Vmember(Skss(a,b), a),
(#subset-intro : (a,b)) € E™ holds, where axiom (subset-intro) is defined
as follows:

Vs1, s2. [subset(sy, s2)]
(subset(sy, s2) V member(Skss(s1, 52),81)) A
(subset(s1, s2) V ~member(Skss(s1, 52), $2))

For each extended clause in A of the form

—subset(a, b)V
(Vz.[member(z, a)|[member(x, b)] ~“member(x,a) V member(zx,b)),

(fsubset-elim : (a,b)) € EY holds, where aziom (subset-elim) is defined
as follows:

Vs1, s2. [subset(s1, s2)] —subset(sy, s2)V
(Vx.[member(zx, s1)][member(x, s2)] ~member(x, s1) V member(z, s2))

For each extended clause in A of the form —member(t,a)V member(t,b),
at least one of the following holds:
i. (tsubset-elim(a,b) : t) € EY holds, where quantifier (subset-elim(a, b))
is defined as follows:

V. [member(z, a)|[member(x,b)] ~member(x,a) V member(x,b)

ii. (fdisjoint-elim(a,b) : t) € EY holds, where quantifier (disjoint-elim(a, b))
is defined as follows:

V. [member(x, a)] [member(x, b)] ~member(x, a) V —~member(z, b)



34 R. Ge et al.

2. (Forms of quantifiers in clauses). Ip.rq(s, so), which holds iff: every quanti-
fier ¢ in any extended clause of A must be in one of the following forms:
(a) Vz.[member(z,a)|[member(x,b)] ~member(x,a) V member(x,b) with tag
tsubset-elim (a,b), and (fsubset-elim : (a,b)) € EW, for some sets a and
b;

(b) Yx.[member(z,a)] [member(zx,b)] ~member(z, a)V-member(x,b) with tag
tdisjoint-elim (a,b), and (fsubset-disjoint : (a,b)) € EX, for some sets a
and b;

(¢) Vz.[member(z,a)] ~member(x,a), with tag tisEmpty-elim(a), and (fisEmpty-elim : a) €
EY, for some set a.

3. (Instances of clauses). Ip.1c(s, s0), which holds iff: each extended clause V* ¢
in A must be from the \/ﬂb(?) column of Figures[2 and[3 with appropriate
substitutions for variables indicated by the 2 column.

4. (Inherited quantifiers). Ip.1q(s, so), which holds iff: either
(a) W =Wy, or
(b) W is the disjoint union of Wy and W', and for each w € W', one of the

following holds:

i. w is a quantifier Vx.[member(z, a)|[member(x,b)] ~member(z,a) V

member(z,b), and (fsubset-elim : (a,b)) € EY, for some sets a and
b.

it. w is a quantifier Yx.[member(zx,a)] [member(x,b)] ~member(x,a) V
—member(z,b), and (§disjoint-elim : (a,b)) € EY, for some sets a
and b.

iii. w is a quantifier Vz.[member(x, a)] —member(x, a), and (fisEmpty-elim :
a) € EY, for some set a.

5. (Basis after a step). Ip.ps(s, so), which holds iff: if Bg is a basis for E', and
s —» s, then O1(Bg) U O2(Bg) is a candidate basis for (E')".

6. (Inherited basis). Ip.1(s, so), which holds iff: if Bg, is a basis for E}, then
O1(Bg,) UO2(Bg,) is a candidate basis for E.

Remark 13. We write V1 ¢; to denote ¢1 V---V ¢; V -+ V ¢, where n > 2.

We prove an interesting problem-specific invariant Ip.g (s, sg) from Def. @4l
Proofs of other invariants are straightforward or analogous.

Proposition 9. Suppose the initial state is so = (Wy, 0, Eo), where Wy is our
axiomatisation for set theory with each quantifier tagged as specified by Def. [T,
Ey = inj (L), and L is an arbitrary set of ground literals from set theory. Let
Bg, be a basis for Ey.

Let I(S, So) = Ig(s, 80) AlIp.oc (S, So) /\IP;FQ(S, So) AIp.1c (S, So) /\IP:IQ(S, 80).

Suppose s1 — so and I(s1, o) holds.

If Bg, is a basis for E}, then O1(Bg,) U Oy(Bg,) is a candidate basis for
L.

Proof. Proceed by cases on s — s3. Both (BOT) and (SAT) cases are vacuous.
The remaining cases are (SPLIT) and (INST).
We first discuss the (SPLIT) case.
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Let S1 = <W1,A1,E1>.

Let ® C {(bz | Ce A, Wl,E{ chrifyc, CisprV--- Vo V---Vp, n> 2}
Refer to the VT ¢(Z) column of the tables in Figures 2 and [ for possible con-
structions of &.

Let sy = (Wa, Ag, Eo), where El = E} <filter);; (&).

Proceed by induction on .

Case 1. (@ = ). Then E} = El. Since B, is a basis for E}, then B, must be
a basis (thus also a candidate basis) for E}.

Case 2. (& ={{¢1}}).
Proceed by cases on ¢1. We choose ¢ = member(Skss(s!, s5),s}) as an ex-
ample; the other cases are analogous to this case.

1. ¢1 = member(Skss (s, s4), s1) must be chosen from

subset(s], sh) V member(Skss(sh, 85), 1) € A1, by Ip.ac(s1, so)-

(#subset-intro : (s}, s5)) € EF by Ip.oc(s1, 80).

E! Finown (87, 55) by Ig.sE (51,50). Then, E} Fiown 87 and BT [Finown Sh-

4. Since Bp, is a basis for E{, there are b1,b2 € Bp, such that E{ Ik sf ~ by
and E{ Ik s}, ~ ba. Note by and by may or may not be identical to each other.

5. Now El = El a¢y = E] U {member(Skss(s},55),8)) ~ T}.

6. There exists b € O1(Bg,) U O2(Bg,) such that E} - Ske(s],s5) ~ b. In
particular, EY |- Skgs(s),s5) ~ Skss(b1,b2) and Skes(by,b2) € O1(Bg,) U
Oy (BEl)

7. Our goal is to show that O1(Bg, )UO2(Bg, ) is a candidate basis for E}. That
is, for every t, if E} IFinown t, then there exists some b € O1(Bg, ) UO2(Bg,)
such that EL IFt ~ b.

Assume E} IFiown t, that is BT U {member(Skss(s),s5),57) ~ T} IFknown t-
Then either B} IFuown t, O t is Skss(s), s5). The former case is immediate,
and the latter case has been handled.

Case 3. (@ = &' U {{¢1}} and {¢1} ¢ &'). Let El, = E] < filtery;; (#'). Since
Bg, is a basis for E1, by the inductive hypothesis, O1(Bg, ) U O2(Bg, ) must be
a candidate basis for El,. Let Bg,, € O1(Bg,) U O2(Bg,).

Proceed by cases on ¢1. We choose ¢1 = member(Skss(s), s5), s}) as an ex-
ample; the other cases are analogous to this case.

w N

1. ¢1 = member(Skss (s, s5), s1) must be chosen from

subset(s], sh) V member(Skss(sh, 85), 1) € A1, by Ip.ac(s1, so)-

(#subset-intro : (s}, s5)) € EX by Ir.oc(s1, 50)-

Bl Finown (81, 55) by Ia.eE (51, 50). Then, Ef IFgown 87 and EY IFown Sh-

Then, Ely Finown 87 and Ely Fiown Sh-

Since O;1(Bg,) U O3(Bg,) is a candidate basis for El,, there are by, by €

O1(Bg,)UO2(Bg,) such that El, IF s} ~ by and Ei, I ) ~ by. Note by and

b may or may not be identical to each other.

Now E} = El, a¢1 = By U {member(Skss (s}, s5),s,) ~ T}

7. There exists b € O1(Bg,) U O2(Bg,) such that E} IF Skes(s),s5) ~ b. In
particular, EY I+ Ske(s),s5) ~ Skes(b1,b2) and Skes(b1,b2) € O1(Bg,) U
O (BEl)

Sl LN

>
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8. Our goal is to show that O1(Bg, )UO2(Bg, ) is a candidate basis for E}. That
is, for every t, if E} IFknown ¢, then there exists some b € O1(Bg, ) UO2(Bg,)
such that EL IFt ~ b.

Assume E} IFgnown t, that is Ely U {member(Skss(s], s5),81) ~ T} Finown -
Then either E{2 IFinown t, or ¢ is Skes(s], s5). The former case is immediate
from the inductive hypothesis, and the latter case has been handled.

We then discuss the (INST) case. Let s; = (Wy, Ay, Eq) and so = (Wa, A, Es),
N
Where <W1,A1,E1> l_match (V?[T]Au) <I7, A12 = All [7/?], E% = E% <
ﬁlterlit (Alg).
— fo
By Ip.1q(s1,50), proceed by cases on (V?.[T]Au) € Wj. For the major-

ity cases—quantifiers whose V¢ columns in Fig. @ and Bl are not crossed out,
filtery;, (A12) = 0. Thus EL = El. Tt is immediate that O1(Bg,) U O2(Bg,) is a
candidate basis for EX.

For the remaining cases—quantifiers whose V¢ columns in Fig. P and [ are
crossed out, we choose (add-intro-2) as an example; the other cases are analogous
to this case.

(W1, A1, E1) Fmaten (Vs, 2. [add(z, s)] member(z, add(z, s)))*497™702 (s, o).

Then, E} lFown add(2’,8"), B} Fiown 2" and B} Fguown 8’

A1z = member(z, add(z’, s")).

filtery (A12) = {member(a’, add(a’,s")) ~ T}.

El = El «filtery; (A12) = E} U {member(z', add(z’,s')) ~ T}.

Since Bp, is a basis for B}, there are by, by, b3 € Bp, such that E] IF s’ ~ by,

El - a2’ ~ by and E I add(2',s") ~ bs.

7. There are by, by,b3 € Bp, C O1(Bg,) U O2(Bg,) such that E} I s' ~ by,
ELl -2’ ~ by and E} - add(2’,s") ~ bs.

8. Our goal is to show that O1(Bg, )UO2(Bg, ) is a candidate basis for E}. That

is, for every t, if E} IFinown t, then there exists some b € Oy (Bg, ) UO2(Bg,)

such that EL IF¢ ~b.

Assume E} IFinown t, that is ET U {member(2’, add(z’, ")) ~ T} Fknown t. It

must be the case that E{ IFknown t, which has been handled.

S TN

Proposition 10 (Validity of Invariants). Suppose the initial state is so =
(Wo, 0, Eo), where Wy is our aziomatisation for set theory with each quantifier
tagged as specified by Def. [34, Eo = inj (L), and L is an arbitrary set of ground
literals from set theory. Let Bg, be a basis for Ey.

If so —* s, then 1 (s,s0) = I (s, S0) A Ip (8, So) holds.

Proof. Since I (s,s0) is defined to be a conjunction of all invariants involving
states s and s, proving the validity of I (s, so) boils down to establishing the
validity of each individual general-purpose and problem-specific invariants, such
as Proposition [ regarding the invariant Ip.ps (s, So)-

Lemma 1 (Descent of Measure). Suppose the initial state is so = (Wp, 0, Fo),
where Wy is our axiomatisation for set theory with each quantifier tagged as spe-
cified by Def.[T0, Ey = inj (L), and L is an arbitrary set of ground literals from
set theory. Let Bg, be a basis for Ey.
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Let I(s,s0) =1 (s,s0) A Ip(s,80)-
Suppose s1 — so and I1(s1,50) holds. Then M(s2) < M(s1) by the lexico-
graphical order.

Proof. By definition of —, proceed by cases on s; — sa. There are four cases,
(sPLIT), (BOT), (SAT) and (INST). Both (BOT) and (SAT) cases are straightfor-
ward by the definitions of X' and ©. We instead focus on the other two cases. For
the (SPLIT) case, we demonstrate that M (s2) < M(s1) because X(s2) < X(s1)
and O(sz2) < O(s1). For the (INST) case, we demonstrate that M (s2) < M(sy)
because X(s2) < X(s1).

We first work on the (SPLIT) case. Let s; = (Wi, A1, E1). By Ip.as (s1, S0),
O1(Bg,) UO2(Bg,) is a candidate basis for Ef. Let Bg, C O1(Bg,) U O2(Bg,)
be a basis for E}.

Let ® C {(bz | C e A, Wl,E{ chrifyc, CisprV---Vo;V---Vp, n> 2}

Let S9 = <WQ,A2,E2>. We have:

1. A2 :Al. Let A2 =A1 = A.

2. EY = EY afiltery, (@). Then, E} D EL.

3. Since Bp, is a basis for El, by Ip.ps (s1,50), O2 (Bg,) U O1 (Bg,) is a can-
didate basis for E}. Let Bg, C O (Bg,) U Os (Bg,) be a basis for E}.

4. E¥ = EH.

5. By Ig.vv (81,80), if C € A and Wl,E{ ”_Vt\rify C, then WQ,E% ”—VQrify C.
Taking its contrapositive, if C € A and Wa, E% Fveriey C, then W1, E{ Fveriey
C.

We compute X on both s; and so:

2 (s2) = > 2]l

;DGP(<W27A27E2>,BE2)
= ||pﬁunion—elim|| + ||pﬁsubset—intro|| + ||pﬁsubset—elim” +
Z Hp]isubsct—clim(a,b) H +-

a,b€01(Bg, )

H<sa,s;,x'>

s), sy € O2(Bg,), 2’ 602 BEZ), }H

Es IFinst (funion-elim : (s}, 5, 2")

;| sh,sh €01 (Bg,),

+ H{(Sl, s5) Es IFinst (fsubset-intro : (s7, s5))
/ 81,52601 (BEz)

Es IFinst (fsubset-elim : (54, s5))

x' € Oy (BE2) ,
Es IFinst (fsubset-elim(a, b) : 2')
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X(s1) = > il

;DGP(<W17A17E1>,BE1)
= ||p]iunion—clim|| + ||pﬁsubsct—intro|| + ||pﬁsubsct—clim|| +
Z Hp]:isubsct—clim(a,b) H +-
a,beol(BEl)

H<sa,sa,x'>

5/1,5/2 S OQ(BEI) € 02 BE1)7
E; IFinst (funion-elim : (s}, s5, 2")

o 31175/2601(BE1)7
+ H{(Sl’ $2) E4 IFinst (fsubset-intro : (s7, s5))
o 51175/2601 (BE1)7
+ H{(Sl’ 52) Eq IFinst (Hsubset-elim : (s8], s5))
x' € O (BEI) ,
+ H{I €T E; IFinst (fsubset-elim(a, b) : ')

a,be0y (BEI)

To show X' (s2) < X (s1), it suffices to show the following propositions.

. If s, 85 € Ox(Bp,), ' € O3 (Bg,), Ea lFinst (funion-elim : (s}, s5, 2’)), then

a2’ € O3 (Bg,), s1,85 € O2(Bg,), F1 lFinst (funion-elim : (s, sh, z)).

I sh,85 € O1(Bg,) and Fs I (fsubset-intro : (s}, s5)), then s}, s5 €

01 (Bg,) and Ej kg (fsubset-intro : (s7, s5)).

If 57,85 € O1(Bpg,) and Ea Ibins (fsubset-elim : (s}, s})), then s}, s, €
O1 (Bg,) and Ej lFing (fsubset-elim : (s, s5)).

(1) Ifa,b € O1(Bg,), thena,b € O1 (Bg,). (2) If 2’ € O3 (Bg,) and Es Iy
(fsubset-elim(a, b) : '), then 2’ € Oy (Bg, ) and Ej IFiyg (fsubset-elim(a, b) :
(other cases omitted).

We demonstrate that the second proposition holds; the rest cases can be proved
analogously.

1.
2.

3.

Since BE2 C Oy (BEl)UOQ (BEI), ifSll,S/Q € O (BEQ), then 8/1, Sl2 € 04 (BEl)

If F IFinss (fisubset-intro : (s7, s5)), then for every (fsubset-intro : (r1,73)) €
E2Hv E% I (81178/2) ~ (T17r2)'

Since EX = EMl and E} D F}, for every (fsubset-intro: (r1,r3)) € Ef,
EL I (sh,85) ~ (r1,72). That is, Ey I (#subset-intro : (s}, s5)).

Therefore, X' (s2) < X' (s1).

We compute @ on both s; and ss:

€ (52) = ||{O €A | WQvEé vacrify O}H

O (s1) =||{C € A| W1, E] ity C}|

To show O (s2) < O (s1), it suffices to show the following propositions.

a’).
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1. For every C € A, if W, Eé Fveriey C, then Wy, E{ Fveriey C
2. There exists some C' € A such that Wy, E{ Fyerity C and W, E% IFyerity C.

The first proposition has been established. To prove the second proposition,
assume Wy, E{ Wverity C, ¢ € C, and ¢; C @. If ¢; is a tagged quantifier, then
Qbi S WQ; if ¢z is tl = tQ, then Eé I tl ~ tQ; if ¢1 is tl 7§ tQ, then E% I+ tl 7(* tQ.
In all these three cases, Wa, Eé IFyerity C.

We then work on the (INST) case. Let s; = (W1, A1, E1). By Ip.ap (s1, S0),
0O1(Bg,) UO2(Bg,) is a candidate basis for E}. Let Bg, C O1(Bg,) U O2(Bg,)
be a basis for E}.

Let so = <W2,A2,E2>. By Ip.Bs (51, 80), OI(BEl) U OQ(BEI) is a candidate
basis for EX. Let Bg, C O1(Bg,) U O2(Bg,) be a basis for E}.

Proceed by cases on s1 Fpateh -<<-. We choose the following case as an ex-
ample; the other cases are analogous to this case.

Vs1, $2. [subset(s1, s2)] subset-intro
(W1, A1, Eq) Fmaten | (subset(s1, s2) V member(Skss(s1,52),81)) A
(subset(sy, s2) V ~member(Skss(s1, s2), 52))

< (81, 83)
We have:
1. E} Finown subset(s), sb) and E} IFnown (87, 85)-
2. Fj lFinst (fisubset-intro : (s7, s5))
3. Bl = Bl
4. Bl = B! U {(#subset-intro : (s}, s5))}.
We compute X on both s; and so:
Y (s2) = > ([l
;DGP(<W27A27E2>7BE2)
= ||pﬁunion—elim|| + ||pﬁsubset—intro|| + ||pﬁsubset—elim” +
Z Hp]isubsct—clim(a,b) H +-
a,b€01(Bg, )
— 1), 2 51,85 € O2(Bg,),x" € 02 BEZ),
o2 Es IFinst (funion-elim : (s}, 5, 2")
o 51175/2601 (BE2)7
+ H{(Sl’ 52) Es IFinst (fsubset-intro : (s}, s5))
, 81,52601 (BE2)
Es IFinst (fsubset-elim : (s, s5))
’ Tz e Oy (BE2) ,
Z H{x €T Es IFingt (fsubset-elim(a, d) : 2')
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X(s1) = > il

;DGP(<W17A17E1>,BE1)
= ||p]iunion—clim|| + ||pﬁsubsct—intro|| + ||pﬁsubsct—clim|| +

Z Hp]:isubsct—clim(a,b) H +oe
a,b601(BE1)

H<sa,sa,x'>

5/1,5/2 S OQ(BEI) € 02 BE1)7
E; IFinst (funion-elim : (s}, s5, 2")

/ / 8378/2601 (BE1)7
+ H{(Sl’ 52) E4 IFinst (fsubset-intro : (s7, s5))

o 51175/2601 (BE1)7
+ H{(Sl’ 52) Eq IFinst (Hsubset-elim : (s8], s5))

z € O, (BEI) ,
+ H{I €T E; IFinst (fsubset-elim(a, b) : ')
a beOl(BEl)

_|_ .

To show X (s2) < X (s1), it suffices to show the following propositions.

1. (union-elim).
(a) There exists s}, s5 € O1 (Bg,) and 2’ € Oz (Bg,) such that
Ey IFipst (funion-elim : (87, sh,2')), but either s} ¢ O1 (Bg,), or s ¢
01 (Bg,), or 2’ € Oz (Bg,), or E3 fingt (funion-elim : (s, s, 2)).
(b) If s},s, € O2(Bg,), ' € O3 (Bg,), Fa IFinst (funion-elim : (s, s, z)),
then 2’ € Oy (Bg,), 8}, 85 € O2(Bg, ), E1 IFinst (funion-elim : (s/, s, 2')).
2. (subset-intro).
(a) There exists s}, s5 € O1 (Bg,) such that
Ey IFinst (fsubset-intro : (s}, s5)), but either s§ ¢ O1(Bg,), or s, ¢
01 (Bg,), or Ea IFinst (fsubset-intro : (s, s5)).
(b) If 87, s5 € O1 (Bg,) and Fs IFingt (fsubset-intro : (s7, s5)), then s7, s, €
01 (Bp,) and Ej IFinst (fsubset-intro : (8], s5)).
3. (subset-elim).
(a) There exists si,s5 € O1 (Bg,) such that
Ey lFinst (fsubset-elim : (s7,s5)), but either 8§ ¢ Oy (Bg,), or s ¢
01 (Bg,) , or Es IFinst (fsubset-elim : (s}, s5)).
(b) If s},s, € O1(Bg,) and Es kg (fsubset-elim : (s, s5)), then s, s} €
01 (Bp,) and Ej IFinst (fsubset-elim : (s, s5)).
4. (subset-elim(a, b)).
(a) There exists some ' € Oy (Bg,) such that E; Ik, (fsubset-elim(a, b) : '),
but either 2’ ¢ Og (Bg,) or Es st (#subset-elim(a, b) : ).
(b) If a,be 01 (BEZ), then a,b € Oq (BEl)
(¢c) If 2’ € O3 (Bpg,) and Es IFine (fsubset-elim(a, b) : '), then 2’ € O (Bg,)
and Fj lFipg: (#subset-elim(a, b) : a').
5. (other cases omitted)
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We focus on the (subset-intro) case here; the remaining cases can be proved
analogously.
We first work on the first proposition of the (subset-intro) case.

1. Given E} IFinown (87,85), by Ig.ks (s1,50), there exists by, by € B, such
that Ef IF (s}, s5) ~ (b1, b2).
2. Proceed on whether by,by € Bg,. If either by ¢ Bg, or by ¢ Bg,, which im-
plies either by ¢ Oy (Bg,) or by ¢ Oy (Bg,)—the proposition holds. Assume
bl, by € BE2.
. Given Ej IFing (fsubset-intro : (84, s5)), by Ig.ug (81, 80), E1 IFinst (fsubset-intro : (b1, b2)).
. Our goal is to show Fs Ifinst (fsubset-intro : (b1, b2)).
(a) Given Ef C El and El IF (s}, s5) ~ (b1,ba), EL IF (s}, 55) ~ (b1, b2).
(b) Given (fsubset-intro : (s}, s5)) € Ef and E} IF (s, s5) ~ (b1, b2), B Winst
(gsubset-intro : (b, b2)).

= W

We then work on the second proposition of the (subset-intro) case.

1. Since BE2 g 01 (BE1>U02 (BE1)7 ifs'l,slz S 01 (BE2), then Sll, Sl2 S 01 (BEI)

2. If By IFing; (fsubset-intro : (s}, s5)), then there exists no (fsubset-intro : ) €
EX such that E} IF (s}, 85) ~ %

3. Since EY = EFU{(fsubset-intro : (s}, s5))}, there exists no (fsubset-intro : 77) €
EN such that EL IF (s}, s5) ~ 7.

4. Since E} C E}, then there exists no (fsubset-intro: 77) € EI such that
ElIF (sh,8h) ~ 7.

5. Hence Ej IFipst (fsubset-intro : (s, s5)).

Therefore, X (s2) < X (s1).
Overall, we have proved that M (s2) < M (s1).

Theorem 2 (Instantiation Termination for Set Theory). Suppose the ini-
tial state is so = (Wo, 0, Eo), where Wy is our aziomatisation for set theory with
each quantifier tagged as specified by Def.[34, Ey = inj (L), and L is an arbitrary
set of ground literals from set theory.

Any sequence of transitions from the initial sate so, where — represents the
state transition relation, has a finite length.

Proof. Suppose there exists an infinite path, s) — s — s’ — 5" — . ...
Conjecture If sg —* s1 — s2, then M (s3) < M(s1).

By the above conjecture, we have M(sg) > M(s) > M(s') > M(s") > ....
Given that the result of M is a lexicographical order on (N U {—1})2, the path
sg — § — 8’ — s — ... must be finite.

We now prove the conjecture. Let T (s1,s0) = Ig (s1,80) A Ip (81, 80). It suf-
fices to prove the following propositions.

1. If s —* s1, then I (s1, sg) holds.
2. If s1 —> s9 and I (s1, o) holds, then M (s2) < M (s1).

The first proposition is implied by Proposition [0l The second proposition is
implied by Lemma [II
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C Set Theory Axiomatisations

We present our axiomatisation for set theory in Appx. [C.1l and compare our
axiomatisation with the counterparts from Dafny and Viper in Appx.

C.1 Our Axiomatisation for Set Theory

We present our axiomatisation by groups of axioms, with each group focusing on
one operation. For each axiom, we provide two versions: one without triggers for
a straightforward understanding, and another with triggers, formatted in ECNF
for consistency with our formal model.

Empty
empty
V. =member(x, empty())
V. [member(z, empty())] ~member(z, empty())
Singleton

singleton-intro-1
Va.member(x, singleton(z))

V. [singleton(x)] member(z, singleton(x))

singleton-intro-2
Y, y.member(y, singleton(z)) < =y

Vx,y. [member(y, singleton(x))] member(y, singleton(z)) Va £y

singleton-elim
Y, y.member(y, singleton(z)) — =y

Y, y. [member(y, singleton(x))] ~member(y, singleton(x)) Vx =y

Add
add-intro-1
Vs, x,y. member(y, add(x, s)) + member(y, s)
Vs, x,y. [member(y, s), add(x, )] [member(y, add(zx, s))]
member(y, add(z, s)) V ~member(y, s)
add-intro-2
Vs, x. member(z, add(x, s))
Vs, x. [add(x, s)] member(z, add(z, s))
add-intro-3

Vs, x,y. member(y, add(x, s)) < y = x
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Vs, x,y. [member(y, add(x, s))] [member(y, s), add(x, s)]
member(y, add(z,s)) Vy # x

add-elim
Vs, x,y. member(y, add(x, s)) — (x = y) V member(y, s)
Vs, x,y. [member(y, add(x, s))] [member(y, s), add(x, s)]
—~member(y, add(x, s)) V (x = y) V member(y, s)
Union

union-intro-1
Vs1, $2, x.member (x, union (s1, s2)) < member (z, $1)

Vs1, S2,x. [union(s1, s2), member(x, s1)] [member (x, union (s1, s2))]
member (x, union (s1, s2)) V ~member (z, s1)

union-intro-2
Vs1, S2, x.member (x, union (s1, s2)) < member(z, S2)

Vs1, S2,x. [union(s1, s2), member(x, s2)| [member (x, union (s, s2))]
member (x, union (s1, s2)) V ~member (z, s2)

union-elim

Vs1, $2, x.member (z, union (s1, s2)) — member(z, s1) V member(z, s3)

Vs1, 82, .

[member(z, union(s, s2))]

[union(s1, s2), member(x, s1)| [union(sy, s2), member(z, s2)]

—member (x, union (s1, s2)) V member(x, s1) V member(x, s2)
union-disjoint

Vs1, $2. [union(sy, s2)]
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disjoint(s1, s2) — (diff(union(si, s2), s1) = s2) A (diff(union(s1, s2), $2) = s1)

Intersection
inter-intro

Vs1, S2, x.member(x, inter(s1, s2)) < member(x, s1) A member(x, s2)

Vs, S, x.

[member(z, s1), inter(s1, s2)] [member(x, s2), inter(sy, s2)]
[member(z, inter(s1, s2))]

member(x, inter(sy, s2)) V ~member(z, s1) V -member(x, s3)

inter-elim
Vs1, $2, x.member(x, inter(sy, s2)) — member(x, s1) A member(x, s2)

Vs1, 82, x. [member(z, inter(sy, s2))]

[inter(s1, s2), member(x, s1)] [inter(s1, s2), member(x, s2))
(—=member(x, inter(s1, s2)) V member(x, $1)) A
(—=member(x, inter(s1, s2)) V member(x, s3))
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Properties on Union and Intersection
union-right

Vs1, Sa.union(union(s1, s2), S2) = union(s, s2)

Vs1, S2. [union(union(sy, s2), s2)] union(union(sy, s2), s2) = union(sy, s2)

union-left
Vs1, Sa.union(sy, union(sy, s2)) = union(s, s2)

Vs1, $2. [union(sy, union(s1, s2))] union(sy, union(s1, s2)) = union(sy, s2)
inter-right
Vs1, sa.inter(inter(sy, s2), s2) = inter(s1, s2)
Vs1, Sa. [inter(inter(si, s2), s2)] inter(inter(sy, $2), s2) = inter(sy, S2)

inter-left
Vs1, sa.inter(sy, inter(sy, s2)) = inter(s1, s2)

Vs1, s2. [inter(s1, inter(s1, s2))] inter(s1, inter(s1, s2)) = inter(sy, s2)

Difference
diff-intro

Vs1, s2, x.member(x, diff(s1, s2)) < member(z, s1) A ~member(x, s2)

Vs1, 82, x. [member(z, s1), diff(s1, s2)]
[member(z, diff(s1, s2))] [member(x, s2), diff(s1, $2)]
member(x, diff(s1, s2)) V ~member(x, s1) V member(z, s2)

diff-elim
Vs1, $2, x.member(x, diff(s1, s2)) — member(z, s1) A ~member(x, s2)

Vs1, 82, x. [member(x, diff(s1, s2))] [member(x, s2), diff(s1, s2)]
[member(x, s1), diff(s1, s2)]

(—member(x, diff(s1, s2)) V member(z, s1)) A

(—mmember(x, diff(s1, s2)) V ~member(z, s3))

Subset
subset-intro
Vs1, s2.subset(s1, s2) < (Vx.member(x, s1) — member(x, s2))

Vs1, 2. [subset(s1, $2)]
(subset(sy, s2) V member(Skss(s1,s2), 1)) A
(subset(s1, s2) V ~member(Skss(s1, 52), $2))

subset-elim
Vs1, s2.subset(s1, s2) — (Vx.member(x, s1) — member(x, s2))

Vs1, so. [subset(sy, s2)] —subset(s1, s2)V
(Vz.[member(z, s1)][member(z, s2)] ~member(z, s1) V member(z, s2))
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Extensionality
equal-sets-intro
Vs1, s2.equal(sy, s2)
(Vz.member(z, s1) <> member(x, s2))

Vs1, 2. [equal(s, s2)]
(equal(s1, s2) V member(Skeq(s1, 52), 81) V member(Skeq(s1, 52), s2)) A
(equal(s1, s2) V —~member(Skeq(s1, s2), s1) V ~member(Skeq(s1, 52), 52))

equal-sets-extensionality
Vs1, s2. [equal(s1, s2)] equal(s1, s2) — $1 = s

Vs1, s2. [equal(s1, s2)] —equal(sy, s2) V s1 = $2

Disjoint
disjoint-intro
Vs1, sa.disjoint(s1, s2) < (Yx.—~member(z, s1) V -member(x, s2))
Vs1, 2. [disjoint(sy, $2)]

(disjoint(s1, s2) V member(Skq;(s1, s2), 1)) A
(disjoint(s1, s2) V member(Skq;j(s1, s2), s2))

disjoint-elim
Vs1, s2.disjoint(s1, s2) — (Yx.—~member(z, s1) V ~member(x, s2))

Vs1, 2. [disjoint(sy, s2)] ~disjoint(sy, s2)V
(V. [member(x, s1)] [member(x, s2)] ~member(x, s1) V ~member(z, s2))

Remove
remove-intro-1

Vs, x, y.member(y, remove(x, s)) <y # x A member(y, s)
Vs, x,y. [member(y, s), remove(x, )| [member(y, remove(z, s))]
y = x V ~member(y, s) V member(y, remove(z, s))

remove-intro-2
Vs, z.—member(xz, remove(z, s))

Vs, x. [remove(x, s)] —member(z, remove(x, s))

remove-intro-3
Vs, xz.mmember(y, remove(x, s)) <y =«

Vs, x. [member(y, remove(x, s))] [member(y, s), remove(x, s)]
—~member(y, remove(x, s)) Vy # x

remove-elim
Vs, x, y.member(y, remove(x, s)) = y # x A member(y, s)

Vs, x, y. [member(y, remove(x, s))] [member(y, s), remove(x, s)]
(—mmember(y, remove(xz, s)) Vy # x) A
(=member(y, remove(z, s)) V member(y, s))
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IsEmpty
isEmpty-intro-1

Vs. (isEmpty(s) < Vz.—member(zx, s))

Vs. [isEmpty(s)] isEmpty(s) V member(Skic(s), s)

isEmpty-intro-2
Vs. isEmpty(s) < equal(s, empty())

Vs. [isEmpty(s)] [equal(s, empty())] isEmpty(s) V —equal(s, empty())

isEmpty-elim-1
Vs. (isEmpty(s) — Vz.—member(zx, s))

Vs. [isEmpty(s)] —isEmpty(s) V Vz.[member(z, s)] ~member(x, s)

isEmpty-elim-2
Vs. isEmpty(s) — equal(s, empty())

Vs. [isEmpty(s)] [equal(s, empty())] —isEmpty(s) V equal(s, empty())

C.2 Comparison of Our Axiomatisation for Set Theory with
Dafny’s and Viper’s

We compare our axiomatisation for set theory with the counterparts from Dafny
and Viper. We perform the comparison by groups of axioms, with each group
focusing on one operation. For each axiom of ours, we typically include two

versions: one without triggers, and one in extended CNF with triggers.
We use the following labels to indicate where each axiom comes from.

1. Label [all] means the axiom of question is part of our axiomatisation, Dafny’s

and Viper’s.

2. Label [dafny, viper] means the axiom of question is only included in the

axiomatisations from Dafny and Viper.

3. Label [dafny] means the axiom of question is only included in the axiomat-

isation from Dafny.

4. Label [viper] means the axiom of question is only included in the axiomat-

isation from Viper.

5. Label [dafny, ours] means the axiom of question is only included in our

axiomatisation, and the axiomatisation from Dafny.

6. No presence of labels indicates the axiom of question is only included in our

axiomatisation.

Empty
empty [all]
V. ~member(xz, empty())

V. [member(z, empty())] —member(z, empty())
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Singleton
singleton-id [dafny, viper]
V. [singleton(x)] member(z, singleton(x))
singleton-bi [dafny, viper]
Y, y. [member(y, singleton(x))] member(y, singleton(z)) <> = =y

singleton-intro-1
Va.member(x, singleton(z))
V. [singleton(x)] member(z, singleton(x))

singleton-intro-2
Y, y.member(y, singleton(z)) + =y

YV, y. [member(y, singleton(x))] member(y, singleton(x)) V x # y

singleton-elim
Y, y.member(y, singleton(z)) — =y

Y, y. [member(y, singleton(x))] ~member(y, singleton(x)) V. =y

Add
add-bi [dafny, viper]
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Vs, x,y. [member(y, add(x, s))] member(y, add(z, s)) + (y = x) V member(y, s)

add-intro-1 [all]
Vs, z,y. member(y, add(x, s)) < member(y, s)
Vs, x,y. [member(y, s), add(x, s)] [member(y, add(zx, s))]
member(y, add(x, s)) V ~member(y, s)

Note that we added the trigger [member(y, add(x, s))].
add-intro-2 [all]
Vs, x. member(z, add(x, s))

Vs, x. [add(x, s)] member(x, add(z, s))

add-intro-3
Vs, x,y. member(y, add(z, s)) + y = x
Vs, x,y. [member(y, add(x, s))] [member(y, s), add(x, s)]
member(y, add(z,s)) Vy # x
add-elim

Vs, x,y. member(y, add(x, s)) — (x = y) V member(y, s)

Vs, x,y. [member(y, add(x, s))] [member(y, s), add(x, s)]
—~member(y, add(z,s)) V (x = y) V member(y, s)
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Union
union-bi [dafny, viper]

Vs1, 82, x. [member (x, union (s1, s2))]
member (x, union (s1, s2)) <> member(zx, s1) V member(z, s2)

union-intro-1 [all]
Vs1, S2, x.member (z, union (s1, s2)) < member(z, $1)
Vs1, S2,x. [union(s1, s2), member(x, s1)| [member (x, union (s1, s2))]
member (x, union (s1, s2)) V ~member (z, s1)
Note that we added the trigger [member (x, union (s1, s2))].
union-intro-2 [all]
Vs1, S2, x.member (z, union (s1, s2)) < member (z, s2)
Vs1, S2, 2. [union(s1, s2), member(x, s3)| [member (x, union (s1, s2))]
member (x, union (s1, s2)) V ~member (z, s2)
Note that we added the trigger [member (x, union (s1, s2))].
union-elim

Vs1, $2, x.member (z, union (s1, s2)) — member(z, s1) V member(z, s3)

Vs1, S2, X.

[member(z, union(s, s2))]

[union(s1, s2), member(x, s1)] [union(sy, s2), member(z, s2)]
—~member (x, union (s1, s2)) V member(x, s1) V member(x, s2)

union-disjoint [dafny, ours]

Vs1, s2. [union(sy, s2)]
disjoint(s1, s2) — (diff(union(si, s2), s1) = s2) A (diff(union(s1, s2), $2) = s1)

Intersection
inter-bi [dafny]

Vs1, $2, @. [member(x, inter(si, s2))]
member(x, inter(sy, $2)) <> member(x, s1) A member(x, s3)

inter-bi [viper]

Vs, 89, .

[member(x, inter(s, s2))]

[inter(s1, s2), member(x, s1)] [inter(s1, s2), member(x, s2)]
member(x, inter(sy, s2)) <> member(z, s1) A member(z, s2)
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inter-intro
Vs1, S2, x.member(x, inter(sy, s2)) < member(x, s1) A member(x, s2)

Vs1, S, T.

[member(z, s1), inter(s1, s2)] [member(x, s2), inter(s1, s2)]
[member(z, inter(sy, s2))]

member(x, inter(sy, s2)) V ~member(zx, s1) V ~member(x, $2)

inter-elim
Vs1, S2, x.member(x, inter(s1, s2)) — member(x, s1) A member(x, s2)

Vs1, 82, x. [member(z, inter(sy, s2))]

[inter(s1, $2), member(x, s1)] [inter(s1, s2), member(x, s2)]
(mmember(x, inter(s1, s2)) V member(x, s1)) A
(—=member(x, inter(s1, s2)) V member(x, s3))

Properties on Union and Intersection
union-right [all]
Vs1, $2. [union(union(sy, s2), s2)] union(union(sy, s2), s2) = union(sy, s2)
union-left [all]
Vs1, Sa. [union(sy, union(s1, s2))] union(s1, union(s1, s2)) = union(s1, s2)
inter-right [all]
Vs1, 2. [inter(inter(sy, s2), s2)] inter(inter(sy, $2), s2) = inter(sy, $2)
inter-left [all]
Vs1, 2. [inter(s1, inter(s1, s2))] inter(sy1, inter(s1, s2)) = inter(sy, S2)
Difference
diff-bi [dafny]

Vs1, $2, x. [member(z, diff(s1, $2))]
member(x, diff(s1, s2)) > member(x, s1) A ~member(z, s2)

diff-bi [viper]

Vs1, $2, x. [member(z, diff(s1, s2))] [diff(s1, s2), member(x, s1)]
member(x, diff(s1, s2)) <> member(x, s1) A =member(z, s2)

diff-notin [dafny, viper]

Vs1, S2, x. [diff(s1, s2), member(z, s2)]
member(x, s2) — ~member(x, diff(s1, s2))
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diff-intro
Vs1, s2, z.member(z, diff(s1, s2)) < member(x, s1) A ~member(x, s2)
Vs1, 82, x. [member(z, s1), diff(s1, s2)]

[member(x, diff(s1, s2))] [member(x, s2), diff(s1, s2)]
member(x, diff(s1, s2)) V ~member(x, s1) V member(x, s2)

diff-elim
Vs1, $2, x.member(x, diff(s1, s2)) — member(z, s1) A ~member(x, s2)
Vs1, 82, x. [member(z, diff(s1, s2))] [member(x, s2), diff(s1, $2)]
[member(z, s1), diff(s1, s2)]

(—=member(x, diff(s1, s2)) V member(z, s1)) A
(—mmember(x, diff(s1, s2)) V ~member(z, s2))

Subset
subset-bi [dafny, viper]

Vs1, 2. [subset(s1, s2)] subset(s, s2)
(V. [member(x, s1)] [member(x, s2)] member(x, s1) — member(z, s2))

subset-intro
Vs1, S2.subset(s1, s2) < (Vz.member(x, s1) — member(x, s2))
Vs1, s2. [subset(s, s2)]

(subset(s1, s2) V member(Skss(s1,82),51)) A
(subset(s1, s2) V ~member(Skss(s1, s2), $2))

subset-elim
Vs1, S2.subset(s1, s2) — (Voz.member(z, s1) — member(x, s2))

Vs1, so. [subset(s1, s2)] —subset(s1, s2)V
(Vz.[member(z, s1)][member(z, s2)] ~member(z, s1) V member(z, s2))

Extensionality
equal-sets-bi [dafny, viper]

Vs1, 2. [equal(s1, s2)] equal(sy, s2) <
(V. [member(x, s1)] [member(x, s2)] member(x, s1) <> member(z, s2))

equal-sets-extensionality [dafny, viper]

Vs1, s2. [equal(s1, s2)] equal(s1, s2) — $1 = s
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equal-sets-intro
Vs1, $2.equal(sy, $2)
(Vz.member(z, s1) <> member(x, s2))

Vs1, s2. [equal(si, $2)]
(equal(s1, s2) V member(Skeq(s1, 52), s1) V member(Skeq(s1, s2), s2)) A
(equal(s1, s2) V ~member(Skeq(s1, s2), s1) V ~member(Skeq(s1, 52), 52))

equal-sets-extensionality
Vs1, $2. [equal(s1, s2)] equal(sy, $2) — $1 = $2
Vs1, s2. [equal(s1, s2)] mequal(s1, s2) V 81 = s2
Disjoint
disjoint-bi [dafny]

Vs1, S2. [disjoint(sy, s2)] disjoint(s1, s2) >
(V. [member(z, s1)] [member(z, s2)] ~member(x, s1) V ~member(z, s2))

disjoint-intro
Vs1, sa.disjoint(s1, s2) < (Yx.—~member(z,s1) V -member(x, s2))

Vs1, 2. [disjoint(sy, $2)]
(disjoint(s1, s2) V member(Skq;(s1, s2),51)) A
(disjoint(s1, s2) V member(Ska;j(s1, s2), s2))

disjoint-elim
Vs1, sa.disjoint(s1, s2) — (Yx.—~member(z, s1) V -member(x, s2))

Vs1, 2. [disjoint(sy, s2)] ~disjoint(sy, s2)V
(V. [member(z, s1)] [member(x, s2)] ~member(x, s1) V ~member(z, s2))

Remove
remove-intro-1

Vs, x, y.member(y, remove(x, s)) < y # x A member(y, s)

Vs, x,y. [member(y, s), remove(zx, )] [member(y, remove(x, s))]
y =z V -member(y, s) V member(y, remove(z, s))

remove-intro-2
Vs, x.mmember(xz, remove(z, s))

Vs, x. [remove(x, s)] —member(x, remove(x, s))

remove-intro-3
Vs, xz.mmember(y, remove(x, s)) <y =«
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Vs, x. [member(y, remove(x, s))] [member(y, s), remove(x, s)]
—~member(y, remove(x, s)) Vy # x

remove-elim
Vs, x, y.member(y, remove(x, s)) — y # x A member(y, s)

Vs, x, y. [member(y, remove(x, s))] [member(y, s), remove(x, s)]
(=member(y, remove(z, s)) Vy # x) A
(=member(y, remove(z, s)) V- member(y, s))

IsEmpty
isEmpty-intro-1

Vs. (isEmpty(s) < Vz.—member(x, s))

Vs. [isEmpty(s)] isEmpty(s) V member(Skie(s), s)

isEmpty-intro-2
Vs. isEmpty(s) < equal(s, empty())

Vs. [isEmpty(s)] [equal(s, empty())] isEmpty(s) V —equal(s, empty())

isEmpty-elim-1
Vs. (isEmpty(s) — Vz.—member(x, s))

Vs. [isEmpty(s)] —isEmpty(s) V Vx.[member(z, s)] ~member(x, s)

isEmpty-elim-2
Vs. isEmpty(s) — equal(s, empty())

Vs. [isEmpty(s)] [equal(s, empty())] —isEmpty(s) V equal(s, empty())
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