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Constraining the melting temperature of iron under Earth’s inner core conditions is crucial for
understanding core dynamics and planetary evolution. Here, we develop a deep potential (DP) model
for iron that explicitly incorporates electronic entropy contributions governing thermodynamics
under Earth’s core conditions. Extensive benchmarking demonstrates the DP’s high fidelity across
relevant iron phases and extreme pressure and temperature conditions. Through thermodynamic
integration and direct solid-liquid coexistence simulations, the DP predicts melting temperatures
for iron at the inner core boundary, consistent with previous ab initio results. This resolves the
previous discrepancy of iron’s melting temperature at ICB between the DP model and ab initio
calculation and suggests the crucial contribution of electronic entropy. Our work provides insights
into machine learning melting behavior of iron under core conditions and provides the basis for
future development of binary or ternary DP models for iron and other elements in the core.

I. INTRODUCTION

The Earth’s core plays a critical role in the thermal
and compositional evolution of our planet [1, 2]. The
core contains a solid inner core and a liquid outer, which
form a solid-liquid coexistence (SLC) at the inner-core
boundary (ICB). Both inner and outer cores are primar-
ily made of iron. It’s generally believed iron has a hexag-
onal close-packed (hcp) phase under inner core conditions
[3, 4], while the body-centered cubic (bcc) phase is also
suggested to be relevant for the inner core structure [5–
7]. The melting temperature of iron, at which the solid-
liquid equilibria form, is a key factor for estimating the
temperature of the Earth’s center and the solidification
process of the inner core [8–18]. Despite its importance,
the melting temperature of iron in the inner core was not
well constrained. Experimental measurements reported
different results ranging from 4,850 K to 7,600 K due
to the difficulties in generating extreme conditions and
detecting melts [19]. The recent experiments still have
uncertainties of 500 K for the melting temperature mea-
surement at ICB conditions [16, 20].

Another avenue for exploring the extreme pressure-
temperature conditions within Earth’s interiors is
through computer simulations. These simulations of-
fer a valuable alternative to experimental methods, al-
lowing us to probe the properties of iron under core
conditions. Depending on the modeling approach used
to describe interatomic interactions, these simulations
can be categorized as classical or ab initio simulations.
Classical molecular dynamics (CMD) simulations employ
semi-empirical potentials to represent interatomic inter-
actions. Due to the efficiency of these potentials, CMD
can simulate atomic structures at large length scales and
over significant time scales, such as millions of atoms over

nanoseconds. This allows the direct simulation of solid-
liquid equilibria at the ICB conditions so that the melting
temperature can be directly extracted [21]. However, the
limitation of CMD is that the simulation results highly
depend on the accuracy of the employed semi-empirical
potential. Different semi-empirical potential simulations
have yielded varying melting temperatures for iron at
inner core pressures. For instance, in 2000, Laio et al.
[8] suggested a low iron melting point of ∼5,400 K at
ICB, while Belonoshko et al. reported a high melting
temperature of ∼7,100 K for hcp at the ICB [22]. Re-
cently, Davies et al. [23] reported a melting temperature
of 6,215 K for hcp Fe at 323 GPa, a pressure close to the
ICB, while Sun et al. obtained 5,860 K at the same pres-
sure with another semi-empirical potential [24]. Using a
different potential, Belonoshko showed the hcp melting
temperature of ∼6,400 K at ICB [25, 26].

Compared to CMD, the ab initio molecular dynam-
ics (AIMD) simulations provide more accurate descrip-
tions of the interatomic interaction based on the first-
principles electronic structure calculations with density
functional theory (DFT) [27]. However, due to the time
and length scale limitations of DFT, direct SLC simula-
tions with AIMD are usually computationally expensive
and involve large uncertainty [28]. The lowest uncer-
tainty of iron’s melting temperature from ab initio SLC
was achieved by Alfè using 980 atoms for hcp phases,
resulting in 6,200±150K [29]. The free energy approach
is more widely used to measure the melting tempera-
ture from the AIMD simulations. It is based on the
explicit calculation of the Gibbs free energy difference
between solid and liquid phases, usually involving ther-
modynamic integration (TI). TI provides the free energy
difference between the target and reference systems for
which the absolute free energy is known a priori. De-
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pending on the different reference systems, the technical
details of TI can be different. For instance, Alfè et al.
employed an inverse-power system as the liquid reference
and harmonic crystal as the solid reference and obtained
the melting temperature of hcp iron as 6,350±300K at
330 GPa (6290 K at 323 GPa) [30]. Alfè et al. also used
a semi-empirical embedded-atom model as the reference
states for solid and liquid iron and obtained the melt-
ing temperature as 6,250±100K at 323 GPa [31]. Sun
et al. used the Weeks-Chandler-Andersen gas model for
the liquid reference in the TI and a phonon quasiparti-
cle method to compute the free energy of the hcp phase,
which resulted in a melting temperature of 6,170±200K
at 330 GPa [32]. Recently, Sun et al. also demonstrated
that the embedded-atom model is an efficient reference
state for TI calculations and reported a melting temper-
ature of 6,357±45K at 323 GPa [33]. González-Cataldo
and Militzer employed a classical pair potential in TI
and reported a melting temperature of 6,523±8K at 330
GPa [34]. Therefore, the melting temperatures of the hcp
phase from ab initio TI calculations are most consistent
within the uncertainties, except that González-Cataldo
and Militzer’s results are ∼200 K higher than others. It
has been frequently suggested that the number of valence
electrons considered in the DFT calculation can signifi-
cantly affect the measurement of melting temperature for
iron under inner-core conditions [32–34]. It typically re-
quires 16 valence electrons, i.e., 3s23p63d64s2, to address
the high-pressure effect and converge free energy calcula-
tions. The melting temperature can be underestimated
with 3d64s2 electrons [32, 33] while overestimated with
3p63d64s2 electrons [34].

As the pure AIMD simulations remain a heavy burden
for computer resources, interatomic potentials developed
with machine learning techniques have significantly ex-
tended the timescale and length scale of simulation and
maintained the ab initio accuracy [35–38]. The algo-
rithms, such as Neural Network Potential (NNP) [39],
Gaussian Approximation Potential (GAP) [40], on-the-
fly Machine Learning Force Field (MLFF) [41], and Deep
Potential (DP) [42] can incorporate large amounts of ab
initio data to construct direct mappings from atomic
structures to forces and energies, thus saving significant
amounts of computational time required for ab initio cal-
culation. The melting temperatures of iron under in-
ner core conditions have also recently been studied using
machine learning potentials. In particular, Zhang et al.
developed a GAP model for iron and reported a melt-
ing temperature of 6,253±170K at 330 GPa [43], consis-
tent with previous ab initio results. However, Yuan and
Steinle-Neumann developed a DP model and reported
iron’s melting temperature as 7,000-7100 K with an un-
certainty of 35 K [44] at 330 GPa. The value predicted by
the DP model is significantly higher than those obtained
from CMD and AIMD calculations, falling within the
range of 6000-6400 K, as summarized above. So far, no
explanation has been provided for the large discrepancy.
In recent studies, DP models have shown high accuracy

in simulating complex minerals in the Earth’s interior, as
demonstrated by a few groups in the study of bridgman-
ite [45–48], davemaoite [49], FeSiO melts [50, 51], and
δ-AlOOH [52], etc. Its poor performance in estimating
iron’s melting temperature under inner core conditions
is alarming, given that a few studies on elemental parti-
tioning rely on the DP method [44].
This work aims to develop an accurate DP model and

determine melting temperatures for iron phases under in-
ner core pressures with free energy calculations and the
SLC method. We will include factors relevant to iron’s
melting temperature under core conditions. By compar-
ing the present DP model and Yuan’s DP model, we try
to identify key factors leading to the discrepancy with
AIMD results and provide new insight into iron melting
behavior under Earth’s core conditions.
The paper is organized as follows: Section 2 discusses

computational methods used for the DP model develop-
ment and simulation details. Section 3 provides bench-
marks of the present DP model and calculations of melt-
ing temperature, and discusses the origin of the discrep-
ancy in Yuan’s DP model. At the end, Section 4 con-
cludes the paper.

II. METHODS

A. Deep-learning potential with electronic entropy
contribution

We developed the DP model for iron under inner core
conditions based on the smooth edition descriptor se e2 a
proposed by Zhang et al. [53, 54]. This descriptor inte-
grates both angular and radial information of atomic con-
figurations to encode the local environment of iron within
the cutoff radius. The descriptors {D1, D2, . . . Di} were
used to calculate the free energy via a deep neural net-
work. For an electron-ion system the free energy F is
defined as the Mermin free energy [55, 56],

F = E + TelSel (1)

where Tel is the electronic temperature, E is the self-
consistent energy from the Kohn-Sham formalism with
orbital occupancies fkn as

fkn(Tel) =

(
1 + exp

ℏ (Ekn − Ef )

kBTel

)−1

(2)

where Eki is the one-electron energy of an orbital with
wavenumber k and band index n, and Ef is the Fermi
energy. Sel is the electronic entropy, defined by

Sel (fkn, Tel) = −kB
∑
k,n

[(1− fkn) ln (1− fkn) + fkn ln fkn] .

(3)
The electronic entropy contribution plays a key role in

determining the free energy of metals, particularly impor-
tant for iron under high pressure and temperature condi-
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FIG. 1. The scheme to calculate the atomic free energy of
iron from their local environment using a neural network.
The atomic local environment {R1, R2, . . . Ri} and electronic
temperature(Tel) are used as input parameters.

tions [57]. Figure 1 shows the training scheme to incorpo-
rate the electronic entropy contribution in the neural net-
work model, which results in an electronic temperature-
dependent DP model [58]. As shown in Fig. 1, the local
environment surrounding each atom i and electronic tem-
perature Tel are input parameters. The total free energy
F is obtained by summing up the contributions from all

atoms, F =
∑N

i=1 Fi. To preserve physical symmetry,
the relative coordinates of atoms were mapped onto gen-

eralized coordinates, x̂ji =
s(rji)xji

rji
, using a continuous

and differentiable scalar weighting function, s (rji). The

neighbor atom cutoff radius was set to 6.0 Å. Our embed-
ding and fitting neural networks had three hidden layers
with {25, 50, 100} and {240, 240, 240} neurons, respec-
tively. We randomly initialized the neural network and
trained it for 1,000,000 steps using the Adam stochastic
gradient descent method [59]. We set the learning rate
to decrease exponentially, with the decay step and decay
rate being 5,000 and 0.96, respectively. The loss function
was defined as a combination of the energy prefactor pe,
force prefactor pf , and virial prefactor pξ [53] as

L (pe, pf , pξ) =
pe
N

∆A2 +
pf
3N

∑
i

|∆Fi|2 +
pξ
9N

∥ ∆Ξ ∥2

(4)
where the root mean square errors in energy, force, and
virial were represented by ∆A, ∆Fi and ∆Ξ, respectively.
We started with the energy prefactor pe at 0.2 and grad-
ually increased to 1, while the virial prefactor pξ started
at 0.01 and gradually increased to 0.1. The force pref-
actor pf decreased from 1000 to 1 to achieve the desired
accuracy in force prediction.

B. Density functional theory calculations

DFT calculations were conducted to prepare training
data of iron using the Vienna Ab-initio Simulation Pack-
age (VASP) [60, 61], which implements the projector-
augmented wave (PAW) methodology [62, 63]. The
exchange-correlation functional was treated with the gen-
eralized gradient approximation (GGA) [63] in the form
of the Perdew-Burke-Ernzerhof (PBE) formula. PAW
potential with 16 valence electrons (3s23p63d74s1) was
used for iron. The plane wave energy cutoff was set to 750
eV. The Brillouin zone was sampled using a Monkhorst-
Pack scheme with a k-point mesh of 2×2×2. This setting
has been shown to achieve the high accuracy necessary
for iron under Earth’s core conditions [32, 33]. The elec-
tronic entropy in DFT calculations is described by the
Mermin functional [55, 56], with the electronic temper-
ature Tel kept the same as the ionic temperature. The
DFT calculations were performed with 288 atoms for hcp,
250 atoms for bcc, and 250 for liquid.

C. Thermodynamic integration

To calculate the free energies with sufficient time and
length scales, the TI scheme developed in [33] was em-
ployed, which provides a transformation of the Hamilto-
nian from a classical reference system to the DP system.
We used the classical embedded-atom model developed
in [24] as the reference state, where the classical free en-
ergy difference between liquid and solid was computed,
denoted as ∆GL−S

C (T ). The transformation from classi-

cal free energy ∆GL−S
C (T ) to DP free energy ∆GL−S

DP (T )
can be obtained by considering the contribution fpV (T )
from the equation of state (EoS) difference between DP
and classical systems, and the Helmholtz free energy con-
tribution fTI(T ) computed by the TI between the liquid
and solid phases as

∆GL−S
DP (T ) = ∆GL−S

C (T ) + fpV (T ) + fTI (T ) (5)

fPV (T ) =
[
P
(
V L
A − V S

A

)
− P

(
V L
C − V S

C

)]
(6)

−
∫ V L

DP

V L
C

PL
C (V ) dV +

∫ V S
DP

V S
C

PS
C (V ) dV (7)

fTI (T ) =

∫ 1

0

⟨UL
DP − UL

C ⟩λ,NV T dλ (8)

−
∫ 1

0

⟨US
DP − US

C⟩λ,NV T dλ (9)

where V L
DP (or V S

DP ) and V L
C (or V S

C ) are the equilibrium
volumes of the liquid (or solid) at pressure P for DP and
classical systems, respectively. PL

C (V ) and PS
C (V ) rep-

resent the equation of states of the liquid and solid for
the classical system, respectively. UL

DP (or US
DP ) and
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UL
C (or US

C) are the internal energies of the liquid (or
solid) for DP and classical systems, respectively. The en-
semble average of the internal energy over configurations
⟨·⟩λ,NV T was sampled in the canonical ensemble with the

mixed force field U = (1− λ)UDP +λUC . The subscript
NVT represents the constant conditions of (V L

DP , T ) and
(V S

DP , T ) in the liquid and solid simulations, respectively.
The TI was performed with 2,000 atoms for hcp, bcc, and
liquid phases.

D. Solid-liquid coexisting method

The solid-liquid coexisting method was also employed
to determine the melting point of iron [21]. To prepare
the two-phase configurations with a solid-liquid interface,
an iron slab with 15,552 atoms was first equilibrated at
a target temperature. Then, half of the atoms were fixed
while the other half were heated until melting occurred.
The liquid part was subsequently cooled to the target
temperature and the entire slab was subjected to the
target temperature, allowing one phase to grow at the
expense of the other over time. The melting temperature
was identified as the temperature at which the liquid por-
tion either increased above or decreased below the test
value.

III. RESULTS

A. Benchmarks of the deep potentials

The configurations obtained from the ab initio data
span various pressure and temperature ranges, covering
323-360 GPa and 6300-6700 K. To evaluate the accu-
racy of the Tel-dependent DP model, we examined the
root mean square errors (RMSEs) of the energies, atomic
forces, and pressures for iron and compared them with
the corresponding density functional theory (DFT) cal-
culations, as shown in Figure 2(a-c). We found an excel-
lent agreement between the results of the Tel-dependent
DP model and DFT. The RMSEs were approximately 4.6
meV/atom for energies, 0.32 eV/Å for forces, and 0.47
GPa for pressures. Figure 2(a) also revealed a wide distri-
bution of energies, suggesting a sufficient exploration of
complex configuration spaces on the potential energy sur-
face. We further investigated the RMSEs of the DP when
the electronic entropy was not specifically included in the
training procedure, and compared them with the results
obtained from DFT calculations. Figure 2(d-f) clearly il-
lustrates substantial discrepancies in energy and pressure
between the DP and DFT outcomes. The discrepancies
can be attributed to the inconsistent electronic entropy at
different temperatures. This highlights the significance of
incorporating the electronic entropy contribution in the
training process for iron under inner core conditions to
correctly describe the free energy. The force was not af-
fected by the electronic entropies. By inspecting Yuan’s

FIG. 2. Comparisons of (a) energies, (b) atomic forces, and
(c) pressures between DFT and the Tel-dependent DP model.
(d-f) denote the results between DFT and DP trained without
the electronic entropy contribution. The black dashed lines
are guides for perfect matches.
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in the liquid EoS curve is the experimental uncertainty.

training dataset [64], we found the AIMD simulations in
[44] were performed with a fixed electronic temperature
Tel=6000K for different ionic temperatures. Therefore,
Yuan’s training dataset and DP model failed to describe
the electronic entropy contribution correctly.
The DP model is further validated by comparing the

equation of state (EOS) of iron phases. Figure 3 shows
the EOS of bcc, hcp, and liquid iron obtained from DP
simulations agree well with recent DFT calculations and
experiments [65–67]. This further suggests the present
DP model can well describe all bcc, hcp and liquid phases
under core conditions.

B. Melting temperatures

We first use the free energy calculation to compute the
melting temperature for the present DP model. Based
on the TI method, we compute the Gibbs free energy dif-
ference between solid and liquid, ∆GL−S , under various
pressure and temperature conditions. Figure 4 shows the
Gibbs free energy difference as a function of temperature
at 360 GPa. A negative value of ∆GL−S implies that the
liquid phase is more thermodynamically stable compared
to the solid phase, while ∆GL−S(T ) = 0 corresponds
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results were from [33]. (b) The melting temperatures of the
hcp phase. The data from the present DP model is fitted as
Tm = 3010 + 12.07P − 0.005410P 2.

to the melting temperature T = Tm. In Fig. 4 (a),
the DP-based simulations resulted in melting tempera-
tures of 6656 K for hcp and 6480 K for bcc at 360 GPa.
Compared to previous AIMD simulations [33], ∆GL−S

curves of both hcp and bcc only show a difference of 3-5
meV/atom at the melting points. However, this small en-
ergy difference yields a melting temperature∼40 K lower.
This suggests the melting temperature is very sensitive
to the accuracy of free energy calculations. Nevertheless,
the present DP model provides a satisfactory description
of the free energy compared to previous AIMD data. In
Fig. 4(b), our Tel-DP model provides a very different
melting curve compared to the DP model generated by
Yuan and Steinle-Neumann [44] with a difference of more
than 600 K.

Because the melting temperatures in Yuan and Steinle-
Neumann [44] were computed by SLC simulations, we
also computed the hcp melting temperature by the SLC
simulations to examine whether different melting temper-
ature calculation methods could introduce errors. Figure
5 shows the change of hcp populations in a series of SLC
simulations at different temperatures at 330 GPa. The
increase of the hcp atom number indicates the simulation
temperature is below the melting temperature, while the
decrease of the hcp atom number indicates the tempera-
ture is above the melting temperature. The data in Fig.
5 suggests the melting temperature is ∼6420 K at 330
GPa. This is consistent with the free energy results of
6410 K at 330 GPa. Therefore, SLC and free energy cal-
culations do not show a significant difference in melting
temperature calculations.

IV. DISCUSSIONS

We have shown that the DP method can accurately de-
scribe the EoS and Gibbs free energies for different iron
phases under inner core conditions. Unlike Yuan’s results
[44], the melting temperatures from our DP model are
very consistent with the ones from AIMD simulations. In

0 20 40 60 80 100
0

5000

10000

15000

Time (ps)

N
hc

p

6390K 6400K
6410K 6420K
6450K 6480K

FIG. 5. The melting temperature at 330 GPa from the SLC
method. Different curves show the number of hcp atoms as
a function of simulation time at different temperatures. The
right panel shows a snapshot from the SLC simulation.

many works [37], DP models were usually trained on the
ground-state, Born-Oppenheimer energy surface, which
only considers atomic positions but does not take into
account the simulation temperature. Therefore, the ef-
fect of electronic entropy was disregarded. This treat-
ment may not be significant for systems at low temper-
atures. However, at the temperature relevant to Earth’s
core, the electronic entropy plays a crucial role in the
energy and pressures, as shown in Fig. 2. The contribu-
tion from electronic entropy was noticed by Belonoshko
in the development of classical potential, and was added
as an ad hoc correction to Gibbs free energy from CMD
simulations [25]. We believe the disregard for electronic
entropy contributed to the underestimation of liquid-free
energy in Yuan’s DP model, resulting in a high hcp phase
melting temperature. We also noticed a few differences
in the DFT calculations between ours and Yuan’s work.
We employed the iron’s PAW potential with 16 valence
electrons (3s23p63d64s2), while Yuan et al. used one con-
taining 14 valence electrons (3p63d64s2) without 3s elec-
tron contributions [44]. The Brillouin zone was sampled
with a 2 × 2 × 2 k-point grid in our DFT calculations,
whereas a single Γ point was used in Yuan’s work [44].
The accumulation of these errors resulted in the signifi-
cant discrepancy in melting temperature computed from
[44]. In Fig. 5, we summarize the melting points of
the hcp phase at ICB from recent theoretical calculations
[16, 17, 20, 23, 25, 29, 30, 32–34, 44, 68–73] and exper-
iments. We find most data are located in the region of
6,370±200 K, which can be used as a representative value
of iron’s melting points at the ICB.

V. CONCLUSION

In summary, we developed an electronic temperature-
dependent DP model for iron under inner core condi-
tions. With thermodynamic integration and solid-liquid
coexisting methods, we investigate the melting tempera-
ture of iron under Earth’s inner core conditions. The DP
model accurately reproduced energies, forces, and pres-
sures compared to DFT calculations. It provides the EoS
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and melting temperatures of hcp iron that are consistent
with previous AIMD simulations. We resolved the dis-

crepancy of melting temperature from the previous DP
model and showed the importance of including electronic
entropy effects in describing iron’s free energy under in-
ner core conditions. The calculations from the present
DP model and most previous computational and experi-
mental data suggest the melting temperature of hcp iron
in the region of 6,370±200 K at ICB pressure. Our work
provides insights into the machine learning melting be-
havior of iron under core conditions and provides the ba-
sis for future development of binary or ternary DP models
for iron and other elements in the core.
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Gaussian Approximation Potentials: The Accuracy of
Quantum Mechanics, without the Electrons, Phys. Rev.
Lett. 104, 136403 (2010).

[41] R. Jinnouchi, F. Karsai, and G. Kresse, On-the-Fly Ma-
chine Learning Force Field Generation: Application to
Melting Points, Phys. Rev. B 100, 014105 (2019).

[42] L. Zhang, J. Han, H. Wang, W. A. Saidi, R. Car, and W.
E, End-to-End Symmetry Preserving Inter-Atomic Po-
tential Energy Model for Finite and Extended Systems,
Advances in neural information processing systems 31
(2018).
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