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Abstract
We introduce and study a new cooperative delivery problem inspired by drone-assisted package
delivery. We consider a scenario where a drone, en route to deliver a package to a destination (a
point on the plane), unexpectedly loses communication with its central command station. The
command station cannot know whether the drone’s system has wholly malfunctioned or merely
experienced a communications failure. Consequently, a second, helper drone must be deployed to
retrieve the package to ensure successful delivery. The central question of this study is to find the
optimal trajectory for this second drone. We demonstrate that the optimal solution relies heavily on
the relative spatial positioning of the command station, the destination point, and the last known
location of the disconnected drone.

Keywords and phrases delivery, drone, search theory, competitive ratio, online algorithm

1 Introduction

In recent years, drone-based package delivery has emerged as a promising application of
unmanned aerial vehicle (UAV) technology. As these systems are increasingly integrated
into supply chain infrastructures, it becomes imperative to design algorithms for their robust
operation amidst unexpected complications. In this paper, we consider a complication arising
from faulty communication and propose a solution for a cooperative delivery problem inspired
by this scenario.

Consider a situation where a drone, en route to deliver a package to a given destination,
unexpectedly loses communication with its central command station. This unexpected
loss of contact leaves the command station uncertain of whether the drone has suffered a
communications breakdown or complete system failure. Furthermore, even if the issue is
only with the communications, the command station no longer has any way of knowing
if/where the drone will fail on the rest of its way to the destination. In order to guarantee
the package gets delivered, the command station must dispatch a second helper drone to
retrieve the package and complete the delivery. Our goal is to design an online algorithm
(one that cannot anticipate the true fail location of the drone) that, given the drone’s last
known location, determines the best trajectory for the second drone to find the package and
complete the delivery in minimal time.

Formally, let us denote the last known location of the drone as the origin S = (0, 0), the
destination as the point T = (1, 0), and the location of the command station as P = (x, y),
where y ≥ 0 (all without loss of generality). The task is to identify the optimal trajectory for
the second drone that minimizes the competitive ratio when compared to an optimal offline
algorithm that knows the exact failure location (t, 0) of the first drone in advance. We assume
the first drone will fail at some time 0 ≤ t ≤ 1 (if it does not fail the delivery time is optimal
and the problem is uninteresting). Also, to simplify notation, we only consider the package
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1:2 Optimal Delivery with a Faulty Drone

to be delivered once the second drone and the package are co-located at the destination
(i.e., if t = 1 and the first drone fails at the destination, the package is only delivered once
the second drone reaches T ). For an algorithm A(x, y), which defines the trajectory of the
second drone, let A(x, y, t) denote the delivery time of algorithm A(x, y) for failure time t.
Our goal is to find an online algorithm (where t is unknown) with minimum competitive
ratio with respect to the delivery time of an optimal offline algorithm, Opt(x, y, t) (where t

is known ahead of time). The competitive ratio for algorithm A(x, y) for a given fail time t

can be written as

CRA(x,y)(t) = A(x, y, t)
Opt(x, y, t) .

Then the competitive ratio of A(x, y) is

CRA(x,y) = sup
t

CRA(x,y)(t).

In order to simplify notation we sometimes eliminate x and y (when they are clear from
context) and write algorithm A(x, y) as A and its delivery time A(x, y, t) as A(t).

1.1 Model and Notation
In this section, we describe the model and notation used throughout the paper. We call
the first drone (the drone that is initially carrying the package towards the destination)
the starter and the second drone, which completes the delivery, the finisher. Without loss
of generality, let S = (0, 0) be the initial location of the starter (the point where it loses
communication with the central command station) and T = (1, 0) be the destination point
on the plane. The starter drone begins at point S carrying the package and moves following
a straight line directly towards point T . At some unknown time t ≤ 1, the starter will fail at
position (t, 0).

The finisher drone starts at a point P = (x, y) on the plane (i.e., at the command station).
Without loss of generality, we assume that y ≥ 0 (all results follow trivially by symmetry).
We assume that both drones have a speed of 1 and always move at this speed. The finisher
can start, stop, and change direction instantaneously. The drones can communicate with each
other and exchange the package only when they are co-located (face-to-face communication).
The package is considered to be delivered as soon as the finisher and the package are
co-located at T .

Let D(c, r) (D(c, r)) denote the open (closed) disk with radius r centered at point (c, 0).
We use capital letters to denote points, |PQ| to denote the Euclidean distance between two
points P and Q, and PQ to denote the line segment with endpoints P and Q.

1.2 Related Work
An important aspect of our problem is that the starter agent experiences a failure. Many
problems with cooperative mobile agent experiencing failures have been studied for a variety
of basic problems in distributed computing and in various domains. In [9], the authors study
the search problem on the line by n mobile agents where f of the agents are faulty. They
present algorithms and their competitive ratios for different values of f . In [11] the authors
study the evacuation problem on the disk by n agents, f of which may be faulty. Competitive
algorithms for gathering have been proposed for n agents in a synchronous system with less
than (n − 1)/3 failures [1]. Optimal algorithms and hardness results for the multi-agent
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patrolling problem with faulty agents were presented in [7]. Algorithms for flocking [13] and
evacuation [8] have also been studied in the context of faulty agents.

The problem studied in this paper has both search and delivery components. Many search
problems have been studied for different domains and under different models and assumptions
(cf. the book [2]). The authors of [6] consider the delivery problem for messages on the
line segment by multiple agents with different speeds and propose competitively optimal
algorithms. The results of the previous study were also extended to the plane [5]. Joint
search and delivery problems, however, have received much less attention in the literature.
The problem has also been studied for the single- and two-agent case on the line [4]. On
the systems research side, many solutions for drone-assisted package delivery have been
proposed for different environments and under different assumptions (we refer the reader to
the survey [12]).

Most related but different to our delivery problem are the papers [3] and [10] on package
delivery. In the former, the authors investigate delivery of one or two packages of many
autonomous mobile agents initially located on distinct nodes of a weighted graph. In the
latter paper, they are concerned with delivering a package from a source node to a destination
node in a graph using a set of drones and study the setting where the movements of each
drone are restricted to a certain subgraph of the given graph. Note that both papers above
address the delivery problem in a graph setting. To the best of our knowledge our paper is
the first to address delivery of a package in the plane in the presence of a faulty drone.

1.3 Results
The main result we present is an optimal online algorithm that depends only on the starting
position of the finisher (the central command station). Essentially, the algorithm executes
one of three candidate algorithms depending on the finisher’s starting position. This is
depicted in Figure 1. If the finisher starts in the diagonally striped region, then the optimal
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Figure 1 The optimal algorithm depends on the starting position of the finisher. The striped
regions depict the finisher starting positions for which each of the three candidate algorithms is
optimal.

algorithm is for the finisher to go to S (the origin) and then towards the destination until
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finding the failed starter with the object. If the finisher starts in the vertically striped
region, the optimal algorithm is for the finisher to go first to T (the destination) and then
toward S until finding the failed starter with the object. Finally, if the finisher starts in the
horizontally striped region, then the optimal algorithm is for the starter to go to the point
M =

((
x2 + y2)

/(2x), 0
)

and then toward S until finding the failed starter with the object.
We will show that the finisher is guaranteed to find the starter on the interval [0, M ].

The rest of the paper is organized as follows. In Section 2, we detail the three candidate
algorithms and derive each of their competitive ratios as a function of the command station’s
starting position. Then, in Section 3, we present a hybrid algorithm that chooses the best
of the three candidate algorithms to run based on the command station’s starting position
(x, y). We prove this algorithm is optimal, and then (in Section 4) discuss how the command
station’s position affects which of the candidate algorithms is executed in the optimal hybrid
algorithm. We conclude the paper in Section 5 with a summary of the results and a discussion
of future directions.

2 Candidate Algorithms

In this section, we present three algorithms and derive their competitive ratios. In order to
do so, we must first consider the optimal offline algorithm, where the fail location (t, 0) (at
time t) is known ahead of time and can be used to compute the optimal trajectory for the
finisher. Clearly in this case the finisher should go directly from its starting location to the
starter’s fail location (t, 0) and then complete the delivery. The delivery time then can be
written:

Opt(t) = max
{

1,
√

(x − t)2 + y2 + 1 − t
}

.

Indeed, although the finisher moves directly to (t, 0), it may have to wait for the starter to
arrive (if necessary) prior to completing the delivery task.

For the online algorithms, we start by reasoning about what an optimal algorithm looks
like. First, since the starter must fail at some point on the line segment ST , the finisher must
eventually move from its initial location to some point (m, 0) on the segment (otherwise it
will never find the starter with the package). We use this to prove the following intuitively
obvious lemma:

▶ Lemma 1. There exists an online algorithm with optimal competitive ratio that involves
the finisher moving from its initial position P = (x, y) directly to a point M = (m, 0) ∈ ST ,
past which, it remains within the line segment ST .

Proof. Let M = (m, 0) denote the first point the finisher reaches on ST . We first show
that the finisher should move directly to M . Consider, for the sake of contradiction, an
algorithm that involves the finisher moving from its initial position P = (x, y) to a point
P1 = (x1, y1) /∈ PM and then to point M = (m, 0) before finding the starter and delivering
the package to the destination. Clearly, since the finisher could not have found the starter at
any point not in ST , and |PP1| + |P1M | > |PM | (triangle inequality), then the algorithm
where the finisher moves directly to M delivers the package at least as fast.

Now we show that the finisher should stay on the line segment ST after reaching it for
the first time. Again, for the sake of contradiction, consider an algorithm which involves
the finisher moving from M = (m, 0) ∈ ST to a point P2 = (x2, y2) /∈ ST and then back
to a point M1 = (m1, 0) ∈ ST before finding the starter and delivering the package to the
destination. Since the finisher could not have found the failed starter at any point not in ST ,
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and |MP2| + |P2M1| > |MM1| (triangle inequality), then the algorithm where the finisher
moves directly from M to M1 (never leaving ST ) delivers the package at least as fast. ◀

Now, we present three candidate online algorithms:
1. A0 (Go To Last Point of Contact): The finisher moves to the origin S = (0, 0) and

then towards the destination until it finds the failed starter (trajectory P → S → T ).
2. A1 (Go To Destination): The finisher goes first to the destination T = (1, 0) and then

towards the origin until it finds the failed starter (trajectory P → T → S → T ).
3. Ad (Meet in the Middle): The finisher goes first to the point (d, 0), where d =

(x2 + y2)/(2x), and then towards the origin until it finds the failed starter (trajectory
P → (d, 0) → S → T ). The point (d, 0) is the unique point on the line segment where
the drones, both moving continuously, would meet simultaneously if the starter does not
fail before time d.

▶ Lemma 2. CRAd(x,y) ≤ CRA1(x,y) if and only if the finisher starts within distance 1 of
the destination (i.e., (x, y) ∈ D(1, 1)).

Proof. First, we show that if the finisher’s starting position (x, y) is within a distance 1 of
the destination (i.e., (x, y) ∈ D(1, 1) or equivalently

√
(x − 1)2 + y2 ≤ 1), then CRAd

(t) ≤
CRA1(t) for any fail time t. Observe that if the finisher is executing algorithm Ad and t ≥ d,
then the starter fails only after the finisher encounters it at (d, 0), and so the algorithm is
optimal. Thus, the competitive ratio for Ad can be written:

CRAd
(t) = Ad(t)

Opt(t) =

1 if t ≥ d√
(x−d)2+y2+(d−t)+(1−t)√

(t−x)2+y2−t+1
otherwise.

Observe the max term is removed from Opt(t) since

t < d = x2 + y2

2x

2xt < x2 + y2

t2 < x2 − 2xt + t2 + y2

1 <
√

x2 − 2xt + t2 + y2 − t + 1.

If t ≥ d, then the statement is trivially true since Ad is optimal. Otherwise, since (x, y) ∈
D(1, 1), then d = (x2 + y2)/(2x) ≤ 1 and thus:

Ad(t) =
√

(x − d)2 + y2 + d + 1 − 2t ≤
√

(x − 1)2 + y2 + 2 − 2t = A1(t).

Now, we show that if the finisher starts a distance greater than 1 from the destination, then
Ad(t) > A1(t) for any fail time t (and thus CRAd

> CRA1). This follows from the fact that
d = (x2 + y2)/(2x) > 1 and thus:

Ad(t) =
√

(x − d)2 + y2 + d + 1 − 2t >
√

(x − 1)2 + y2 + 2 − 2t = A1(t).

◀

Lemma 2 essentially tells us that we need only consider (among the candidate algorithms)
A0 and Ad when the finisher starts inside the disk and algorithms A0 and A1 when the
finisher starts outside the disk. Note that, when (x, y) is on the edge of the disk D(1, 1) (i.e.,
(x − 1)2 + y2 = 1), then d = 1 and so Ad and A1 are the same algorithm.
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2.1 Go to Last Point of Contact
In this section, we derive the competitive ratio of Algorithm A0. Observe that, no matter
the failure time of the starter, the algorithm takes time 1 +

√
x2 + y2 to deliver the message.

This fact makes deriving the algorithm’s competitive ratio rather simple.

▶ Theorem 3. The competitive ratio of A0 is

CRA0 = 1 +
√

x2 + y2

max
{

1,
√

(x − 1)2 + y2
} .

Proof. Recall that the competitive ratio is given by the formula

sup
0≤t≤1

1 +
√

x2 + y2

max
{

1,
√

(x − t)2 + y2 + 1 − t
} .

Observe the denominator is non-increasing with respect to t (on t ∈ [0, 1]) and attains a
minimum at t = 1. The competitive ratio, then is:

1 +
√

x2 + y2

1 + max
{

0,
√

(x − 1)2 + y2 − 1
} = 1 +

√
x2 + y2

max
{

1,
√

(x − 1)2 + y2
} .

◀

2.2 Go to Destination
We will now derive the competitive ratio of algorithm A1. Unlike the delivery time of
algorithm A0, the delivery time A1(t) =

√
(x − 1)2 + y2 + 2(1 − t) (the time for the agent

to go to (1, 0) and then backtrack until it finds the package at (t, 0) before returning to (1, 0)
to complete the delivery) depends greatly on the fail time of the starter. Thus, to find the
competitive ratio of algorithm A1, we must find the worst-case fail time for a given finisher
starting position (x, y).

▶ Theorem 4. Assume (x, y) ̸∈ D(1, 1) (i.e.,
√

(x − 1)2 + y2 ≥ 1). The competitive ratio of
A1 is

CRA1(max {t1, 0})

where

t1 =

1 − 3y/4 if x = 1
x2+y2+z1(1−x)−1−z1

√
x(x+z1−2)+y2−z1+1

2(x−1) otherwise

and z1 =
√

(x − 1)2 + y2.

Proof. Note that z1 is the distance from the finisher’s initial location to the destination. Since√
(x − 1)2 + y2 ≥ 1, then observe

√
(x − t)2 + y2 ≥ t for all 0 ≤ t ≤ 1. Thus, the delivery

time for the optimal offline algorithm can be simplified (namely, the max expression can be
removed):

Opt(t) = max
{

1,
√

(x − t)2 + y2 + 1 − t
}

=
√

(x − t)2 + y2 + 1 − t.
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Thus the competitive ratio of A1 can be written:

sup
0≤t≤1

CRA1(t) = sup
0≤t≤1

A1(t)
Opt(t) = sup

0≤t≤1

√
(x − 1)2 + y2 + 2(1 − t)√

(x − t)2 + y2 + 1 − t
.

To determine which value of t maximizes CRA1(t), we can find the extremum of CRA1(t) by
solving for ∂

∂t CRA1(t) = 0. The derivative of CRA1(t) with respect to t is(
1 − t−x√

(t−x)2+y2

) (√
(x − 1)2 + y2 + 2(1 − t)

)
(√

(t − x)2 + y2 + 1 − t
)2 − 2√

(t − x)2 + y2 + 1 − t
.

Then by setting ∂
∂t CRA1(t) = 0 and solving for t, we get one solution when x = 1:

tx=1 = 1 − 3y

4

and two solutions1 when x ̸= 1:

t− =
x2 + y2 + z1(1 − x) − 1 − z1

√
x(x + z1 − 2) + y2 − z1 + 1

2(x − 1)

t+ =
x2 + y2 + z1(1 − x) − 1 + z1

√
x(x + z1 − 2) + y2 − z1 + 1

2(x − 1)

Observe, though, that t+ ≥ 1 when x > 1 and t+ < 0 when x < 1, so t+ cannot be a valid
solution. Observe also that CRA1(1) = 1 (the algorithm is optimal if the failure occurs at
(1, 0)) and CRA1(t−) ≥ 1 (the competitive ratio, by construction, cannot be less than 1).
Then, since CRA1(t) is continuous, CRA1(t−) must be a local extremum. Furthermore, since
t− ≤ 1 for all (x, y), CRA1(t) is decreasing on the interval [max {t−, 0} , 1]. Thus, CRA1(t)
is maximized at t = max {0, t−} and the theorem is proved. ◀

There are essentially two cases that drive the competitive ratio of Algorithm A1: when t1
(from the statement/proof of Theorem 4) is less than or equal to 0 and when it is greater
than 0. Observe the value of t1 is determined by the finisher’s starting position (x, y). When
t1 ≤ 0 (i.e., when the finisher starts outside of the gray region shown in Figure 2), the
competitive ratio is driven by the case where the starter fails at the origin (as soon as it loses
contact with the command station). When t1 > 0, though, the worst-case scenario for A1 is
actually when the starter fails at time t1 (and thus, at location (t1, 0)).

2.3 Meet in the Middle
In this section, we derive the competitive ratio of the last candidate algorithm, Ad, where
the finisher moves from its starting position to the point d = (x2 + y2)/(2x), then towards
the origin until it finds the starter with the package before completing the delivery. Recall
from Lemma 2 that we need only consider algorithm Ad inside the closed disk centered at
(1, 0) with radius 1, namely D(1, 1). Furthermore, observe that on the edge of this disk d = 1
and so algorithms Ad and A1 are equal. By construction, then, the finisher must find the
starter between the origin and the point (d, 0) since (d, 0) is the unique point on ST such

1 These solutions were derived with the aid of Mathematica (notebook available at https://anonymous.
4open.science/r/faulty_delivery-D37F )

https://anonymous.4open.science/r/faulty_delivery-D37F
https://anonymous.4open.science/r/faulty_delivery-D37F
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Figure 2 The worst-case fail time for the starter is 0 except in the gray shaded region, where the
worst-case fail time is t− (from the proof of Theorem 4). Recall that we only consider A1 when the
finisher starts outside of the Disk D(1, 1).

that the distance between the origin and (d, 0) is equal to the distance from (x, y) to 0 (i.e.,
it is the point where the two drones would meet simultaneously if the starter does not fail).
It’s easy to derive that d = (x2 + y2)/(2x) by solving

√
(x − d)2 + y2 = d for d using simple

algebra. Thus, at time d, the finisher reaches point (d, 0) and the starter cannot have reached
any point further than (d, 0).

▶ Theorem 5. Assume (x, y) ∈ D(1, 1) (i.e.,
√

(x − 1)2 + y2 ≤ 1). The competitive ratio of
Ad is

CRAd
=


x2+y2+x

x
(

1+
√

x2+y2
) if (x, y) ∈ D(1/2, 1/2)

1 + y2

x(√
x+1)2 otherwise.

Proof. We will derive the competitive ratio by finding the fail time t that maximizes CRAd
(t).

Recall that (d, 0) is the location the finisher moves to in the Ad algorithm (where d = x2+y2

2x ).
Observe that when t ≥ d, the starter fails only after it has met up with the finisher (and so
the package delivery time is optimal and the competitive ratio is 1). For this reason we need
only consider fail times t < d. Observe also that,

t < d = x2 + y2

2x

2xt < x2 + y2

0 < x2 − 2xt + y2

t2 < x2 − 2xt + t2 + y2

t2 < (x − t)2 + y2

0 <
√

(x − t)2 + y2 − t

which means we can simplify

Opt(t) = max
{

1,
√

(x − t)2 + y2 + 1 − t
}
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and remove the max term, so

Opt(t) =
√

(x − t)2 + y2 + 1 − t.

Then the competitive ratio of Algorithm Ad can be written:

CRAd
= sup

0≤t<d
CRAd

(t)

= sup
0≤t<d

Ad(t)
Opt(t)

= sup
0≤t<d

√
(x − d)2 + y2 + (d − t) + (1 − t)√

(t − x)2 + y2 − t + 1
.

We can find the extremum of CRAd
(t) by solving for

∂

∂t
CRAd

(t) = 0.

The derivative of CRAd
(t) with respect to t is2

∂

∂t
CRAd

(t) =
t b0 + b1(

√
(x − t)2 + y2 − x)

x
√

(x − t)2 + y2(
√

(x − t)2 + y2 − t + 1)
(1)

where b0 = x(x − 1) − y2, b1 = x(x − 1) − y2. Then, to find where the derivative is equal to
0, let b = − b0

b1
= y2−x(x−1)

y2+x(x−1) .

∂

∂t
CRAd

(t) = 0

t b0 + b1(
√

(x − t)2 + y2 − x)
x

√
(x − t)2 + y2(

√
(x − t)2 + y2 − t + 1)

= 0

t b0 + b1(
√

(x − t)2 + y2 − x) = 0

t
−b0

b1
=

√
(x − t)2 + y2 − x

(bt + x)2 = (x − t)2 + y2 (2)

Solving Equation (2) for t, we get the two solutions:

t− =
−x(b + 1) −

√
(b + 1)((b + 1)x2 + (b − 1)y2)

b2 − 1

t+ =
−x(b + 1) +

√
(b + 1)((b + 1)x2 + (b − 1)y2)

b2 − 1

Upon replacing b with y2−x(x−1)
y2+x(x−1) and simplifying3, we get the solutions

t− =
{

x(x−1)+y2

2(x−
√

x) if x2 + y2 > x
x(x−1)+y2

2(x+
√

x) otherwise

t+ =
{

x(x−1)+y2

2(x−
√

x) if x2 + y2 ≤ x
x(x−1)+y2

2(x+
√

x) otherwise

2 We compute this derivative with the aid of Mathematica (notebook available at https://anonymous.
4open.science/r/faulty_delivery-D37F ).

3 We simplified these with the aid of Mathematica (notebook available at https://anonymous.4open.
science/r/faulty_delivery-D37F ).

https://anonymous.4open.science/r/faulty_delivery-D37F
https://anonymous.4open.science/r/faulty_delivery-D37F
https://anonymous.4open.science/r/faulty_delivery-D37F
https://anonymous.4open.science/r/faulty_delivery-D37F
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Observe, then, in both regions x2 + y2 > x and x2 + y2 ≤ x (inside and outside of
D(1/2, 1/2)), CRAd

(t) has a local maximum either at t′ = x(x−1)+y2

2(x+
√

x) or at t′′ = x(x−1)+y2

2(x−
√

x) .
We will use the following two claims to show that an upper bound on the competitive ratio
for Ad is given by t = t′ whenever t′ > 0 and t = 0 otherwise.

Claim 1: CRAd
(t′) is a local maximum.

Proof for Claim 1 : Follows by second derivative test4, namely

CR
′′

Ad
(t′) < 0

for all x, y ≥ 0. ◀
Claim 2: t′ < 1.
Proof for Claim 2 : Since (x, y) ∈ D(1, 1), then y2 < 1 − (x − 1)2 and since t′ is increasing
with respect to y

t′ = x(x − 1) + y2

2(x +
√

x)
<

x(x − 1) + (1 − (1 − x)2)
2(x +

√
x)

= 1
2 + 2/

√
x

.

Furthermore, since 1
2+2/

√
x

is increasing with respect to x and x < 2 (again, by the assumption
that (x, y) ∈ D(1, 1)), then

1
2 + 2/

√
x

<
1

2 + 2/
√

2
< 1

and thus, t′ < 1. ◀
Since CRAd

(t) is decreasing on (t′, 1] (by Claim 1) and CRAd
(t) is continuous on t ≤ 1,

then CRAd
(t′) is a local maximum on [0, 1] (and thus CRAd

(t′′) is not a local maximum on
[0, 1]). Furthermore, since t′ < 1 (by Claim 2), CRAd

(t) is maximized at t = t′ whenever
t′ > 0 and t = 0 otherwise. Plugging these values into CRAd

(t) yields the value stated in the
theorem. ◀

Similar to Algorithm A1, two cases drive Algorithm Ad’s competitive ratio. The first
is when t′ (from the proof of Theorem 5) is less than 0, whenever the starting position of
the finisher is inside the disk D(1/2, 1/2). In this case, the worst-case failure time for the
starter is t = 0 (i.e., at the origin). When the finisher starts outside of the disk D(1/2, 1/2)
(but inside the disk D(1, 1), of course, since we only consider Algorithm Ad in this region),
however, the worst-case failure time for the starter is t = t′ (i.e., at location (t′, 0), see
Figure 3).

3 A Hybrid Algorithm

For convenience, we summarize our main result by introducing Algorithm 1, a hybrid
algorithm which simply executes the best of A0, A1, and Ad given a finisher starting position
(x, y), and prove it to be optimal.

In fact, we will show that Algorithm 1 is optimal by proving that any other algorithm Aa

which moves first to a position (a, 0) such that 0 < a < 1 and a ̸= d is always worse than at
least one of the candidate algorithms A0, A1, or Ad. Recall from Lemma 1 that we do not

4 See the Mathematica notebook available at https://anonymous.4open.science/r/faulty_
delivery-D37F for a detailed walk-through

https://anonymous.4open.science/r/faulty_delivery-D37F
https://anonymous.4open.science/r/faulty_delivery-D37F
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Figure 3 The worst-case fail time for the starter is 0 except in the gray shaded region, where the
worst-case fail time is t′ (from the proof of Theorem 5). Recall that we only consider Ad when the
finisher starts inside the Disk D(1, 1).

Algorithm 1 A hybrid algorithm combining A0, A1, and Ad

1: input: Finisher starting position (x, y)
2: if (x − 1)2 + y2 > 1 then ▷ The starter starts outside of D(1, 1)
3: if CRA0(x,y) ≤ CRA1(x,y) then
4: Execute Algorithm A0
5: else
6: Execute Algorithm A1

7: else
8: if CRA0(x,y) ≤ CRAd(x,y) then
9: Execute Algorithm A0

10: else
11: Execute Algorithm Ad

need to consider any other algorithms. Leveraging Lemma 2, we know that we only need
consider A0 and Ad when the finisher’s starting position (x, y) is inside the disk D(1, 1) and
algorithms A0 and A1 when it is outside the disk (recall that Ad and A1 are equivalent on
the border of D(1, 1)). The following lemmas cover each of these cases.

▶ Lemma 6. For any (x, y) ∈ D(1, 1), min {CRAd
, CRA0} ≤ CRAa

for all a ∈ ST .

Proof. We will prove the lemma by examining various cases. Let td denote the worst-case
starter fail time for algorithm Ad for the finisher starting position (x, y). Recall that (a, 0),
as defined above, is the first point on ST that the finisher reaches by executing algorithm
Aa.
Case 1: a ≥ d. Consider the case where the starter fails at (td, 0). Then the competitive
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ratio of the algorithm is:

CRAa ≥
√

(x − a)2 + y2 + (a − td) + (1 − td)

max
{

1,
√

(x − td)2 + y2 + 1 − td

}
≥

√
(x − d)2 + y2 + (d − td) + (1 − td)

max
{

1,
√

(x − td)2 + y2 + 1 − td

}
= CRAd

.

Case 2: a < d and finisher visits S before visiting T . Set failure to be T then CRA0 ≤ CRAa
.

Indeed,

CRAa
≥

√
(x − a)2 + y2 + a + 1√

(x − 1)2 + y2
≥

√
x2 + y2 + 1√

(x − 1)2 + y2
= CRA0 .

Case 3: a < d and finisher visits 1 before visiting 0.
Case 3a: finisher visits td after visiting 1. Consider the case where the starter fails at time
td. Then the competitive ratio of Aa can be written:

CRAa ≥
√

(x − a)2 + y2 + (1 − a) + 2(1 − td)

max
{

1,
√

(x − td)2 + y2 + 1 − td

}
≥

√
(x − d)2 + y2 + (d − td) + (1 − td)

max
{

1,
√

(x − td)2 + y2 + 1 − td

}
= CRAd

.

Case 3b: finisher visits td before visiting 1. If td = 0, then CRA0 ≤ CRAa by Case 1.
Otherwise, consider the case where t = 0 (i.e., the starter fails at the origin). The competitive
ratio of Aa, then, is:

CRAa
≥

√
(x − a)2 + y2 + |a − td| + 3 − td√

x2 + y2 + 1

CRAa
≥

√
(x − td)2 + y2 + 3 − td√

x2 + y2 + 1

Then, by substituting td = x(x−1)+y2

2(
√

x+x) (this is the worst-case fail time for algorithm Ad

whenever td > 0, see the proof for Theorem 5), we get√
(x − td)2 + y2 + 3 − td√

x2 + y2 + 1

=

√(
x − (x−1)x+y2

2(x+
√

x)

)2
+ y2 + 3 − (x−1)x+y2

2(x+
√

x)√
x2 + y2 + 1

.

By expanding the term under the radical in the numerator and collecting like terms, we
arrive at

√
y24(x+

√
x)2+[2x(x+

√
x)−(x(x−1)+y2)]2

2(x+
√

x) + 3 − (x−1)x+y2

2(x+
√

x)√
x2 + y2 + 1
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which can then be readily simplified (by continuing to multiply out and collect like terms) to:
√

y24(x+
√

x)2+[(x+
√

x)2−y2]2

2(x+
√

x) + 3 − (x−1)x+y2

2(x+
√

x)√
x2 + y2 + 1

.

Then, by factoring the expression under the radical in the numerator, we can simplify further
√

4(x+
√

x)2y2+((x+
√

x)2)2−2(x+
√

x)2y2+y4

2(x+
√

x) + 3 − (x−1)x+y2

2(x+
√

x)√
x2 + y2 + 1

=

√
(y2+(x+

√
x)2)2

2(x+
√

x) + 3 − (x−1)x+y2

2(x+
√

x)√
x2 + y2 + 1

=
y2+(x+

√
x)2

2(x+
√

x) + 3 − (x−1)x+y2

2(x+
√

x)√
x2 + y2 + 1

and finally arrive at the final, rather simple, expression:

3 + y2+x2+2x
√

x+x−(x2−x+y2)
2(x+

√
x)√

x2 + y2 + 1
= 3 +

√
x√

x2 + y2 + 1
. (3)

Since td > 0, then CRAd
= 1 + y2

x(
√

x+1)2 by Theorem 5 and we have

CRAa
≥ 3 +

√
x√

x2 + y2 + 1
(4)

≥ 3 +
√

x√
2x + 1

(5)

≥ 3 + 2
√

x

(1 +
√

x)2 (6)

≥ 1 + y2

x(
√

x + 1)2 = CRAd
(7)

where (4) follows from (3), (5) and (7) follow since x ∈ D(1, 1) (and thus y2 ≤ 1 − (x − 1)2

and x > 0), and (6) is easy to see by expanding and simplifying:

3 +
√

x√
2x + 1

≥ 3 + 2
√

x

(1 +
√

x)2

x3/2 + 5x + 7
√

x + 3 ≥ 2
√

2x + 3
√

2
√

x + 2
√

x + 3
√

x
(

x +
(

5 − 2
√

2
) √

x + 5 − 3
√

2
)

≥ 0

which is trivially true since x > 0, 5 > 2
√

2, and 5 ≥ 3
√

2. ◀

Again, by Lemma 2, when the finisher starts outside of the disk D(1, 1), we need only
consider A0 and A1 (recall that, on the edge of the disk D(1, 1), A1 and Ad are equivalent).

▶ Lemma 7. For any (x, y) ̸∈ D(1, 1), either CRA1 ≤ CRAa or CRA0 ≤ CRAa for all
a ∈ ST .
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Proof. We will prove the lemma by examining various cases. Let t1 denote the worst-case
fail time of A1 for the finisher starting position (x, y).
Case 1: The finisher visits S before visiting T . Then let t = 1, and the competitive ratio of
Aa is

CRAa
≥

√
(x − a)2 + y2 + a + 1

max
{

1,
√

(x − 1)2 + y2
} ≥

√
x2 + y2 + 1

max
{

1,
√

(x − 1)2 + y2
} = CRA0 .

Case 2: The finisher visits T before visiting S. Then we break the analysis into sub-cases.
Let b be the smallest value such that the finisher visits (b, 0) before visiting (1, 0).
Case 2a: b > t1. Then let consider the case where the starter fails at time t1. The the
competitive ratio of Aa is

CRAa ≥
√

(x − a)2 + y2 + (1 − a) + 2(1 − t1)

max
{

1,
√

(x − t1)2 + y2 + (1 − t1)
}

≥
√

(x − 1)2 + y2 + 2(1 − t1)

max
{

1,
√

(x − t1)2 + y2 + (1 − t1)
} = CRA1 .

Case 2b: b ≤ t1. Then consider the case where the starter fails at time b − ϵ (where is ϵ is
arbitrarily small), and:

CRAa
≥ lim

ϵ→0

√
(x − a)2 + y2 + (a − b) + 3(1 − (b − ϵ))√

(x − (b − ϵ))2 + y2 + 1 − b

≥ lim
ϵ→0

√
(x − b)2 + y2 + 3(1 − (b − ϵ))√

(x − (b − ϵ))2 + y2 + 1 − b

≥
√

(x − b)2 + y2 + 3(1 − b)√
(x − b)2 + y2 + 1 − b

(8)

≥
√

(x − t1)2 + y2 + 3(1 − t1)√
(x − t1)2 + y2 + 1 − t1

(9)

≥
√

(x − 1)2 + y2 + 2(1 − t1)√
(x − t1)2 + y2 + 1 − t1

= CRA1

where (8) follows from the triangle inequality and (9) follows since
√

(x−b)2+y2+3(1−b)√
(x−b)2+y2+1−b

is
decreasing with respect to b (and thus is minimized at b → t1). ◀

▶ Theorem 8. Algorithm 1 is optimal.

Proof. Follows directly from Lemmas 6 and 7. ◀

4 Discussion

The competitive ratio of each of the candidate algorithms, and therefore the hybrid algorithm,
depends on the starting position of the finisher. Let ZA0 denote the set of points (x, y) such
that Algorithm 1 executes A0 (i.e., (x − 1)2 + y2 > 1 and CRA0(x,y) ≤ CRA1(x,y), or else
(x − 1)2 + y2 ≤ 1 and CRA0(x,y) ≤ CRAd(x,y)). Similarly, let ZA1 denote the set of points
(x, y) such that Algorithm 1 executes A1 (i.e., (x − 1)2 + y2 > 1 and CRA0(x,y) > CRA1(x,y))
and ZA1 the set of points (x, y) such that Algorithm 1 executes Ad (i.e., (x−1)2 +y2 ≤ 1 and



J. Coleman and E. Kranakis and D. Krizanc and O. Morales-Ponce 1:15

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Z 0

Z 1

Z d

t1 > 0
y = ± 1 4x + 2x2 + 4x3 3x4

2x

(a) Plot showing which candidate algorithm has the least competitive ratio given the finisher’s starting
position (x, y).
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Figure 4 Region plots with highlighted areas

CRA0(x,y) > CRAd(x,y)). In other words, for a finisher starting position (x, y), the hybrid
algorithm executes algorithm A0 iff (x, y) ∈ ZA0 , A1 iff (x, y) ∈ ZA1 , and Ad iff (x, y) ∈ ZAd

.
Observe the regions ZA0 , ZA1 , and ZAd

are disjoint and their union comprises the entire
plane. Figure 4 depicts these regions.

Observe if (x, y) is inside the disk D(1, 1), either A0(x, y) or Ad(x, y) has the least
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competitive ratio. Otherwise, if (x, y) ̸∈ D(1, 1) either A0(x, y) or A1(x, y) has the least
competitive ratio. This is consistent, of course, with Lemma 2. Inside each of these regions,
there are even more interesting things going on. Examine the bang-bang curve (i.e., the
separating curve) between the regions ZA0 and ZAd

inside the disk D(1/2, 1/2). Recall
that the worst-case fail time for Ad(x, y) is td = x(x−1)+y2

2(x+
√

x) if (x, y) ∈ D(1/2, 1/2) and 0
otherwise. This is what causes the change of inflection when the bang-bang curve leaves the
disk D(1/2, 1/2).

Now, look at the bang-bang curve between ZA0 and ZA1 outside of the disk D(1, 1).
Recall the worst-case fail time for A1(x, y) is

t1 =

1 − 3y/4 if x = 1
x2+y2+z1(1−x)−1−z1

√
x(x+z1−2)+y2−z1+1

2(x−1) otherwise

(where z1 =
√

(x − 1)2 + y2) if t1 > 0 and 0 otherwise. Outside of this region, we can actually
find a closed-form equation for the curve separating A0 and A1 since the competitive ratios
for CRA0 and CRA1 are relatively simple. Indeed, we can easily find where the competitive
ratios are equal for this case:

CRA1(x,y)(0) = CRA0(x,y)√
(x − 1)2 + y2 + 2√

x2 + y2 + 1
=

√
x2 + y2 + 1√

(x − 1)2 + y2
.

By cross-multiplying the right-hand side and simplifying, we obtain:

−2x + 1 = 2x
√

x2 + y2 + x2

From this, it is easy to arrive at:

y = ±

√(
1 − 2x − x2

2x

)2
− x2 = ±

√
1 − 4x + 2x2 + 4x3 − 3x4

2x

Unfortunately, this is the only bang-bang curve for which we were able to find a closed
form equation for. Observe in Figure 4c how the curve diverges from the curve given by
y =

√
1−4x+2x2+4x3−3x4

2x when t1 > 0 (inside the shaded region).

5 Conclusion

In this paper, we present a competitively optimal algorithm for two-agent delivery in the
plane with a single faulty agent. We show that the competitive ratio of the algorithm
depends relative positioning of the two agents and the destination. An upper bound of 3 on
the competitive ratio over all points (x, y) is straightforward to prove (both CRA0(x,y) and
CRA1(x,y) have a maximum of 3). Numerical calculations indicate the maximum competitive
ratio is given by the case where CRA0(x,y) = CRA1(x,y) = CRAd(x,y), which is approximately
1.74197 at x ≈ 0.275257, y ≈ 0.689019. The results presented in this paper introduce a
number of interesting questions and avenues for future work. First, we assume the starter can
only move directly toward the destination. It would be interesting to see how the competitive
ratio changes if the starter can move in any direction (e.g., toward the finisher). Second, we
could remove the assumption that the starter/finisher move at the same speed. In this case,
the finisher might be able to deliver the package faster by participating even if the starter
doesn’t fail. Finally, we could extend the problem to consider multiple (potentially faulty)
agents (i.e., what happens if the finisher also fails?).
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