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Abstract

We determine generalized symmetries for 4D theories engineered via type II strings on
non-supersymmetric orbifold backgrounds R3,1 × R6/Γ. Probe branes detect generalized
symmetries via the adjacency matrix for fermionic degrees of freedom in an associated quiver
gauge theory. In situations where the tachyons are sequestered away from the boundary
S5/Γ, this exactly matches the result extracted from singular homology. In situations with
an unsequestered tachyon which stretches out to the boundary, the presence of tachyonic
pulses partitions up the space into several distinct sectors, and the net contribution again
matches with the answer expected via quiver methods. For IIA backgrounds, the presence
of a localized closed string tachyon leads to transitions in the spectrum of states, generalized
symmetries, higher-group symmetries, as well as the level matrix of the associated symmetry
topological field theory (SymTFT). For IIB backgrounds with a stack of spacetime filling
probe D3-branes, the onset of a radiatively generated potential leads to similar considerations
involving scale dependent transitions in the symmetries of the theory, including structures
such as duality defects / interfaces.
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1 Introduction

The extra dimensions of string theory provide a general template for constructing and study-

ing a wide variety of interacting quantum systems. For example, this has led to the discovery

of entirely new classes of quantum field theories,1 as well as the development of new tools to

study many systems at strong coupling.

A feature implicit in many such analyses is the use of supersymmetry. Indeed, especially

at strong coupling, supersymmetry is very helpful in studying properties of such systems

because various quantities of interest are still protected, e.g., by holomorphic structures.

But Nature is not supersymmetric (at least at currently probed energies).

Indeed, comparatively less progress has been made in the study of non-supersymmetric

string backgrounds due to a number of interrelated issues. First of all, the absence of

supersymmetry means that there will necessarily be less control over any putative strong

coupling dynamics. Additionally, non-supersymmetric backgrounds are often accompanied

by tachyonic excitations, which in turn leads to non-trivial time dependance.2

Given this state of affairs, it is natural to seek out other robust tools. Particularly

promising from this standpoint is the discovery of generalized global symmetries [3] and their

various categorical generalizations.3 In this framework, topological symmetry operators link

/ intersect with appropriate charged defects / operators. This topological formulation is

quite powerful since it is insensitive to local deformations. As such, it provides a particularly

robust way to access strong coupling phenomena in a wide variety of quantum systems,

regardless of whether supersymmetry is present.

Now, in the context of string realizations of quantum field theories (QFTs), the main

arena of application has thus far centered on systems which are supersymmetric. Indeed, the

best studied cases involve an extra-dimensional geometry of the form X a conical geometry

with the degrees of freedom of the QFT localized at the tip of the cone. Heavy defects of the

QFT descend from branes wrapping relative cycles which stretch from the tip of the cone to

the conformal boundary ∂X . Topological symmetry operators are obtained from magnetic

dual branes which wrap cycles linking / intersecting with these heavy defects [10–17].4

The special case of type IIA on a supersymmetric orbifold C3/Γ for Γ a finite subgroup

of SU(3) leads to a 4D N = 2 QFT decoupled from gravity. For geometries which have

collapsing curves and divisors, this engineers a 4DN = 2 superconformal field theory (SCFT)

of Argyres-Douglas type [18].5 Higher-form symmetries for these 4D theories and their lifts

1See e.g., the reviews [1, 2] and references therein.
2In favorable circumstances it is possible to say more, but it is fair to say that many aspects of strings

on non-supersymmetric backgrounds remain poorly understood.
3See, e.g., the reviews [4–9] and references therein.
4It is worth noting here that while the heavy defects are typically assumed to preserve some supersym-

metry, the topological operators are not BPS, and in fact, can even involve unstable / non-supersymmetric
branes [14].

5These can be obtained from dimensional reduction of the 5D SCFTs engineered via M-theory on the
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to 5D SCFTs follow from the calculation of the defect group [22] of the associated resolved

geometry [23–25] and can also be extracted directly from the spectrum of electric / magnetic

particles obtained from wrapped branes [26, 27].6 In more detail, the adjacency matrix for

the quiver quantum mechanics of a probe D0-brane encodes the Dirac pairing for BPS states,

which in turn fixes the 1-form symmetries of the system [27]. This same data is also captured

in terms of the boundary homology H∗(S
5/ΓSU(3)). In cases where the group action on the

boundary geometry has a fixed point locus, the resulting 4D theory has a non-trivial flavor

symmetry, and there can then also be a non-trivial entwinement in the 0-form and 1-form

symmetries, leading to a 2-group [26, 28, 29].

Similar considerations hold for type IIB backgrounds with a stack ofN D3-branes probing

the orbifold singularity, i.e., by formally T-dualizing the type IIA probe D0-brane case. The

same geometry leads to 0-form and 2-form symmetries, and suitable tuning of the background

axio-dilaton also leads to non-trivial topological duality defects,7 via constant axio-dilaton

7-branes at infinity [13].

In this paper we show that this picture extends to non-supersymmetric type II string

backgrounds of the form R3,1×R6/ΓSU(4) for ΓSU(4) a finite subgroup of SU(4). At the level

of the closed string spectrum the primary difference from the supersymmetric case is that

we now expect to have a localized tachyon in a twisted sector of the closed string Hilbert

space. This in turn means that the closed string background will dynamically resolve due to

tachyon condensation.8 We treat both the case of type IIA on this “pure geometry” as well

as the case of type IIB with N spacetime filling D3-branes. While our considerations hold

for general finite ΓSU(4) ⊂ SU(4), we primarily present examples based on abelian groups.

In the type IIA “pure geometry” case, the dynamic resolution of localized singularities

means that the spectrum of heavy defects, as well as dynamical states which can screen these

defects will have non-trivial time dependence. We explicitly track this dependence by again

considering the quiver quantum mechanics of D-brane probes of the geometry. Much as in

the supersymmetric case, this allows us to extract candidate electric and magnetic 1-form

symmetries, as well as possible higher-categorical structures. The quiver based approach

tracks the full basis of D-branes on this geometry, and thus leads to a natural collection

of candidate defects and wrapped branes. After a tachyon fully condenses, we reach a new

background, and the quiver quantum mechanics transitions to a new spectrum of generalized

symmetries. This data can be captured in terms of the associated symmetry topological field

theory (SymTFT),9 but in which we make a step function approximation for the level matrix

same singularity (see e.g, [19–21]).
6More precisely, in [26] 5D SCFTs were engineered via supersymmetric orbifolds of the form C3/Γ. The

higher-form symmetries for these theories were then obtained by considering the spectrum of BPS particles
in the Kaluza-Klein reduced theory, which is in turn captured by the BPS quiver of the associated 4D theory.

7See e.g., references [30–35,13, 36, 37].
8The case of Γ abelian was studied in [38], and related non-supersymmetric orbifold geometries have been

considered in [39–41].
9See, e.g., references [17, 42–54,34, 55–61].
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of the system which “jumps” at fixed times. There is an associated Euclidean worldvolume

theory at each fixed timeslice where a jump occurs.

We present a number of examples to illustrate these general points. Quite remarkably, we

find an exact match between the answer expected from quiver techniques and that expected

from the topology of the boundary S5/Γ in all cases where no tachyon is initially present

on the boundary space. In situations where there is a tachyon present on the boundary, the

net effect is to partition the S5/Γ geometry up into distinct slices, and the net contribution

over all the slices again matches to the answer expected from quiver based methods.

In the type IIB case with N spacetime filling D3-branes at an orbifold singularity (see [62–

65]), much of the geometric structure is similar, but the physical interpretation is somewhat

different; there is now a non-trivial scale dependence in the 4D QFT, as captured by the

flow of parameters for double trace operators and / or a radiatively generated Coleman-

Weinberg potential [66–70]. This in turn triggers an instability away from the origin of field

space. Precisely because the D3-brane probe is a quiver gauge theory, we can again read off

the basis of fractional branes, including candidate heavy defects which can be screened by

dynamical states. In this case, the associated SymTFT involves an evolution as a function

of renormalization group (RG) scale, with transitions / jumps in the theory captured by

interfaces. This is in line with the structure of a SymTree with a single branch [55]. While it

is more difficult to track the flow of parameters without supersymmetry, at least in the large

N / planar limit of the theory we again have a nearly vanishing beta function for the gauge

couplings. As such, we expect that there are still duality interfaces / defects captured by

(approximately) constant axio-dilaton 7-branes. That being said, the fusion rules for these

duality defects still exhibit scale dependence; we track this by comparing the spectrum of

duality interfaces / defects in the UV and IR.

The rest of this paper is organized as follows. In section 2 we give a broad sketch of

our proposal in the IIA case. We present explicit IIA backgrounds illustrating these general

points in sections 3 and 4. In section 5 we turn to the related case of type IIB backgrounds

with spacetime filling D3-branes. We present a summary and possible future directions in

section 6. Some additional examples, discussion, and background material is deferred to the

Appendices.

2 Type IIA on R3,1 × R6/Γ

In this section we determine generalized symmetries for type IIA strings on the background

R3,1 ×X with:

X = R6/Γs (2.1)

where Γ is a finite subgroup of SU(4) ⊂ Spin(6). Here, the superscript s indicates the group

action on the 4 spinor representation of SU(4) ∼= Spin(6); the group action on the vector

representation 6 is induced from this. Supersymmetry is preserved when Γ embeds in the
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SU(3) factor of (SU(3) × U(1))/Z3 ⊂ SU(4). Otherwise, we do not have a covariantly

constant killing spinor, and supersymmetry is broken. We assume that the group action is

chosen so that all bulk tachyons (i.e., tachyons in the untwisted sector) are projected out, in

accord with having a type II background. The other possibility of a type 0 background is

also interesting but will not be the focus of the present work.

The rest of this section is organized as follows. We begin by briefly reviewing some salient

features in the special case where we retain supersymmetry. We then explain how these

structures extend to the non-supersymmetric case. We present explicit examples illustrating

these general points in sections 3 and 4.

2.1 Supersymmetric Case

Consider first supersymmetric orbifold backgrounds. The 4D system retains eight real su-

percharges, i.e., N = 2 supersymmetry. On general grounds, the 10D background consists

of the closed string modes, as well as localized “QFT modes” coming from branes wrapped

on collapsed cycles of the geometry. 4D gravity is decoupled since the extra dimensions are

non-compact. The vacuum moduli space matches to that of the orbifold geometry. Due

to supersymmetry, we can start in the resolved geometry and then proceed to the orbifold.

Observe that in the resolved geometry the reduction of the RR three-form potential on the

various two-cycles yields a collection of U(1) “electric” gauge fields of the Coulomb branch

of this theory. We also have a magnetic dual basis of gauge fields given by reduction of the

RR 5-form potential on the various four-cycles. We find D2-branes wrapped on collapsing

two-cycles and D4-branes wrapped on collapsing four-cycles. In the limit where mutually

non-local electric and magnetic degrees of freedom are both present we reach a strongly

coupled 4D N = 2 SCFT of Argyres-Douglas type [18]. There is a natural lift of this config-

uration to M-theory. Indeed, starting from M-theory on R4,1 ×X , we now get a 5D SCFT

(see e.g, [19–21]). Reduction on a circle takes us to a 4D Kaluza-Klein theory, and in the

limit where the circle shrinks to zero size we reach the 4D N = 2 SCFT.10

Our primary focus will be on the candidate 1-form electric and magnetic symmetries of

the 4D theory, and their M-theory origin as 1-form electric and 2-form magnetic symmetries

in the parent 5D theory. The general idea for determining these p-form symmetries is to first

compute the associated defect group [22, 73, 23, 24] for the system. Given a p-brane which

carries a conserved charge (and so it cannot decay to “nothing”) one can consider wrapping

it on a relative cycle of Hk+1(X, ∂X). This gives rise to a defect in the QFTD spacetime

with support on a subspace of dimension p − k. This defect can be partially screened by

dynamical states, i.e., branes wrapped on compact cycles of X . Quotienting by this yields

10For further discussion of properties of the BPS spectrum, see references [71, 72].
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the collection of defects which cannot be screened. The end result is the defect group:

D = ⊕
n
D(n) with D(n) = Tor

(
⊕

p−branes

⊕

p−k=n

Hk+1(X, ∂X)

Hk+1(X)

)
, (2.2)

where the degree n indicates the candidate n-form symmetry. Choosing a polarization (i.e.,

a collection of mutually commuting fluxes) leads to a specification of the spectrum of heavy

defects, i.e., it determines a choice of absolute theory.11 In what follows we take all singular

homology groups to have coefficients in Z unless otherwise stated.

In practice it can be somewhat involved to extract the defect group directly from an

explicit resolution of the geometry X . In reference [26] (see also [25]) two complementary

methods were developed to extract this data without recourse to such resolution techniques.

In these geometries, the defect group follows from:

Hk+1(X, ∂X)

Hk+1(X)
∼= Hk(∂X) = Hk(S

5/Γ), (2.3)

where the group action on the boundary S5 is induced from that on the bulk. Armstrong’s

theorem [74] tells us that the fundamental group π1(S
5/Γ) ∼= Γ/Γfix, where H is the (normal)

subgroup of Γ which has a fixed point locus on the S5. So, the abelianization of this group

yields:

H1(S
5/Γ) = Ab[π1(S

5/Γ)] = Ab[Γ/H ]. (2.4)

This is the (Pontryagin dual) of the electric 1-form symmetries, A(1)
mag. Given a torsional

cycle γ ∈ H1(S
5/Γ), wrapping a D2-brane over the cone which stretches back to the tip of

the singularity Cone(γ) yields a line defect in the 4D theory. This line defect is charged

under H1(S
5/Γ)∨, the Pontryagin dual of H1(S

5/Γ).12 The symmetry operator which acts

on this line is given by a D4-brane wrapped on a linking cycle in H3(S
5/Γ) [12]. Similar

considerations hold for the magnetic dual symmetries via the computation of H3(S
5/Γ),

although there can be some subtleties in situations where the singularity C3/Γ is not fixed

point free, since this case leads to “flavor symmetries” in the QFT (see [28, 29] for further

details). Summarizing, in the supersymmetric case, then, we can expect to encounter:

• Codimension 6 Singularities: Tip of the Cone

• Codimension 4 Singularities: “5-Branes” of the form C2/Γ′,

and in both cases, the boundary topology of S5/Γ produces an answer for the resulting

generalized symmetries.

11There can be obstructions to choosing some polarizations due to possible anomalies. While this is a
complication in 5D systems, in 4D it is less of an issue. In any case, unless otherwise stated we shall
implicitly assume an electric polarization.

12Recall that the Pontryagin dual of a finite abelian group G is given by G∨ ≡ Hom(G,U(1)) which is
isomorphic (though not canonically so) to the original group.
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A complementary approach to extracting the higher-form symmetries is to directly con-

struct the basis of electric / magnetic charged states, and their associated Dirac pairing. As

explained in [27], the Dirac pairing for the 4D theory appears in the SymTFT for the electric

/ magnetic 1-form symmetries:

S5D =
Kij

2π

∫

5D

C i ∧ dCj, (2.5)

where the C i are 2-form potentials which should be viewed as background fields in the 4D

system. Here, we also allow for the possibility that some of the U(1)’s of the theory are

associated with flavor symmetries, i.e., their magnetic duals are absent. As found in [27]

(see also [25]), the data of the electric and magnetic 1-form symmetries can be read off

directly from the torsion of the cokernel of this pairing:

D(1) = Tor(Coker(K)) = A(1)
elec ⊕A(1)

mag. (2.6)

One reaches an absolute theory by choosing a polarization of D(1).13

How then do we determine the matrix Kij in practice? For 4D N = 2 theories (include

their 4D KK cousins) this data follows directly from the associated BPS quiver of electric

/ magnetic bound states. One way to access this data is to consider the worldvolume the-

ory of a probe D0-brane near the singularity in question. This leads to a supersymmetric

quiver quantum mechanics which retains four real supercharges. We get a basis of “fractional

branes” associated with irreducible representations of Γ, and connecting “open strings” as-

sociated with bifundamental matter. The key point for us is that the adjacency matrix for

the quiver Aij is closely related to the matrix Kij of line (2.5):

Kij = Aij − Aji. (2.7)

So in other words, determining the adjacency matrix of the quiver is enough to compute

the associated higher-form symmetries. Let us comment here that while we have used the

D0-brane probe theory to access the Dirac pairing, we can of course entertain more general

probe particle states. In this more general setting we still get the same adjacency matrices

but the ranks of the gauge groups will be different.

As one would expect, the geometric method based on computing H∗(S
5/Γ) and the quiver

method based on computing Tor(Coker(K)) exactly match, and this was explicitly verified in

a number of examples in reference [26]. The reason that one should a priori have expected a

match is that the matrix Kij is also a linear map on the basis of generators in the associated

13It is worth noting that in the analogous computation for 5D SCFTs, the contributions split up in terms of
wrapped M2-branes and M5-branes, generating respectively candidate 1-form and 2-form symmetries. There
can be obstructions to choosing the magnetic polarization in the 5D system, but in the 4D theory obtained
from circle compactification these complications are not present. For further discussion on subtleties with
polarizations in 5D theories, see e.g., [75, 60, 76].
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relative K-theory group K0(X, ∂X). The resulting quotient of heavy defects versus screened

objects thus follows:14

0 → K0(X, ∂X)
Kij

−−→ K0(X) → K0(∂X) → 0. (2.8)

Our discussion so far has focussed on the 1-form symmetries of the 4D theory, but in

many cases there can be other symmetries which can also entwine with these structures. For

example, precisely when the group action of ΓSU(3) on C3 has a fixed locus on the boundary

S5, we find additional non-isolated singularities which are locally of the form C2/ΓSU(2) with

ΓSU(2) a finite subgroup of SU(2). This is interpreted as a 6D Super Yang-Mills theory sector.

In general, there could be multiple simple flavor group factors, with global form correlated

via geometric effects. The global form of the flavor group is directly tied to the higher-form

symmetries of the 4D system, as captured via the long exact sequence:

0 → A → Ã → G̃→ G→ 1, (2.9)

with A and G the true 1-form symmetry and 0-form symmetry, respectively, and Ã and G̃

the “naive” 1-form and 0-form symmetry in which we neglect possible correlations between

these structures, as captured by the presence of a 2-group.15

In the context of 5D SCFTs (and thus implicitly their reduction to 4D SCFTs), 2-group

symmetries were investigated in [87, 28, 29]. As conjectured in [26] and explicitly proved

in [28], the existence of a 2-group structure is directly tied to having a non-split short exact

sequence (in line with the analysis of [87]):

0 → Ab[Γ/H ]∨ → Ab[Γ]∨ → C∨ → 0, (2.10)

where C is the kernel of the map on the centers of the Lie groups:

C = ker(Z(G̃) → Z(G)). (2.11)

2.2 Non-Supersymmetric Case

Let us now turn to the non-supersymmetric case, i.e., we now consider type IIA string

theory on the background R3,1 × R6/Γs. On general grounds, we do not expect this system

to engineer a conformal field theory simply because the absence of supersymmetry in such

backgrounds is typically (i.e., in all known examples) correlated with a tachyon in a twisted

sector of the closed string Hilbert space. So, whereas we have an exact moduli space of

vacua in the supersymmetric setting, in the non-supersymmetric setting we can expect some

14Evaluating via the Chern character map and dualizing this sequence leads to an analogous expression
in homology, but with all entries dualized and all arrows reversed.

15For applications of 2-groups in QFTs, see e.g., references [77–79] as well as [80–84]. For a helpful account
of the interplay between 2-groups and line-changing operators in 4D QFTs, see references [85, 86].
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of these scalars to have a non-trivial potential which triggers a rolling / automatic (possibly

on partial) resolution of the geometry. Precisely this issue was studied in references [39,38,41]

where it was found that in many cases the end result of tachyons condensing is the transition

to a locally supersymmetric background (which nevertheless might still have singularities).

Given this situation, we ought not expect to have an isolated QFT sector. Nevertheless,

we can still study the spectrum of charged objects such as wrapped branes by calculating the

associated global symmetries of this system. Indeed, 4D gravity is still switched off, and in

many cases the candidate symmetry operators involve a collection of branes “at infinity” far

from the location of the localized condensed tachyon. For these reasons we still expect to be

able to reliably calculate global symmetries in this non-supersymmetric setting. To organize

our analysis, we shall first fix a characteristic timescale t∗. We begin by establishing some

basic features of the early time t≪ t∗ symmetries, returning to the late time behavior later.

We have two complementary approaches we can use to study the spectrum of defects and

possible screening effects at each stage of evolution, namely quiver based methods and the

topology of the boundary space S5/Γ. Compared with the supersymmetric case, the structure

of non-supersymmetric backgrounds will generically involve three distinct singularity types:

• Codimension 6 Singularities: Tip of the Cone

• Codimension 4 Singularities: “5-Branes” of the form R4/Γ′

• Codimension 2 Singularities: “7-Branes” of the form R2/Γ′′.

Since the codimension 4 and 2 singularities extend to the boundary S5/Γ, there can a priori

be localized tachyons on these subspaces.

A general issue we therefore face is that unless the tachyonic degrees of freedom are

initially sequestered near the tip of the cone R6/Γ, the geometric interpretation of “branes

wrapping cycles at infinity” will also need to be treated with more care. On the other hand,

when no tachyons are initially present in the boundary S5/Γ we expect an exact match

between the quiver and geometry based analyses.

With this in mind, we first develop the treatment of higher-form symmetries based on

quiver based methods, and then return to the geometric analysis. We then discuss further

time dependent considerations.

2.2.1 Defect Group via Quivers

To extract the defect group, we return to the Dirac pairing of electric / magnetic states

in the theory. The spectrum of possible charges is in turn obtained from the spectrum

of possible quiver quantum mechanics theories as realized by wrapped fractional branes of

the IIA extra-dimensional geometry. The special case of a D0-brane probe particle already

detects the entire basis of fractional branes, as well as the spectrum of open strings which

9



stretch between these objects. As such, it suffices to study the D0-brane quantum mechanical

theory; we obtain other particle-like states by modifying the choice of gauge groups.

Now, the quiver quantum mechanics for a probe D0-brane follows from the general proce-

dure given in [62–65]. We have a collection of gauge groups in correspondence with irreducible

representations of Γ, and connecting lines between the nodes indicating bifundamental mat-

ter. Because there is no supersymmetry, we have two adjacency matrices, one for fermionic

degrees of freedom, i.e., AF
ij , and one for bosonic degrees of freedom AB

ij. The interaction

terms for these degrees of freedom follow from orbifold projection of interaction terms present

in the D0-brane probe of R3,1 × R6/Γ.

We claim that the adjacency matrix for the fermionic degrees of freedom AF
ij encodes the

Dirac pairing:

Kij = AF
ij − AF

ji. (2.12)

Observe that this is in accord with the special case where we have a supersymmetric back-

ground. With this in place we can then extract the defect group for 1-form symmetries via

the considerations presented in reference [27]:

D(1) = Tor(Coker(K)) = A(1)
elec ⊕A(1)

mag. (2.13)

Dirac Pairing We now turn to a derivation of equation (2.12). To this end, we first

(briefly) review how to extract the quiver quantum mechanics theory for probe branes of the

type IIA singularity. A helpful starting point is to actually begin in type IIB string theory

with spacetime filling branes probing the singularity R6/Γ. Working on the 4D spacetime

Rt × T 3 and dimensionally reducing / T-dualizing, we reach the quiver quantum mechanics

for probe particles in the IIA background.

We extract the quiver following the general procedure given in [62–65] (see also [88,89]).

Each irreducible representation γi ∈ Rep(Γ) specifies a fractional brane, which in geometric

terms we identify with a Γ-equivariant sheaf on R6. For each irreducible representation we

get a corresponding quiver node, i.e., a gauge group U(ni) as associated with a representation

R = Cniγi, where Γ acts trivially on the Cni factor. The special case of n mobile D3-branes

corresponds to taking ni = ndimγi.

The connectivity of the quiver involves bifundamentals between the different gauge groups.

Fermions between gauge group U(ni) and U(nj) will be labeled as ψi,j and bosons will be

labelled as φi,j. By abuse of notation we shall often also have a multiplicity, which we ex-

plicitly indicate, as appropriate. The fermions and bosons descend from modes present in

the unorbifolded parent theory. In particular, fermions transform in the 4 of Spin(6) and

bosons transform in the 6 of Spin(6). Consequently there is an induced group action of

Γ ⊂ SU(4) on these representations. Indeed, for a representation R of SU(4), we get an

induced representation via the embedding of Γ on SU(4). The adjacency matrix for the

10



P1 P2

Figure 1: Depiction of monodromy for a pair of worldlines for particles P1 and P2.

quiver follows from the tensor product:

R⊗ γi =
⊕

j

AR
ijγj. (2.14)

A helpful formula for extracting the adjacency matrices follows from the character formula

(see e.g., the discussion in Appendix C of reference [26]):

AR
ij =

1

|Γ|

∑

α

rαχ(R)αχ(γi)
αχ(γi)

α
(2.15)

where rα counts the dimension of the α conjugacy class, χ denotes the character, and the bar

means complex conjugate. The fermionic adjacency matrix is obtained by setting R = 4,

and the bosonic adjacency matric is obtained by setting R = 6:

AF
ij = A4

ij and AB
ij = A6

ij. (2.16)

Consider next the dimensional reduction on a T 3. Each of the scalars directly descends

to a scalar, and each of the Weyl fermions descends to a complex doublet. The 4D gauge

boson splits up as a 1D vector potential and three adjoint-valued scalars which rotate as a

vector of the spacetime SO(3):

V 4D
j = vj ⊕

−→x j , (2.17)

i.e., the −→x j specify adjoint-valued positions of the constituent probe particles of the IIA

background. Finally, the time dependent resolution parameters enter as dynamical “driving

parameters” in the quiver quantum mechanics (in the same sense as reference [39]).

11



We now derive equation (2.12). The main idea will be to consider a pair of particles, each

with its own quiver quantum-mechanics. Each such particle specifies a worldline in the 4D

spacetime, so we can consider the effect of monodromy (see figure 1). Consider one of these

particles. The position of each constituent fractional brane in this particle is specified by

the background value of −→x j in the overall U(1) factor of U(nj). Since we are assuming these

fractional branes have all coalesced at a single location, we refer to this whole configuration

as −→x , in the obvious notation. By the same token, we can also introduce another particle

with collective coordinate −→y . In general, we can expect there to be non-trivial interactions

between these particles. Some of these effects can be captured by starting with a higher rank

quiver quantum mechanics in which the collective coordinate appears as
−→
X = diag(−→x ,−→y ).

Observe as we move −→x away from −→y , some of the open string degrees of freedom will pick

up a mass. In the limit where the separation −→r = −→x − −→y is very large, we can therefore

integrate out these degrees of freedom. Our plan will be to study the change in this two-

particle wave function Ψ[−→r ] as we rotate the position −→r 7→ M · −→r with M ∈ SO(3). We

claim that under a full 2π rotation along a fixed axis, the wave function Ψ[−→r ] can pick up

an overall Berry phase [90]:

Ψ[M2π ·
−→r ] = eiθΨ[−→r ]. (2.18)

This phase encodes the Dirac pairing for electric / magnetic states, and single-valuedness of

the wavefunction enforces Dirac quantization.

The −→r dependence of the quiver quantum mechanics appears through the dimensional

reduction of the covariant derivative of the D3-brane probe quiver gauge theory. Indeed,

for a fermionic degree of freedom ψ and a bosonic degree of freedom φ, the 4D Lagrangian

contains the mass terms:

L ⊃ ψ†σar
aψ + φ†rar

aφ+ ..., (2.19)

where a = 1, 2, 3 indexes the spatial directions and here we package the fermionic degrees of

freedom in terms of the dimensional reduction of 4D left-handed Weyl spinors. In fact, the

Berry phase in the supersymmetric case was implicitly determined e.g., in [91]. The main

issue we need to address is how things might change in the absence of supersymmetry.

The main point is already visible from the interaction term of line (2.19): since this

interaction term is quadratic in the bosonic and fermionic fields, the response to a rotation

in −→r will follow from the one-loop determinants of the massive modes. Note, however, that

the bosonic mass term has no dependence on M ∈ SO(3) rotations at all (since it is a dot

product). As such, the only possible contribution to the monodromy can come from the

fermionic degrees of freedom. This is enough to establish the main claim, since we can now

simply reapply the same reasoning used in the supersymmetric context.

Nevertheless, it is also instructive to track through the Berry phase contribution more

directly. By inspection of line (2.19), we observe that the effective Hamiltonian is of the

form:

Ĥeff = µ−→r · −→σ + ..., (2.20)

12



where the “...” are terms which do not contribute to the Berry phase. Focusing on just

this first time, we have the Hamiltonian for a two-level system with −→r playing the role of a

magnetic field. See [92] for a pedagogical treatment of the resulting Berry phase.

The upshot is that for a pair of particles with respective gauge groups {U(ni)}i and

{U(mj)}j the resulting Dirac pairing is simply:

Kijn
imj = (AF

ij − AF
ji)n

imj , (2.21)

in the obvious notation. Consequently, we have established equation (2.12), as claimed.

2.2.2 Defect Group via Geometry: Sequestered Tachyons

We now provide a complementary method for determining the defect group based on the

topology of the boundary space S5/Γ. From the general “branes at infinity” for topological

symmetry operators, we expect that we can extract generalized symmetries provided the

boundary is far away from the dynamics of tachyon condensation, i.e., the case where all

tachyons are sequestered. We turn to the case of unsequestered tachyons after this.

Since we are assuming that all tachyons are sequestered, we are restricted to codimension

6 and codimension 4 singularities, where the “flavor-brane” codimension 4 singularities are

of the special form C2/Γ′ with some local supersymmetry preserved (otherwise there would

be a tachyon present in this configuration as well). Indeed, in these cases Γ′ must be a finite

subgroup of SU(2) of ADE type, and this in turn specifies the ADE type of a localized 6D

Super Yang-Mills theory which wraps a non-compact (relative) cycle in R6/Γ.

Let us now turn to the spectrum of defects. We focus on heavy defects realized by wrapped

Dp-branes for p even so that they carry a conserved charge. Observe that since we have a

time dependent resolution parameter (via tachyon condensation), a wrapped brane stretching

from the boundary S5/Γ to the tip of the cone will still persist, but the objects which can

potentially screen this defect might change as a function of time. Nevertheless, sufficiently

far from such transition points, we can still calculate the analog of a defect group. Doing

so, we can still extract candidate electric and magnetic 1-form symmetries. For example, we

get electric line defects from D2-branes wrapped on Cone(γ) for γ ∈ H1(S
5/Γ) and so the

electric 1-form symmetry follows from Armstrong’s theorem:16

A(1)
elec = H1[S

5/Γ]∨ ∼= Ab[Γ/H ]∨. (2.22)

Observe also that there is still a 2-group structure whenever we have a non-split short exact

sequence:

0 → Ab[Γ/H ]∨ → Ab[Γ]∨ → C∨ → 0. (2.23)

This interpretation holds because we have assumed that the codimension 4 singularities are

16In principle there could be other non-geometric contributions, but we neglect this in what follows.
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locally supersymmetric, i.e., they engineer 6D Super Yang-Mills sectors (“flavor branes”).

2.2.3 Defect Group via Geometry: Unsequestered Tachyons

We now turn to the more general case where we have unsequestered tachyons. From the

perspective of the boundary topology, we can again proceed to compute H∗(S
5/Γ), much as

we would in the sequestered (as well as supersymmetric) case. That being said, the presence

of twisted sector tachyons in the boundary geometry means that this topology will itself

undergo dynamical transitions so we must exercise more caution in reading off the data

of the defect group in this case. In principle these tachyons can originate from both the

codimension 4 and codimension 2 singularities since both stretch “out to infinity”.17 Let us

briefly discuss each possibility in turn.

In the case of non-supersymmetric codimension 4 singularities, the local geometry will

now be of the form R4/Γ′ with Γ′ a finite subgroup of Spin(4) which does not embed in an

SU(2) subfactor of SU(2)L × SU(2)R ∼= Spin(4). In these cases we cannot give a “flavor-

brane” interpretation of this singularity, but at least group theoretically we can still speak

of a 2-group-like structure whenever the short exact sequence:

0 → Ab[Γ/H ]∨ → Ab[Γ]∨ → C∨ → 0, (2.24)

does not split.

In the case of codimension 2 singularities the local geometry is of the form R2/Γ′′ and so

the geometry does not support a covariantly constant spinor. Indeed, in perturbative string

theory these backgrounds all have a tachyon.18 Observe that a codimension 2 singularity

of R6/Γ also specifies a codimension subspace of the boundary S5/Γ. As such, once the

tachyon pulse begins to expand the resulting bubble will fill out a codimension 1 subspace,

partitioning the S5/Γ into distinct sectors. For each connected component we can calculate

a corresponding defect group and ask whether this matches to the answer computed via the

quiver based method.

Clearly, this analysis depends on the choice of group Γ as well as the choice of group

action; for multiple codimension 2 loci the precise partitioning of the space will also involve

determining which tachyon grows most quickly. To bypass these subtleties, we now specialize

to the case Γ = ZN , but in which we allow for the possibility of a codimension 2 singularity.

The result from considering a number of abelian examples is the empirically obtained

formula based on the quiver based method:

D(1) = Tor(CokerK) ∼= (Γ/H)2 ⊕

(
⊕

i

(Γ/HSi
)|Hi|−1

)
. (2.25)

17See e.g., references [39, 93, 41, 94] for some analyses of these cases.
18Contrast this with F-theory backgrounds where we can switch on an axio-dilaton profile to retain super-

symmetry. In the weakly coupled IIA setting, no such loophole is available.
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HereH is the subgroup of Γ ∼= ZN generated by all elements with fixed points on S5. We have

H1(S
5/Γ) ∼= (Γ/H). Codimension 2 singularities in S5/Γ are labelled by Si. The subgroup

Hi of Γ is generated by all elements with codimension 2 fixed loci in S5. The subgroup HSi

of Γ is generated by all elements which fix any subset of a given codimension 2 fixed point

locus. The order |Hi| is odd, the sum always splits into isomorphic electric and magnetic

contributions, and we have |Hi| = 1 in the absence of codimension 2 singularities. In the

supersymmetric case codimension 2 singularities do not arise and the formula collapses to the

supersymmetric result [26]. A final comment here is that we expect that for Γ non-abelian

we expect a similar formula to hold where we instead take the abelianization of all available

groups.

Let us now provide some further motivation for equation (2.25). Reading from left to

right, the first contribution of line (2.25) derives from geometry H1(S
5/Γ) ∼= Γ/H when

Γ ∼= ZN and the corresponding line defects are constructed via D2-branes wrapped over

cones of cycles in H1(S
5/Γ). The other contributions appear to arise from tachyon pulses

“partitioning up” the geometry into individual pieces. Indeed, following the discussion of

codimension 2 singularities Si given in [39], the orbifold R2/Z2ℓ+1 decays via a series of

dilaton pulses associated with the sequence of deficit angles

R2/Z2ℓ+1 → R2/Z2ℓ−1 → . . . → R2/Z3 → R2 . (2.26)

Given the starting point 2ℓ + 1, there are ℓ such transitions. The singularity of the initial

geometry R2/Z2ℓ+1 is driven to a geometry containing ℓ concentric circles across which the

deficit angle jumps. Each cylinder segment between two adjacent circles is modelled on a

geometry in the above sequence.

Let us discuss equation (2.25) when S5/Γ contains an isolated codimension 2 singularity,

folded by say H1. Then the faithfulness of the action implies that |H1| and |Γ/H1| are

coprime, and consequently the following sequence splits

1 → H1 → Γ → Γ/H1 → 1 . (2.27)

This sequence governs how the singularity model / normal geometry R2/H1 is fibered over

the singular locus S1. The local model for the codimension 2 singularity S1 in S
5/Γ is now:

R2/H1 × S1 , S1 = S3/(Γ/H1) . (2.28)

The contribution to the electric 1-form symmetry not captured by singular homology can be

suggestively rewritten as:

(Γ/H1)
(|H1|−1)/2 = H1(S1)

ℓ1 (2.29)

where we have reparameterized |H1| = 2ℓ1 + 1. We interpret this as noting that when

R2/Hi decays via dilaton pulses then each of the circles across which the deficit angle jumps

contributes one torsional 1-cycle, a copy of the generator of H1(S1), which via a D2-brane
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t < tn

tn

t > tn

Sn

Sn+1

T E
n,n+1

T L
n

T L
n+1

Figure 2: Depiction of the SymTFT layout for time t smaller and larger than tn. We
approximate the configuration via a step function jump at tn, at which time the Euclidean
interface theory, T E

n,n+1, and the late time Lorentzian theory T L
i+1 branch off from the early

time Lorentzian theory T L
n . Sn and Sn+1 are the associated 5D SymTFTs.

wrapping results in a electric line defect. This 1-cycle is “stuck” in the dilaton pulse. We

refer the interested reader to Appendix A for additional discussion and examples.

2.3 Time Dependent Considerations

One of the important distinctions with the supersymmetric case is that there will inevitably

be some time dependence in our analysis. We turn to some general features of how this

impacts our analysis. At early times, i.e., t ≪ t∗, we have the original singularity. At late

times, i.e., t ≫ t∗, tachyon condensation has occurred and the singularity will have been

(partially) resolved. In principle there can be multiple stages to this resolution process so

we indicate these characteristic timescales as:

tstart ≡ t0 < t1 < t2 < ... < tI ≡ tend. (2.30)

The local neighborhood around the singularity will therefore have a similar sequence:

R6/Γs0

0 ,R
6/Γs1

1 , ...,R
6/ΓsI

I . (2.31)

In the type II case this endpoint preserves supersymmetry [38].

In between each transition we can study the spectrum of defects and symmetry operators,

and thus extract a corresponding defect group. We denote this sequence as:

D0,D1, ...,DI . (2.32)

In each such regime, we can also introduce an auxiliary 5D Symmetry TFT with level

matrix K
(n)
ij for tn−1 < t < tn. As we cross from K

(n)
ij to K

(n+1)
ij we get a 4D Euclidean
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interface T E
n,n+1 which need not be topological. Indeed, this interface theory is given by the

Euclidean path integral of the 4D system with boundary conditions dictated by the jump

(see figure 2).

It is instructive to compare this sort of interface with the “SymTrees” of reference [55].

In the context of SymTree theories, one also has non-topological interfaces, but these are

localized in the extra dimensions of the bulk symmetry theory. Here, the junction theory is

instead a Euclidean theory localized at a particular timeslice.

The Euclidean theory on this timeslice simply consists of all the degrees of freedom of the

IIA configuration which are in the process of decoupling due to decompactification induced

from tachyon condensation. Indeed, with an explicit geometry in hand we can directly track

how the basis of fractional branes changes across a transition, and thus also determine which

candidate U(1)
(0)
elec and U(1)

(0)
mag gauge symmetries are no longer present. The junction theory

simply enforces a boundary condition which matches the two SymTFTs, much as in [55].

See figure 2 for a depiction of this matching.

The IIA configurations are purely geometric and as such much of the SymTree analysis

carries over. Consider for example the first step R6/Γs0

0 → R6/Γs1

1 which is understood as

partially resolving R6/Γs0

0 to a space which contains, among others, a singularity modelled on

R6/Γs1

1 , and subsequently taking the local limit centered on R6/Γs1

1 . From here, excise from

the partially resolved geometry a small ball centered on the singularity modelled on R6/Γs1

1 .

This results in a manifold with boundary X0,1, the boundaries are S5/Γs0

1 and S5/Γs1

1 , and

as such X0,1 realizes a cobordism between “infinity” at early and late times. The junction

theory T E
0,1 is the Euclidean relative theory obtained from IIA on R3,1 × X0,1. We defer

computational details of such construction to upcoming work [76].

3 IIA Examples: ZN Orbifolds

In Section 2 we presented a prescription for determining the generalized symmetries for type

IIA strings on backgrounds of the form

R3,1 × R6/Γs (3.1)

where Γ is a finite subgroup of SU(4) ⊂ Spin(6). In this section we will show by way of

example how our method works in practice.

The examples we consider are mainly drawn from reference [38] (see also [95]) where

the tachyon condensation process is mapped to explicit partial resolutions of the singular

geometry. The examples studied there involve Γ = ZN , where a holomorphic presentation of

the geometry is chosen so as to make use of methods from toric geometry. Let us emphasize,

however, that the considerations presented in section 2 hold for general Γ; the only compli-

cation in studying examples in the non-abelian case is in performing all explicit resolutions
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and tracking tachyon condensation in such cases, a task we defer to future work. Indeed,

as we have already emphasized, to extract the defect group both the quiver based method

and the method based on the boundary geometry of S5/Γ do not require any knowledge of

partial resolutions; it is only when we turn to explicit time dependent phenomena that we

require this more detailed information.

To track the explicit evolution of twisted sector closed string tachyon condensation we

need to specify the group action on all of the worldsheet fields. To this end, introduce a basis

of four vectors ei for i = 1, ..., 4 for the 4. Then, the basis for the 6 (treated as a complex

representation) is ei ∧ ej for i 6= j. For ζ = exp(2πi/N) a generator of ZN , the group action

of weight s = (s1, s2, s3, s4) on the two representations is induced from:

4 : ei 7→ ζsiei (3.2)

6 : ei ∧ ej 7→ ζsi+sjei ∧ ej . (3.3)

Fixing a complex structure for C3 = R6 we can also specify an action on the 3 of SU(3),

i.e., the vector representation. Introducing basis vectors ha = ea ∧ e4 for a = 1, 2, 3 we also

have an induced group action:

3 : ha 7→ ζsa+s4ha. (3.4)

These considerations suffice to fully fix the worldsheet CFT, i.e., we simply gauge by Γ (with

actions as specified above). This also suffices to specify the worldvolume theory of probe

D-branes in this background.

An important subtlety with this procedure is that we still need to implement the GSO

projection to produce a worldsheet theory which has a modular invariant 1-loop partition

function. In the case of a supersymmetric background this is implicitly determined once we

specify the action on the holomorphic basis of line (3.4). Since we no longer have supersym-

metry, we need to verify that our GSO projection has eliminated bulk (i.e., untwisted sector)

tachyons, namely, that we are in type II string theory rather than type 0 string theory.

One way to establish this is to start from the action of line (3.4) on the holomorphic

coordinates and then build a suitable spin lift. Following [39], let Ji denote the spin 1/2

generators of rotations in the three directions. Then, the action on spacetime fermions are

generated by:

rferm = exp

(
2πi

N

∑

a=1,2,3

(sa + s4)Ja

)
. (3.5)

The condition that we have landed in the type II rather than type 0 string means we do not

gauge by (−1)Fspacetime, i.e., we require (rferm)
N = 1, namely:

exp (πi(s1 + s2 + s3 + 3s4)) = 1. (3.6)
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Choosing integer representatives for the si, this amounts to the condition:

s1 + s2 + s3 + 3s4 = 0 mod 2. (3.7)

Observe, however, that the choice of integer representation superficially appears to suffer

from an ambiguity; for N odd, the shift si → si +N would seem to produce an inconsistent

solution. All that has happened, however, is that we have reorganized the Hilbert space and

the GSO projection now takes us to the type 0 theory where we have no spacetime fermions

in the untwisted sector, and we also have a bulk tachyon.

With this in mind, we shall opt to always pick integral weights si so that the conditions

of (3.6) and (3.7) explicitly hold, and to make this manifest we allow both positive and

negative values. We stress that at the level of extracting the quiver gauge theory and the

geometry S5/Γ (where we work mod N anyway) these distinctions play no role; it is really

in tracking the tachyon condensation of the type II theory that we need this further data.

To simplify the toric geometry analysis (and to closely follow the presentation given

in [38]) it will prove useful, whenever possible, to present the target space geometry as

C3/ZN with holomorphic weights (1, p, q)hol namely the group action of line (3.4) is used to

define an equivalent action on holomorphic coordinates (Z1, Z2, Z3) of C
3:

(Z1, Z2, Z3) 7→ (ωZ1, ω
pZ2, ω

qZ3), (3.8)

where ω = ζm is fixed by the convention that the action on one of the holomorphic coordinates

(possibly after an SU(3) rotation) has weight one (namely, on Z1).
19 Note that in making

this change of basis the action on the spactime fermions (induced from the spin lift) is

left implicit; it is again fixed by the condition that the GSO projection eliminates all bulk

tachyons.

Much as in [95,38] we sort candidate tachyonic operators according to chiral / anti-chiral

rings. In the RNS formalism we can introduce three separate sectors Z1, Z2 and Z3 and due

to the structure of the orbifold theory correspondingly construct chiral / anti-chiral rings

for each coordinate separately, e.g., c1 and c1 for the chiral / anti-chiral ring of Z1. The

operators of lowest scaling dimension dominate the flow, and much as in [95, 38] we assume

that tachyon condensation can be analyzed sequentially by first determining the endpoint of

a given deformation before the other operator deformations dominate. In a given unstable

orbifold, the most relevant tachyon(s) will belong to one (or more) of the (anti-)chiral rings.

We pick a convention where the most dominant tachyon is in the chiral (c1, c2, c3) ring.

This process can be somewhat elaborate, but as noted in reference [38], the endpoint after

all tachyons have condensed is a supersymmetric background. When this background is a

singular target space it admits marginal deformations which we can interpret geometrically

as resolution parameters.20

19Sometimes this is not possible, but this choice will be available in all the examples we consider.
20In the case of type 0 backgrounds the endpoint of tachyon condensation can sometimes result in a
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The explicit examples we analyze are chosen to exhibit different possible phenomena

associated with tachyon condensation, and the generalized symmetries of these backgrounds

with different codimension singularities:

• Codim. 6: R6/Z
(1,1,1,−3)
N , for N > 3 odd,

• Codim. 6: R6/Z
(4,6,−7,−3)
17 ,

• Codim. 6: R6/Z
(2,3,−4,−1)
9 ,

• Codim. 6 and 4: R6/Z
(3,5,−6,−2)
9 ,

• Codim. 6 (multiple tachyons): R6/Z
(4,7,−8,−3)
23 ,

• Codim. 6 and 2: R6/Z
(−4,−2,1,5)
9

where in the above, the notation Z
s1,s2,s3,s4
N indicates the action of the group ZN on the four

components of the 4 spinor representation as in line (3.2). The use of negative weights is in

accord with our discussion of the GSO projection near lines (3.6) and (3.7).

For each case we compute the defect group both before and after tachyon condensation.

We do this via the quiver based method as well as the method based on the geometry of the

boundary space S5/Γ. As expected, we find an exact match when all tachyons are initially

localized at the tip of the cone. In the case with a codimension 2 singularity there is a

tachyon present in the boundary S5/Γ we find a simple generalization which works this case

as well (equation (2.25)).

3.1 Codim. 6: R6/Z
(1,1,1,−3)
N , for N > 3 odd

In this subsection, we consider orbifolds of the form R6/Z
(1,1,1,−3)
N , for odd N > 3. We

begin by determining the defect group of the 4D theory before the onset of any tachyon

condensation.

Letting g denote a generator of ZN , and ζ the N th root of unity, we have the following

action in the 4 of SU(4):

r(gn) = diag(ζn, ζn, ζn, ζ−3n) (3.9)

This yields the following action in the 6 of SO(6):

R(gn) = diag(ζ2n, ζ2n, ζ2n, ζ−2n, ζ−2n, ζ−2m) (3.10)

The D0-brane probe results in a quiver quantum mechanics with N nodes. Along the

boundary of the quiver, we have bifundamental fermions ψi,i+1 for i = 1, ..., N (indexing mod

N) each with multiplicity 3. There are also bifundamental fermions ψi,i−3 for i = 1, ..., N

geometry with terminal singularities, i.e., those which do not admit a crepant resolution [38].
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Figure 3: Left/Right: Fermionic/Bosonic quiver for R6/Z
(1,1,1,−3)
5 .

(indexing mod N) each with multiplicity 1. For the scalar sector, there are are bifundamental

scalars φi,i+2, each with multiplicity 3. We illustrate this in the case of N = 5 in figure 3.

We are interested in the electric and magnetic 1-form symmetries of the 4D theory. For

this we need only consider the fermionic quiver. Consider again the case of N = 5. The

adjacency matrix for the fermionic quiver in figure 3 is given by

K =




0 3 1 −1 −3

−3 0 3 1 −1

−1 −3 0 3 1

1 −1 −3 0 3

3 1 −1 −3 0




(3.11)

The torsional generators of the defect group for the 4D theory are determined from Coker(K).

From taking the Smith normal form of K, we find that

A(1)
elec ⊕A(1)

mag
∼= Tor(Coker(K)) ∼= Z5 ⊕ Z5 (3.12)

In the more general case of R6/Z
(1,1,1,−3)
N , for odd N > 3, we follow an identical procedure

and find that the defect group is ZN ⊕ ZN .

This result is also predicted by the geometry. Indeed, consider the action of Γ = ZN on

S5 induced by the bosonic action given in (3.10). It is clear that this action is fixed point

free. Hence, using Armstrong’s theorem, we expect a factor in the defect group given by

H1(S
5/Γ) ∼= Ab[π1(Γ/Γfix)] ∼= ZN (3.13)

That is, A(1)
elec

∼= ZN , and we have agreement between the defect group computed by the
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quiver and H1(S
5/Γ).

We now move to study the time dependent nature of our analysis. In line with our

discussion near line (3.8) we switch to a holomorphic coordinate system where we can track

the toric geometry explicitly, i.e., C3/Z
(1,1,1−N
N ). The most relevant GSO-preserved tachyon is

T1 in the chiral ring (c1, c2, c3). Here we let Tj denote a tachyonic operator in the jth twisted

sector. Note that there are other GSO preserved tachyons, but T1 is the most relevant and,

as we will see, resolves our orbifold to smooth space upon condensing. The condensation of

T1 is studied using the fact that C3/ZN with weights (1, 1, 1−N) is a toric variety. Following

the discussion in Appendix B, this orbifold is a toric variety whose fan Σ is given by the

vertices:21

α1 = ((N,−1, N − 1)), α2 = ((0, 1, 0)), α3 = ((0, 0, 1)) (3.14)

As a lattice point in the toric diagram, T1 corresponds to T1 = ((1, 0, 1)). Condensation

of T1 corresponds to blowing up Σ by T1. This gives the residual subcones C[T1, α1, α2],

C[T1, α1, α3], and C[T1, α2, α3], all of which describe patches of the resolved geometry. The

orbifold conformal field theories described by each of these subcones correspond to smooth

spaces. That is, there are no residual singularities associated to the above subcones. Hence,

the endpoint of the most relevant tachyon sequence is smooth, as expected.

Using standard techniques in toric geometry (see e.g. [96]), we find that the geometry of

the resultant space after T1 condenses is O(−N) → P2.

3.2 Codim. 6: R6/Z
(4,6,−7,−3)
17

In this subsection, we consider the orbifold R6/Z
(4,6,−7,−3)
17 . We proceed in an analogous way

as that for the previous example. We begin by determining the defect group of our orbifold

and then move on to study how the geometry and defect group change as the tachyons of

our theory condense.

Letting g denote a generator of Z17 and ζ a 17th root of unity, we choose the following

action in the 4 of SU(4):

r(gn) = diag(ζ4n, ζ6n, ζ10n, ζ14n) (3.15)

This yields the following action in the 6 of SO(6):

R(gn) = diag(ζ16n, ζ14n, ζ10n, ζ−16n, ζ−14n, ζ−10n) (3.16)

We find that the D0-brane probe results in a quiver quantum mechanics with 17 nodes.

Furthermore, there are bifundamental fermions (each with multiplicity one) given by ψi,i+4,

ψi,i+6, ψi,i+10, and ψi,i+14. For the scalar sector, there are bifundamental bosons (each with

multiplicity one) given by φi,i+16, φi,i+14, and φi,i+10. The resultant fermionic and bosonic

21To distinguish the weights of the group action on the holomorphic coordinates from the three-component
vectors of the toric fan we adopt the notation (•, •, •) and ((•, •, •)), respectively.
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Figure 4: Left/Right: Fermionic/Bosonic quiver for R6/Z
(4,6,−7,−3)
17 .

quivers are given in figure 4.

We are interested in the electric and magnetic 1-form symmetries of the 4D theory. We

need only consider the fermionic quiver and its corresponding adjacency matrix K. Indeed,

the torsional generators of the defect group of the 4D theory are determined from Coker(K):

D(1) = A(1)
elec ⊕A(1)

mag
∼= Tor(Coker(K)) = Z17 ⊕ Z17 (3.17)

This result is predicted by the geometry. Consider the action of Γ = Z17 on S5 induced

by the bosonic action in (3.16). It is clear that this action is fixed point free. Hence, through

an application of Armstrong’s theorem, we find that

H1(S
5/Γ) ∼= Ab[π1(Γ/Γfix)] ∼= Z17 (3.18)

That is, A(1)
elec

∼= Z17.

We now move to study the time dependent nature of our analysis. In particular, we

study how the geometry and defect group of our theory evolve with tachyon condensation. As

before, we follow the procedure of [38]. The orbifold we have been considering, R6/Z
(4,6,−7,−3)
17 ,

is, in the notation of [38], given by C3/Z17, where Z17 acts in accordance to the weights

(1, 3,−10)hol. The chiral ring (c1, c2, c3) of operators has two tachyons T1 and T6 with R-

charges R1 = 11
17

and R6 = 15
17
, respectively, that survive the Type II GSO projection. Here

we made use of line (B.3) in Appendix B to determine the R-charges. While there are GSO-

preserved tachyons in the other rings, the most relevant tachyon in this theory is T1 from

the (c1, c2, c3) ring.

Following the discussion in Appendix B, the orbifold C3/Z17 with weights (1, 3,−10) is
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Figure 5: Left: Quiver for R6/Z
(−3,−1,0,4)
7 . Right: Quiver for R6/Z

(1,1,1,0)
3

a toric variety whose fan is described by the vertices:

α1 = ((17,−3, 10)), α2 = ((0, 1, 0)), α3 = ((0, 0, 1)) (3.19)

In terms of the toric diagram, the tachyons correspond to the lattice vectors T1 = ((1, 0, 1))

and T6 = ((6,−1, 4)). The tachyons blow up the singularity in order of relevance, i.e. first

T1 and then T6. Condensation of T1 corresponds to blowing up the toric fan by the lat-

tice vector T1. This gives the residual subcones C[T1, α1, α2], C[T1, α2, α3], and C[T1, α1, α3],

which corresponds to C3/Z7 with weights (1, 3, 4)hol, a smooth space, and C3/Z3 with weights

(1, 1, 1)hol, respectively. Here we have made use of the fact that each of our subcones repre-

sents a new orbifold conformal field theory that are locally decoupled from the other theories

corresponding to the other subcones. In our notation we have:

C[T1, α1, α2] ∼ R6/Z
(−3,−1,0,4)
7 C[T1, α1, α3] ∼ R6/Z

(1,1,1,0)
3 (3.20)

We remark here that the orbifolds in line (3.20) are both supersymmetric and their singu-

larities are isolated (see figure 6).

Before we consider the remaining tachyon T6, let us first briefly describe the quivers

associated with the subcones C[T1, α1, α2] and C[T1, α1, α3]. We summarize in figure 5 the

content of the quivers. Note that both C[T1, α1, α2] and C[T1, α1, α3] are supersymmetric,

so their fermionic and bosonic quivers are the same.

We can also study the defect groups for the subsystems C[T1, α1, α2] and C[T1, α1, α3] by

computing the Smith normal form of the adjacency matrix for their respective quivers. In

doing so, we find that C[T1, α1, α2] has defect group

A(1)
elec ⊕A(1)

mag
∼= Z7 ⊕ Z7 (3.21)
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T1

S5/Z17

C3/Z17

S5/Z3

S5/Z17

S5/Z7

S5/Z7

S5/Z3

S5/Z17

(i)

(ii)

Figure 6: We sketch the initial geometry and blowups thereof as induced by tachyon con-
densation. In (i) we show how the initial isolated singularity C3/Z17 resolves to a C3/Z3 and
C3/Z7 singularity via condensation of T1. The resolved geometry realizes bordisms between
the boundaries of various local models as sketched in (ii).

and C[T6, α1, α3] has defect group

A(1)
elec ⊕A(1)

mag
∼= Z3 ⊕ Z3 (3.22)

It is straightforward to check that both of these defect groups match what is predicted by

the geometry.

We now return to the remaining tachyon T6. Notice that T6 is inside C[T1, α1, α3] since

T6 = 1
3
(T1 + α1 + α3). We recall from [38] that R-charges of the subsequent tachyons

remaining in the residual geometries get renormalized after a given tachyon has condensed;

the specific renormalization of a particular subsequent tachyon depends on which of the

three decoupled subcones it lies within. In our case, we find that T6 has a renormalized

R-charge equal to one after T1 condenses. That is, the operator T6 becomes marginal after

T1 condenses. Further subdividing our fan by T6 results in the subcones: C[T6, α1, α3],

C[T1, T6, α1], C[T1, T6, α3], C[T1, α1, α2], and C[T1, α2, α3]. Notice that the latter two were

previously considered. Furthermore, it is a straightforward exercise to show that the “new”

cones, C[T6, α1, α3], C[T1, T6, α1], and C[T1, T6, α3] are smooth. The only non-trivial thing

left to consider is C[T1, α1, α2]. However, this orbifold is supersymmetric and resolves to a

smooth space via generic metric blowup modes. See [38] for further details. We conclude
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Figure 7: Left/Right: Fermionic/Bosonic quiver R6/Z
(2,3,−4,−1)
9 .

that the endpoint of the most relevant tachyon sequence is smooth, as expected.

3.3 Codim. 6: R6/Z
(2,3,−4,−1)
9

We next consider the orbifold R6/Z
(2,3,−4,−1)
9 . We begin by determining the defect group of

the 4D theory at early times. Letting g denote a generator of Z9 and ζ a primitive 9th root

of unity, we choose the following action on the 4 of SU(4):

r(gn) = diag(ζ2n, ζ3n, ζ5n, ζ8n). (3.23)

This yields the following action on the 6 of SO(6):

R(gn) = diag(ζ8n, ζ7n, ζ5n, ζ−8n, ζ−7n, ζ−5n). (3.24)

The resulting quivers are given in figure 7.

We are interested in computing the defect group for the 4D theory. Hence, we need only

consider the fermionic quiver and its corresponding adjacency matrix. Taking the Smith

normal form, we find that the defect group is given by

A(1)
elec ⊕A(1)

mag
∼= Tor(Coker(K)) ∼= Z9 ⊕ Z9 (3.25)

The geometry accounts for this result. Indeed, consider the action of Γ = Z9 on S5

induced from the bosonic action in (3.24). We see that this action is fixed point free. Through

an application of Armstrong’s theorem, we then find that the bosonic data contributes a
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T1

S5/Z9

C3/Z9

S5/Z4

S5/Z9

C3/Z2

Figure 8: We sketch the geometry R6/Z
(2,3,−4,−1)
9 after the blow up. Here C3/Z2 = C×C2/Z2

and the C2/Z2 singularity is along all of C which compactifies into a teardrop (red) and
enhances at infinity (red dot).

factor to the defect group in (3.25) given by

H1(S
5/Γ) ∼= Ab[π1(Γ/Γfix)] ∼= Z9 (3.26)

Consider next tachyon condensation. In the holomorphic presentation of the geometry

this is given by C3/Z9 where the action of Z9 is specified by the weights (1, 2,−5)hol. There

is one relevant tachyon in the (c1, c2, c3) ring that survives the chiral GSO projection, T1.

While there are GSO-preserved tachyons in the other rings, the most relevant tachyon is T1
in the (c1, c2, c3) ring.

The orbifold C3/Z9 with weights (1, 2,−5)hol is a toric variety with fan generated by the

vertices

α1 = ((9,−2, 5)), α2 = ((0, 1, 0)), α3 = ((0, 0, 1)). (3.27)

The tachyon corresponds to the lattice vector T1 = ((1, 0, 1)). Condensation of T1 gives the

residual subcones C[T1, α1, α2], C[T1, α2, α3], and C[T1, α3, α1], which correspond to C3/Z4

with weights (−1, 1, 2)hol, C
3, i.e., flat space, and C3/Z2 with weights (1, 0,−1)hol, respec-

tively. Notice that the orbifolds C3/Z4 and C3/Z2 exhibit a non-isolated singularity. In both

cases, there is a non-compact curve supporting a C2/Z2 singularity. Gluing patches these

loci compactify to a teardrops worth of C2/Z2 singularities (see figure 8).

After a suitable change in complex structure, we observe thatC3/Z2 with weights (1, 0,−1)

and C3/Z4 with weights (−1, 1, 2) are in fact supersymmetric backgrounds. We conclude

then that the endpoint of the most relevant tachyon sequence in this Type II theory includes

flat and supersymmetric spaces, for which the latter have singularities that are resolved by

generic metric blowup modes.

Consider next the quivers associated with the two subcones, C[T1, α1, α2] and C[T1, α1, α3].

In our usual notation

C[T1, α1, α2] ∼ R6/Z
(−2,0,1,1)
4 , C[T1, α1, α3] ∼ R6/Z

(1,0,−1,0)
2 (3.28)

27



Figure 9: Left: Quiver for R6/Z
(−2,0,1,1)
4 . Right: Quiver for R6/Z

(1,0,−1,0)
2 .

We summarize the quivers in figure 9, and we remark that the fermionic and bosonic quivers

are identical in these cases due to supersymmetry.

We now determine the defect group for the cones C[T1, α1, α2] and C[T1, α1, α3]. Taking

the Smith normal form, we find that the defect group for C[T1, α1, α2] is Z2 ⊕ Z2, and that

of C[T1, α1, α3] is trivial, in accord with geometric expectations.

In this case we also have a codimension 4 singularity which generates a “flavor brane”

locus associated with an A1 singularity which is locally of the form C2/Z2. Much as in [28,29],

we find that in an electric polarization there is an SO(3) flavor symmetry which combines

with the 1-form symmetry to generate a 2-group via the non-split long exact sequence:

0 → Z2 → Z4 → SU(2) → SO(3) → 1. (3.29)

Summarizing, we see that at late times, the tachyon condensation generates an emergent

2-group involving a Z2 1-form symmetry and an SO(3) flavor symmetry.

3.4 Codim. 6 and 4: R6/Z
(3,5,−6,−2)
9

In this subsection, we consider the orbifold R6/Z
(3,5,−6,−2)
9 . We first determine the defect

group. Let the action on the 4 of SU(4) be given by

r(gn) = diag(ζ3n, ζ5n, ζ3n, ζ7n) (3.30)

where g is the generator of Z9 and ζ is a primitive 9th root of unity. This determines the

action in the 6 of SO(6):

R(gn) = diag(ζ8n, ζ6n, ζ8n, ζ−8n, ζ−6n, ζ−8n) (3.31)

The fermionic and bosonic quivers are given in figure 10.

Computing the Smith normal form of the fermionic adjacency matrix for the fermionic
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Figure 10: Left/Right: Fermionic/Bosonic quiver for R6/Z
(3,5,−6,−2)
9 .

(i) (ii)

1

1 Z3

1

1

1
T 3/Z9

S1/Z9

S1/Z9 S1/Z3

S3/Z9S3/Z9

S3/Z9

Figure 11: In (i) we give the subgroups Hk, Hij and in (ii) singular loci for the quotient S5/Γ
with Γ = Z9 and weights (3, 5,−6,−2).

quiver in figure 10 yields the defect group of the 4D theory:

A(1)
elec ⊕A(1)

mag
∼= Tor(Coker(K)) ∼= Z3 ⊕ Z3 (3.32)

The geometry accounts for this result. Indeed, the action of Γ = Z9 on S5 induced from the

bosonic action in (3.31) has fixed points. By Armstrong’s theorem, we find

H1(S
5/Γ) ∼= Ab[π1(Γ/Γfix)] ∼= Z3 (3.33)

A summary of the geometric data which contribute to the defect group follows from the

fibration S5/ZN → ∆ as in figure 19. See figure 11 for a summary of the salient features of

the toric geometry.

We now move on to study tachyon condensation in our orbifold. We follow the procedure

presented in [38]. In their notation, our orbifold, R6/Z
(3,5,−6,−2)
9 , is given by C3/Z9, where
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the action of Z9 is defined by the weights (1, 3,−8)hol. There is one relevant tachyon in the

(c1, c2, c3) ring that survives the chiral GSO projection, T1. We need not worry about the

tachyons in the other chiral rings since T1 in the (c1, c2, c3) ring is the most relevant.

We remark here that the singularity for C3/Z9 with weights (1, 3,−8)hol is a non-isolated

singularity; there is a codimension 6 singularity at the tip of the cone as well as a codimension

4 singularity which stretches out to the boundary S5/Z9. That being said, the singularity

“at infinity” does not contribute any additional tachyons.

The orbifold C3/Z9 with weights (1, 3,−8)hol is a toric variety with fan spanned by the

vertices:

α1 = ((9,−3, 8)), α2 = ((0, 1, 0)), α3 = ((0, 0, 1)). (3.34)

The tachyon T1 corresponds to the lattice point T1 = ((1, 0, 1)). Condensation of T1 gives the

residual subcones C[T1, α1, α2], C[T1, α1, α3], and C[T1, α2, α3], which correspond to smooth

space, C3/Z3 with weights (1, 0, 1), and smooth space, respectively. Observe that the orbifold

C3/Z3 with weights (1, 0, 1) is supersymmetric, in a different complex structure (complex

conjugate the Z3 coordinate), and can also be presented asC×C2/Z3, in the obvious notation.

This singularity realizes a 6D su(3) super Yang-Mills theory. The overall polarization, i.e.,

global form of the gauge group is independent of the other boundary data in the model.

3.5 Codim. 6 (multiple tachyons): R6/Z
(4,7,−8,−3)
23

In this section, we consider the orbifold R6/Z
(4,7,−8,−3)
23 . We begin by determining its 4D

defect group. Letting g denote the generator of Z23 and ζ a 23rd root of unity, the action on

the 4 of SU(4) is induced via:

r(gn) = diag(ζ4n, ζ7n, ζ15n, ζ20n) (3.35)

which determines the action on the 6 of SO(6):

R(gn) = diag(ζ22n, ζ19n, ζ11n, ζ−22n, ζ−19n, ζ−11n) (3.36)

Extracting the quiver for a probe D0-brane, we extract the defect group via the adjacency

matrix for the fermionic degrees of freedom:

D(1) = Tor(CokerK) = A(1)
elec ⊕A(1)

mag
∼= Z23 ⊕ Z23. (3.37)

The boundary geometry S5/Z23 has no singularities (the group acts freely on S5) and so

H1(S
5/Z23) ∼= Z23. Thus, the quiver based method and geometry based method predict the

same defect group.

We now turn to tachyon condensation. In this case, there is a sequence of tachyon

condensations which we track in stages. In the notation of [38], the orbifold we have been
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considering, R6/Z
(4,7,−8,−3)
23 , is given by C3/Z23, where Z23 acts with weights (1, 4,−11)hol.

The (c1, c2, c3) ring tachyons T1, T2, T8, with R-charges R1 = 17
23
, R2 = 11

23
, and R8 = 21

23
,

respectively, survive the chiral GSO projection. Although there are GSO-preserved tachyons

in the other rings, the most relevant tachyon is T2.

The orbifold C3/Z23 with weights (1, 4,−11)hol is a toric variety with toric fan spanned

by:

α1 = ((23,−4, 11)), α2 = ((0, 1, 0)), α3 = ((0, 0, 1)). (3.38)

The tachyons correspond to lattice vectors in the toric diagram: T1 = ((1, 0, 1)), T2 =

((2, 0, 1)), and T8 = ((8,−1, 4)). We blowup by the order of relevance, i.e. first T2, then

T1, and finally T8. Condensation of T2 gives the subcones C[T2, α1, α2], C[T2, α2, α3], and

C[T2, α1, α3], which correspond to C3, i.e., smooth space; C3/Z2 with weights (1, 0,−1)hol;

and C3/Z8 with weights (1, 1, 2)hol, respectively. Notice that there are non-isolated singular-

ities. Furthermore, we note that in our usual notation

C[T2, α2, α3] ∼ R6/Z
(1,0,−1,0)
2 , C[T2, α1, α3] ∼ R6/Z

(−1,−1,0,2)
8 (3.39)

We can determine the defect group of these cones by finding their quivers. An interesting

part of this example comes from considering the defect group for C[T2, α1, α3]. From the

quiver, we find that the defect group is given by

A(1)
elec ⊕A(1)

mag
∼= Z4 ⊕ Z4 (3.40)

Again, in an electric frame, we find a 2-group symmetry characterized by the long exact

sequence:

0 → Z4 → Z8 → SU(2) → SO(3) → 1, (3.41)

as captured in the geometry. This essentially follows from the following short exact sequence

(detected in geometry via Mayer-Vietoris) being non-split (see [28, 29]:

1 → Z4 → Z8 → Z2 → 1 . (3.42)

The other tachyons are T1 and T8, but after T2 condenses, it turns out that any remaining

instabilities are absent. As explained in [38], the R-charges of T1 and T8 now shift so that T1
is marginal and T8 is irrelevant. Since T1 is marginal we have actually landed on a geometry

with no instability. We can, of course, still blowup by T1. Further subdividing our fan by

T1 results in the subcones C[T1, α1, α3] and C[T1, T2, α1], which correspond to the orbifolds

C3/Z4 with weights (1, 0, 1)hol and C3/Z4 with weights (0, 1, 1)hol, respectively. Both of these

are actually supersymmetric, but in a different complex structure (complex conjugate the

Z3 coordinate).
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Figure 12: Left /Right: Fermionic /Bosonic quiver for R6/Z
(−4,−2,1,5)
9 .

3.6 Codim. 6 and 2: R6/Z
(−4,−2,1,5)
9

We now turn to an example in which there are tachyons initially present at the boundary. The

geometry we consider supports a codimension 2 singularity in addition to the codimension 6

singularity at the tip of the cone. As such, the we expect the defect group to be somewhat

more intricate, as summarized by equation (2.25). We begin by studying the defect group

before tachyon condensation. The action on the 4 of SU(4) is given by:

r(gn) = diag(ζ5n, ζ7n, ζn, ζ5n) (3.43)

where here we let g denote the generator of Z9 and ζ a primitive 9th root of unity. This

determines the action in the 6 of SO(6):

R(gn) = diag = (ζ8n, ζ6n, ζ3n, ζ−8n, ζ−6n, ζ−3n) (3.44)

The resultant quivers are summarized in figure 12.

The defect group for the 4D theory is how this example distinguishes itself from those

we have previously considered. Taking the Smith normal form of the fermionic adjacency

matrix, we find that

A(1)
elec ⊕A(1)

mag
∼= Tor(Coker(K)) ∼= Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3 (3.45)

Distinguished from our previous examples, this is only partially predicted by the geometry.

Indeed, the bosonic action from (3.44) induces an action on S5 that has fixed points. Letting
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Figure 13: We sketch in (i) the subgroups Hk, Hij and in (ii) singular loci for the quotient
S5/Γ with Γ = Z9 and weights (−4,−2, 1, 5).

Γ = Z9, we find from Armstrong’s theorem that

H1(S
5/Γ) ∼= Ab[π1(Γ/H)] ∼= Z9/Z3

∼= Z3 , (3.46)

where H denotes the normal subgroup which sweeps out a fixed point locus on the boundary.

A summary of the geometric contributions to the defect group is given in figure 13. The

remaining contributions to line (3.45) follow from an application of line (2.25).

We now study the tachyon condensation of our orbifold. In the notation of [38], our orb-

ifold, R6/Z
(−4,−2,1,5)
9 is given by C3/Z9 where Z9 acts in accordance to the weights (1, 3, 6)hol.

Observe that in the holomorphic basis where the Z9 group acts via:

(Z1, Z2, Z3) 7→ (ωZ1, ω
3Z2, ω

6Z3), (3.47)

the Z3 ⊂ Z9 subgroup generated by ω3 leaves invariant the entire X = 0 locus, namely we

have a codimension 2 singularity. The model has one tachyon in the (c1, c2, c3) ring that

survives the chiral GSO projection, T3. We remark further that T3 in the (c1, c2, c3) ring is

the most relevant tachyon.

Condensation of T3 is treated through toric geometry. The orbifold C3/Z9 with weights

(1, 3, 6)hol is a toric variety whose fan is described by the vertices

α1 = ((9,−3,−6)), α2 = ((0, 1, 0)), α3 = ((0, 0, 1)) (3.48)

The tachyon T3 corresponds to the lattice vector T3 = ((3,−1,−2)). However, notice that

3T3 = α1, implying that blowing up by T3 does not change the geometry of our orbifold.

Since T3 was the only relevant tachyon the (c1, c2, c3) ring, we conclude that C3/Z9 with

weights (1, 3, 6)hol resolves to a smooth space via non-chiral blowup modes.
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4 IIA Example: Non-Abelian Orbifolds

In this section we provide a few examples of how to extract the defect group in the case of

orbifold singularities:

X = R6/Γ (4.1)

in which the group Γ is a non-abelian finite subgroup of SU(4).22 Our aim here is not to

be exhaustive, but rather to just give a few illustrative examples of the general structure we

expect to find.

One way to generate examples is to first begin with a finite subgroup of SU(n) ⊂ SU(4)

for n = 2, 3 and to then “twist” this embedding by an additional rephasing symmetry which

commutes with the original group action, i.e., a “stacking and twisting” procedure. This

provides a way to generate many examples of non-supersymmetric orbifolds where we can

then be read from off from the associated defect group. We illustrate this procedure for the

ADE series of finite subgroups of SU(2) ⊂ SU(4).23 See Appendix C for another example.

It is worth noting that while these choices of finite subgroup are “somewhat special”, the

bigger the subgroup of SU(4), the more we expect defects to be screened by dynamical states.

This is in accord with the fact that as the group grows, there is a bigger normal subgroup H

associated with fixed loci in the boundary geometry S5/Γ, so Γ/H is consequently a smaller

subgroup (often trivial). This same phenomenon was observed in reference [26].

4.1 Stacking and Twisting Quivers with SU(2) ⊂ SU(4)

To begin, consider ΓSU(2) ⊂ SU(2) a finite subgroup which acts on the basis (e1, e2; f1; f2)

of the 4 as follows:

ΓSU(2) action: ei 7→ gijej and fj 7→ fj . (4.2)

We can then perform a further “twist” by a ZN via the action:

ZN action: ei 7→ ζei and fj 7→ ζ−1fj . (4.3)

The combined group action defines ΓSU(4) = ΓSU(2) × ZN a finite subgroup of SU(4).

To extract the associated quiver, we exploit the fact that the two group actions commute.

Along these lines, we can first extract the quiver for the case with just the ΓSU(2) quotient

and then perform a further quotient by the ZN action.

With this in mind, denote by Q the quiver for the probe theory obtained from the finite

subgroup of SU(2). This comes with its own adjacency matrix for bosons and fermions. We

label the nodes in this quiver as q and denote the two adacency matrices as AF
q,q′ and A

B
q,q′, in

the obvious notation. Since this is the adjacency matrix for a finite subgroup of SU(2), this

22See [65] for a more complete list of finite subgroups of SU(4).
23Of course the A-type subgroups are abelian, but the D- and E-type subgroups are non-abelian.
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adjacency matrix will be symmetric. In fact, the off-diagonal entries match the adjacency

matrix of the associated extended Dynkin diagram of the corresponding ADE Lie group (via

the McKay correspondence). The fermions and bosons decompose into representations of

su(2)L × su(2)R as:

su(4) ⊃ su(2)L × su(2)R (4.4)

4 → (2, 1)⊕ (1, 2) (4.5)

6 → (2, 2)⊕ (1, 1)⊕ (1, 1). (4.6)

i.e., the fermionic singlets of su(2)L denote arrows which go back to the same quiver node

(i.e., the “gauginos”). We view the coordinate q as a “horizontal coordinate” which moves

one within a given quiver.

Now, precisely because the ZN group action commutes with ΓSU(2), there is a natural

group action on this quiver Q. In particular, we can simply take all the nodes of the original

quiver Q and copy the quiver nodes N times. This copying procedure specifies for us the

basis of fractional branes and thus the collection of quiver nodes for ΓSU(4). We refer to each

such copy of quiver nodes as Qi for i = 1, ..., N . There is both a “horizontal coordinate”

labelling an irreducible representation of ΓSU(2) as well as a “vertical” coordinate labelling

an irreducible representation of ZN . We thus label a position in the collection of quiver

nodes as (q, i), where q ranges over irreducible representations of ΓSU(2) and i ranges over

the irreducible representations of ZN .

The connectivity of the quiver will, however, now be somewhat different. To illustrate,

observe that for the fermionic matter fields in the decomposition 4 → (2, 1)⊕ (1, 2) of line

(4.6), the elements of the (2, 1) will now be connected between adjacent Qi and Qi+1 lay-

ers. Further, the elements of the (1, 2) will now be connected between Qi and Qi−1, with

multiplicity 2. From this, we conclude that the fermionic adjacency matrix is of the form:

AF
(qi);(q′i′) = AF

qq′δi,i′+1 + 2δqq′δi,i′−1. (4.7)

The Dirac pairing is obtained by anti-symmetrizing on the indices:

K(qi);(q′i′) = AF
(qi);(q′i′) − AF

(q′i′);(qi) (4.8)

=
(
AF

qq′ − 2δqq′
)
(δi,i′+1 − δi,i′−1) (4.9)

= CADE
qq′ (δi,i′+1 − δi,i′−1), (4.10)

where we used the fact that AF
qq′ is symmetric. Here CADE

qq′ denotes the adjacency matrix

of the corresponding extended Dynkin diagram with added entries of −2 on the diagonal.

Equivalently, it is the intersection pairing on the lattice of two cycles of C2/ΓSU(2) with the

affine node associated with the B-field adjoined (see e.g., [62]).
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From this, we extract the corresponding defect groups:

D(1) = (Z2 ⊕ Z2)
N−1 for D2M series (4.11)

D(1) = (ZL)
N−1 otherwise, (4.12)

where here L = |Z(GADE)|, the order of the center for the corresponding ADE Lie group.

Let us discuss these results from a complementary geometric perspective. For this we

first require the induced action on the 6 of SO(6). As an action on C3 we find the action to

decompose as C2/ΓSU(2) ×C/ZN . This orbifold has a single codimension 2 and codimension

4 locus. The codimension 4 locus has fixed points at infinity and does not contribute to

the defect group by Armstrong’s theorem. The codimension 2 singularity is supported on

S3/ΓSU(2) and following our counting, as for example in the discussion following (2.25), we

find exactly N − 1 contribution of ZL (or Z2 × Z2) to the defect group. Again, N is odd by

the requirement that the bosonic action be a faithful action of ZN .

Finally, let us turn to the structure of tachyon condensation in this model. Observe that

the group action by ΓSU(2) on the geometry is, by itself, supersymmetric. In particular, it

results in the quotient R6/ΓSU(2) = R2 × C2/ΓSU(2), in the obvious notation. Additionally,

the group action of the ZN factor acts only on the R2 factor of the target space. As such,

the full quotient assumes the form:

R6/ΓSU(4) = (R2/ZN)× (C2/ΓSU(2)), (4.13)

in the obvious notation. As such, all of the tachyons are associated with the codimension

loci originating from the R2/ZN factor. We can then simply borrow the analysis presented

in reference [39].

5 IIB Case

We now turn to the case of type IIB backgrounds R3,1 × R6/Γs with N spacetime filling

D3-branes. This system has been considered from various perspectives in [63–70]. One can

take a suitable limit to decouple the tachyonic closed string modes, leaving us with a 4D

gauge theory defined by just the open string sector. In the large N limit, the contribution to

the gauge coupling beta functions is inherited from that of N = 4 Super Yang-Mills theory,

so the gauge coupling does not run at one-loop order. Nevertheless, there always exists a

non-vanishing beta function for a double trace operator which is not suppressed, even in

the large N limit [67, 68]. In particular, reference [70] found that regardless of whether the

group action leads to an isolated singularity or instead has non-isolated singularities, there

is a radiatively induced breaking pattern in which some scalar operators condense. This

suggests a natural picture in which the time-dependence of the tachyonic IIA solution is

now realized via non-trivial scale dependence in the IIB brane probe setting. In particular,
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we can simply track the quiver before and after various blowups, much as we did in our

time-dependent analysis of the IIA case.24

In terms of the basis of fractional D-branes there is little change from the case of a probe

D0-brane. Indeed, the procedure to produce a quiver gauge theory is identical (and in fact we

derived the D0-brane worldvolume theory via dimensional reduction of the D3-brane case).

On the other hand, the presence of S-duality, where we interchange F1- / D1-strings and

NS5- / D5-branes means that the analysis of fractional branes will also have some limitations.

To bypass some of these subtleties, in what follows we focus on the portion of the defect

group and symmetries detected by H∗(S
5/Γ), i.e., the “homology portion”. This leads to no

loss of generality provided the tachyons are initially sequestered from the boundary geometry

S5/Γ.

In fact, to keep the analysis streamlined we shall make the somewhat stronger assumption

that all singularities present in the geometry are codimension 6, both before and after a

tachyon condensation has taken place. We comment as appropriate how some features

extend to cases where we have a locally supersymmetric codimension 4 singularity, but defer

the most general case to future work.

Now, starting from a candidate defect of the IIA theory on Rt × T 3, we can T-dualize

all three spatial directions. In the resulting IIB theory, then, we find that a line operator

wrapped on a spatial cycle will turn into a surface operator (two-dimensional support).

So, all of the candidate electric / magnetic 1-form symmetries of the IIA case will now

become 2-form symmetries.25 In more detail, we get surface operator defects from D3-

branes wrapped on Cone(γ1) for γ1 ∈ H1(S
5/Γ), and D5-branes wrapped on Cone(γ3) for

γ3 ∈ H3(S
5/Γ). Observe also that we can also wrap NS5-branes on Cone(γ3) to produce

another set of surface operators. There are corresponding 2-form symmetry operators which

link with these objects which we can make explicit when Γ acts without fixed points on

S5. For example, the heavy defect D3-branes on Cone(γ1) link with the symmetry operator

D3-branes wrapped on elements of H3(S
5/Γ). Likewise, we can wrap a D1-string (resp.

F1-string) on a linking element of H1(S
5/Γ) to get the symmetry operator for the D5-brane

(resp. NS5-brane) wrapped on Cone(γ3).

Much as in [13] we also find a collection of 0-form topological symmetry operators (codi-

mension one in the 4D spacetime) which exhibit non-trivial braiding / fusion rules. These

operators are obtained from D3-branes wrapped on cycles of H1(S
5/Γ) = HD3 as well as D5-

branes and NS5-branes wrapped on cycles of H3(S
5/Γ) ≡ HD5 ≡ HNS5. The same braiding

relations observed in reference [97, 13] indicate that the full 0-form symmetry generated by

24In fact, the time dependence is still there, it is just more implicit. Observe that in a radiatively generated
potential, expanding around a local maximum naturally includes a tachyonic instability for the fields of the
QFT degrees of freedom. The rolling motion of the fields to the nearby local minimum is time dependent
and is simply how the time dependence is reflected in the QFT.

25It is important in this argument that all of the fractional branes are associated with D-branes / boundary
states of the worldsheet theory.
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these operators is a semi-direct product:

G = (HD3 ×HD5)⋊HNS5 = (HD3 ×HNS5)⋊HD5 , (5.1)

where HD3 commutes with HNS5, HD5 and HNS5, HD5 do not commute with each other. For

Γ ∼= ZN acting fixed point free on S5 we have

G = (ZN × ZN )⋊ ZN (5.2)

which is the unitriangular matrix group UT(3, N). In the presence of codimension 4 fixed

points, and characterizing the symmetry subgroups as the Pontryagin dual of defect sub-

groups, this becomes

G = (Γ∨ × (Γ/H)∨)⋊ (Γ/H)∨ . (5.3)

In addition to these zero-form symmetry operators, we also observe the presence of an-

other codimension one topological interface by wrapping a 7-brane with constant axio-dilaton

on the boundary S5/Γ. In the case of SCFTs with tuned axio-dilaton on the D3-brane stack,

this implements duality defects.26 In the present case, we do not really flow to a conformal

fixed point, but at least in the large N planar limit, the coupling constant does not run at

one-loop order. As such, we can still speak of an approximate duality interface as inherited

from the N = 4 SYM case.

A general comment here is that since we can realize symmetry operators via “branes at

infinity,” there is a sharp sense in which we never lose any generalized symmetries. That

being said, because the local geometry near the tip of the cone will certainly resolve / change,

the degrees of freedom charged under this symmetry will reorganize / change. We interpret

this as spontaneous symmetry breaking. This is in accord with the picture of radiatively

induced contributions developed in references [66–68, 70].

5.1 Scale Dependent Considerations

Let us now turn to the scale dependence of our system. As a proxy for this, we study the

blowup moduli associated with tachyon condensation. This again gives us a sequence of

quiver gauge theories (much as in the IIA case), but where now the evolution is in scale

rather than time.

To track this, we can again introduce a bulk 5D system as given by a collection of

SymTFTs. These are partitioned up according to energy scales

EUV = E0 > E1 > ... > EI = EIR , (5.4)

26See references [30–35] for the case of N = 4 SYM, and references [13, 36, 37] for various extensions with
less supersymmetry.
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X0,1

Xn−2,n−1

Xn−1,n

R6/Γn

S5/Γ0 S5/Γ1 S5/Γn−2
S5/Γn−1

S5/Γn−1

S5/Γn

Sn−2,n−1SUV Sn−1,n

Jn−2,n−1J0,1 Jn−1,n

BEn≤I

R6/Γ0

Figure 14: We sketch the SymTree relevant when descending from the energy scale EUV

to the scale En≤I . The figure shows an idealized situation where a codimension 6 singu-
larity repeatedly resolves to a single codimension 6 singularity, with the geometry shedding
cobordisms Xn,n+1 (purple). The relative QFT BEn≤I is engineered by D3-branes prob-
ing the residual singularity R6/Γn. Every cobordism Xn,n+1 results in a SymTree junction
Jn,n+1 which matches the symmetry theories in neighboring slabs. These symmetry theories
originate from cylinders with cross section S5/Γn. At the energy scale En≤I with effective
geometry R6/Γn all geometric structure beyond S5/Γn is “at infinity”. All interfaces are
stacked onto the boundary conditions at infinity, resulting in a single bulk symmetry theory
Sn−1,n.
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S5/Γn S5/Γn+1

Figure 15: We sketch a cobordism Xn,n+1 realizing the transition from an old local model
boundary S5/Γn relevant at energies En to a new local model boundary S5/Γn+1 relevant at
energies En+1. In the process of shedding Xn,n+1 cycles, which can support defects, can be
inherited (red) or removed (blue) or introduced (purple).

in the obvious notation. In each partitioned region we have a SymTFT Sn,n+1 (see figure

14). There is a non-topological interface which in this case receives a contribution from the

branes which have left the quiver (i.e., motion away from the singularity), and a contribution

from the cobordism Xn,n+1 relating the boundary of the n-th and (n + 1)-th local model.

Even in the case where all branes remain in the system, the interface is non-topological,

supporting abelian degrees of freedom resulting from supergravity reduced on Xn,n+1. In all

cases, the role of the junction theory is simply to match the bulk modes on the two sides of

the interface.

Of course, this setup is rather suggestive of holography, where we would identify the radial

direction of Cone(∂X) with a renormalization group scale. The non-supersymmetric case is

somewhat subtle due to the possible presence of instabilities in the solution (see e.g., [69,98])

so we defer the existence of a possible holographic interpretation to future work.

0-form and 2-form Symmetries: The cobordism Xn,n+1 characterizes the transition

between the old and new asymptotic boundaries relevant in our description of the system

at energies En and En+1. In particular the 0-form and 2-form symmetries characterized by

the asymptotic boundaries change, and the difference is precisely associated with degrees of

freedom associated with Xn,n+1 decoupling. We now turn to discuss this process under the

simplified assumption that the cobordism Xn,n+1 is smooth, with two connected boundary

components, mapping between local model boundaries S5/Γn and S5/Γn+1.

When the geometry R6/Γn deforms via Xn,n+1 to R6/Γn+1 cycles wrapped to construct

defects associated with the 0-form and 2-form symmetries can be added, removed or inherited

(see figure 15). These defects are built from wrapped branes and so we will simply uniformly

discuss their wrapping loci, as characterized by homology groups.

More precisely, we can characterize these three processes using homology groups ofXn,n+1

due to R6/Γ being a cone whereby non-compact cycles in R6/Γn and R6/Γn+1 are in one-

to-one correspondence with with boundary cycles, which are also contained in ∂Xn,n+1 =

S5/Γn ⊔ S5/Γn+1. As such let us introduce the following notation for boundary components
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of the cobordism
∂(old)Xn,n+1 = S5/Γn ,

∂(new)Xn,n+1 = S5/Γn+1 ,

∂Xn,n+1 = ∂(old)Xn,n+1 ⊔ ∂(new)Xn,n+1 ,

(5.5)

where • denotes orientation reversal. In the completely general case the boundaries labelled

“old” and “new” consists of a disjoint union of 5-sphere quotients and the discussion below

generalizes in the obvious way. The relevant groups associated with the three processes are

the integer homology groups

R
(k)
n,n+1 ≡ Hk(Xn,n+1, ∂Xn,n+1) ,

R
(k,old)
n,n+1 ≡ Hk(Xn,n+1, ∂(old)Xn,n+1) ,

R
(k,new)
n,n+1 ≡ Hk(Xn,n+1, ∂(new)Xn,n+1) ,

(5.6)

where inclusion lifts to a mapping of the latter pair into the first line. The combined cokernel

with respect to both of these mappings characterizes cycles which run from the old boundary

to the new boundary. Further, we also have the group Hk(Xn,n+1) which maps via the long

exact sequence in relative homology separately into the latter two groups. The cokernel of

these mappings characterizes relative cycles which connect to the old or the new boundaries.

We can formalize the above considerations by noting that the pair of triplets

∂(old)Xn,n+1 ⊂ ∂Xn,n+1 ⊂ Xn,n+1 ,

∂(new)Xn,n+1 ⊂ ∂Xn,n+1 ⊂ Xn,n+1 ,
(5.7)

result in long exact sequences in relative homology. Due to the relevant 5-sphere quotients

having no torsional 2- or 4-cycles these two long exact sequences decompose into a collection

of short exact sequences. We can combine pairs of these short exact sequences into the cross:

R
(k,new)
n,n+1

↓

R
(k,old)
n,n+1 → R

(k)
n,n+1 → Γn+1

↓

Γn

(5.8)

Here, due to our simplifying assumption that Γn,Γn+1 are acting fixed point free, i.e., Xn,n+1

is smooth, and Hk−1(∂Xn,n+1, ∂(old)Xn,n+1) ∼= Γn+1 and Hk−1(∂Xn,n+1, ∂(new)Xn,n+1) ∼= Γn.

This is because in either case one of the 5-spheres is collapsed to a point. For brevity, we

also omitted zeros at either ends of both short exact sequences. We have two crosses, one

for k = 2 and one for k = 4.
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The two sequences of the cross induce a long exact sequence:

0 → Hk(Xn,n+1) → R
(k,old)
n,n+1 ⊕ R

(k,new)
n,n+1 → R

(k)
n,n+1 → Γn,n+1 → 0 . (5.9)

Here we have introduced

Γn,n+1 ≡ R
(k,new)
n,n+1 /(R

(k,old)
n,n+1 ⊕R

(k,new)
n,n+1 ) , (5.10)

which is defined as the cokernel of the preceding map. This realizes the combined cokernel

described above. Parametrizing as Γn
∼= ZNn

and Γn+1
∼= ZNn+1

we have Γn,n+1 = Zgn,n+1

with gn,n+1 = gcd(Nn, Nn+1). The ordinary long exact sequence in relative homology informs

us that Hk(Xn,n+1) is a subgroup of both R
(k,old)
n,n+1 and R

(k,new)
n,n+1 and as such we have introduced

Hk(Xn,n+1) as an additional term into the diagonal sequence associated with the cross in

order to maintain exactness and undo a double counting. From here we also naturally have

the quotients

R
(k,old)
n,n+1 /Hk(Xn,n+1) ∼= Γn , R

(k,new)
n,n+1 /Hk(Xn,n+1) ∼= Γn+1 , (5.11)

which removes all the bulk cycles and realizes the cokernels of the final two mapping described

below (5.6) which count the cycles removed and added by Xn,n+1 respectively. We evaluated

these using the long exact sequence in relative homology. We see that we can naturally fill

the cross to
Hk(Xn,n+1) → R

(k,new)
n,n+1 → Γn+1

↓ ↓ ∼=

R
(k,old)
n,n+1 → R

(k)
n,n+1 → Γn+1

↓ ↓ ↓

Γn
∼= Γn → 0

(5.12)

organizing all of our data, the sequence (5.9) is implicit. The generalization to the case with

multiple boundary components is similar but more involved; various entries are replaced

by disjoint unions. Further, note that as we are discussing from a defect perspective, we

also expect the above analysis to hold provided all tachyons are initially sequestered at the

tip of the cone, i.e., it also holds even when local supersymmetry preserving codimension

4 singularities are present. On the other hand, when unsequestered tachyons are initially

present at the boundary, then equation (2.25) indicates that we should expect further physical

contributions to be present.

Let us discuss the fate of the 0-form and 2-form symmetry when transitioning from

energy En to En+1. We uphold the simplifying assumptions from above, and as such we

aim to describe how the 2-form defect group Γn transitions to Γn+1 upon traversing the

cobordism Xn,n+1. We focus explicitly on the 2-form symmetry, the 0-form analysis runs
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similarly.

The overall mechanism will formally resemble a Higgsing. To start, dualize the above

analysis to cohomology and expand the supergravity field C4 in

H2(Xn,n+1, ∂Xn,n+1) ∼= Zb2 ⊕ . . . (5.13)

obtaining a collection of b2 abelian 2-form fields. In many cases Xn,n+1 will be deformation

equivalent to a weighted projective space, which does not have torsional cocycles, and as such

we will assume here that the omitted torsional contribution indicated with . . . vanishes.

Let us study screening effects in the partially resolved geometry relevant in taking the

limit to R6/Γn+1. There, the 2-form symmetry defect group is still equal to Γn and naively

receives contributions from the weight lattice of U(1)b2 modulo the charge lattice associated

with D3-brane wrappings on compact curves and the localized contribution from the residual

singularity equal to Γn+1. Now, it can happen that an integer multiple of a non-compact

curve of the latter has a compact representative, as made manifest by the map Hk(Xn,n+1) →

Hk(Xn,n+1, ∂Xn,n+1). As such we have that the original defect group is given by

U(1)b2 × Γn+1 / ∼ (5.14)

where ∼ describes the identification encoded in the above map. The screening by D3-branes

wrapped on compact curves then reduces the above to Γn. Overall this parallels tracking the

center group in adjoint Higgsings such as SU(N1) → SU(N2)× U(1)b/ZL for some integers

N1, N2, L, b (see [55] for further discussion on this point). The finite group Γn is a subgroup

of (5.14), generically embedding both into the abelian factor and Γn+1.

Now, as the resolution proceeds to blowup, we reach energies En+1 and the cobordism

Xn,n+1 hits the asymptotic boundary, the (co)cycles relevant for the abelian factors (become

non-normalizable) decompactify and the abelian factors decouple. Of the original defect

group isomorphic to Γn the image of Γn in U(1)b2 × Γn+1 / ∼ projected to Γn+1/ ∼ remains.

Simultaneously, new wrapping loci have opened up, filling the defect group back up to Γn+1.

Duality Interfaces: It is also of interest to track the behavior of the duality interface

given by a wrapped 7-brane on S5/Γ. For this discussion let us again consider the idealized

setup in which a codimension 6 singularity resolves to exactly one codimension 6 singularity.

We expect that this analysis extends to geometries with more general singularities.

Let R6/Γn and R6/Γn+1 be two geometries with an isolated singularity such that R6/Γn+1

is a local model for the residual singularity in the partial resolution of R6/Γn relevant for

the transition from scale En to En+1. The partially resolved geometry realizes a smooth

cobordism between the asymptotic S5/Γn and S5/Γn+1 explicitly obtained as a manifold

with boundary Xn,n+1 by excising a ball centered on the residual singularity in the partially

resolved geometry (see figure 16). In the completely general case the cobordism Xn,n+1
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S5/Γn S5/Γn+1

Figure 16: We sketch the cobordism constructed by the partial resoltion of R6/Γn between
S5/Γn and S5/Γn+1. For any such cobordism there exists a handle presentation indicated
by the dashed lines.

(iii)(ii)(i)

S5/Γn

S5/Γn

S
p
×

D
6
−
p
−
1

Dp+1 ×D6−p−1 S5/Γn

Figure 17: Sketch of attaching the handle H(p) to S5/Γn. The sketch can be taken at face
value for gluing a 0-handle to a circle. The initial configuration is shown in (i). In (ii) we
glue Dp+1×D6−p−1 along Sp×D6−p−1 to S5/Γn. The resulting configuration is deformation
equivalent to (iii). The gluing locus Sp × D6−p−1 admits a retraction into the handle and
can be collapsed to a single copy of D6−p−1 (blue).

would be a disjoint union of manifolds with boundaries each with more than two boundary

components and which includes various codimension 2 and codimension 4 singularities.

The cobordism Xn,n+1 is assumed to be smooth and therefore admits a handle presenta-

tion, i.e., Xn,n+1 is constructed by gluing p-handles

H(p) = Dp+1 ×D6−p−1 (5.15)

to S5/Γn. The gluing occurs along a copy of Sp×D6−p−1. Here Dq denotes the q-disk. Note

that within S5/Γn the disk D6−p−1 is contractible, while the sphere Sp is not necessarily

contractible. However, within the handle-attached space S5/Γn ∪ H(p), the gluing locus

becomes contractible to a copy of D6−p−1 within H(p) (see figure 17).

In the presence of a 7-brane wrapped on S5/Γn we see that, after attaching a handle, we

can deform the 7-brane to wrap the new boundary at the cost of picking up a brane-anti-brane

fusion products along a copy of D6−p−1. Proceeding in this manner we obtain brane-anti-

brane wrappings along a collection of non-contractible subloci in Xn,n+1. An intermediate
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S5/Γn S5/Γn+1

S5/Γn S5/Γn+1

(i)

(iv)

S5/Γn S5/Γn+1

(v)

S5/Γn S5/Γn+1

(vi)

S5/Γn S5/Γn+1

(ii)

S5/Γn S5/Γn+1

(iii)

Figure 18: Deforming a 7-brane wrapping (red) across handles gives rise to a new 7-brane
wrapping with brane-anti-brane fusion products C (blue) attached. See (i) → (ii). Poten-
tially, there are additional junction operators (blue dots). See (ii). We can “reconnect” these
fusion products by fusing these (resulting in operators colored purple). See (iii). Then we
contract the remaining brane-anti-brane fusion products resulting in topological operators
localized to the 7-brane (brown dots). See (iv).
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result, after deforming across all handles, is the same type of 7-brane wrapping S5/Γn+1 with

7-brane brane-anti-brane fusion products C stretching back into the cobordism, wrapping

relative cycles in Xn,n+1 relative to the boundary component S5/Γn+1. See subfigure (iv) in

Figure 18. From here we can, via further fusions, arrange for C to wrap internal cycles of

the cobordism, i.e., cycles of the homology group Hk(Xn,n+1). See subfigure (v) and (vi) in

figure 18.

In the 4D theory a 7-brane wrapped on S5/Γn realizes a duality interface supporting a

TFT at energies En. In [13] the TFT was determined by studying the line operators of the

3D interface theory, constructed from F1- / D1-strings attaching to the 7-brane. Then, using

general results on 3D TFTs [99], the TFT interacting with the 4D sector was deduced. In

lowering the scale from En to En+1 the 7-brane is deformed across the cobordism Xn,n+1 and

the couplings of the original 3D TFT to the ambient 4D bulk are now deformed. It would

be very interesting to describe these deformations in greater detail.

5.2 Illustrative Example

Let us now turn to an example illustrating these general points. For this, we return to

the example R6/Z
(4,6,−7,−3)
17 of section 3.2 and make some of the scale dependent discussion

explicit. Other examples with sequestered tachyons can be treated in a similar fashion.

Partially resolving R6/Z
(4,6,−7,−3)
17 we find the transition of local models

R6/Z17 → R6/Z3 ⊔ R6/Z7 . (5.16)

The stack of N D3-branes probing R6/Z17 is partitioned between the two new singularities.

The order of the quotient the groups Z3,Z7,Z17 are all prime and consequently pairwise

coprime. The cobordism X0,1 has boundaries:27

∂X0,1 = S5/Z17 ⊔ S
5/Z3 ⊔ S

5/Z7 , (5.17)

where the overline indicates orientation reversal, and we can decompose the partial resolution

of R6/Z17 as

R̃6/Z17 = Cone(S5/Z7) ∪S5/Z7
X0,1 ∪S5/Z3

Cone(S5/Z3) (5.18)

filling in two of the three boundaries, such that the asymptotic boundary S5/Z17 remains.

Applying the Mayer-Vietoris sequence to the above decomposition, induced by the mappings

S5/Z3 ⊔ S
5/Z7 → X0,1 ⊔ Cone(S5/Z7) ∪S5/Z7

⊔ Cone(S5/Z3) → R̃6/Z17 , (5.19)

we learn, due to the lens space cones having no 2- and 4-cycles of their own, and due to

27There is an orientation reversal on the last two factors of the disjoint union which we keep implicit here
and in what follows.
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R̃6/Z17 deformation retracting onto the weighted projective space WP2 with weights (1, 3, 7),

that

H2(X0,1) ∼= Z , H4(X0,1) ∼= Z , (5.20)

where the groups are generated by the |Z3 × Z7| = 21 multiple of the generating 2- and 4-

cycle of WP2. With this characterization we can also compute the various relative homology

groups of the cross (5.8), which are here simply:

Z → Z → Z3 ⊕ Z7

↓ ↓ ∼=

Z → Z → Z3 ⊕ Z7

↓ ↓ ↓

Z17
∼= Z17 → 0

(5.21)

Further, note that via Poincaré-Lefschetz duality we haveHk(X0,1, ∂X0,1) ∼= H6−n(X0,1) ∼=

Z and expanding the supergravity RR and NSNS gauge fields of degree dI in these cocycles

we find the cobordism to compactify to a junction theory supporting abelian U(1) gauge

theories with (dI − (6 − n))-form potentials. The cobordism X0,1 gives rise to a junction

theory where these abelian degrees of freedom localize in 4D. Brane wrappings which pass

through X0,1 result in defects of the 5D symmetry theory which pass through the junction

and are dressed in the sense of [55]. The group governing these dressings, in various degrees,

is

(U(1)× Z3 × Z7)/(Z3 × Z7)diag. (5.22)

and the UV symmetry group Z17 interacts with the IR symmetry Z3 × Z7 via embedding

purely into the U(1) factor. Consequently, every defect which arises as a brane wrapping on

a non-compact cycle, stretching from the singularities R6/Z3 and R6/Z7 within R̃6/Z17 to

the asymptotic boundary will be dressed, i.e., in the symTree passing the defect through the

junction J0,1 will result in a non-trivial defect of the junction theory.

6 Conclusions

Symmetries provide important constraints on the dynamics of many quantum systems. In

this paper we have studied the generalized symmetries of a class of non-supersymmetric

backgrounds in type II string theory of the form R3,1 × R6/Γ. In the case of type IIA back-

grounds, we determined the generalized symmetries of “pure geometry” configurations. The

quiver quantum mechanics of probe particles encodes the Dirac pairing of electric and mag-

netic states via the adjacency matrix for fermionic matter. This structure is directly visible

in terms of the boundary orbifold structure of S5/Γ. In the case of type IIB backgrounds, we

considered a stack of N spacetime filling D3-branes probing the singularity. The same quiver
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data / geometric data encodes generalized symmetries for this theory. In both cases, many

structures observed in related supersymmetric backgrounds naturally extend to this broader

non-supersymmetric setting. We also encountered new phenomena, especially with regards

to codimension 2 singularities and unsequestered tachyons in the boundary geometry. In the

remainder of this section we discuss some potential avenues for future investigation.

While we have given a rather direct physical interpretation of the fermionic adjacency

matrix in our quiver quantum mechanics / gauge theory, the role of the bosonic adjacency

matrix is less clear. It would clearly be interesting to better understand the role (if any) of

this structure.

In orbifolds with unsequestered tachyons we observed that the defect group computed by

quiver methods predicts extra structure beyond the homology groups H∗(S
5/Γ) for Γ a finite

subgroup of SU(4). While we motivated a plausible reason for these additional contributions,

it would be interesting to give a principled derivation.

It would also be of interest to study the structure of tachyon condensation in more general

cases where Γ is non-abelian. A potential starting point would be to enumerate the finite

subgroups of SU(4) (see e.g., [65] and references therein) and their associated quiver gauge

theories.

A natural extension of the analysis presented here would be to directly track the strong

coupling limit of our type IIA analysis, i.e., a possible M-theory uplift. In this setting, the

dilaton obtained from circle compactification is still non-dynamical, so in principle we can

lift all of these structures directly to a 5D quantum system. Of course, this will also require

establishing a suitable uplift of tachyon condensation to the M-theory setting. Presum-

ably the presence of candidate generalized symmetries can provide some insights into these

instabilities.

In the case of supersymmetric backgrounds, N D3-branes at the tip of a Calabi-Yau cone

Cone(Y ) yields a holographic dual of the form AdS5 × Y . In the case of X = Cone(Y ) a

non-supersymmetric orbifold there is an instability in such solutions [69], so the connection

with the worldvolume theory of the D3-branes is less clear. It would be interesting to track

the fate of symmetry operators and defects to establish the existence / absence of a phase

transition as one increases the ’t Hooft coupling.

It would also be interesting to track the fate of generalized symmetries in the case of

compact non-supersymmetric models with orbifold singularities, perhaps along the lines

of [75]. The presence of such topological structures and their dynamical counterparts once

gravity is included could potentially shed light on the endpoint of tachyon condensation in

such backgrounds.
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A Further Details on Unsequestered Tachyons

In this Appendix we provide some further discussion and examples centered on the defect

group in the case of unsequestered tachyons. In particular we provide further details on the

motivation for equation (2.25) which we reproduce here for convenience of the reader:

D(1) = Tor(CokerK) ∼= (Γ/H)2 ⊕

(
⊕

i

(Γ/HSi
)|Hi|−1

)
. (A.1)

We focus on the case of Γ = ZN abelian, acting on C3 with integer weights (v1, v2, v3)hol ∈ Z3

as:

(Z1, Z2, Z3) ∼ (ζv1Z1, ζ
v2Z2, ζ

v3Z3) (A.2)

where ζ is an N th primitive root of unity. We restrict ourselves to weights which are such

that gcd(N, v1, v2, v3) = 1, which implies that our action is faithful. If v1+v2+v3 = 0 modulo

N , then Γ ⊂ SU(3) and otherwise Γ ⊂ U(3). Note that although we have been considering

orbifolds of the form R6/Γs, where s indicates the group action on the spinor representation

of SU(4), we can equivalently study orbifolds of the above form by changing to a complex

basis and considering the induced action on the vector representation of SO(6).

We define subgroups of Γ given triplets (i, j, k) drawn from {i, j, k} = {1, 2, 3}. Given

this labelling, we let Hij ⊂ Γ denote the three subgroups of order gk = gcd(N, vk), i.e., we

have

Hij
∼= Zgk ⊂ ZN , (A.3)

which is invariant under interchange of indices: Hij = Hji. Further, let Hk ⊂ Γ denote the

three subgroups of order gij = gcd(N, vi, vj), i.e., we have

Hk
∼= Zgij ⊂ ZN . (A.4)

We remark that the subgroups Hij and Hk are not necessarily distinct subgroups of ZN .

Furthermore, there are natural subgroup relations

Hk ⊆ Hik = Hki , (A.5)

and faithfulness of the action implies gcd(g1, g2, g3) = 1. Finally, let H = 〈Hij , Hk〉 denote

the subgroup generated by all of these subgroups and

H(1) = 〈Hk〉 ∼= H1 ×H2 ×H3 (A.6)

where the isomorphism follows from the gij being pairwise coprime by our faithfulness as-

sumption.

These subgroups have various geometric interpretations within the asymptotic boundary
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of X = C3/Γ which is induced from some R6/Γs. First, we have via Armstrong’s theorem

π1(∂X) ∼= Γ/H . (A.7)

The subgroups Hij are generated by elements which fix the locus Zi = Zj = 0. Similarly, the

Hk are generated by elements which fix the locus Zk = 0. The latter results in codimension

2 singularities at infinity with the model C/Hk, and there is a full Sij = S3
ij/(Γ/Hk) worth

of such singularities in ∂X . The model C/Hk is non-trivially fibered over Sij according to

the extension

0 → Hk → Γ → Γ/Hk → 0 . (A.8)

Similar comments hold for codimension 4 singularities associated with Hij supported on

Sij = S1
k/(Γ/Hij).

Given a codimension 2 singularity Sij it may be intersected by other codimension 2

singularities Sjk,Sik or contain codimension 4 singularities Si,Sj. Note that any codimen-

sion 2 singularities always intersect pairwise, so given any codimension 2 locus the subgroup

HSk
⊂ Γ generated by elements that fix some element of the associated S3

ij contains H(1).

Further, we have contributions from codimension 4 structures, overall resulting in

HSk
= 〈H(1), Hik, Hjk〉 . (A.9)

We can characterize HSk
conversely by noting that the only elements with fixed points not

contributing to it are

Hij/〈Hi, Hj〉 (A.10)

which is associated with the codimension 4 singularity linking Sk in ∂X . The quotient

Hij/〈Hi, Hj〉 is precisely associated with those elements which have fixed point only along

S1
k , and which are not associated with codimension 4 structures along S3

ik and S3
jk which

intersect in S1
k . Therefore,

HSk
∼= Zℓk , ℓk = lcm(gi, gj) . (A.11)

Toric geometry suggests a simple presentation of the above data. First, note that S5

admits a projection to a triangle ∆ cut out by |Z1|
2+ |Z2|

2+ |Z3|
2 = 1 which is a hyperplane

in the positive octant R3
≥0. The fibers projecting onto the interior of ∆ are T 3, the fibers

projecting onto the edge |Zk| = 0 are T 2, and the fibers projecting onto the corner |Zi|, |Zj| =

0 are S1. The corners lift to circles, and the edges lift to 3-spheres.

The projection to ∆ factors through the quotient by Γ and we obtain a similar fibration

structure for S5/Γ → ∆. The corners lift to S1/(Γ/Hij) and the edges lift to S3/(Γ/Hk).

As such, we can represent the full orbifold structure of S5/Γ by labelling the triangle base

∆ as in figure 19. Empirically, then, we find equation (2.25).
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(i) (ii)

Z2, Z3 = 0

Z1, Z2 = 0 Z3, Z1 = 0

(iii)

Z3 = 0Z2 = 0

Z1 = 0

H23

H12 H31

H3H2

H1

T 3/Γ

S1/(Γ/H23)

S1/(Γ/H12) S1/(Γ/H31)

S3/(Γ/H3)S3/(Γ/H2)

S3/(Γ/H1)

Figure 19: Sketch of the projection S5/Γ → ∆ characterizing the orbifold data of S5/Γ. In
(i) we show the triangle base ∆ and give conventions for cutting out its edges and corners.
In (ii) we associate the subgroups Hk, Hij with these edges and corners. In (iii) we label the
edges and corners by their preimage with respect to the projection S5/Γ → ∆.

(i) (ii)

Z33

Z21 Z35

Z3

Z7

1
T 3/Z1155

S1/Z35

S1/Z55 S1/Z33

S3/Z1155S3/Z385

S3/Z165

Figure 20: We sketch in (i) the subgroups Hk, Hij and in (ii) singular loci for the quotient
S5/Γ with Γ = Z1155 and weights (33, 35, 42).

A.1 Illustrative Example

At this point, we give an example. Consider ZN with N = 3×5×7×11 = 1155 with weights

(v1, v2, v3)hol = (3× 11, 5× 7, 2× 3× 7) = (33, 35, 42). The various subgroups are

H1 = Z7 , H2 = Z3 , H3 = 1 ,

H23 = Z33 , H31 = Z35 , H12 = Z21 ,
(A.12)

and H = ZN . Further, the groups generated by elements with fixed points contained in

various three-spheres associated with codimension 2 singularities are

HS1
= Z105 , HS2

= Z231 , HS3
= Z1155 . (A.13)

Therefore, Γ/H = 1 and

D(1) ∼= Z6
11 ⊕ Z2

5 , (A.14)

which agrees with what we find by computing K using quiver based methods. A summary

of the geometric data is given in figure 20.
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B Worldsheet Considerations

In this Appendix, we will review the worldsheet analysis of tachyon condensation for non-

supersymmetric orbifolds of the form R6/Γ, closely following the treatment given in references

[95, 38], to which we refer the interested reader for further details / explanation. Our main

aim here will be to briefly summarize how to read off the relevant tachyonic operators in the

twisted sectors of the theory.

To set notation, we work in the “holomorphic conventions” of [95,38] where one introduces

local coordinates (Z1, Z2, Z3) on C3. The group action of a ZN orbifold is assumed to act

via a primitive N th root of unity ω on the coordinates as follows:

(Z1, Z2, Z3) 7→ (ωk1Z1, ω
k2Z2, ω

k3Z3), (B.1)

and we denote this as C3/ZN with weights (k1, k2, k3)hol. Observe that at the level of the

worldsheet CFT we can independently treat the orbifolds for the Z1, Z2 and Z3 states

(and their worldsheet superpartners). With this in mind, we get a chiral / anti-chiral ring of

operators for each holomorphic coordinate separately. Following [38], we work in conventions

where the most relevant tachyonic deformation is in the (c1, c2, c3) ring. In this ring, the

GSO action will project out twisted sector operators if the GSO exponent Ej for worldsheet

scalars Xj(σ + 2π) = (−1)EjXj(σ) is even. Here, Ej is specified in this ring via:

Ej =
3∑

i=1

Int

(
jki
N

)
= Int

(
jk2
N

)
+ Int

(
jk3
N

)
, (B.2)

where Int(x) refers to the integer part of x. Alternatively, one could have chose to study

the ring of operators with anti-chiral action on one (or more) of the target space coordinates

(e.g. the (c1, c2, c3) ring). In this setting, the GSO action would project out twisted sector

operators if Ej is odd. Similar conditions follow for the remaining rings of operators.

The twisted sector operators that survive the GSO action are then characterized according

to their R-charge:

Rj =

3∑

i=1

Frac

(
jki
N

)
=

j

N
+ Frac

(
jk2
N

)
+ Frac

(
jk3
N

)
. (B.3)

Here Frac(x) refers to the fractional part of x.28 Each operator is characterized on the

worldsheet as follows:

• Rj < 1: the operator is tachyonic.

• Rj = 1: the operator is marginal.

28Note that if x is positive, then Frac(−x) = 1− Frac(x) and Int(−x) = −1− Int(x).
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• Rj > 1: the operator is irrelevant.

Resolutions of the target space geometry are controlled by the tachyonic and marginal oper-

ators.29 Importantly, a non-supersymmetric orbifold that is compatible with a type II GSO

projection will always have at least one twisted sector tachyon. As such, the endpoint of the

RG-flow associated to tachyon condensation is always either a smooth space, or a singular

space with enhanced supersymmetry where there are non-chiral metric blow-up modes to

resolve the space. Throughout the note, we label tachyonic operators in the j-th twisted

sector as:

Tj =

(
j

N
,Frac

(
jk2
N

)
,Frac

(
jk3
N

))

hol

, (B.4)

where the weights follow the relations in (B.1).

We are now ready to review the resolution of non-supersymmetric orbifolds as driven by

tachyon condensation. We have been studying non-supersymmetric orbifold singularities of

the form R6/ΓSU(4) for ΓSU(4) a finite abelian subgroup of SU(4). As such, we can study the

resolution of the singularity as described by its toric geometry.

The toric fan Σ associated to X is defined by the three edges

α1 = ((N,−k2,−k3)), α2 = ((0, 1, 0)), α3 = ((0, 0, 1)). (B.5)

These vectors αi are the vertices of the simplex ∆ that defines the fan of cones subtended

with the origin.

There is a correspondence between operators in the orbifold theory and points in the

simplex. In particular, an operator Oj with R-charge Rj corresponds to a lattice point

Tj =
(
j,−Int

(
jk2
N

)
,−Int

(
jk3
N

))
. Tachyonic and marginal operators will appear in the toric

variety and subdivide the simplex into subcones. Tachyonic operators will appear in the

interior of ∆, while marginal operators will appear on the boundary. All of the computations

in this paper take the limit where the most tachyonic operator (i.e. the operator with the

lowest R-charge) will condense first, and subdivide ∆ with this operator (see figure 21).30

After condensation, there will be three subcones that are each less singular than the starting

cone. Each of these subcones will correspond to an orbifold singularity of the form R6/Γ

that can be read off by studying the toric fan of the subcone. If any of these subcones still

correspond to a non-supersymmetric orbifold, then there will be a tachyon with renormalized

R-charge to facilitate subsequent blowups.31 The computation of renormalized R-charge is

given in [38].

29Tachyonic operators are a feature of non-supersymmetric orbifold singularities. Supersymmetric config-
urations, such as a Calabi-Yau threefold will only have marginal operators which can be used to resolve the
singularity.

30This procedure does not generalize to cases where there are multiple tachyons with equal R-charges in
the same ring of operators.

31Importantly, it can be shown that if the original non-supersymmetric orbifold R6/Γ admits a type II
GSO projection, then the orbifold singularities after a blow-up will as well.
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α1 α2

α3

T

Figure 21: Depiction of a general simplex ∆ (black lines). The most relevant tachyon, which
is located at T subdivides ∆ into subcones (blue lines), each corresponding to a space of the
form R6/Γ.

To be precise, we label the location of the most relevant tachyon by T . Then, the original

cone, which is given by C[α1, α2, α3], is divided into three subcones: C[T, α1, α2], C[T, α2, α3],

and C[T, α3, α1].

The data of a toric variety can also be encoded as the ground states of a gauged lin-

ear sigma model (GLSM) [96]. The GLSM allows one to study the tachyon condensation

throughout the flow instead of just at the endpoints as we have done in this paper.

C More Non-Abelian Examples: Double Twisting

In this appendix we give further examples of non-Abelian orbifolds, generalizing the ideas of

section 4, by taking an additional Abelian twist and considering the geometry

R6/(ZM × ZN × ΓSU(2)) , (C.1)

with Γs = ZM × ZN × ΓSU(2) acting faithfully. Here ΓSU(2) is a finite subgroup of SU(2)

and N,M are odd. We denote by (e1, e2; f1; f2) an ordered basis of the 4 of SU(4). The

orbifolding we consider is

ZM action: (e1, e2, f1, f2) 7→ (ζe1, ζe2, ζ
−2f1, f2)

ZN action: (e1, e2, f1, f3) 7→ (ξe1, ξe2, f1, ξ
−2f2)

ΓSU(2) action: (e1, e2, f1, f3) 7→ (gijej , f1, f2)

(C.2)

where ζ, ξ are a primitive M th, N th root of unity respectively and gij the matrix representa-

tion for an ADE subgroup of SU(2).

We now derive the probe theory for R6/Γs. To begin, we denote by Q the quiver for

the probe theory for R6/ΓSU(2) which comes with its own adjacency matrix for bosons and
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fermions, the latter we denote by AF
qq′. The effect of taking an additional quotient by ZN ,ZM

now amounts to decomposing the bosons and fermions of the probe theory associated with

R6/ΓSU(2). The fermions decompose as

4 → 2⊕ 1⊕ 1 . (C.3)

Further, we need to introduce a total of NM copies of this quiver, denoted as Qij with

i = 1, . . . , N and j = 1, . . . ,M labelling the irreducible representations of ZN × ZM . Next,

we reconnect the nodes following [62] according to the above group action, analogous to our

discussion in section 4. Overall, the adjacency matrix for the fermionic quiver computes to

AF
(q,ij),(q′,i′j′) = AF

q,q′ (δi,i′δj,j′+1 + δi,i′+1δj,j′) + δq,q′ (δi,i′−2δj,j′ + δi,i′δj,j′−2) . (C.4)

With this result in hand, let us consider R6/Γs as a geometric background in IIA as in

section 2. We compute from here the 4D defect group of lines:

D(1) =
(
ZM/g ⊕ ZN/g

)2
⊕ (Zl × ZSU(2))

g−1. (C.5)

Here g = gcd(N,M) and l = lcm(N,M) and ZSU(2) is the center subgroup of the simply

connected Lie group associated with ΓSU(2) via the McKay correspondence.

We turn to give a geometric derivation of this result. To simplify the discussion let us

first consider the case ΓSU(2) = 1, for which the orbifolding is only by ZN × ZM . For this

case, in the obvious notation, we have

AF
(ij);(i′j′) = 2 (δi,i′δj,j+1 + δi,i′+1δj,j′) + δi,i′−2δj,j′ + δi,i′δj,j′−2

D(1) =
(
ZM/g ⊕ ZN/g

)2
⊕ (Zl)

g−1,
(C.6)

which we now discuss in greater detail. Afterwards we will turn the non-Abelian quotient

back on.

First, we observe that while the Abelian actions by ZN ,ZM are fixed point free, there

exist (anti)diagonal subgroups which have codimension 2 and 4 fixed points.

We find one codimension 2 singularity localized at Z1 = 0. For the above phase rotations

to cancel we need to consider the diagonal Zg subgroups generated by ζM/g and ξN/g. This

determines H1
∼= Zdiag

g and this contributes

[
(ZM ⊕ ZN ) /Z

diag
g

]g−1 ∼= Z
g−1
l (C.7)

to the defect group following our general analysis in section 2.

Further, we find one codimension 4 singularity localized at Z2, Z3 = 0. Taking analogous

steps as in the above analysis we find the anti-diagonal subgroup Zdiag
g = H23 to have fixed

points. The subgroup of ZN × ZM generated by all group elements with fixed points is
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therefore H = Zdiag
g ×Zdiag

g and via Armstrong’s theorem we find an additional contribution

to the defect group equal to

[
(ZM ⊕ ZN) /

(
Zdiag
g ⊕ Zdiag

g

)]2
∼=
[
ZM/g ⊕ ZN/g

]2
. (C.8)

Overall, taking the direct sum of (C.7) and (C.8), we find exactly (C.6).

Let us now turn the non-Abelian quotient back on. Note that all of ΓSU(2) fixes a circle of

the bosonic S5 ⊂ R6, which is also fixed by Zdiag
g and that the center subgroup ZSU(2) ⊂ ΓSU(2)

and Zdiag
g can have overlap in the above parametrization in a common subgroup Z, and in this

case the group acting faithfully on the geometry R6 is
[
(Zdiag

g × ZSU(2))/Z
]
× Zl. Consider

the case in which the initial group action is faithful, i.e., Z = 0. In this case our geometric

analysis computes the defect group (C.5) as the codimension 2 locus is quotiented further

by ΓSU(2), in particular, via Armstrong’s theorem, there is no contribution to the homology

portion of the result.

Next, we turn to discuss the non-compactly supported tachyons. For this note first

that ΓSU(2) acts supersymmetrically, therefore, there are now instabilities associated with

singularities arising from this quotient and it will be sufficient to discuss the ones associated

with the quotient of ZN × ZM .

The two subgroups of ZN × ZM which give rise to the codimension 2 and 4 singularities

are Zdiag
g and Zdiag

g respectively. As the ZM action is a subgroup of SU(3), while ZN is not,

we have that tachyons are supported on the singularities associated to both.

The fixed point sets of Zdiag
g and Zdiag

g are disjoint and we can study their decay indepen-

dently of another. This is made explicit by noting that the bosonic geometry R6/(ZN ×ZM ),

due to our choices of weights, can be rewritten into the form

R6/(ZN × ZM ) = (R4 × (R2/Zdiag
g ))/Zl = ((R4/Zdiag

g )× R2)/Z′
l , (C.9)

from which we immediately derive the local geometry for each of the singular loci. More

precisely, the total space can be viewed as a R2/Zdiag
g or R4/Zdiag

g bundle over a R4/Zl

or R2/Z′
l base respectively. Taking the first perspective we can analyze the codimension 2

tachyon, which is then localized in the fiber and decays at infinity via dilaton pulses following

our discussion in section 2. Taking the second perspective we can analyze the codimension

4 tachyon which triggers a toric blowup of the R4/Zdiag
g at infinity, again resolving the fiber.

Away from infinity, at the tip of the cone, these instabilities interact.

Let us highlight the main features of this example. First, the codimension 4 singularities

are not supersymmetric and so the asymptotic geometry changes as a function of time (when

used as IIA background) or scale (when used as IIB background). Second, we clearly see that

given a fixed point free action (in this example start either with ZN or ZM ) which gives rise

to a ‘small’ defect group we expect to drastically enlarge the defect group by any subsequent

quotients, unless we make precise arithmetic choices, e.g., take N,M to be coprime.
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[13] J. J. Heckman, M. Hübner, E. Torres, X. Yu, and H. Y. Zhang, “Top down approach

to topological duality defects,” Phys. Rev. D 108 no. 4, (2023) 046015,

arXiv:2212.09743 [hep-th].

58

http://dx.doi.org/10.1088/1751-8121/aafc81
http://arxiv.org/abs/1805.06467
http://arxiv.org/abs/2202.07683
http://dx.doi.org/10.1007/JHEP02(2015)172
http://arxiv.org/abs/1412.5148
http://arxiv.org/abs/2205.09545
http://arxiv.org/abs/2305.18296
http://arxiv.org/abs/2307.07547
http://arxiv.org/abs/2307.09215
http://arxiv.org/abs/2306.00912
http://arxiv.org/abs/2308.00747
http://dx.doi.org/10.1103/PhysRevLett.130.121601
http://arxiv.org/abs/2208.07373
http://dx.doi.org/10.1002/prop.202200154
http://arxiv.org/abs/2208.07508
http://dx.doi.org/10.1002/prop.202200180
http://arxiv.org/abs/2209.03343
http://dx.doi.org/10.1103/PhysRevD.108.046015
http://arxiv.org/abs/2212.09743


[14] M. Dierigl, J. J. Heckman, M. Montero, and E. Torres, “R7-Branes as Charge

Conjugation Operators,” arXiv:2305.05689 [hep-th].
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