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ABSTRACT 

Full waveform inversion (FWI) is used to reconstruct the physical properties of subsurface 

media which plays an important role in seismic exploration. However, the precision of FWI is 

seriously affected by the absence or inaccuracy of low-frequency information. Therefore, 

reconstructing the low-frequency signals accurately is highly significant in seismic data processing. 

Low-frequency extrapolation of seismic records can be approached as a deep learning regression 

problem. Thus, to obtain low-frequency information from band-limited seismic records, a novel 

network structure called low-frequency extrapolation transformer (LFET) is proposed to construct 

the nonlinear mapping relationship between the data missing low-frequency and low-frequency data 

in a supervised learning approach, which is inspired by the transformer model widely used in natural 

language processing (NLP). We apply multi-head self-attention (MSA) modules to model the 

remote dependencies of seismic data. Based on this, we introduce a shifted window partitioning 

approach to reduce the calculating amount. Due to the field data are not suitable for supervised 

learning, we generate synthetic seismic records using submodels selected from the benchmark 

Marmousi model as training data whose characteristics are similar to that of the field data. A single 

trace of synthetic band-limited seismic data in the time domain is used as the input data, and the 

parameters of LFET are updated based on the errors between the predicted trace and the 

corresponding label. The experimental results on the data generated by different models, different 

wavelets, and different kinds of field marine data demonstrate the feasibility and generalization of 

the proposed method. Furthermore, the proposed method achieves higher accuracy with lower 

computational expense than the traditional CNN method. 



 

INTRODUCTION 

Full waveform inversion (FWI) is a strong technique that reconstructs the subsurface properties 

with high accuracy (Chi et al., 2015; Guitton et al., 2020; Jiao et al., 2015) and can be used widely 

for structural imaging and comprehensive reservoir research (Mora, 1987; Lee and Kim, 2003; 

Warner and Guasch, 2016). The purpose of FWI is to obtain physical parameters from the complex 

seismic waves which are propagated in the subsurface media and collected by receivers distributed 

on the ground. The related parameters that can be calculated by FWI include longitudinal and shear 

waves, viscoelastic parameters, anisotropic parameters, and density (Guan and Tang, 1990; Kwon 

et al., 2015). The process of FWI is to make the synthetic data which is generated by an initial model 

based on prior information to fit the field data using all of the information through multiple iterations. 

However, FWI is a strongly nonlinear problem, low-frequency information in the data and an 

accurate initial model are keys to ensure the convergence and accuracy of the inverted results 

(Tarantola et al., 1986; Skarzynski et al., 2007). Low-frequency information in seismic data has a 

strong penetration ability, which can reduce the scattering and absorption of reflected waves during 

seismic wave propagation, thereby improving interpretation accuracy to the geological bodies with 

strong impedance. Cycle skipping during FWI is caused by the oscillatory nature of seismic data. 

Due to the synthetic seismic data is obtained based on a supposed velocity model, if the traveltime 

differences between waveforms in the same period of the synthetic and recorded data exceeds half 

a period, the FWI process will encounter cycle skipping (Xu et al., 2012; Xie et al., 2013). The low-

frequency components which are insensitive to the traveltime differences because of their long 

wavelengths can provide an accurate large-scale velocity model to mitigate the cycle skipping 

problem (Wei, 2016; Virieux et al., 2017; Marjanović et al., 2019). Therefore, the low-frequency 



 

information contains large-scale underground changes which are important to prevent FWI from 

converging to the local minimum and essential to improving the accuracy of seismic inversion 

(Whitcombe et al., 2007; Virieux et al., 2009). However, due to the field data often contaminated by 

low-frequency noises and the limitation of acquisition equipment, the low-frequency information in 

received seismic data is usually muted or difficult to obtain directly.  

In recent decades, some methods for extrapolating low-frequency data from the data missing 

low-frequency information have been proposed. The inversion scheme from the Laplace domain of 

data to generate an equivalent long-wavelength velocity model is proposed first (Shin and Cha, 

2008). By using the ultra-low frequency (ULF) signal contained in the signal envelope, the velocity 

model with a large scale can be established (Wu et al., 2014). The waveform mode decomposition 

(WMD) method is proposed to reconstruct the low-frequency information of FWI with physics 

meaning to some extent (Hu et al., 2017). Zhang et al. (2017) used blind deconvolution to obtain 

the reflected impulse response which can be convolved with a designed low-frequency wavelet to 

obtain the corresponding low-frequency components. Li et al. (2018) acquired low-frequency 

components by using a nonlinear smoothing operator. Wang et al. (2018) moved the high frequency 

to the low part based on frequency shift theory. However, the low-frequency information 

extrapolated by these methods is often based on a nonlinear transformation of the data missing low 

frequencies, which may not achieve the desired accuracy or introduce extra noises.  

Deep learning has been proven as a strong operator to achieve complex nonlinear mapping. 

With the development of computing device performance, deep learning methods are gradually 

applied in various fields (Hinton et al., 2006; LeCun et al., 2015; Guo et al., 2016; Kamilaris and 

Prenafeta-Boldú, 2018). For example, in the processing phase of seismic data: Cheng et al. (2022) 



 

and Dong et al. (2023) apply deep learning methods to denoising complex seismic records. Zhong 

et al. (2023) realized the simultaneous denoising and reconstruction of seismic records in the 

processing phase of seismic data. Wang et al. (2023) use a transformer for inversion of the velocity 

model. Meanwhile, deep learning methods are gradually sovle many more complex problems in the 

field of seismic (Dong et al., 2022; Dong et al., 2024). In recent years, many low-frequency 

extrapolating methods based on deep learning have been proposed. Similarly, there are some 

methods proposed recently to achieve extrapolating low-frequency information accurately by 

artificial neural networks. Sun and Demanet (2020) constructed a training set based on the 

submodels of the Marmousi velocity model and designed a convolutional neural network (CNN) 

with 1-dimensional (1-D) convolutional blocks. By adopting a trace-to-trace training scheme, the 

effectiveness of the low-frequency signals predicted by the proposed method for the data obtained 

from Marmousi and BP 2004 benchmark models is proved. Luo et al. (2023) attempted a shot-based 

extrapolation and designed a multi-scale network to obtain features in different resolutions. Hu et 

al. (2019) introduced the beat tone information to the original phase data to predict low-frequency 

information from the input data. 

In general, the quality of the training set and the structure of the network determines the fitting 

capability of the network. Here, we refer to the training scheme proposed by Sun and Demanet 

(2020) to feed the low-frequency-missed single trace in the time domain into a deep learning 

network to predict the corresponding low-frequency information. On one hand, the signals in the 

time domain provide a more detailed feature representation. On the other hand, although the 2-

dimensional (2-D) shot gathers contain more features in the spatial domain, using the entire shot as 

input is not conducive to training and prediction due to the high computational cost. Besides, a 



 

sufficiently accurate 1-D prediction would also be spatially accurate.  

In this study, we aim to incorporate the transformer model into the low-frequency extrapolation 

task as a data processing step instead of calculating the low-frequency gradient based on nonlinear 

transformation (Virieux and Operto, 2009; Zhou et al., 2012). Transformer is a novel model for 

building contextual relationships in sequences based on attention mechanisms, which is often used 

for natural language processing (NLP) tasks such as language modeling, language translation, text 

classification, and so on. Following are some reasons why we use a transformer: firstly, CNN models 

use convolutional layers to extract local features, but for long sequences like seismic traces, the 

receptive field needs to be enlarged by increasing the depth (Beltagy et al., 2020; Khan et al., 2022). 

As a deep learning model based on multi-head self-attention (MSA) blocks (Rao et al., 2021; Zhai 

et al., 2022), the transformer delivers greater efficiency by capturing long-distance dependencies 

through global modeling (Wang et al., 2018; Dosovitskiy et al., 2020). Secondly, the lightweight 

research aimed at transformers has made exciting progress (Li et al., 2021; Meng et al., 2022). By 

applying the window partitioning approach to self-attention, the training time and prediction speed 

of a transformer can be close to that of the CNNs (Liang et al., 2021; Liu et al., 2021). Finally, the 

transformer model with a larger depth allows it to fit more complex functions with greater accuracy 

and generalization (Han et al.,2022; Zhang et al., 2022). 

In this work, we obtain submodels from the Marmousi velocity model (Bourgeois et al., 1991), 

and synthetic data sets are obtained by waveform equation modeling based on the acoustic media. 

In general, deep learning methods are represented by combining many different functions to 

approximate ideal complex nonlinear relationships. For the low-frequency data prediction task, our 

purpose is to build a mapping relationship between low-frequency missing seismic data with low-



 

frequency seismic data, while the global modeling capabilities of the transformer make it more 

suitable for processing long sequences like traces. Besides, there are strong correlations between the 

waveforms (amplitude, phase) of band-limited data and low-frequency data in the time domain (Hu 

et al., 2017) Therefore, we adopt a transformer to complete the low-frequency data prediction task. 

On this basis, we apply window-based multi-head self-attention (WMSA) to the transformer to save 

computational costs and reduce the time required for prediction. The transformer is trained on a 

synthetic dataset to learn the mapping relationship between low-frequency data and low-frequency 

missing data. We proved the precision and availability of extrapolated low-frequency information 

to FWI on the SEG/EAGE salt dome model. Besides, the influence of different wavelets and noise 

is also considered. The proposed method is compared to traditional CNN to prove the feasibility 

and generalization by experiments on different benchmark models and field marine data. In addition, 

the proposed method achieves accurate predictions with higher computational efficiency. 

METHODS 

Network Architecture 

A. Multi-head self-attention 

As the core idea of transformers, the self-attention mechanism has a unique advantage in 

dealing with sequences by considering the relations between each element and the other elements. 

Considering the sequence properties of seismic traces in the time domain which indicates the wave 

propagation in the subsurface media, the application of self-attention is a viable method for mapping 

the features between the events in low-frequency information and the band-limited data along the 

whole time axis. The self-attention mechanism calculates the correlation weights of each element in 



 

the sequence with all others. These weights indicate the relationships between the elements, which 

can better obtain the context information of a seismic trace in a long time-axis by modeling the 

remote dependencies. To be specific, as shown in Figure 1, self-attention is achieved in the following 

ways: 

(𝐐, 𝐊, 𝐕) = input × (𝑊𝐐, 𝑊𝐊, 𝑊𝐕), 

Self − attention(𝐐, 𝐊, 𝐕) = softmax(𝐐𝐊T)𝐕,                  (1) 

where 𝑊𝐐, 𝑊𝐊, 𝑊𝐕  are trainable matrices, 𝐐, 𝐊, 𝐕  means linear transformation of the input 

obtained by multiplying by 𝑊𝐐, 𝑊𝐊, 𝑊𝐕 , 𝐊T  means the transpose matrix of 𝐊 . We first 

computed the inner product of 𝐐 and 𝐊T to obtain the correlation coefficient matrix of the data. 

The correlation coefficient matrix contains the correlation index of each two elements. After being 

processed by the softmax function, the correlation indexes are normalized to [0,1] and assigned to 

the linear transformation result 𝐕  to finish the weight updating. From the basis, the MSA 

mechanism achieves to focus on different aspects of information by dividing the input into multiple 

subspaces and calculating them separately, thus improving the representation ability of the model, 

such as: 

Multi − head self − attention(𝐐, 𝐊, 𝐕) = Concat(head1, … , head𝑖, … , headh), 

head𝑖 = softmax(𝐐𝑖𝐊𝑖
T)𝐕𝑖 ,                            (2) 

where 𝑖 means the serial number of attention heads, and the total number of attention heads is h. 

Here, we split 𝐐, 𝐊, 𝐕 h heads on the channel dimension respectively. After calculating the self-

attention of each head, the calculation of all attention heads is combined to get the output. 

B. Low-Frequency Extrapolation Transformer 

As shown in Figure 2(a), a transformer block (TB) consists of an MSA module, a multi-layer 



 

perceptron (MLP) module, and two layer-norm (LN) layers. MLP module is a feedforward neural 

network, which contains an input layer, a hidden layer, and an output layer. The input layer expands 

the number of channels of input data by four times through linear transformation. We apply an 

activation function called Gaussian Error Linear Unit (GeLU) into the hidden layer. Then, the output 

layer recovers the number of channels of data through a linear transformation. MLP introduces 

nonlinear characteristics to the model, thus enhancing the expressiveness of the model (Tolstikhin 

et al., 2021). LN layers normalize the input to ensure its mean is 0 and its variance is 1, thus 

improving the stability and training effect of the model. (Ba et al., 2016).  

Seismic data usually have a long time length, which leads to a large amount of computation. 

Besides, the down-sampling operation will lose the information of traces, thus destroying the 

frequency distribution of the trace. Aimed at this problem, we applied window-based transformer 

blocks (WTB) and shifted window-based transformer blocks (SWTB) to low-frequency prediction 

tasks (depicted in Figures 2(b) and 2(c)). The operation in the WTB can be expressed as: 

𝑋𝑎 = WMSA(LN(𝑋𝑖𝑛)) + 𝑋𝑖𝑛,                         (3) 

𝑋𝑏 = MLP(LN(𝑋𝑎)) + 𝑋𝑎 , 

where 𝑋𝑖𝑛 represents the input of WTB, 𝑋𝑎 and 𝑋𝑏 represents the output of WMSA and MLP. 

In addition, skip connections are adopted to improve the generalization ability of the network. 

As shown in Figure 2(e), WTB divides the trace into several non-overlapping windows, thus 

achieving to reduce the complexity of computing by limiting the calculation of MSA to each window, 

separately. Based on this, SWTBs are adopted to promote the information interaction between 

adjacent windows by moving the windows. To be specific, our network structure is summarized in 

Figure 2(d). Firstly, the input is processed by a convolutional layer to expand the channel from 1 to 



 

64 to obtain more features for learning. Then, these features are treated alternately by WTB and 

SWTB 4 times in total. Noteworthy, the number of heads is set to 8, the size is set to 40, and the 

shift step is set to 20. Finally, the convolutional layer recovers 64 channels into 1 to generate the 

overall network prediction. 

C. Low-Frequency Extrapolation Theory 

In this study, we trained the network to establish a mapping relationship between low-

frequency data and the data missing low-frequency information: 

𝐿̂ = 𝑀(𝐴, 𝜃),                                (4) 

where 𝐿̂  means predicted low-frequency data by the network, 𝐴  means the data missing low-

frequency entering the network, 𝑀 represents the mapping relationship built by the transformer, 

and 𝜃 represents the parameters of the network. Then, the loss function is the mean square error 

(MSE) which is as follows: 

loss(𝜃) =
1

2𝑁
‖𝑀(𝐴𝑗 , 𝜃) − 𝐿𝑗‖,                          (5) 

where 𝑁 means batch size, 𝐴𝑗 and 𝐿𝑗 represent the input of the network and the labeled data, 𝑗 

represents the serial number of the input and the labeled data. The parameters of the network are 

updated by the Adam algorithm, and the updating of parameters is finished when the loss does not 

change significantly. 

D. Construction of Training Datasets 

Transformer models usually require a large amount of data for training. However, low-

frequency information in field data with enough accuracy is rare which makes it hard to support 

supervised learning. Thus, producing plenty of synthetic data that is similar to the field data to 

generate training datasets is necessary. In this part, seventeen submodels were extracted from the 



 

Marmousi velocity model to build the training datasets. Figure 3 shows the selection of 9 submodels 

based on evenly location, and 8 complex submodels selected manually. The shape of each submodel 

measures 32×96 and is interpolated to 128×384 with a grid spacing of 20m. Additionally, a water 

layer with a depth of 100m is added on top. The training datasets were simulated using MATLAB, 

detailed parameters are shown in Table 1. For the input, a Ricker wavelet with a dominant frequency 

of 7Hz is processed by a 10th-order Butterworth high-pass filter with a cut-off frequency of 5Hz was 

used as the source signal. The label was processed by a 10th-order Butterworth low-pass filter with 

a cut-off frequency of 5Hz after being excited by a Ricker wavelet with a dominant frequency of 7Hz. 

The sampling rate and the recording time are set to 0.002s and 2.4s. To collect training datasets, 96 

shots were evenly excited from 0m to 7680m on the surface of the water layer. Additionally, 384 

receivers were placed evenly from 0m to 7680m. The high amplitude of the direct wave is not 

favorable for the convergence of training. To mute the direct wave, we adopted the same 

arrangement of shots and receivers on a water model which has the same size as the marmousi 

model to obtain the pure direct wave. The difference between synthetic models and direct waves is 

the data for training(Sun and Demanet, 2020). 

After seismic modeling, a total number of 17×96×384 traces are obtained. The traces adjacent 

to each other are similar. Therefore, we sample the data with a sampling step of 2 to reduce the 

duplication of data to improve training efficiency. 313344 pairs of traces with a length of 2400 are 

obtained as the training dataset. Because data normalization can promote network convergence, we 

adopted the normalization method proposed by Jin et al (2021) which amplifies weak signals. The 

formulation and inverse operator are as follows: 

𝑇(𝑥) = 𝑠𝑖𝑔𝑛(𝑥)𝑙𝑜𝑔10(|𝑎𝑥| + 1)                        (6) 



 

𝑇−1(𝑦) = 𝑎−1𝑠𝑖𝑔𝑛(𝑦)(10|𝑦| − 1)                       (7) 

where 𝑥 and 𝑦 represent the trace and its transformed result, and 𝑎 is a parameter to control the 

level of boosting. Before the training of the network, both the input data and label data are operated 

by 𝑇(∙). For the test case, seismic records are first divided into traces, and each trace is transformed 

and then input into the network. Finally, these predicted results are then combined into seismic 

records after inverse transformation. 

E. Experimental Environment and Training Parameters  

For the deep learning method, hardware devices have a significant impact on the effectiveness 

of training and processing. In this study, our experimental environment is composed of a CPU (Intel 

Xeon Silver 4210R Processor 13.75M Cache 2.40 GHz), and NVidia GeForce RTX 3090 (24 GB 

RAM). All training and testing are mainly finished based on pytorch (1.10.2). As shown in Table 2, 

the batch size is set to 32. The initial learning rate is set to 10-3 and drops to 0.1 times for every 20 

training epochs, the total of training epochs is 60. 

NUMERICAL EXAMPLES 

This section demonstrates the performance of extrapolated FWI with LFET in four parts. 

Notably, we use U-Net as a CNN method for comparison, which is also performed with the same 

training dataset. The parameters of LFET and U-Net are detailed in Table 3. In the first part, we 

present the capability of LFET and U-Net to predict low frequency (0-5Hz) from band-limited data 

(above 5Hz) on the Marmousi model. In the second part, we compared the generalization of the two 

methods with the salt dome model. Additionally, we leverage the low-frequency data predicted by 

LFET for the salt dome model to perform FWI, validating the utility of the processing result for 



 

FWI applications. Finally, we applied LFET and U-Net to marine seismic streamer recordings and 

ocean bottom cable (OBC) field recordings to verify the effectiveness of the method in actual 

situations. 

Low-Frequency Extrapolation on the Marmousi Model 

To verify the accuracy of extrapolated low frequency, we generate synthetic records based on 

a full-size Marmousi velocity model for testing. Figure 4(a) shows the comparison of the 50th trace 

of processing results in the time domain. The processing results of LFET and U-Net are both close 

to the ground truth, which demonstrates the feasibility of deep learning methods for low-frequency 

extrapolation tasks. Nevertheless, Figures 4 (b) and (c) provide detailed observations of the high 

amplitude area between 0.4 and 1.2s and the weak signal area between 1.2 and 2.4s, respectively 

(highlighted in Figures 4(a) by red boxes). As shown in Figure 4(b), the amplitudes of some early 

arrivals reconstructed by U-Net do not match enough to the ground truth. In addition, the late arrivals 

that are predicted by U-Net have obvious errors (Figure 4(c)). Compared to U-Net, the results 

predicted by LFET are smoother and more in line with the labeled data. Figure 4(d) compares the 

results of the two methods in the frequency domain. There is almost no information in the frequency 

band of 0-2 Hz band in the input high-frequency component (black line), thus limiting the 

processing accuracy of FWI. It can be observed that U-Net has errors in low-frequency bands. In 

contrast, the LFET fits the frequency spectrum of the ground truth extremely well, which proves 

that the LFET is substantially more feasible and more accurate. In summary, we compared the 

predictions of two methods applied to synthetic records with missing low frequencies in the 

Marmousi velocity model in the time and frequency domain. The result demonstrates that LFET has 

strong learning ability and achieves accuracy beyond the conventional CNN-based methods. 



 

Generalization Ability Testing 

In this part, a SEG/EAGE salt dome model is adopted to verify the generalization ability of the 

proposed method in the case of different models. Different from the Marmousi model, there is a salt 

body in the middle of the velocity model (marked in the red box), which increases the probability 

of falling into local minima in the inversion (Figure 5).  

Figure 6 illustrates the processing results of single-shot in the time domain. Figures 6(a) and 

6(b) depict the high-frequency component (above 5Hz) and low-frequency component (0-5Hz) of 

synthetic salt dome model data, which are the input and labeled data for the network. In Figure 6(c), 

we observe the predicted low frequency by U-Net, while Figure 6(d) presents the predicted low 

frequency using LFET. U-Net demonstrates proficiency in reconstructing early arrivals, but the late 

arrivals that have low amplitude are erroneous (indicated by red arrows). In contrast, LFET produces 

low-frequency data with a clearer and more continuous representation of weak signals, aligning 

more closely with the true low-frequency data. For the aspect of amplitude, LFET preserves it better 

and maintains the same values as the true low-frequency component. 

The analysis of results in the f-k domain for both methods is presented in Figure 7. In Figure 

7(a), the input data contains little information below 5Hz, which is unsuitable for direct application 

in FWI. Figure 7(b) illustrates the f-k spectrum for the true low-frequency data (0-5 Hz). As shown 

in Figure 7(c), U-Net recovers an approximate frequency band of the low-frequency information. 

However, artifacts are discernible in its f-k spectrum. In contrast, LFET (Figure 7(d)) exhibits more 

accurate predictions of low-frequency details, aligning closely with the true low-frequency 

component. Compared to U-Net, LFET demonstrates superior accuracy and amplitude preservation. 

In summary, we utilize a SEG/EAGE salt dome model to assess the generalization of LFET for 



 

different models. The analysis consists of both the time domain and f-k domain for the results of a 

single shot. The results of LFET fit the true data better, demonstrating that LFET has more powerful 

modeling capabilities and that generalization for different models, thus obtaining meaningful low-

frequency components from the high-frequency component of the data. 

 To assess the availability of the reconstructed low-frequency information, we employ the 

predicted low-frequency results obtained from LFET in FWI. Figure 8(a) shows the resulting model 

starting from the linear initial model, which is far from the true velocity model (Figure 5). 

Subsequently, Figure 8(b) shows the results of FWI starting from the linear initial model with the 

data above 5Hz. It can be observed that due to the absence of low-frequency data, the inversion 

results have an obvious cycle-skipping phenomenon, resulting in the missing of a large amount of 

physical meaning of the information. Figure 8(c) displays the resulting model starting from the 

linear initial model and utilizing the low-frequency data extrapolated by LFET. This model 

effectively captures the low-wavenumber information of the salt dome, illustrating the reliability of 

low-frequency information obtained by LFET. However, it still has a slight cycle-skipping 

phenomenon. Finally, we used the high-frequency data for inversion which starts from the low-

wavenumber model constructed from the low frequencies extrapolated by LFET. As depicted in 

Figure 8(d), the resulting model is clearer and more matched with the true velocity model, 

demonstrating that the cycle-skipping phenomenon has been alleviated. In summary, we adopt the 

low-frequency data reconstructed by LFET to FWI to verify the availability of LFET. The results 

show that LFET can provide accurate low-frequency information to build a suitable low-

wavenumber velocity model to relieve the cycle skipping phenomenon in FWI. 

Low-Frequency Extrapolation on Field Records 



 

In this part, we assess the practicality of the proposed method by applying it to field records. 

To be specific, a field marine streamer record and an OBC field record are processed (Figures 9(a) 

and 10(a)). Compared to synthetic records, field records have obvious differences and are more 

complex, thus increasing the difficulty of prediction. 

We used a shot of field marine streamer data to test the practical application of our method. 

The sampling interval is 2 ms, and the sampling length is 4800 points. The shot consists of 150 

traces with a trace spacing of 12.5 m. Different from our training dataset, the dominant frequency 

of the field marine seismic streamer data is 16 Hz. Therefore, we filtered the field records to obtain 

more suitable data for model processing. Specifically, the band-limited data (5-8 Hz) is used as input. 

Figure 9(b) shows the low-frequency (0-5Hz) component of the field marine streamer data, which 

contains some continuous events and valid information with physical meaning. Figure 9(c) shows 

the prediction of U-Net. Although U-Net can predict early arrivals effectively, the part about late 

arrivals is blurry and the amplitude of the weak signal is much different from the actual low-

frequency component (indicated by the green arrows). Figure 9(d) shows the processing result of 

LFET. A prominent promotion has been made to the low-frequency component, such as more 

balanced energy, and more consistent amplitude. It is worth noting that the proposed method 

achieves more continuous events than the true low-frequency component in some regions (marked 

by the yellow boxes), which demonstrates the application significance of the proposed method in 

field data. 

Furthermore, we adopted OBC field data to validate the generality of the proposed method. 

The sampling interval is 2 ms and the sampling length is 4800 points. The shot consists of 220 traces 

with a trace spacing of 12.5 m. The low-frequency (0-5Hz) component of the OBC field data is 



 

shown in Figure 10(b). Due to equipment limitations, the low-frequency component lacked 

meaningful information, leading to a cycle-skipping phenomenon. Similar to the approach with 

marine streamer data, the band-limited OBC data (5-8Hz) is fed into the network. The processing 

result of U-Net is shown in Figure. 10(c), the low-frequency information at early arrivals lacks 

continuity and the energy is unbalanced at late arrivals with tiny amplitude. Conversely, LFET 

(depicted in Figure 10(d)) exhibits a more continuous representation of early arrivals and late 

arrivals are clearer. To sum up, these results demonstrate the feasibility of LFET for the low-

frequency extrapolation of field data. Meanwhile, our method exhibits superior effectiveness and 

accuracy compared to the traditional CNN method. 

DISCUSSION 

In this section, we further analyze the generalization of the proposed method based on more 

complex cases. Firstly, we construct a Marmousi model excited by a Ricker wavelet with a phase 

rotation to investigate the performance of the proposed method under different wavelet conditions. 

Secondly, we analyze the impact of noise on the prediction results. Thirdly, we compare the 

computational and efficiency of LFET and U-Net. Meanwhile, structure similarity index measure 

(SSIM) and root mean square error (RMSE) are used as quantitative indicators of the performance. 

Finally, we research the effect of transformer parameters on both efficiency and effectiveness of the 

proposed method. 

Condition of Phase Rotation 

To check the extrapolation capability of the LFET in the context of data excited by other 

wavelets, we train the LFET with the aforementioned training set but we test it with a phase-rotated 



 

wavelet. To be specific, we employed a seismic source signal by rotating the phase of the Ricker 

wavelet at a 135° angle to excite the Marmousi model for testing. Figures 11(a) and 11(b) depict the 

band-limited (above 5Hz) data and true low-frequency data, respectively. Figure 11(c) illustrates 

that the result of U-Net roughly matches the true data, but it still has limitations in restoring weak 

signals (indicated by the green arrows), which reduces the accuracy of FWI. In contrast, LFET is 

more fit to the true low-frequency data (Figure 11(d)). In particular, the weak signal reconstructed 

by LFET is closer to the true data and clearer (indicated by the yellow arrows), which shows that 

LFET achieves higher accuracy. To sum up, deep learning methods still perform well in the case of 

different wavelets demonstrating their generalization. In addition, LFET exhibits an accuracy 

advantage in reconstructing weak signals, thereby affirming its superior modeling capabilities. 

Robustness analysis 

In this section, we evaluate the robustness of our proposed network using the Marmousi model 

in the presence of additive noise. To quantify the impact of noise on the test, we introduced 5% 

Gaussian noise to the synthetic records to construct the noisy training sets. Subsequently, the noisy 

records are filtered (5-15Hz) and normalized to generate the noise-containing training set. Figures 

12(a), 12(b), and 12(c) present the original data, noisy data, and true low-frequency data for testing, 

respectively. It is evident that the introduced noise significantly affects the ability of the network to 

extract meaningful information. As depicted in Figure 12(d), the prediction of U-Net still exhibits 

noticeable noise, which is unfavorable for the identification of weak signals in late arrivals. 

Conversely, LFET performs effectively even in the presence of noise interference and obtains 

superior results compared to U-Net (Figure 12(e)). In conclusion, the robustness of deep learning 

methods against noise interference can be enhanced by introducing noise to the training set. Even 



 

though noise hurts the accuracy of extrapolated low frequencies to some extent, the prediction of 

deep-learning methods has a degree of robustness. Moreover, LFET exhibits superior anti-noise 

capabilities compared to U-Net when both models are trained on the same dataset, which 

emphasizes the effectiveness and robustness of LFET in processing noisy conditions. 

Computational Efficiency and Quantitative Comparisons 

For deep learning methods, assessing computational cost is crucial for determining feasibility. 

Table 3 provides a comparative analysis of the training time and processing time for LFET and U-

Net. Meanwhile, SSIM and RMSE of single-shot processing are also considered quantitative indices. 

SSIM and RMSE are defined by the following formulas: 

𝑅𝑀𝑆𝐸 = √
1

𝑋𝑌
∑ ∑ (𝑙(𝑚, 𝑛) − 𝑝(𝑚, 𝑛)),𝑌

𝑛=1
𝑋
𝑚=1                    (8) 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑙𝜇𝑝+𝐶1)(2𝜎𝑙𝑝+𝐶2)

(𝜇𝑙
2+𝜇𝑝

2+𝐶1)(𝜎𝑙
2+𝜎𝑝

2+𝐶2)
,                        (9) 

where 𝑋  and 𝑌  represent trace number and time samples of the seismic record. 𝑙(𝑚, 𝑛)  and 

𝑝(𝑚, 𝑛) denote the (𝑚, 𝑛)th point of labeled data and prediction, respectively. In formula (8), 𝑙 

and 𝑝 present a single shot of the true low-frequency component and processing results, 𝜇• and 

𝜎•  present the mean and standard deviation of • , 𝜎𝑙𝑝  presents the covariance between 𝑙  and 

𝑝 . 𝐶1  and 𝐶2  are constants used to maintain stability. And 𝐶1 = (𝑘1𝐿)2  𝐶2 = (𝑘2𝐿)2 , where 

𝑘1   0.01, 𝑘2   0.03, 𝐿  255 presents the dynamic range of the images. In general, the RMSE 

reflects the disparity between the predicted result and the true value, while SSIM reflects the degree 

of similarity between the aforementioned pair. Specifically, when RMSE approaches 0 or SSIM 

reaches 1, it indicates a higher level of accuracy in the predictive model. 

To eliminate the influence of anomalous data in the test, we selected 50 records containing 

near-offset and far-offset for testing. The final index was determined by calculating the average 



 

value. Table 4 displays the training and processing times for LFET, which amount to 3.16h and 

18.83s, respectively. In comparison, U-Net requires longer training and processing times, registering 

at 3.54h and 23.37s, respectively. It is noteworthy that both the training time and processing time of 

LFET are shorter than those of U-Net, reflecting the computational efficiency advantages of LFET 

over U-Net. Meanwhile, the SSIM and RMSE of LFET are 0.8912 and 0.0146, respectively. In 

contrast, the SSIM and RMSE of U-Net are 0.5897 and 0.1217, respectively, falling short of the 

corresponding indexes for LFET. In summary, the LFET achieves higher processing accuracy in 

comparison to traditional CNN methods. It is worth noting that benefits from its utilization of a 

window-based attention approach, LFET achieves a heightened accuracy while maintaining higher 

computational efficiency. In summary, we prove that LFET not only achieves superior processing 

accuracy in contrast to traditional CNN methods but also demonstrates enhanced computational 

efficiency, leveraging the advantages of the window-based attention approach. 

Module Availability Analysis 

In this part, we investigate the impact of LFET parameters, including the number of transformer 

modules, attention heads, and window sizes, on computational cost and effectiveness. Table 5 

presents the relevant computational parameters and evaluation indicators. For the number of 

transformer modules, the reduction of them will decrease the complexity of LFET, thus reducing 

the prediction accuracy. Conversely, an increase in transformer modules introduces more parameters, 

leading to greater training difficulties and decreased prediction accuracy. As shown in Table 5, the 

processing time and training time of LFET with 4 transformer layers are 12.67s and 1.43h, while 

the 20-layer configuration requires 32.69s and 6.38h, respectively. The SSIM values for 4 and 20 

layers are 0.8894 and 0.8753, with corresponding RMSE values of 0.0193 and 0.0179, indicating 



 

that more or fewer layers are not effective in improving accuracy. Therefore, it is crucial to select 

the appropriate number of layers for the deep-learning method to avoid both excessive and 

insufficient amounts. For the number of attention heads, it has a significant effect on training time 

and a minor effect on processing time. Multiple attention heads in MSA contribute to increased 

computational complexity during training, resulting in longer training times. Meanwhile, more 

attention heads may make the information too scattered for the network to pick up attention 

information, while less attention heads may limit the network to obtain various information. As 

illustrated in Table 5, LFET with 4 attention heads shows processing and training times of 15.40s 

and 2.28h, whereas the configuration with 16 attention heads requires 15.66s and 4.43h. The SSIM 

values for 4 and 16 attention heads are 0.8253 and 0.8896, with corresponding RMSE values of 

0.0234 and 0.0197. Notably, both more and fewer attention heads than 8 adversely affect prediction 

accuracy, which proves the importance of fine-tuning this parameter. Finally, the processing time 

and training time are both affected by the size of the window. WMSA and SWMSA compute self-

attention within local windows to reduce the parameters of the network, thus decreasing the time 

required for training and processing. Meanwhile, too large attention windows may extract 

unnecessary information, while a window that is too small may limit the network's learning ability. 

Here, LFET with a window size of 10 exhibits processing and training times of 15.23s and 3.16h, 

whereas the window size of 80 requires 17.65s and 3.41h, which proves that the larger window size 

results in more computation. Meanwhile, the SSIMs of LFET with window sizes of 10 and 80 are 

0.8776 and 0.8725, while their RMSEs are 0.0186 and 0.0190, respectively. Both of them have 

lower accuracy than the LFET with the window size of 40, which proves that the window size of 40 

is an appropriate parameter for LFET. In summary, our thorough analysis examines the impact of 



 

various network parameters on computational cost and performance, emphasizing the importance 

of parameter selection. Through experimentation, we identified the optimal combination of 

parameters as 8 layers, 8 attention heads, and a window size of 40, thus obtaining the highest 

prediction accuracy. 

CONCLUSION 

Deep learning is applied to extrapolate low-frequency information to overcome the cycle-

skipping problem in FWI. In this study, we propose a transformer-based network named LFET 

which precisely extracts global features from band-limited data to predict the associated low-

frequency data. The training datasets for LFET are built by seismic modeling on the submodels 

selected from the Marmousi velocity model. The trained model shows its generalization on the data 

generated on the salt-dome model and generated by a phase-rotated wavelet. Meanwhile, the trained 

LFET is also robust in processing noisy records to some extent by retraining the model with noisy 

training datasets. The results of FWI show that the high-precision prediction of LFET effectively 

alleviates the cycle-skipping problem. The successful application of the trained LFET on the field 

marine data and OBC field data demonstrates the strong generalization of the proposed method. 

Besides, LFET has faster processing speeds and shorter training times due to the window-based 

attention approach. The design of LFET based on a transformer provides novel ideas for low-

frequency extrapolation of seismic data, which are typical sequences in the time domain. 
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Table 3. Network parameters of LFET and U-Net. 

 

 

 

 

 

 

 

Parameters Setting 

Seismic wavelet Ricker 

Dominant frequency 

Trace interval 

Grid space 

7Hz 

20m 

20m 

Sampling interval 

Total recording time 

0.002s 

4.8s 

Wave velocity 1500-4000m/s 

Wave equation Acoustic 

Parameters LFET 

Optimizer Adam 

Trace length 2400 

Batch size 32 

Epoch number 60 

Learning rate range [10−3,10−5] 

Learning rate change interval 20 

Parameters LFET U-Net 

Convolution layer 2 27 

Transformer block 8 0 

Number of attention heads 8 - 

Window size 40 - 

Shift step 20 - 



 

Table 4. Computational efficiency and quantitative comparisons. 

 

 

 

 

 

 

 

 

Table 5. Quantitative data analysis of different methods. 

Module usage Processing time (s) Training time (h) RMSE SSIM 

LFET (8 transformer layers) 15.60 3.17 0.0146 0.8912 

LFET (4 transformer layers) 12.67 1.43 0.0193 0.8894 

LFET (20 transformer layers) 32.69 6.38 0.0179 0.8753 

LFET (4 attention heads) 15.40 2.28 0.0234 0.8253 

LFET (16 attention heads) 15.66 4.43 0.0197 0.8896 

LFET (window size=10) 15.23 3.16 0.0186 0.8776 

LFET (window size=80) 17.65 3.41 0.0190 0.8725 

 

 

 

Original record U-Net LFET 

Processing time (s) 23.37 15.60 

Training time (hour) 3.54 3.17 

RMSE 0.1217 0.0146 

SSIM 0.5897 0.8912 


