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RECTANGULOTOPES

JEAN CARDINAL AND VINCENT PILAUD

ABSTRACT. Rectangulations are decompositions of a square into finitely many axis-aligned rect-
angles. We describe realizations of (n — 1)-dimensional polytopes associated with two combi-
natorial families of rectangulations composed of n rectangles. They are defined as quotientopes
of natural lattice congruences on the weak Bruhat order on permutations in &,, and their
skeleta are flip graphs on rectangulations. We give simple vertex and facet descriptions of these
polytopes, in particular elementary formulas for computing the coordinates of the vertex corre-
sponding to each rectangulation, in the spirit of J.-L. Loday’s realization of the associahedron.
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1. INTRODUCTION

1.1. Polytopes of permutations, triangulations, and rectangulations. The encoding of combinato-
rial objects in the form of a polyhedral structure is a recurrent theme in geometric and algebraic
combinatorics. An elementary yet striking example of this idea is the permutahedron P(n). It is

the (n — 1)-dimensional polytope defined either as the convex hull of the points ", €l 77 L. e, for

")

with the halfspaces given by >, z; > (lI |2+ 1) for all nonempty proper subsets @ # I C [n]. Its
skeleton is the Cayley graph of the symmetric group for the generators consisting of adjacent
transpositions. See Figure 1 (left) for an illustration when n = 4. The many generalizations
and extensions of the permutahedra gave rise to a flourishing theory of deformed permutahe-
dra [Pos09, PRW08, ACEP20, AA23] (also called generalized permutahedra, or polymatroids).

Among those, the associahedron is a classical and ubiquitous polytope, first defined by D. Tama-
ri [Tamb1] and by J. Stasheff [Sta63] in a topological context. It has since then been identified
as a fundamental object in many other areas of mathematics, including operads, cluster alge-
bras, combinatorial Hopf algebras, and physics (see for instance the recent survey from V. Pi-
laud, F. Santos and G. Ziegler [PSZ23] and the references therein). It was first thought of as
a purely combinatorial object, before various families of geometric realizations were shown to
exist [Lee89, CFZ02, Lod04, CSZ15, HLO7]. The face lattice of the (n — 1)-dimensional associ-
ahedron is the reverse inclusion poset of non-intersecting diagonals of a convex (n + 3)-gon. In
particular, its skeleton is the flip graph on triangulations of the (n + 3)-gon, or equivalently —
via a standard Catalan bijection — the rotation graph on binary trees with n internal nodes, the
structure of which has been the subject of many investigations, with applications in computer
science [STTS88, Pould]. In 2004, J.-L. Loday published the following elegant description of the
associahedron [Lod04], giving a recipe for computing the coordinates of a vertex corresponding to
a given binary tree. We note that the inequality description of the same polytope was actually
provided in 1993 by S. Shnider and S. Sternberg [SS93], but Loday’s vertex description largely
popularized this realization. See Figure 1 (right) for an illustration when n = 4.

all permutations o € &,,, or as the intersection of the hyperplane of R™ given by >, el Ti = (

Theorem 1. The associahedron A(n) is realized by:

(i) the convex hull of the points
Z (.l e
]

i€[n
for all binary trees T with n internal nodes, where {1 and vl denote the number of leaves in

the left and right subtrees of i in T, see [Lod04],
(i) the intersection of the hyperplane defined by Zie[n] T; = (”;rl) with the halfspaces defined by

Z‘Ti < #A{J interval of [n] | INJ # &}

iel
for all intervals @ # I C [n], see [SS93].

A natural object associated with the associahedron is the Tamari lattice, whose cover graph is
isomorphic to the skeleton of the associahedron [Tam62, MHPS12]. The Tamari lattice is known
to be the quotient of the weak Bruhat order by a lattice congruence called the sylvester congru-
ence [LR98, HNT05]. Answering a question of N. Reading [Rea05], V. Pilaud and F. Santos [PS19]
proved that with every lattice congruence of the weak Bruhat order, one can associate a polytope
whose skeleton is the cover graph of the lattice quotient, and more precisely whose normal fan is
the quotient fan defined by gluing the cones of the braid fan (the type A Coxeter arrangement)
that belong to the same congruence class. Those polytopes are deformed permutahedra that they
called quotientopes. The associahedron is therefore the quotientope of the sylvester congruence of
the weak Bruhat order whose classes are in bijection with triangulations.

The goal of this paper is to describe the geometry of the quotientopes for two particular con-
gruences of the weak Bruhat order whose classes are in bijection with equivalence classes of rect-
angulations, defined as decompositions of a square into rectangles.
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FIGURE 1. The permutahedron P(4) (left) and the associahedron A(4) (right). [PS19, Fig. 1]
& [PPR23, Fig. 5|

1.2. Weak and strong rectangulations. The combinatorics of rectangulations has been studied for
nearly two decades [ABP06, FFNO11, LR12, Real2, ABBM™13, Hel4, CSS18, MM23, FNS24,
AB24, ACFF24]. In fact, several combinatorial ideas can even be traced back to the problem of
“squaring the square” studied since the 1930s [Abe30, Abe32, Spr39, BSST40]. Also, some results
were initially motivated by applications to the design of floorplans for very large scale integrated
circuits, and published in electrical engineering journals, see for instance Z. C. Shen and C. C. N.
Chu [SC03], and R. Fujimaki, Y. Inoue, and T. Takahashi [FT07, TF08, ITF09, FIT09].

We define a rectangulation of size n as a decomposition of the square into n axis-parallel
rectangles with disjoint interiors. The segments of a rectangulation are the inclusionwise maximal
line segments composed of edges of the rectangles, excluding the edges of the decomposed square.
We suppose throughout that the rectangulations are generic, in the sense that no four rectangles
have a common vertex.

In order to focus on the combinatorial structure of a rectangulation, we recall two equivalence
relations between rectangulations (see for instance [ACFF24] and references therein). We say that
a rectangle r is above another rectangle s (and s is below r) if either the bottom edge of r lies in the
same segment as the top edge of s, or if r is above another rectangle ¢t that is above s. We define
on the left of and on the right of similarly. Two rectangulations are said to be weakly equivalent
if there exists a bijection between their rectangles that preserves the above—below and left-right
relations between the rectangles. Weak equivalence classes of rectangulations will be referred to
as weak rectangulations. (Note that this is a slight, yet convenient abuse of terminology, as weak
rectangulations are really sets of rectangulations.) On the other hand, two rectangulations are said
to be strongly equivalent when there exists a bijection between their rectangles that not only pre-
serves the above—below and left—right relations, but also the adjacency relation between rectangles.
We will naturally refer to strong equivalence classes of rectangulations as strong rectangulations.

In order to make sense of these definitions, it is useful to consider wall slides in a rectangula-
tion: the local changes consisting of shifting a horizontal segment vertically, or a vertical segment
horizontally, while extending or shortening the incident segments accordingly. Performing a wall
slide in a rectangulation R leads to a rectangulation that is always weakly equivalent to R. How-
ever, if the wall slide changes the adjacency relation between the rectangles, then the resulting
rectangulation is not strongly equivalent to R anymore. A diagonal rectangulation is a rectan-
gulation in which every rectangle intersects the top—left to bottom-right diagonal of the square.
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FIGURE 2. Four rectangulations. The rightmost rectangulation is not weakly equivalent to any
other. The leftmost three are weakly equivalent, but only the first two are strongly equivalent.
Only the third one is diagonal.

Examples of rectangulations are given in Figure 2. It is simple to check that every weak rect-
angulation has a diagonal representative, hence weak rectangulations can also be thought of as
diagonal rectangulations.

1.3. Weak and strong rectangulotopes. Weak and strong rectangulations of size n have been shown
to define congruences of the weak Bruhat order on G,,.

The weak rectangulation congruence =< (or Baxter congruence) was first explicitly studied by
S. Law and N. Reading [LR12] and revisited in [Real5, Thm. 1.1 & Exm. 4.10] in terms of arc
diagrams. Its classes are in bijection with weak rectangulations, but also with Baxter permuta-
tions [CGHKT78, Mal79], with twin binary trees [DG96, Gir12], and with many other combinatorial
families [FFNO11]. The corresponding quotientopes will be referred to as the weak rectangulo-
topes and denoted by WR(n). We note that weak rectangulotopes were already constructed as
Minkowski sums of two opposite associahedra in [LR12], even before the general constructions
of quotientopes of [PS19, PPR23]. For n = 4, the weak rectangulation lattice is represented in
Figure 3 and the weak rectangulotope is represented in Figure 4.

The strong rectangulation congruence = was studied by N. Reading [Real2], revisited in [Real5,
Thm. 1.2 & Exm. 4.11] in terms of arc diagrams, and studied more recently by E. Meehan [Meel7],
and A. Asinowski, J. Cardinal, S. Felsner, and E. Fusy [ACFF24]. Its classes are in bijection
with strong rectangulations. The corresponding quotientopes will be referred to as the strong
rectangulotopes and denoted by $R(n). Strong rectangulotopes can be obtained as quotien-
topes [PS19, PPR23] for the strong rectangulation congruence. For n = 4, the strong rectangula-
tion lattice is represented in Figure 5 and the strong rectangulotope is represented in Figure 6.

An important motivation for studying these quotientopes is the informative structure of their
skeleta, which are flip graphs on the rectangulations. A flip is a local, reversible change in the
structure of the rectangulation. Flips in rectangulations come in three flavors:

e simple flips replace a vertical segment incident to exactly two rectangles by a horizontal
segment, and vice-versa,

e pivoting flips transform a pair of adjacent rectangles whose union is L-shaped, changing a
left—right pair into an above—below pair, and vice-versa,

e wall slide flips are wall slides that modify the adjacency of the rectangles, removing exactly
one adjacency and adding exactly one. These are only relevant in strong rectangulations.

The various types of flips are illustrated in Figure 7. We refer to [LR12, CSS18, Meel7, ACFF24]
for detailed descriptions of the flip graphs on both weak and strong rectangulations. Just like
associahedra encode the rotation graphs on binary trees, the rectangulotopes directly yield flip
graphs on rectangulations. Namely, the skeleton of WIRR(n) (resp. of SR (n)) is isomorphic to the
flip graph on weak (resp. strong) rectangulations of size n.

Rectangulotopes enrich the family of natural quotientopes, alongside associahedra, permutree-
hedra [PP18], certain brick polytopes [PS12, PS15, Pil18], and certain graphical zonotopes [Pil18,
Pil22], providing instructive examples of application of the theory of lattice congruences to con-
crete combinatorial objects. Our main results are elementary vertex and facet descriptions of both
families of quotientopes. For vertices, we describe the coordinates of the vertex corresponding
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FiGURE 3. The weak rectangulation lattice.

FIGURE 4. The weak rectangulotope WIR(4).
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FIGURE 5. The strong rectangulation lattice.

FIGURE 6. The strong rectangulotope SR (4).
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(c) Wall slide flips.

F1GURE 7. The three types of flips between rectangulations. The flips are possible only if the grey
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FIGURE 8. A rectangulation R (left) and its pair of binary trees S(R) and T(R) (right). Example

from [ACFF24].
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FIGURE 9. A diagonal rectangulation (left) and its pair of twin binary trees (right). Example

from [ACFF24].
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to a weak or strong rectangulation with simple product formulas in the spirit of J.-L. Loday’s
realization in Theorem 1 (i). As mentioned in [PSZ23], there is no such formula for arbitrary
quotientopes, which makes rectangulotopes join the restricted club of Loday type quotientopes,
together with associahedra and permutreehedra [PP18]. For facets, we show that both weak and
strong rectangulotopes have 2" — 2 facets (the maximal possible number of facets of a deformed
permutahedron), and provide simple formulas for the right hand side of the inequality correspond-
ing to a given proper nonempty subset of [n]. We now give the necessary definitions for precisely
stating these vertex and facet descriptions of the weak and strong rectangulotopes.

1.4. Source and target trees of a rectangulation. Fix a rectangulation R of size n, and consider
the directed graph D(R) whose vertices are all vertices of R, and whose edges are obtained as
follows. For each rectangle r of R, we include in D(R) four edges joining the vertices of r,
where the horizontal edges are oriented from left to right, and the vertical edges are oriented
from bottom to top. Hence, in the rectangle r, its bottom-left corner is its source s(r), while
its top-right corner is its target ¢(r). Note that since R is generic, the sources {s(r) | r € R}
and the targets {¢t(r) | » € R} are disjoint. The source tree S(R) (resp. target tree T(R)) is the
subgraph of D(R) induced by the sources {s(r) | » € R} (resp. by the targets {t(r) | r € R}). It
is not difficult to check that the source tree S(R) (resp. target tree T'(R)) is a binary tree, rooted
at the bottom—left (resp. top—right) corner of R, and oriented from (resp. towards) its root.

We complete each node of S(R) and T'(R) with a vertical (resp. horizontal) leaf if it has no
vertical (resp. horizontal) child. An example is given in Figure 8. If the rectangulation R is
diagonal, we retrieve the well-studied pair of twin binary trees [DG96, Girl2], see Figure 9.

Recall that the inorder labeling of a binary tree T is the labeling of the nodes of T" such that the
label of each node t of T is larger than all labels in the left subtree of ¢ and larger than all labels
in the right subtree of ¢. For any rectangle r of R, the inorder label of the source s(r) in S(R)
coincides with the inorder label of the target ¢(r) in T(R). The inorder can also be retrieved from
the above—below and left-right relationships defined before, as the transitive closure of the union
of the below and right partial orders. This enables to unambiguously label the rectangles of R by
the inorder. The resulting labeling coincides with the NW-SE labeling of [ACFF24]. From now
on, the labels of the rectangles in a rectangulation are the inorder labels, and the two trees T(R)
and S(R) are defined on the vertex set [n] accordingly. For each i € [n], we refer to its two subtrees
in T(R) as the horizontal and vertical subtrees, and similarly for S(R).

1.5. Realizations of weak rectangulotopes. Our first results are simple vertex and facet descrip-
tions of the weak rectangulotopes WIR(n). For the vertices, we provide a concise formula for
the coordinates, that consists of applying J.-L. Loday’s formula on each of the source and target
trees of the rectangulation. For the facets, we combine the right hand sides of two opposite as-
sociahedra to obtain those of the weak rectangulotopes. These two descriptions materialize the
result of Law and Reading that the weak rectangulotopes are Minkowski sums of two opposite
associahedra [LR12].

Theorem 2. The weak rectangulotope WIR(n) is realized by the polytope equivalently described as:

Z(@f—fvi)-ei

(i) the convex hull of the points

1€[n]
for all weak rectangulations R of size n, with
wi=hl vl and wi=h v,

where S and T are the source and target trees of the rectangulation R, and hT and vl denote
the number of leaves in the horizontal and vertical subtrees of i in T,
(i) the intersection of the hyperplane defined by Zie[n] x; = 0 with the halfspaces defined by

in < #A{I interval of [n] | I € S and I £ [n] \ S}
i€S
for all subsets @ # S C [n].
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(-3,-1,1,3) (-3,-1,5,—1) (-3,3,-3,3) (1,-5,1,3) (-3,0,5,—2) (—3,5,—3,1)

(-1,3,-5,3) (2,-5,0,3) (-3,5,0,—2) (—2,0,5,-3) (1,-5,5,—-1) (—1,5,-5,1)

(Ba _57072) (27Oa _573) (_235307 _3) (1’_3753 _3) (3a _5737_1) (3305 _572)

(_175a_17_3) (37 _3a37 _3) (3,17_5a 1) (3a17_17_3)

TABLE 1. The vertices of the weak rectangulotope WIR(4) of Figure 4.

(=6,-2,2,6) (—6,-2,9,—1) (—6,5,—5,6) (1,-9,2,6) (—6,1,9,—4) (—6,9,—5,2)

—~

~2,9,-9,2)

—~

-2,5,-9,6) (4,-9,-1,6) (-6,9,1,—-4) (-4,1,9,—-6) (2,-9,9,-2)

(67 _9,_174) (47_1,_976)

—~

_4a 93 1’ _6) (27 _57 93 _6) (63 _97 5a _2) (67 _17 _97 4)

(—1,9,—2,—6) (67 _5»57_6) (6727 _971> (6,27_2a _6) (1,—9,9,—1) (_1a9’_97 1)

TABLE 2. The vertices of the strong rectangulotope SRR(4) of Figure 6.
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J |1 2 3 4 12 13 14 23 24 34 123 124 134 234
/<(J)|3 553 4 6 5 5 6 4 3 5 5 3

TABLE 3. The facets of the weak rectangulotope WIRR(4) of Figure 4.

J |1 2 3 4 12 13 14 23 24 34 123 124 134 234
Fx()J6 9 9 6 8 1L 10 10 1L 8 6 9 9 6

TABLE 4. The facets of the strong rectangulotope $R(4) of Figure 6.

For instance, the weak rectangulotope WR(4) is illustrated in Figure 4. The coordinates of the
vertices of WR(4) corresponding to all weak rectangulations are gathered in Table 1. The facet
inequalities of WIR(4) corresponding to each nonempty proper subset of [4] are gathered in Table 3.

The vertex of WIR(16) corresponding to the weak rectangulation of Figure 9 is

(—3,0,26,2,—-9,5,—69, —4, 17,0, —8,59, 2, —20,0, 2).

1.6. Realizations of strong rectangulotopes. In order to exhibit a similar realization for the strong
rectangulotopes, we need to count subsets of leaves that lie in some subtrees of both the source
and target trees of a rectangulation. Two leaves of the trees T(R) and S(R) are said to be common
leaves if the edges to their parents lie on the same segment of R. We denote by ? ; the situation
where the rectangles r; and r; of inorder labels ¢ and j share a vertical segment containing the
right edge of r; and the left edge of 7, and the bottom edge of r; is below the top edge of ;.
Similarly, we denote by—H—the situation where the rectangles r; and r; share a horizontal segment
containing the bottom edge of ; and the top edge of r;, and the right edge of r; is on the right of
the left edge of ;. We use the Iverson bracket [¢], which is equal to 1 if ¢ holds, and 0 otherwise.

Theorem 3. The strong rectangulotope SR(n) is realized by the polytope equivalently described as:
(i) the convex hull of the points

Yoo @ -0l (ei—e)),
i,j€[n],i<y

for all strong rectangulations R of size n, with

~ T,5 ; “ ST ;
wfj::hgp-cvm hf[[ﬂl_lj]] and wfj::vf-chiyj -v]T~[[—|—H—]],

where:
o S and T are the source and target trees of the rectangulation R,
o bl and vl denote the number of leaves in the horizontal and vertical subtrees of i in T,
. ch;{f (resp. cviT’j-S) denote the number of common leaves of the horizontal (resp. vertical)
subtree of i in T and the horizontal (resp. vertical) subtree of j in S,
(ii) the intersection of the hyperplane defined by Zie[n] x; = 0 with the halfspaces defined by

S <#{LT|TZS and J L n) NS} +#{1,J | I Z[n]~ S and J L S}
€S
for all subsets & # S C [n], where I, J denote nonempty and consecutive intervals of [n].

For instance, the strong rectangulotope SR(4) is illustrated in Figure 6. The coordinates of the
vertices of $IR(4) corresponding to all strong rectangulations are gathered in Table 2. The facet
inequalities of $RR(4) corresponding to each nonempty proper subset of [4] are gathered in Table 4.

The vertex of $IR(16) corresponding to the strong rectangulation of Figure 8 is

(—41,5,262,24, —110, 50, —525, —50, 184, 3, —88, 450, 35, —221, —5, 27).
We think of the formula of Theorem 3 (i) as the analogue of J.-L.-Loday’s product formula of
Theorem 1 (i) for the coordinates of the vertices of the associahedron. We note however that our

formula is quadratic in n. It remains unclear to us if there is a simple linear formula to compute
the coordinates of the vertex of $R(n) corresponding to a given strong rectangulation.



RECTANGULOTOPES 11

1.7. Plan of the paper. Section 2 is dedicated to the background on quotientopes and their realiza-
tions as Minkowski sums of shard polytopes, due to A. Padrol, V. Pilaud, and J. Ritter [PPR23],
which will be our main tool throughout. Section 3 details the case of weak rectangulations, while
Section 4 deals with strong rectangulations. In both cases, we provide both the vertex and facet
descriptions of these polytopes.

1.8. Acknowledgments. This work was initiated at the Workshop on Combinatorics, Algorithms,
and Geometry held on March 4-8, 2024 in Dresden, Germany. The authors thank Namrata and
Torsten Miitze for the organization and the other participants of the workshop for the stimulating
interactions, notably on other combinatorial aspects of rectangulations.

2. QUOTIENTOPES

We now briefly recall some results on the weak Bruhat order and its quotients, both from a
lattice and geometric perspectives. We refer to [Rea05, Real5, Real6a, Real6b, PS19, PPR23]
for details.

2.1. Weak order and noncrossing arc diagrams. Denote by &,, the set of permutations of [n].
The inversion set of 0 € &, is inv(c):= {(0;,0;) | 1 <i < j <nand o; > 0;}. The weak Bruhat
order! is the lattice on the permutations of &,, defined by the inclusion of their inversion sets.
See Figure 10 (left). Note that the cover relations in the weak Bruhat order are given by the
transpositions of two adjacent letters.

An arcon [n] is a quadruple (a,b, A, B) where 1 < a < b < n and AU B forms a partition of the
interval |a,b:={a + 1,...,b — 1}. We represent an arc by an abscissa monotone curve wiggling
around the horizontal axis, starting at point a and ending at point b, and passing above the points
of A and below the points of B. A noncrossing arc diagram on [n] is a collection of arcs on [n]
where any two arcs do not cross in their interior and have distinct left endpoints and distinct right
endpoints (but the right endpoint of an arc can be the left endpoint of another arc).

In [Real5], N. Reading defined an elegant bijection between permu-
tations of [n] and noncrossing arc diagrams on [n]. It sends a permu-
tation o to the noncrossing arc diagram with an arc (041,0,, 4;, B;) .\.
for each descent j € [n — 1] of ¢ (é.e. with o; > 0j41), where

Aj:: {Ui | 1<i<y andojﬂ < 0; <O'j}
and Bj:={op|j+1<k<nand ;41 <op <o0j}.

As illustrated on the right with o = 2531746, this can also been visu- °

alized by representing the table (o}, j) of the permutation o, drawing

the segments corresponding to the descents of o, and letting all points

fall on the horizontal axis, allowing the segments to bend but not to

cross each other nor to pass through a point. The single arcs corre- b %
spond to permutations with a single descent, that is, to join irreducible

permutations of the weak Bruhat order. In general, the noncrossing arc diagram of a permuta-

tion o actually encodes the canonical join representation of ¢ in the weak Bruhat order (which
was known to exist, as the weak Bruhat order is join semidistributive). See [Real5] for details.

2.2. Quotients and arc ideals. A lattice congruence of the weak Bruhat order is an equivalence
relation = on &,, that respects the meet and join operations, i.e. such that z = 2’ and y = 3/
implies z Ay = 2/ Ay and 2 Vy = 2’ Vy'. The lattice quotient &, /= is the lattice on the
congruence classes of = where X <Y if and only if there exist z € X and y € Y such that z < y,
and X AY (resp. X VY) is the congruence class of z Ay (resp. z Vy) for any x € X and y € Y.

For instance, the sets of linear extensions of binary trees (labeled in inorder and oriented
toward their roots) are the classes of the sylvester congruence [HNTO05]. See Figure 10 (middle).
The quotient of the weak Bruhat order by the sylvester congruence is the classical Tamari lattice.
See Figure 10 (right).

1The weak Bruhat order is usually just referred to as the weak order [Hum90, BBO05]. In this paper, we prefer
to use weak Bruhat order to avoid any confusion with the weak poset defined on weak rectangulations.
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4321

4312 4231 3421

4132 4213 3412 2431 3241

1432 4123 2413 3142 2341 3214

1423 1342 2143 3124 2314

1243 1324 2134

1234

FIGURE 10. The weak Bruhat order on &4 (left), the sylvester congruence =gy, (middle), and
the Tamari lattice (right). [PS19, Fig. 1 & 2]

Respecting the meet and join operation is a strong condition that imposes additional structure
on =. In fact, all the congruence classes of = are intervals of the weak Bruhat order, and the
quotient &,,/= is isomorphic (as a poset) to the subposet of the weak Bruhat order induced by
permutations which are minimal in their class. Moreover, the latter are precisely the permutations
whose noncrossing arc diagrams only use arcs corresponding to join irreducible permutations which
are minimal in their class, and we denote by A= this set of arcs. In other words, the classes of =
are in bijection with noncrossing arc diagrams using only arcs in A=. This bijection actually
translates the fact that canonical join representations behave properly under lattice quotients.

For instance, the join irreducible permutations minimal in their sylvester congruence class are
precisely the up arcs, i.e. the arcs of the form (a, b, ]a, b[, @) (similarly, we call down arcs the arcs
of the form (a,b, &,]a,b[)). The corresponding noncrossing arc diagrams are famously known as
noncrossing partitions.

An arc (a,b, A, B) is a subarc of an arc (a’,b'; A’, B') if

o <a<b<band A C A while B C B’. An arc ideal is U % \.’f'\ m

a subset of arcs closed by subarcs. The map = — A= is a |>‘§<]
bijection between the lattice congruences of the weak Bruhat

order and the arc ideals. In other words, the lattice of congru- e FN. U '
ences of the weak Bruhat order is distributive, and its poset of

join irreducibles is isomorphic to the subarc order, illustrated M

on the right for n = 4.

2.3. Quotient fans and shards. The braid arrangement is the hyperplane arrangement consisting of
the hyperplanes {x € R" | z, = a3} forall 1 < a < b < n. It has a chamber for each permutation o
of [n], given by the set of vectors whose coordinates are ordered as o. It has a ray for each nonempty
proper subset & # J C [n]. (To be more precise when speaking about rays, we should actually
consider the essentialization of the braid arrangement obtained by slicing it with a hyperplane
normal to its lineality space, which is generated by the vector (1,...,1).) See Figure 11 (left).

The shard of an arc (a,b, A, B) is the piece of the braid hyperplane x, = x;, defined by the
inequalities ., < z, for all ' € A and z, < xp for all ¥ € B. In other words, the shards
decompose each hyperplane x, = x; of the braid arrangement into 2°=%~1 cones.

The quotient fan of a congruence = of the weak Bruhat order is the polyhedral fan F= where

e the maximal cones are obtained by glueing together the chambers of the braid arrangement
corresponding to permutations in the same congruence class of =,
e the union of the codimension 1 cones is the union of the shards of the arcs of A=.

(These two descriptions are equivalent.) By construction, the braid fan refines the quotient
fan F=, and the dual graph of the quotient fan F= is isomorphic to the cover graph of the
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FIGURE 11. The braid fan (left) and the sylvester fan (right). [PS19, Fig. 1] & [PPR23, Fig. 5]

quotient &, /=. For instance, Figure 11 (right) represents the sylvester fan (the quotient fan of
the sylvester congruence of Figure 10 (middle)) for n = 4, whose dual graph is the cover graph
of the Tamari lattice of Figure 10 (right). The maximal cone corresponding to a binary tree T is
given by CT = {z € R" | z; < z; for each edge i — j in T'}.

It was shown in [APR21, Lem. 23] that the ray of the braid arrangement corresponding to a
nonempty proper subset & # J C [n] is preserved in the quotient fan F= if and only if the arc
ideal A= contains the |J| — 1 down arcs joining two consecutive elements of J and the n —|J| —1
up arcs joining two consecutive elements of [n] \ J. An immediate consequence is that all 2" — 2
rays of the braid arrangement are preserved in the quotient fan F= if and only if the arc ideal A=
contains all up arcs and all down arcs (in other words, if it is above the weak rectangulation
congruence in the lattice of congruences of the weak Bruhat order).

2.4. Quotientopes and shard polytopes. A quotientope for a lattice congruence = of the weak
Bruhat order is a polytope whose normal fan is the quotient fan F=. In particular, the skele-
ton of a quotientope is isomorphic to the cover graph of the quotient &, /=. For instance, the
associahedron A(n) (Figure 1 (right) when n = 4) is a quotientope for the sylvester congruence
(Figure 10 (middle) when n = 4), its normal fan is the sylvester fan (Figure 11 (right) when n = 4),
and its skeleton is the cover graph of the Tamari lattice (Figure 10 (right) when n = 4). The ex-
istence of quotientopes was first proved in [PS19] and later better understood in [PPR23] using
Minkowski sums of shard polytopes, the approach we will use throughout the paper.

The Minkowski sum of two polytopes P,Q CR" is P+ Q:={p+gq|p € P and g € Q} C R".
Recall that for any vector v # 0 of R"™, the face of P 4+ @ maximizing the scalar product with v is
the Minkowski sum of the faces of P and @ maximizing the scalar product with ». In particular,
if v is a generic direction, the vertex of P + @ that is extremal in direction v is just the sum of the
vertices of IP and @Q that are extremal in direction v. Moreover, the normal fan of the Minkowski
sum P + @ is the common refinement of the normal fans of P and Q.

Consider an arc «:=(a,b, A, B) on [n]. An «-alternating matching is a sequence a < i3 <
J1 < idg < jo < -+ < ig < jg < bsuch that i, € {a} UA and j, € {b} U B for all p € [¢]. Its
characteristic vectoris 3 (. 1(e;, —e;,). The shard polytope of a is the convex hull SP(c) of the
characteristic vectors of all a-alternating matchings. We refer to Figure 12 for an illustration of
this definition. It was shown in [PPR23] that any Minkowski sum of positive scalings of the shard
polytopes $IP(«) for all arcs « in the arc ideal A= is a quotientope for =.
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FIGURE 12. The shard polytopes of the up arc (1,4, {2,3},2), the down arc (1,4, @, {2,3}), the
yin arc (1,4, {2},{3}), and the yang arc (1,4, {3},{2}). The vertices of the shard polytope of an
arc a:=(a,b, A, B) are labeled by the corresponding a-alternating matchings, where we use solid
dots e for elements in {a} U A and hollow dots o for elements in BU{b}. The corresponding vertex
coordinates are directly read replacing e by 1 and o by —1. For instance, the vertex labeled e - - o
has coordinates (1,0,0,—1). Adapted from [PPR23, Fig. 10].
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A set function f : 2[" — R is said to be submodular when f(XUY)+ f(XNY) < f(X)+ f(Y)
for any X, Y C [n]. By definition, any quotientope is a deformed permutahedron, and can thus be
written as

{xER”

Z x; = f([n]) and sz < f(S) forall @ # S C [n]},
i€[n] ieS

where f is a submodular set function. We will need the following simple result: Given a collection
Py, Py, ..., P of deformed permutahedra defined by submodular set functions f1, fa, ..., fx, their
Minkowski sum ), IP; is defined by the submodular function f:= )", f;.

3. WEAK RECTANGULOTOPES

This section is devoted to weak rectangulations and the proof of Theorem 2.

3.1. The weak poset. Given a rectangulation R, let us consider its source and target trees S(R)
and T'(R), and orient the horizontal edges from left to right, and the vertical edges from bottom to
top. This defines two partial orders on [n]. The weak poset ([n], <£) of the rectangulation R is the
transitive closure of the union of these two partial orders defined by S(R) and T'(R). Equivalently,
the weak poset can be defined by considering the adjacency graph of the rectangles in a diagonal
representative of the weak equivalence class of R, orienting its edges from left to right and from
bottom to top, and taking the transitive closure of this directed acyclic graph. These posets
were characterized (and called Baxter posets) by E. Meehan [Meel9]. The weak poset is a two-
dimensional lattice, whose minimum is the root of S(R) and whose maximum is the root of T'(R).
See Figure 13.

3.2. The weak rectangulation congruence. We consider the set £(<) of linear extensions of the
weak poset <Z:
L= ={oce6,|i<lj=o" <o '}

We recall that Baxter permutations [CGHKT78, Mal79] are permutations avoiding the vincular
patterns 2413 and 3142, where the underlining indicates that the symbols must appear contiguously
in the permutation. Similarly, twisted Baxter permutations are permutations avoiding the patterns
2413 and 3412, and co-twisted Baxter permutations are permutations avoiding the patterns 2143
and 3142. These permutation families are equinumerous and their sizes are the Baxter numbers,

see [OEI10, A001181]. They are central in the theory of rectangulations and appear in many other
contexts [FFNO11].


http://oeis.org/A001181

RECTANGULOTOPES 15

P

™~ \f f

]
N
\ 13

% : lr
A

> o
A

_/ \11
~—>1‘3 <
7 |
\~S>14 15 16 \\¥—>14ﬁ»15 >1\6

FIGURE 13. The weak poset of the rectangulation of Figure 8, visualized on the rectangulation of
Figure 8 (left) and on its diagonal rectangulation of Figure 9 (right). Example from [ACFF24].

Theorem 4 ([LR12]). The subsets L(<5) of &,,, for all rectangulations R of size n, are equivalence
classes of a congruence relation < on the weak Bruhat order on &,,. Furthermore:

e the congruence classes are one-to-one with weak rectangulations,

e the minimal elements of the congruence classes are the twisted Baxter permutations,

e the mazimal elements of the congruence classes are the co-twisted Baxter permutations,
e the congruence classes each contain a single Baxter permutation.

We call this congruence the weak rectangulation congruence (it is sometimes referred to as
the Baxter congruence). It is the intersection of the sylvester congruence with the anti-sylvester
congruence. The weak rectangulotope WR(n) is the quotientope of the weak rectangulation
congruence < on the weak Bruhat order on G,,.

By construction, the quotient fan F= has a maximal cone CE for each weak rectangulation R
of size n. This cone is given by CF = {:I: e R ‘ z; <ajifi =B j}. Note that there is a bijection
between the facets of CZ, the cover relations of <%, and the feasible flips in R. The definition
of the weak poset just translates the fact that the weak rectangulation fan F. is the common
refinement of the sylvester fan and the anti-sylvester fan. Namely, as CZ is the intersection of the
cone of the sylvester fan corresponding to the target tree T (R) with the cone of the anti-sylvester
fan corresponding to the source tree S(R), the weak poset < is the transitive closure of the union
of the posets associated to S(R) and T(R).

Note that weak rectangulotopes were first constructed by S. Law and N. Reading in [LR12] as
Minkowski sums of two opposite associahedra. Our vertex and facet descriptions of Theorem 2 can
be directly derived from this construction. Here, we provide a more pedestrian approach based on
Minkowski sums of shard polytopes, as it will serve as a template for the more involved proof of
Theorem 3 in Section 4.

3.3. Up and down arcs. The arc ideal of the weak rectangulation congruence was already consid-
ered in [Reals, Exm. 4.10].

Lemma 5 ([Real5, Exm. 4.10]). The weak rectangulation congruence < on &,, is defined by the
arc ideal composed of arcs that do mot cross the horizontal line.

Proof. We consider the forbidden vincular patterns 2413 and 3412 that define the minimal elements
of each congruence class of <. We observe that every occurrence of a pattern in a permutation
corresponds to an occurrence of an arc that cross the horizontal line at least once in the arc
diagram of the permutation. The twisted Baxter permutations are therefore the permutations
whose arc diagrams are composed only of arcs that do not cross the horizontal line. O
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We classified these arcs into two families: the up arcs and the down arcs. For an interval I
of [n] of size at least 2, the up arc 7 (resp. down arc L) is the arc that starts at min(/) and ends
at max([), and passes above (resp. below) all remaining elements of I, that is,

= (min([),max([),[ ~ {min([),max(])},@)
and L :=(min(I), max(I), &, I \ {min(I), max(I)}).

Note that the basic arc (i,i+ 1, &, &) is both an up and down arc. The up arcs correspond to the
sylvester congruence, while the down arcs correspond to the anti-sylvester congruence.

3.4. Shard polytopes of up and down arcs. From the results of Section 2.4, the quotientope is
realized by a Minkowski sum of the shard polytopes of the up arcs and the down arcs. These
quotientopes are simplices and anti-simplices.

Lemma 6. The up shard polytope SP(7) is a translate of the simplex conv {e; | i € I'}.
Lemma 7. The down shard polytope SPP(L) is a translate of the negative simplex conv{—e; | i € T}.
We refer to Figure 12 for examples of up and down shard polytopes.

Proposition 8. The weak rectangulotope WIR(n) is realized by the Minkowski sum of all up and
down shard polytopes.

Since the combinatorial type of a Minkowski sum is invariant to translation of the summands,
we can use the simplices defined in Lemmas 6 and 7 as a definition of the up and down shard
polytopes. Also note that since the basic arcs (¢,7 + 1,2, ) are both up and down, each basic
shard polytope is summed twice in the proposed realization. This, again, does not change the
combinatorial type of the polytope.

Proposition 8 in particular recovers the result of [LR12] that WIR(n) is the sum of two opposite
associahedra of J.-L. Loday [LR12], corresponding to the sylvester and anti-sylvester congruences.

3.5. Submodular functions of weak rectangulotopes. The description of the weak rectangulo-
tope WIR(n) as a Minkowski sum in Proposition 8 allows us to easily compute the corresponding
submodular function. The arc ideal of the weak rectangulation congruence contains exactly all
up arcs and all down arcs, hence from the result of [APR21] mentioned in Section 2.3, all 2™ — 2
rays of the braid fan are preserved in the fan of the weak rectangulotope. This implies that every
nonempty proper subset will define a facet of the weak rectangulotope, and the description of the
weak rectangulotope by its submodular function is actually an irredundant facet description.

Lemma 9. The weak rectangulotope WIR(n) is realized by the following submodular function:
f=(S):==#{I interval of [n] | I S and I Z [n] \ S}.

Proof. The submodular function defining the realization of WR(n) is the sum of the submodular
functions defining the up and down shard polytope in Lemmas 6 and 7. The shard polytope SP(7)
of an up arc 7 is given by the submodular function

fr(8)=[SNT#0].

(Recall that [¢] is equal to 1 if ¢ holds, and 0 otherwise.) Similarly, the shard polytope $P (L)
of a down arc L is given by the submodular function

fL(8)= 1< 8]

Their sum

<) = Y FpS)+fL(S)

I interval of [n]

is therefore exactly the number of intervals of I that intersect S but are not contained in S, hence
the number of intervals contained neither in S nor in its complement. O

This proves the second part of Theorem 2.
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3.6. Loday coordinates of weak rectangulotopes. For every weak rectangulation R, we wish to
give the coordinates of a point p(R) € R™ such that WIR(n) is the convex hull of the points p(R)
for all weak rectangulations R of size n. Recall that in a Minkowski sum of polytopes, the vertex
that is extremal in a generic direction is the sum of the vertices of the summands that are extremal
in this direction. We therefore need to understand which vertices of the translates of the shard
polytopes defined in Lemmas 6 and 7 are extremal for a direction given by a permutation.

Lemma 10. Let 0 € &,, and I be an interval of [n] of size at least 2. The unique vertex of the
up shard polytope SP(7) (resp. down shard polytope SP(L)) that is extreme with respect to the
direction o~ is e; (resp. —e;), where i is the mazimum (resp. the minimum) of o~ in I.

Note that this extremal vertex should only depend on the weak rectangulation congruence class
of o. This, in passing, gives us alternative characterizations of the sylvester congruence —~, the
anti-sylvester congruence —, and the weak rectangulation congruence <. We have ¢ —~ 7 if and
only if arg max;ey O‘;l = argmax;ey 7';1 for any interval I of [n]. Similarly, o — 7 if and only if
argminjcy a]-_l = argminjey Tj_l for any interval I of [n]. Finally, o =< 7 if both conditions hold.

The proof of the following lemma actually follows from Loday’s realization in Theorem 1. For
the sake of completeness, and because we will reuse the same reasoning in Section 4, we give an

elementary proof.

Lemma 11. Let R be a rectangulation of size n, with target tree T, and let p(R) the vertex of WR(n)
associated with R. Given i € [n], the number of up arcs 7 such that e; is the extremal vertex
of SP(7) contributing to p(R) is

@i =T ol
where hT and vl denote respectively the number of leaves in the horizontal and vertical subtrees
of i in the tree T.

Proof. Let o be any permutation in £(<%). From Lemma 10, for an i € [n], a shard poly-
tope $P(7) contributes to e; if and only if i is the index of the maximum of o=! in I. We claim
that the number of intervals I satisfying this condition is the given product.

We first show that the number of choices for the left endpoint of I is equal to the number hl of
leaves in the horizontal subtree of ¢ in T'. Each such leaf determines a left endpoint for I, defined
as the node of the tree that follows it in an inorder traversal. Any such node £ either lies in the
horizontal subtree of i, or is i itself. Since the weak poset extends the order induced by T', we
have that either £ =4 or £ < i, hence o, < o, L Therefore, each such choice of left endpoint
for I does not contradict the fact that 4 is the index of the maximum of ¢~ in I. Now consider
the leaf of T' that is immediately left of the leftmost leaf of the horizontal subtree of i. This leaf
is associated with the node ¢ that comes next in inorder traversal, which must be an ancestor of
i in T. Therefore, we must have ¢ >, ¢, and o, s o; ! and we cannot extend I past this index
on the left. This shows that there are exactly hl choices for the choice of the left endpoint of I.
A symmetric argument shows that there are exactly v choices for the right endpoint of I. The

combined number of choices is thus the product Al - vl. g

A symmetric analogue of Lemma 11 holds for down shard polytopes, where the product con-
tributes to —e; instead of e;, and we consider the tree S(R) instead of the tree T(R). This
concludes the proof of Theorem 2.

4. STRONG RECTANGULOTOPES
This section is devoted to strong rectangulations and the proof of Theorem 3.

4.1. The strong poset. Given a rectangulation R, we define the strong poset ([n], <%) of R by
considering two relations on [n] [ACFF24]:

(1) The adjacency poset ([n],<1) of R, defined by considering the adjacency graph of the
rectangles of R (identified by their inorder labels in [n]), orienting its edges from left to
right and from bottom to top, and taking the transitive closure of this directed acyclic
graph.
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FIGURE 14. The adjacency poset (left) and the strong poset (right) of the rectangulation of
Figure 8. Example from [ACFF24].

(2) The special relation ([n], «4) of R, in which ¢ « j if the two rectangles r; and r; with
respective inorder labels ¢ and j are such that
(i) either the right side of r; and the left side of 7; lie on the same vertical segment, and
the bottom-right corner of r; is above the top-left corner of r;,
(ii) or the top side of r; and the bottom side of rectangle r; lie on the same horizontal
segment, and the top—left corner of r; lies on the right of the bottom-right corner of r;.

The strong poset is the transitive closure of the union of the two relations <t and «. See Figure 14.
The strong poset is a two-dimensional lattice, whose minimum is the root of S(R) and whose
maximum is the root of T'(R). The following statement will be used later.

Lemma 12. For any rectangulation R, its strong poset ([n],<%) is an extension of its weak
poset ([n], <&).

Proof. Clearly, the strong poset is an extension of the adjacency poset ([n], <) of R, since it
is obtained by adding pairs from the special relation ([n], «). It remains to observe that the
adjacency poset of R is an extension of the weak poset of R (compare for instance Figure 13 (left)
and Figure 14 (left)). For this, we consider a diagonal representative D of the weak equivalence
class of R, and recall that the weak poset of R is the adjacency poset of D. By definition, R
can be obtained from D by a sequence of wall slides. Each wall slide in this sequence consists of
either a horizontal segment being pulled down past another horizontal segment on its right, or a
vertical segment being pushed right past another vertical segment below it. (These are the flips
described in Figure 7c, performed in bottom to top order on the figure.) Note that each of these
wall slides can only add new pairs in the adjacency poset, hence the adjacency poset of R is always
an extension of that of D. O

4.2. The strong rectangulation congruence. We consider the set £(=<%) of linear extensions of the
strong poset <%:
L(<f)y={ocee,|i<fj=0" <o}

N. Reading introduced 2-clumped permutations [Real2], defined as the permutations avoid-
ing the vincular patterns 24513, 42513, 35124, and 35142. The co-2-clumped permutations are
defined similarly, as permutations avoiding the mirror images of these four patterns. These two
permutation families are equinumerous, see [OEI10, A342141]. Reading showed that 2-clumped
permutations are in bijection with strong rectangulations.

Theorem 13 ([Real2, ACFF24]). The subsets L(=<E) of &, for all rectangulations R of size n,
are equivalence classes of a congruence relation = on the weak Bruhat order on &,,. Furthermore:
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e the congruence classes are one-to-one with strong rectangulations,
o the minimal elements of the congruence classes are the 2-clumped permutations,
e the mazimal elements of the congruence classes are the co-2-clumped permutations.

We call the congruence & the strong rectangulation congruence. The strong rectangulo-
tope $RR(n) is the quotientope of the strong rectangulation congruence .

Similarly to the weak case, the quotient fan F~ has a maximal cone CF for each strong
rectangulation R of size n. This cone is given by CE = {ac eR” | x; <y if e <ER j}. Note that

R the cover relations of <%, and the feasible flips in R.

there is a bijection between the facets of C;

4.3. Yin and yang arcs. The arc ideal of the weak rectangulation congruence was already consid-
ered in [Reals, Exm. 4.11].

Lemma 14 ([Real5, Exm. 4.11]). The strong rectangulation congruence = on &, is defined by the
arc ideal composed of arcs that cross the horizontal line at most once.

Proof. We consider the forbidden vincular patterns 24513, 42513, 35124, and 35142 that define
the 2-clumped permutations, the minimal elements of each congruence class of =. We observe
that every occurrence of a pattern in a permutation corresponds to an occurrence of an arc that
cross the horizontal line at least twice in the arc diagram of the permutation. The 2-clumped
permutations are therefore the permutations whose arc diagrams are composed only of arcs that
cross the horizontal line at most once. O

We classify these arcs into two families, depending on whether the arcs do not cross the hori-
zontal line from below or from above. For two consecutive intervals I and J of [n], the yin arc pZ
(resp. yang arc L) is the arc starts at min(/) and ends at max(J), and goes above (resp. below)
the remaining elements of I and below (resp. above) the remaining elements of J, that is,

7L = (min(I), max(J), I \ {min(I)}, J \ {max(J)})
and L5 = (min(I), max(J), J \ {max(J)}, 1 ~\ {min(I)}).

Note that all up arcs and down arcs are both yin arcs and yang arcs.

Note that the yin (resp. yang) arcs alone form an arc ideal, and we call yin (resp. yang)
congruence the corresponding congruence of the weak order. It can be checked that the equivalence
classes of these congruences are counted by semi-Baxter permutations, defined as permutations
avoiding 2413, hence only one of the two forbidden Baxter patterns. These equivalence classes
are in turn in bijection with rectangulations that avoid one of the two patterns defining diagonal
rectangulations, see [ACFF24]. The strong rectangulation congruence is the intersection of the
yin and yang congruences.

4.4. Shard polytopes of yin and yang arcs. From the results of Section 2.4, the quotientope is
realized by a Minkowski sum of the shard polytopes of the yin arcs and the yang arcs. These
shard polytopes can be described as follows.

Lemma 15. The yin shard polytope SP( L) is conv{0} U{e; —e; |i €I, je J}.
Lemma 16. The yang shard polytope SP(-L7) is a translate of conv{0}U{e; —e; |i €I, j € J}.
We refer to Figure 12 for examples of yin and yang shard polytopes.

Proposition 17. The strong rectangulotope SR(n) is realized by the Minkowski sum of all yin and
yang shard polytopes.

Since the combinatorial type of a Minkowski sum is invariant to translation of the summands,
we can use the polytopes defined in Lemmas 15 and 16 as a definition of the yin and yang shard
polytopes. Also note that since the up and down shard polytopes are, up to a translation, both yin
and yang, each up and down shard polytope is summed twice (hence all basic shard polytopes are
summed four times) in the proposed realization. This, again, does not change the combinatorial
type of the polytope.

Proposition 17 gives us an alternative description of $SR(n) as the sum of two opposite quotien-
topes corresponding to the yin and yang congruences.
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4.5. Submodular functions of strong rectangulotopes. From the results of Section 2.4, the sub-
modular function corresponding to our realization of $IR(n) can be obtained as before by summing
the functions defining the yin and yang shard polytopes in Lemmas 15 and 16. Note again that all
rays of the braid fan are preserved in the fan of the strong rectangulotope, hence our submodular
description of the strong rectangulotope is an irredundant facet description.

Lemma 18. The strong rectangulotope SR(n) is realized by the following submodular function:
fy(S)::#{LJ|IZ[ \SandJZS}+#{IJ|I§ZSandJZ \S}
where I, J are pairs of nonempty consecutive intervals of [n).

Proof. The submodular function defining the realization of WR(n) is the sum of the submodular
functions deﬁning the yin and yang shard polytopes in Lemmas 15 and 16. The shard poly-
tope SP( L) of a yin arc < is given by the submodular function

fpL(S)=[I Z[n]~Sand J £ S].

(Recall that [¢] is equal to 1 if ¢ holds, and 0 otherwise.) Similarly, the shard polytope SP(L73)
of a yang arc L7 is given by the submodular function

fL~5(S)=[I £ S and J £ [n] \ S].

Their sum

fo\/ )+ fL5(5)

is therefore as claimed. O

This proves the second part of Theorem 3.

4.6. Loday coordinates of strong rectangulotopes. As in Section 3.6, we need to understand which
vertices of the translates of the yin and yang shard polytopes defined in Lemmas 15 and 16 are
extremal for a direction given by a permutation.

Lemma 19. Let o € &, let I and J be two consecutive intervals of [n], and let i:= arg maxyer 0;1
and j:= arg mingc s 0;1 (resp. i:= arg minkg 0;1 and j:= arg maxgc j 0;1) The unique vertex
of the yin (resp. yang) shard polytope SP( L) (resp. SP(L 7)) that is extreme with respect to
the direction 0~ is e; — e; (resp. e; —e;) if o; ' > o; o (resp. ot < o; 1), and 0 otherwise.

Note again that by definition, this extremal vertex should only depend on the strong con-
gruence class of o. This, again, gives us alternative characterizations of the yin congruence ~,
the yang congruence -, and the strong rectangulation congruence =. We have o ~ 7 if and
only if for any pair of consecutive intervals I and J of [n], arg maxes 0',;1 = argmaxer Ty, !
and arg minge z Uk*l = arg minge s 7',;1 (that is, if 0 < 7), and, if we let i and j be defined as in
Lemma 19 as the indices of the maximum in I and the minimum in J, o; * > 0;1 s> 7';1
A similar statement holds for the yang congruence «, by exchanging min and max. Finally, o & 7
if both sets of conditions hold.

Lemma 20. Let R be a strong rectangulation of size n, let S and T be its source and target trees,
let ([n], <E) be its strong poset, and let p(R) be the vertex of SR(n) corresponding to R. Given a
pair i, j € [n] with i < j, the number of yin arcs o such that e; — e is the extremal vertex of SP(«)
contributing to p(R) is
T TS 15
hi - cv; ;7 - hj

if i =5 7, and O otherwise, where

o 1T denotes the number of leaves in the horizontal and vertical subtrees of i in T,

. ch S denotes the number of common leaves of the vertical subtree of i in T and the vertical

subtree of jin S.
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Proof. Let o be any permutation in £(<%). From Lemma 19, for a pair i < j € [n], there exists
a yin arc o whose shard polytope SP(«) contributes to e; — e; if and only if ai_l > aj_l, hence
if ¢ >4 j. Provided this holds, the set of yin arcs o such that SIP(«) contributes to e; — e; are
defined by pairs of contiguous intervals I, .J of [n] with ¢ € I, j € J, such that ¢ is the index of the
maximum of ¢! in I, and j is the index of the maximum of =1 in J. We claim that the number
of choices of the three endpoints defining such a pair of intervals I and J is the given product.

We first show that the number of choices for the left endpoint of I is equal to the number Al
of leaves in the horizontal subtree of 7 in 7. The proof of this follows the exact same lines as that
of Lemma 11. Each leaf determines a left endpoint for I, defined as the next node in an inorder
traversal. Any such node £ either lies in the horizontal subtree of i, or is i itself. Since from
Lemma 12 the strong poset extends the order induced by 7', we have that either £ =i or £ <% i,
hence agl <o; L Therefore, each such choice of left endpoint for I does not contradict the fact
that i is the index of the maximum of o~! in I. Now consider the leaf of T’ that is immediately
left of the leftmost leaf of the horizontal subtree of i. This leaf is associated with the node ¢ that
comes next in inorder traversal, which must be an ancestor of ¢ in 7. Therefore, we must have
{ =i, and 021 > 0;1, and we cannot extend [ past this index on the left. This shows that there
are exactly h! choices, and not more, for the choice of the left endpoint of I.

The rest of the formula comes by symmetric arguments. First, the right endpoint of I can only
be chosen among the leaves of the vertical subtree of T' rooted at ¢. Then the same reasoning holds
for the two endpoints of J, replacing i by j and T by S. Finally, since the right endpoint of I and
the left endpoint of J must be consecutive, the selected leaves must correspond to the same pair
of successive indices of [n]. These leaves are exactly the common leaves defined previously. O

R
i,
is replaced by ¢ >, j. Recall that llj denotes the situation where the rectangles r; and r; of inorder
labels ¢ and j share a vertical segment, r; is on the left of r;, and the bottom edge of r; is lower
than the top edge of ;. Our aim is to provide a formula for the coordinates of the vertices of
the strong rectangulotope that does not involve the computation of the strong poset or one of its
linear extensions. For that purpose, we prove that for every pair i < j € [n] such that i <& j,
which do not have any associated yin arc, we have either LI} or cv¥ =0 (hence the product in

0.
Lemma 20 is 0 as well and adding it does not harm the result).

Lemma 20 essentially gives us the coefficient w, in Theorem 3, except that the condition — ’_Ij

Lemma 21. Let R be a rectangulation of size n, with source and target trees S and T, and strong
order <E. Given a pairi,j € [n] such thati < j and i <& j, we have

T,S 7
cv; >0 = _Ij

Proof. Consider the two rectangles r; and r; with inorder labels 4 and j in R. We first observe that
the source vertex s(r;) is not contained in the interior of the lower left quadrant of origin ¢(r;).
Indeed, if we assume otherwise, then the line segment from s(r;) to ¢(r;) has positive slope, which
implies that j <14, which in turn implies j <% i, contradicting our hypothesis. We also observe
that since ¢ < j, by definition of the inorder on S and T, the rectangle r; must be below or on the
right of r;. Combining those two observations, we conclude that the right edge of r; cannot be on
the right of the left edge of r;.

Therefore, there can only be one segment which may contain a leaf to the vertical subtree of i
in T and a leaf of the vertical subtree of j in S, which is the vertical segment supporting the right
edge of r; and the left edge of ;. Let us assume that this segment is shared by those two edges. If
the bottom edge of r; is higher than the top edge of r;, we must have j <, which implies j <Eq,
contradicting our hypothesis again. Thus the bottom edge of r; is lower than the top edge of r;,
and l_lj , as claimed. O

‘We omit the proofs of the analogues of Lemma 20 and Lemma 21 for the case of the yang arcs,
which use completely symmetric arguments. This concludes the proof of Theorem 3.
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