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Abstract

Reliability assessment of interconnection networks is critical to the design and maintenance of multiprocessor systems.
The (n, k)-enhanced hypercube Qn,k as a variation of the hypercube Qn, was proposed by Tzeng and Wei in 1991. As
an extension of traditional edge-connectivity, h-extra edge-connectivity of a connected graph G, λh(G), is an essential
parameter for evaluating the reliability of interconnection networks. This article intends to study the h-extra edge-
connectivity of the (n, 2)-enhanced hypercube Qn,2. Suppose that the link malfunction of an interconnection network
Qn,2 does not isolate any subnetwork with no more than h − 1 processors, the minimum number of these possible
faulty links concentrate on a constant 2n−1 for each integer ⌈ 11×2n−1

48 ⌉ ≤ h ≤ 2n−1 and n ≥ 9. That is, for about 77.083
percent values of h ≤ 2n−1, the corresponding h-extra edge-connectivity of Qn,2, λh(Qn,2), presents a concentration
phenomenon. Moreover, the above lower and upper bounds of h are both tight.

Keywords: Interconnection networks, Reliability and links fault tolerance, Concentration phenomenon, Enhanced
hypercubes, h-Extra edge-connectivity.

1. Introduction

The growing need to process and store massive amounts of data has led to increase more interest in multiprocessor
systems. The advent of multiprocessor systems with a large number of processors and links meets this requirement
[11, 21, 27]. As the scale of such these systems continues to increase, so does the probability of links malfunctioning
or failing. In addition, finding an appropriate parameter to measure the reliability of the system is crucial to the design
and maintenance of the multiprocessor system. It is well known that the underlying topology of an interconnection
network can be modelled by a connected graph G = (V, E), with vertex set V representing processors and edge set E
representing the communication links between processors.

The performance of the interconnection network can usually be reflected by the topological parameters of its un-
derlying connected graph G. The connectivity and edge-connectivity are two essential parameters for the reliability
and fault tolerance of interconnection networks. The connectivity κ(G) or the edge-connectivity λ(G) of the connected
graph G is defined as the minimum number of vertices or edges whose removal from G makes the remaining discon-
nected. To overcome this deficiency, Harary [6] proposed conditional connectivity and conditional edge-connectivity
in 1983. Due to the closed interconnection between various local parts of G, when some malfunction of links and
processors occurs, part of the local structure cannot be destroyed completely. The edges in a forbidden faulty edge
set cannot fail simultaneously. By restricting the forbidden faulty edge set to the sets of neighboring edges of any
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Table 1: Previous known and current results on the h-extra edge-connectivity for some classes of interconnection networks.

Graph h λh Author
Qn 1 ≤ h ≤ 2⌊

n
2 ⌋ nh − exh(Qn), n ≥ 4 Li and Yang [10] in 2013

Q3
n 3⌈

n
2 ⌉+r − ⌊ 32r+e+1

2 ⌋ ≤ h ≤ 3⌈
n
2 ⌉+r 2(⌊ n

2 − r)3⌈
n
2 ⌉+r, n ≥ 3 Ma et al. [12] in 2021

FQn 1 n + 1, n ≥ 2 El-Amawy and Latifi [4] in 1991
2 2n, n ≥ 2 Zhu and Xu [30] in 2006
3 3n − 1, n ≥ 5 Zhu et al. [31] in 2007
4 4n − 4, n ≥ 5 Chang et al. [2] in 2014
≤ n ξh(FQn), n ≥ 6 Yang and Li [18] in 2014
≤ 2⌈

n
2 ⌉+1 − 4, for odd n ξh(FQn), n ≥ 4 Zhang et al. [25] in 2016

≤ 2⌈
n
2 ⌉+1 − 2, for even n ξh(FQn), n ≥ 4 Zhang et al. [25] in 2016

2⌈
n
2 ⌉+1 − dr ≤ h ≤ 2⌈

n
2 ⌉+1 £ ⌊ n

2 ⌋2
⌈ n

2 ⌉+1, n ≥ 4 Zhang et al. [25] in 2016
2⌊

n
2 ⌋+r − lr ≤ h ≤ 2⌊

n
2 ⌋+r ‡ (⌈ n

2 ⌉ − r + 1)2⌊
n
2 ⌋+r Zhang et al. [25] in 2016

1 ≤ h ≤ 2n−1 Algorithm Zhang et al. [26] in 2018
Bn 1 n Chen et al. [3] in 2003

2 2n − 2 Chen et al. [3] in 2003
3 3n − 5 Zhu et al. [32] in 2006
4 4n − 8 Hong and Hsieh [8] in 2013
2n−1+2 f

3 ≤ h ≤ 2n−1 § 2n−1 Zhang et al. [24] in 2014
Qn,k 1 2n, 5 ≤ k ≤ n − 1 Sabir et al. [13] in 2019

2 3n − 1, 5 ≤ k ≤ n − 1 Sabir et al. [13] in 2019
1 ≤ h ≤ 2⌈

n
2 ⌉ − dr, n ≤ 2k + 3, k ≥ 3 £ (n + 1)h −

∑s
i=0 ti2ti +

∑s
i=0 2i2ti Xu et al. [17] in 2021

2⌈
n
2 ⌉ − dr ≤ h ≤ 2⌈

n
2 ⌉, 2k ≤ n ≤ 2k + 3 (n + 1)h −

∑s
i=0 ti2ti +

∑s
i=0 2i2ti Xu et al. [17] in 2021

2⌈
n
2 ⌉ − dr ≤ h ≤ 2⌈

n
2 ⌉, k + 2 ≤ n ≤ 2k − 1 ⌊ n

2 ⌋2
⌈ n

2 ⌉ Xu et al. [17] in 2021
1 ≤ h ≤ 2⌈

n
2 ⌉+1 − dr, n ≥ 2k + 4 (n + 1)h −

∑s
i=0 ti2ti +

∑s
i=0 2i2ti Xu et al. [17] in 2021

2⌈
n
2 ⌉+1 − dr ≤ h ≤ 2⌈

n
2 ⌉+1 ⌊ n

2 ⌋2
⌈ n

2 ⌉+1 Xu et al. [17] in 2021
Qn,2 ⌈ 11×2n−1

48 ⌉ ≤ h ≤ 2n−1 2n−1, (k = 2) Current
‡ where r = 1, 2, . . . , ⌈ n

2 ⌉ − 1 and lr = 22r−1

3 if n is odd and lr = 22r−2

3 if n is even.
§ where f = 0 if n is even, and f = 1 if n is odd.
£ where dr = 2 if n is even, and dr = 4 if n is odd.

spanning subgraph with no more than h − 1-vertices in the faulty networks, Fàbrega and Fiol [5] proposed the h-extra
edge-connectivity in 1996. Given a positive integer h, an h-extra edge-cut of a connected graph G is defined as a set
of edges whose deletion yields a disconnected graph with all its components having at least h vertices. The h-extra
edge-connectivity, denoted as λh(G), is defined as the minimum cardinality of all h-extra edge-cuts of G. Given a
vertex set X ⊂ V(G), the complement of a vertex set X is X = V(G) \ X. G[X] and [X, X] can be defined as the
subgraph induced by the vertex set X and the set of edges of G in which each edge contains one end vertex in X
and the other end in X, respectively. Let ξm(G) = min{|[X, X]| : |X |= m ≤ ⌊| V(G)|/2⌋, G[X] is connected}. If
λh(G) = ξh(G), it is called λh-optimal; otherwise, it is not λh-optimal. Many authors studied exact values of the
h-extra edge-connectivity of some important classes of the interconnection network, such as hypercubes [10], folded
hypercubes [2, 4, 18, 25, 26, 30, 31], BC network [3, 8, 19, 24, 32], and 3-ary n-cube [12]. The specific conclusions
are shown in Table 1.

The enhanced hypercube is a variant of the hypercube. Based on n-dimensional hypercube Qn, Tzeng and Wei [15]
proposed the concept of (n, k)-enhanced hypercube Qn,k for 1 ≤ k ≤ n − 1, by adding different types of complement
edges. Compared to Qn, by adding various kinds of k-complement edge on Qn, the (n, k)-enhanced hypercube Qn,k

performs very well in many measurements such as mean internode distance, diameter, traffic density, connectivity,
fault tolerance, cost-effective[15], communication ability and diagnosability [16].

Undoubtedly, the enhanced hypercubes Qn,k require more hardware to build than hypercubes Qn. However, when
n is huge, the expense is minimal, and the benefits of the structural advantages are substantial. With such attractive
properties, the (n, k)-enhanced hypercube has been widely studied.

Recently, the h-extra edge-connectivity and h-extra connectivity of Qn,k are widely investigated. For the edge
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versions,
Sabir et al. [13] investigated λh(Qn,k) for h = 1, 2 in 2019 (see Table 1); Xu et al. [17] studied λh(Qn,k) for

1 ≤ h ≤ 2⌈
n
2 ⌉+1, n ≥ 2k + 4 and 1 ≤ h ≤ 2⌈

n
2 ⌉, n ≤ 2k + 3, k ≥ 3 in 2021 (see Table 1). For the vertex versions, Li et

al. [9] determined that κ1(Qn,k) for n = k + 1 and k ≥ 1, κ2(Qn,k) for n = k + 1 and k ≥ 3 and κ3(Qn,k) for n = k + 1
and k ≥ 3 in 2020. Sabir et al. [13] also determined κ1(Qn,k) for n ≥ 7, 2 ≤ k ≤ n − 5 and κ2(Qn,k) for n ≥ 9 and
2 ≤ k ≤ n − 7 in 2019. Yin and Xu [22] proved κg(Qn,k) for 0 ≤ g ≤ n − k − 1, 4 ≤ k ≤ n − 5 and n ≥ 9 in 2022. In
particular, for k = 1, the (n, k)-enhanced hypercubes Qn,k is n-dimensional folded hypercubes FQn.

In 2013, Li and Yang investigated λh(Qn) for 1 ≤ h ≤ 2⌊
n
2 ⌋ and n ≥ 4. In 2014, Yang and Li [18] determined

λh(FQn) for h ≤ n and n ≥ 6. In 2014, Zhang et al. [24] studied λh(Bn) for 1 ≤ h ≤ 2⌊
n
2 ⌋+1 and n ≥ 4. In 2014, Yang

and Meng [20] investigated κg(Qn) for 0 ≤ g ≤ n − 4. In 2017, Zhou [29] determined κg(HLn) for 0 ≤ g ≤ n − 3 and
n ≥ 5. Compared to classical Menger theory, both h-extra edge-connectivity and g-extra connectivity significantly
improved the fault tolerance and reliability of interconnection networks. Since h or g is very small, they usually satisfy
the λh-optimality λh(G) = ξh(G) or κg-optimality κg(G) = ξvg(G).

They also allow a linear number of malfunctions. It is not enough. We want to go further. For every integer
h1 ≤ h ≤ h2, the value of the function λh(G) is a constant, one then says that the h-extra edge-connectivity of a graph
G is concentrated for the interval h1 ≤ h ≤ h2, and represents a concentration phenomenon. If the bounds h1 and h2
are sharp, λh1−1(G) < λh1 (G) = λh(G) = λh2 (G) < λh2+1(G), it means that this interval h1 ≤ h ≤ h2 is maximal. In
particular, for h1 = h2, λh(G) = ξh(G) is λh-optimal. Recently, Zhang et al. (2016) [25] studied the values of λh(FQn)
concentrate on ⌊ n

2 ⌋2
⌈ n

2 ⌉+1 for 2⌈
n
2 ⌉+1 − dr ≤ h ≤ 2⌈

n
2 ⌉+1, where dr = 4 if n is odd and dr = 2 if n is even. Xu et al.

(2021) [17] investigated the values of λh(Qn,k) concentrate on ⌊ n
2 ⌋2
⌈ n

2 ⌉ for 2⌈
n
2 ⌉ − dr ≤ h ≤ 2⌈

n
2 ⌉, where dr = 4 if n is

odd and dr = 2 if n is even. With the increase of n, the concentration phenomenon also becomes obvious. Zhang et
al. (2016) [25] also determined the values of λh(FQn) concentrate on (⌈ n

2 ⌉ − r + 1)2⌊
n
2 ⌋+r for 2⌊

n
2 ⌋+r − lr ≤ h ≤ 2⌊

n
2 ⌋+r,

where r = 1, 2, . . . ,
⌈

n
2

⌉
− 1 and lr = 22r−1

3 if n is odd and lr = 22r+1−2
3 if n is even. As far as we know, the study of the

concentration phenomenon of λh(Qn,k) has just started. Inspired by the above results, this paper mainly focuses on the
most obvious concentration phenomenon of λh(Qn,2) in the subinterval ⌈ 11×2n−1

48 ⌉ ≤ h ≤ 2n−1. For example, the values
of ξh(Qn,2) are marked in blue, the values of λh(Qn,2) are marked in red, and the subinterval we examines is marked in
green (see Fig. 1).
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Fig. 1: The values of ξh(Q9,2) and λh(Q9,2).

Theorem 1. For three integers n ≥ 9, ⌈ 11×2n−1

48 ⌉ ≤ h ≤ 2n−1 and 1 ≤ r ≤ ⌈ n
2 ⌉ − 1, the results are as follows:

(a) λh(Qn,2) = ξ2n−1 (Qn,2) = 2n−1;
(b) It is λh-optimal (λh(Qn,2) = ξh(Qn,2) = 2n−1) if and only if h = mn,r or h = mn,r+1.

The rest of this paper is organized as follows. Section 2 introduces some related definitions and lemmas. Section 3
gives several lemmas about the properties of the function ξm(Qn,2). Section 4 determines that the value of the h-extra
edge-connectivity of Qn,2 concentrates on a constant 2n−1. The last section concludes our results.
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2. Preliminaries

Recall that the h-extra edge-connectivity of a connected graph G, λh(G), is the minimum number of an edge-cut
of the graph G whose removal separates the graph G with all resulting components having at least h vertices. Given
a vertex set X ⊂ V(G), we denote the set of edges of G in which each edge contains exactly one end in X and the
other in X = V(G) \ X by [X, X]. If F be a minimum h-extra edge-cut of connected graph G, then there is a fact that
G − F has exactly two components. In fact, if F is the minimum h-extra edge-cut of the connected graph G, G − F
has p components C1,C2, · · · ,Cp with at least h vertices, p ≥ 3. Since the graph G is connected, there must exist
integer i, j with [VCi ,VC j ] , ∅, |F1| = |F \ [VCi ,VC j ]| < |F|. Thus, F1 is also a minimum h-extra edge-cut of G, which
contradicts the minimality of F. Hence, G− F has exactly two components. Although the original definition of ξm(G)
only requires that G[X] is connected, we do need that both G[X] and G[X] are connected in this paper. The function
ξm(Qn,2) of (n, 2)-enhanced hypercubes Qn,2 does have the same result after modifying this condition. Let

ξm(G) = min{|[X, X]| : |X| = m ≤ ⌊|V(G)|/2⌋, and both G[X] and G[X] are connected}. (1)

For a d-regular graph,

ξm(G) = dm − exm(G), (2)

where exm(G) is twice the maximum number of edges among all m vertices induced subgraphs for each m ≤

⌊|V(G)|/2⌋. Actually, if we can find X∗m ⊆ V(G), |X∗m| = m, with exm(G) = 2|E(G[X∗m)]|, and so that, both G[X∗m]
and G[X∗m] are connected. Then

ξm(G) = |[X∗m, X∗m]| = dm − exm(G) = dm − 2|E(G[X∗m]|.

By the definition of the h-extra edge-connectivity of G, ξm(G) offers the upper bound for the λh(G) for all 1 ≤ h ≤
⌊|V(G)|/2⌋. So, the function λh(G) (by Zhang et al. [26] page 299),

λh(G) = min {ξm(G) : h ≤ m ≤ ⌊|V(G)|/2⌋} . (3)

Let n, k be positive integers. The definitions of the n-dimensional hypercube Qn, folded hypercube FQn and (n, k)-
enhanced hypercube Qn,k are stated as follows.

Definition 1. [14] For an integer n ≥ 1, the n-dimensional hypercube, denoted by Qn, is a graph with 2n vertices.
The vertex set V(Qn) = {xnxn−1 . . . x1 : xi ∈ {0, 1}, 1 ≤ i ≤ n} is the set of all n-bit binary strings. Two vertices
x = xnxn−1 · · · x2x1 and y = ynyn−1 · · · y2y1 of Qn are adjacent if and only if they differ in exactly one position.

For any vertices x = xnxn−1 · · · x2x1 and y = ynyn−1 · · · y2y1, the edge e = xy is called k-complementary edges
(1 ≤ k ≤ n − 1) if and only if yi = xi for n − k + 1 < i ≤ n, and y j = x j for 1 ≤ j ≤ n − k + 1.

As a variant of the hypercube, the n-dimensional folded hypercube FQn, first proposed by EL-Amawy and Latifi
[4], is a graph obtained from the hypercube Qn by adding an edge between every pair of vertices xnxn−1 · · · x1 and
xn xn−1 · · · x1, where xi = 1 − xi for all 1 ≤ i ≤ n. The FQn is to add complement edges in two (n − 1)-dimensional
sub-cubes. Motivated by this, by adding k-complementary edges between two paired lower-dimensional sub-cubes,
in 1991, Tzeng and Wei [15] introduced the (n, k)-enhanced hypercube Qn,k.

Definition 2. For two integers n and k with 1 ≤ k ≤ n − 1, the (n, k)-enhanced hypercube, denoted by Qn,k, is defined
to be a graph with the vertex set V

(
Qn,k
)
= {xnxn−1 . . . x2x1 : xi ∈ {0, 1}, 1 ≤ i ≤ n}. Two vertices x = xnxn−1 · · · x2x1

and y = ynyn−1 · · · y2y1 are adjacent if y satisfies one of the following two conditions:
(1) y = xnxn−1 · · · xi+1 x̄ixi−1 · · · x2x1 for 1 ≤ i ≤ n, where x̄i = 1 − xi or
(2) y = xnxn−1 · · · x̄n−k+1 x̄n−k · · · x̄2 x̄1.

Note that Qn,1 is the n-dimensional folded hypercube FQn. The (n, 2)-enhanced hypercube Qn,2 is obtained from
the hypercube Qn by adding 2-complementary edges between two pairs of vertices x = xnxn−1 · · · x2x1 and y =
xn x̄n−1 · · · x̄2 x̄1 in two (n − 1)-dimensional sub-cubes.

The (n, 2)-enhanced hypercube Qn,2 is (n + 1)-regular (n + 1)-connected with 2n vertices and (n + 1)2n−1 edges
[15, 16].The enhanced hypercubes Q3,1, Q3,2 and Q4,2 are illustrated in Fig. 2, where the complementary edges are
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Fig. 2: Q3,1 (i.e. FQ3), Q3,2 and Q4,2.

represented by a short dotted line. As the integer n grows, the scale of Qn,2 expands exponentially, and the topological
structure of Qn,2 becomes more and more complicated. Thus, the bitmaps of the adjacency matrix of Qn,2 represent
the adjacent relationship between vertices of Qn,2. These figures of the adjacency matrix of Q4,2, Q5,2, Q6,2 and Q7,2
are shown in Fig. 3 (in four figures, the dark pixel at location (x, y) corresponds to the edges between vertices x and
y). The bitmaps of the adjacency matrix of Qn,2 have high symmetry, iterative fractal, and recursive structure.
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Fig. 3: The bitmap of adjacency matrix of Qn,2 for 4 ≤ n ≤ 7.

For a positive integer 1 ≤ m ≤ 2n−1, there exists a unique binary representation m =
∑s

i=0 2ti , where t0 =
⌊
log2 m

⌋
,

ti =
⌊
log2

(
m −
∑i−1

r=0 2tr
)⌋

for i ≥ 1, and t0 > t1 > · · · > ts. These conditions are used throughout the article when
not causing ambiguity. If x = xnxn−1 . . . x1 is a vertex of the (n, 2)-enhanced hypercubes Qn,2, every vertex can be
denoted by decimal number

∑n
i=1 xi2i−1, xi ∈ {0, 1}. Let S m be the set {0, 1, 2, . . . ,m−1} (under decimal representation).

And Ln
m denotes the corresponding set represented by n-binary strings. By the construction of Qn,2, Ln

m is the subset
of V

(
Qn,2
)

and Qn,2
[
Ln

m
]

is the subgraph induced by Ln
m in Qn,2. Both Qn,2

[
Ln

m
]

and Qn,2

[
Ln

m

]
are connected. The

subgraphs induced by L4
m in Qn,2 for m = 4, 6 and 8 are shown in Fig. 4.

Happer [7], Li and Yang [10] independently obtained the exact expression of the function exm(Qn).

Lemma 1. For a positive integer m =
∑s

i=0 2ti ≤ 2n, ξm(Qn) = nm − exm(Qn), where exm(Qn) = 2|E(Qn[Ln
m])| =∑s

i=0 ti2ti +
∑s

i=0 2i2ti .

Arockiaraj et al. [1] obtained the exact expression of the function exm(Qn,k) in 2019, which was rewritten by Xu et
al. in 2021 [17].

In the following, we let [x]+ =

x, if x ≥ 0;
0, if x < 0.

5



Fig. 4: Induced subgraph Q4,2[L4
4], Q4,2[L4

6] and Q4,2[L4
8].

Lemma 2. For each integer 1 ≤ m ≤ 2n and m =
∑s

i=0 2ti , ξm(Qn,2) = (n + 1)m − exm(Qn,2), where

exm
(
Qn,2
)
= 2
∣∣∣E(Qn,2[Ln

m])
∣∣∣

= 2
∣∣∣E (Qn[Ln

m]
)∣∣∣ + ⌊ m

2n−1 ⌋2n−1 + 2
[
m − ⌊ m

2n−1 ⌋2n−1 − 2n−2
]+

=



exm(Qn) if 1 ≤ m ≤ 2n−2;
exm(Qn) + 2m − 2n−1 if 2n−2 < m ≤ 2n−1;
exm(Qn) + 2n−1 if m > 2n−1 and m = 2n−1 + x,

0 ≤ x < 2n−2;
exm(Qn) + 2x if m > 2n−1 and m = 2n−1 + x,

2n−2 ≤ x < 2n−1.

(4)

Then several specific examples are used to illustrate the calculation of exm(Qn,2). For example, for n = 4 and m = 4.
exm(Qn,2) =

∑s
i=0 ti2ti +

∑s
i=0 2i2ti . Note that S 4 = {0, 1, 2, 3} and L4

4 = {0000, 0001, 0010, 0011}. Since 4 = 22, it can
be seen that t0 = 2 and ex4(Q4,2) = 2|E(Qn,2[L4

4])| = 2×22+2×0×22 = 8; for n = 4 and m = 8. exm(Qn,2) =
∑s

i=0 ti2ti+∑s
i=0 2i2ti + 2m − 2n−1. There are S 8 = {0, 1, . . . , 7} and L4

8 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111}. Since
8 = 23, it can be obtained that t0 = 3 and ex8(Q4,2) = 2|E(Qn,2[L4

8])| = 3 × 23 + 2 × 0 × 23 + 2 × 8 − 23 = 32. The
induced graph Q4,2[L4

4] and Q4,2[L4
8] are shown in Fig. 4.

Lemma 3. ([17]) For positive integers 1 ≤ m ≤ 2t and 0 ≤ t ≤ n, exm(Qn) ≤ tm and exm(Qn,k) ≤ (t + 1)m.

Lemma 4. ([17]) For positive integers h ≤ m =
∑s

i=0 2ti ≤ 2n−1,

λh(Qn,2) = min
{
ξm(Qn,2) : h ≤ m ≤ 2n−1

}
,

satisfying that
ξm(Qn,2) = (n + 1)m − exm(Qn,2). (5)

For m ≤ 2n−1, the following two iterative properties of the expression of exm(Qn,2) depend on whether Qn,2 matches
complementary edges in the sub-network and how many complementary edges there are.

Lemma 5. Let m, n be two integers, n ≥ 4, 1 ≤ m =
∑s

i=0 2ti ≤ 2n−1. For m1 =
∑a

i=0 2ti , m = m1 + m2, and
t0 > t1 · ·· > ta > ta+1 > ta+2 > · · · > ts, a < s,

(a) exm(Qn,2) = exm1 (Qn,2) + exm2 (Qn,2) + 2(a + 1)m2 for 1 ≤ m ≤ 2n−2;
(b) exm(Qn,2) = exm1 (Qn,2) + exm2 (Qn,2) + 2m1 + 2(a + 1)m2 for 2n−2 < m ≤ 2n−1.

Proof. Note that m2 = m − m1 = 2ta+1 + 2ta+2 + · · · + 2ts =
∑s

i=a+1 2ti =
∑s−a−1

i=0 ti+a+1
2ti+a+1 . Since the expression of exm(Qn,2) strongly depends on the binary decomposition of m and the domain of m, it
can be divided into the following two cases according to its two different forms.

(a). For 1 ≤ m ≤ 2n−2, by Lemma 2, it can be obtained exm1 (Qn,2) =
∑a

i=0 ti2ti +
∑a

i=0 2i2ti and exm2 (Qn,2) =∑s−a−1
i=0 ti+a+12ti+a+1 +

∑s−a−1
i=0 2i2ti+a+1 . Note that
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exm(Qn,2) =
∑s

i=0 ti2ti +
∑s

i=0 2i2ti

= (
∑a

i=0 ti2ti +
∑s−a−1

i=0 ti+a+12ti+a+1 ) + (
∑a

i=0 2i2ti +
∑s−a−1

i=0 2(a + 1 + i)2ti+a+1 )
= exm1 (Qn,2) + exm2 (Qn,2) + 2

∑s−a−1
i=0 (a + 1)2ti+a+1

= exm1 (Qn,2) + exm2 (Qn,2) + 2(a + 1)m2.
(b). For 2n−2 < m ≤ 2n−1, by Lemma 2, it is sufficient to show that exm1 (Qn,2) =

∑a
i=0 ti2ti +

∑a
i=0 2i2ti + 2m1 − 2n−1

and exm2 (Qn,2) =
∑s−a−1

i=0 ti+a+12ti+a+1 +
∑s−a−1

i=0 2i2ti+a+1 . Note that
exm(Qn,2) =

∑s
i=0 ti2ti +

∑s
i=0 2i2ti + 2m − 2n−1

= (
∑a

i=0 ti2ti +
∑s−a−1

i=0 ti+a+12ti+a+1 ) + (
∑a

i=0 2i2ti +
∑s−a−1

i=0 2(a + 1 + i)2ti+a+1 ) + 2m − 2n−1

= exm1 (Qn,2) + exm2 (Qn,2) + 2m2 + 2
∑s−a−1

i=0 (a + 1)2ti+a+1

= exm1 (Qn,2) + exm2 (Qn,2) + 2(a + 2)m2.
To sum up, the proof is completed.

3. Some properties of the function ξm(Qn,2)

The exact value of the function λh(Qn,2) highly depends on the monotonic interval and fractal structure of the
function ξm(Qn,2). Then we introduce several lemmas of the properties of function ξm(Qn,2).

Let f = 0 if n is even, and f = 1 if n is odd. To deal with the interval ⌈ 11×2n−1

48 ⌉ ≤ m ≤ 2n−1, by inserting ⌈ n
2 ⌉ numbers

of mn,r satisfying

⌈
11 × 2n−1

48
⌉ = mn,1 < mn,2 < · · · < mn,r < mn,r+1 < · · · < mn,⌈ n

2 ⌉−1 = 2n−1.

This interval will be divided into ⌈ n
2 ⌉−1 numbers of integer subintervals. The expression of mn,r is defined as follows:

mn,r =


∑2

i=0 2n−4−i +
∑⌈ n

2 ⌉−4−r
i=0 2n−8−2i + 22r−1− f if 1 ≤ r ≤ ⌈ n

2 ⌉ − 4; (e)∑3
i=0 2n−4−i if r = ⌈ n

2 ⌉ − 3; ( f )
2n−3 if r = ⌈ n

2 ⌉ − 2; (g)
2n−1 if r = ⌈ n

2 ⌉ − 1, (h)

for r = 1, 2, . . . , ⌈ n
2 ⌉−1. By calculation, it can be obtained that ⌈ 11×2n−1

48 ⌉ = mn,1 =
∑2

i=0 2n−4−i+
∑⌈ n

2 ⌉−4−r
i=0 2n−8−2i+21− f .

Actually, if 1 ≤ r ≤ ⌈ n
2 ⌉ − 4 and n is even, mn,r =

∑2
i=0 2n−4−i +

∑⌈ n
2 ⌉−4−r

i=0 2n−8−2i + 22r−1. mn,1 = 2n−4 + 2n−5 + 2n−6 +

2n−8+2n−10+ · · ·+22+21 and 3mn,1 = 2mn,1+mn,1 = 2n−3+2n−4+2n−5+2n−6+2n−7+ · · ·+23+22+(2n−4+2n−5+22), so
mn,1 =

11×2n−5+21− f

3 = ⌈ 11×2n−1

48 ⌉. If n is odd, mn,r =
∑2

i=0 2n−4−i+
∑⌈ n

2 ⌉−4−r
i=0 2n−8−2i+22r−2. mn,1 = 2n−4+2n−5+2n−6+2n−8+

2n−10+ · · ·+21+20 and 3mn,1 = mn,1+2mn,1 = 2n−3+2n−4+2n−5+2n−6+2n−7+ · · ·+22+21++20+ (2n−4+2n−5+21),
thus mn,1 =

11×2n−5+21− f

3 = ⌈ 11×2n−1

48 ⌉.
For some small cases 4 ≤ n ≤ 8, not all of these four situations occur, see Table 2. Throughout this paper only the

situation of n ≥ 9.

Table 2: The variability of r, and mn,r for 4 ≤ n ≤ 8.
n mn,1 mn,2 mn,3 · · · mn,⌈ n

2 ⌉−1

4 1, (h)
5 4, (g) 16, (h)
6 8, (g) 32, (h)
7 15, (g) 16, (h) 64, ( f )
8 30, (g) 32, (h) 128, ( f )

The variety of n, r, and mn,r for n = 9 or 10 are illustrated in Table 3.
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Table 3: The variability of r, and mn,r for n = 9 or 10.
n = 9 n = 10

r mn,r mn,r r mn,r mn,r

1 59 25 + 24 + 23 + 21 + 20 1 118 26 + 25 + 24 + 22 + 21

2 60 25 + 24 + 23 + 22 2 120 26 + 25 + 24 + 23

3 64 26 3 128 27

4 256 28 4 512 29

Lemma 6. [17] Let c, n and m be three integers, n ≥ 4, 0 ≤ c ≤ n − 2 and 2c ≤ m ≤ 2n−1. Then ξm(Qn,2) ≥ ξ2c (Qn,2).

Lemma 7. Let n, r be two integers, n ≥ 9, r = 1, 2, . . . , ⌈ n
2 ⌉ − 1. Then ξmn,r (Qn,2) = 2n−1.

Proof. According to different expressions of mn,r, the proof will be divided into four cases.
Case 1. For 1 ≤ r ≤ ⌈ n

2 ⌉ − 4, mn,r =
∑2

i=0 2n−4−i +
∑⌈ n

2 ⌉−4−r
i=0 2n−8−2i + 22r−1− f , by Lemma 2 and formula (5), it can

be obtained that
ξmn,r (Qn,2) = (n + 1)mn,r − exmn,r (Qn,2)

= (n+ 1)[
∑2

i=0 2n−4−i +
∑⌈ n

2 ⌉−4−r
i=0 2n−8−2i + 22r−1− f ]− {

∑2
i=0[(n− 4− i)2n−4−i + 2i2n−4−i)]

∑⌈ n
2 ⌉−4−r

i=0 [(n
−8 − 2i)2n−8−2i + 2(3 + i)2n−8−2i] + [(2r − 1 − f )22r−1− f + 2(⌈ n

2 ⌉ − r)22r−1− f ]}

= (n + 1 − n + 4 − i)
∑2

i=0 2n−4−i + (n + 1 − n + 8)
∑⌈ n

2 ⌉−4−r
i=0 2n−8−2i + (n + 2 + f − 2⌈ n

2 ⌉)2
2r−1− f

= (5 − i)
∑2

i=0 2n−4−i + 3
∑⌈ n

2 ⌉−4−r
i=0 2n−8−2i + 22r− f

= 5 · 2n−4 + 4 · 2n−5 + 4 · 2n−6 − 22r− f + 22r− f

= 3 · 2n−3 + 2n−3

= 2n−1.
Case 2. For r = ⌈ n

2 ⌉−3,mn,r =
∑3

i=0 2n−4−i, by Lemma 2 and the formula (5), ξmn,r (Qn,2) = (n+1)mn,r−exmn,r (Qn,2) =∑3
i=0(n − 4 − i)2n−4−i +

∑3
i=0 2i2n−4−i = (5 − i)

∑3
i=0 2n−4−i = 5 × 2n−4 + 4 × 2n−5 + 3 × 2n−6 + 2 × 2n−7 = 2n−1.

Case 3. For r = ⌈ n
2 ⌉ − 2,mn,r = 2n−3, by Lemma 2 and the formula (5), it is not difficult to see that ξ2n−3 (Qn,2) =

(n + 1) × 2n−3 − (n − 3) × 2n−3 = 2n−1.
Case 4. For r = ⌈ n

2 ⌉ − 1,mn,r = 2n−1, by the formula (5) and Lemma 2, then ξ2n−1 (Qn,2) = (n+ 1)× 2n−1 − [(n− 1)×
2n−1 + 2 × 2n−1 − 2n−1] = 2n−1.

From the above four cases, it can conclude that ξmn,r (Qn,2) = 2n−1 for r = 1, 2, . . . , ⌈ n
2 ⌉ − 1. The proof is completed.

Lemma 8. Given two integers n ≥ 9, ⌈ 11×2n−1

48 ⌉ ≤ m ≤ 2n−1. There exists a positive integer r, satisfying mn,r < m <
mn,r+1. ξm

(
Qn,2
)
> ξmn,r

(
Qn,2
)
= ξmn,r+1

(
Qn,2
)
= · · · = ξmn,⌈ n

2 ⌉−1

(
Qn,2
)
= ξ2n−1 (Qn,2) = 2n−1.

Proof. According to different expressions of exm(Qn,2), the proof will be divided into two cases.
Case 1. ⌈ 11×2n−1

48 ⌉ ≤ m ≤ 2n−2.
One can check that mn,r+1 − mn,r = 22r−1− f for 1 ≤ r ≤ ⌈ n

2 ⌉ − 3. By Lemma 7, ξmn,r (Qn,2) = ξ2n−1 (Qn,2) = 2n−1

for 1 ≤ r ≤ ⌈ n
2 ⌉ − 1. Let m = mn,r + 22r−1− f + p, where mn,r =

∑2
i=0 2n−4−i +

∑⌈ n
2 ⌉−4−r

i=0 2n−8−2i + 22r−1− f , 0 ≤
p < 22r−1− f , p =

∑s
i=0 2t′i < mn,r+1 − mn,r, 2r − 1 − f > t′0 > t′1 > · · · > t′s. If 1 ≤ r < ⌈ n

2 ⌉ − 4, then mn,r =∑2
i=0 2n−4−i +

∑⌈ n
2 ⌉−4−r

i=0 2n−8−2i + 22r−1− f ; if r = ⌈ n
2 ⌉ − 3, then mn,r =

∑3
i=0 2n−4−i. By the equation (5) and Lemma 5, one

can deduce that
ξm(Qn,2) − ξmn,r+22r−1− f (Qn,2)

= ξmn,r+22r−1− f+p(Qn,2) − ξmn,r+22r−1− f (Qn,2)
= (n + 1)m − exm(Qn,2) − (n + 1)(mn,r + 22r−1− f ) + exmn,r+22r−1− f (Qn,2)
= (n + 1)(mn,r + 22r−1− f + p) − exmn,r+22r−1− f+p(Qn,2) − (n + 1)(mn,r + 22r−1− f ) + exmn,r+22r−1− f (Qn,2)
= (n + 1)p − exmn,r+22r−1− f+p(Qn) + exmn,r+22r−1− f (Qn) (Lemma 2)
= (n + 1)p − [exmn,r+22r−1− f (Qn) + exp(Qn) + 2(⌈ n

2 ⌉ − r + 1)p] + exmn,r+22r−1− f (Qn)
= (2r − f − 1)p − exp(Q2r− f−1)
= ξp(Q2r− f−1).
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For p < 22r−1− f , the value of exp(Qn) is uniquely determined by the binary representation of p. Therefore,

exp(Qn) = exp(Q2r− f−1). By Lemma 1, exp(Q2r− f−1) = 2|E(Q2r−1− f [L
2r− f−1
p ])|. [L2r− f−1

p , L2r− f−1
p ] be an edge cut

of Q2r− f−1. Since Q2r− f−1 is connected graph, and if one deletes the edge cut [L2r− f−1
p , L2r− f−1

p ], two induced sub-

graphs by L2r− f−1
p and L2r− f−1

p are connected, the edge cut [L2r− f−1
p , L2r− f−1

p ] of Q2r− f−1 does exist. By Lemma 3, it is
sufficient to show that exp(Q2r− f−1) ≤ (2r − 1 − f )p, and ξm(Qn,2) − ξmn,r (Qn,2) = (2r − f − 1)p − exp

(
Q2r− f−1

)
> 0.

If r = ⌈ n
2 ⌉−2, then mn,r = 2n−3. There exists a positive integer p′ =

∑s
i=0 2t′i , satisfying 0 ≤ p′ < 2n−3, m1 = 2n−3+ p′

and n − 3 > t′0 > t′1 > · · · > t′s. The proof of ξm1 (Qn,2) > ξmn,r (Qn,2) is the same as the above proof of ξm(Qn,2) >
ξmn,r (Qn,2).

Case 2. 2n−2 ≤ m ≤ 2n−1.
If r = ⌈ n

2 ⌉ − 2, then mn,r = 2n−3. There exists a positive integer m′′ =
∑s

i=0 2t′i , satisfying 0 ≤ m′′ < 2n−2,
m = mn,r + 2n−3 + m′′ = 2n−2 + m′′ and n − 2 > t′0 > t′1 > · · · > t′s. By the equation (5) and Lemma 5,

ξm(Qn,2) − ξ2n−3 (Qn,2)
= ξm(Qn,2) − ξ2n−2 (Qn,2) + ξ2n−2 (Qn,2) − ξ2n−3 (Qn,2)
= (n + 1)(2n−2 + m′′) − (n + 1)2n−2 − (exm(Qn,2) − ex2n−2 (Qn,2)) + 2n−2

= (n + 1)m′′ − (ex2n−2+m′′ (Qn) + 2m′′) + ex2n−2 (Qn) + 2n−2 (Lemma 2)
= (n + 1)m′′ − ex2n−2 (Qn) − exm′′ (Qn) − 4m′′ + ex2n−2 (Qn) + 2n−2

= (n + 1)m′′ − exm′′ (Qn) − 4m′′ + 2n−2

= (n − 3)m′′ − exm′′ (Qn) + 2n−2

= (n − 3)m′′ − exm′′ (Qn−3) + 2n−2

= ξm′′ (Qn−3) + 2n−2

> 0.
For 0 ≤ m′′ ≤ 2n−2, the value of exm′′ (Qn) is uniquely determined by the binary representation of m′′. Thus,

exm′′ (Qn) = exm′′ (Qn−3). By Lemma 3, (n − 3)m′′ − ex′′m (Qn−3) > 0 for 0 ≤ m′′ ≤ 2n−2. Thus, ξm(Qn,2) > ξmn,r (Qn,2).
Combining the above two cases, ξm(Qn,2) > ξmn,r (Qn,2) = ξmn,r+1 (Qn,2) = 2n−1 for 1 ≤ r ≤ ⌈ n

2 ⌉ − 2. So the proof is
completed.

4. The h-extra edge-connectivity of Qn,2 concentrates on 2n−1 for ⌈ 11×2n−1

48 ⌉ ≤ h ≤ 2n−1

Proof. The proof of Theorem 1 (a). Given each integer h, for ⌈ 11×2n−1

48 ⌉ ≤ h ≤ mn,⌈ n
2 ⌉−1, there exists an integer

r, 1 ≤ r ≤ ⌈ n
2 ⌉−1, satisfying mn,r ≤ h ≤ mn,r+1. By Lemma 4 and Lemma 8, λh(Qn,2) = min{ξm(Qn,2) : mn,r ≤ h ≤ m <

mn,r+1} = ξmn,r (Qn,2) for r = 1, 2, . . . , ⌈ n
2 ⌉ − 1. So for any ⌈ 11×2n−1

48 ⌉ ≤ h ≤ 2n−1, λh(Qn,2) = min{ξm(Qn,2) : ⌈ 11×2n−1

48 ⌉ ≤

h ≤ m ≤ 2n−1} = ξ2n−1 (Qn,2).
λh
(
Qn,2
)
= min{ξm(Qn,2) : h ≤ m ≤ 2n−1}{Lemma 4}
= min{ξm(Qn,2) : h ≤ m ≤ mn,⌈ n

2 ⌉−1}{Lemmas 8 and 6}
= ξ2n−1 (Qn,2){Lemmas 7 and 8}
= 2n−1.

The proof of Theorem 1 (b). If h = mn,r or h = mn,r+1, by Lemma 4 and Lemma 7, λh(Qn,2) = ξh(Qn,2) = 2n−1.
If mn,r < h < mn,r+1, by Lemma 8, ξh(Qn,2) > ξmn,r+1 (Qn,2), by Lemma 4 and Lemma 7, λh(Qn,2) = min{ξm(Qn,2) : h ≤
m ≤ mn,r+1} = ξmn,r+1 (Qn,2) = ξmn,r+2 (Qn,2) = · · · = ξmn,⌈ n

2 ⌉−1
(Qn,2) = 2n−1. So, one can get λh(Qn,2) = ξh(Qn,2) = 2n−1 for

h = mn,r or h = mn,r+1, 1 ≤ r < ⌈ n
2 ⌉ − 1.

The proof is completed.

Remark 1. For ⌈ 11×2n−1

48 ⌉ ≤ h ≤ 2n−1 and n ≥ 9, the lower and upper bounds of h in λh(Qn,2) are both tight.

(1) In fact, if n is even, then mn,1 =
∑2

i=0 2n−4−i +
∑⌈ n

2 ⌉−5
i=0 2n−8−2i + 2, mn,1 − 1 =

∑2
i=0 2n−4−i +

∑⌈ n
2 ⌉−5

i=0 2n−8−2i + 1. By
Lemma 4, exmn,1 (Qn,2) = exmn,1−1(Qn,2)+n−2. So, ξmn,1 (Qn,2)−ξmn,1−1(Qn,2) = (n+1)mn,1−exmn,1 (Qn,2)− (n+1)(mn,1−

1)+exmn,1−1(Qn,2) = 3. Note that λmn,1−1(Qn,2) = min{ξh(Qn,2) : mn,1−1 ≤ h ≤ mn,1} = ξmn,1−1(Qn,2) = 2n−1−1 < 2n−1 =

λmn,1 (Qn,2) = ξmn,1 (Qn,2). If n is odd, then mn,1 =
∑2

i=0 2n−4−i+
∑⌈ n

2 ⌉−5
i=0 2n−8−2i+1, mn,1−1 =

∑2
i=0 2n−4−i+

∑⌈ n
2 ⌉−5

i=0 2n−8−2i.
By Lemma 4, exmn,1 (Qn,2) = exmn,1−1(Qn,2) + n − 3. So, ξmn,1 (Qn,2) − ξmn,1−1(Qn,2) = (n + 1)mn,1 − exmn,1 (Qn,2) − (n +
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Table 4: Examples of ξh(Qn,2) and λh(Qn,2) for 4 ≤ n ≤ 9.
h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
ξh(Q4,2) 5 8 11 12 13 12 11 8
λh(Q4,2) 5 8 8 8 8 8 8 8
ξh(Q5,2) 6 10 14 16 20 22 24 24 26 26 26 24 24 22 20 16
λh(Q5,2) 6 10 14 16 16 16 16 16 16 16 16 16 16 16 16 16
ξh(Q6,2) 7 12 17 20 25 28 31 32 37 40 43 44 47 48 49 48 51 52 53 52 53 52 51 48 49 48 47 44 43 40 37 32
λh(Q6,2) 7 12 17 20 25 28 31 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
ξh(Q7,2) 8 14 20 24 30 34 38 40 46 50 54 56 60 62 64 64 70 74 78 80 84 86 88 88 92 94 96 96 98 98 98 96
λh(Q7,2) 8 14 20 24 30 34 38 40 46 50 54 56 60 62 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
ξh(Q8,2) 9 16 23 28 35 40 45 48 55 60 65 68 73 76 79 80 87 92 97 100 105 108 111 112 117 120 123 124 127 128 129 128
λh(Q8,2) 9 16 23 28 35 40 45 48 55 60 65 68 73 76 79 80 87 92 97 100 105 108 111 112 117 120 123 124 127 128 128 128
ξh(Q9,2) 10 18 26 32 40 46 52 56 64 70 76 80 86 90 94 96 104 110 116 120 126 130 134 136 142 146 150 152 156 158 160 160
λh(Q9,2) 10 18 26 32 40 46 52 56 64 70 76 80 86 90 94 96 104 110 116 120 126 130 134 136 142 146 150 152 156 158 160 160
h 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
ξh(Q7,2) 100 102 104 104 106 106 106 104 106 106 106 104 104 102 100 96 98 98 98 96 96 94 92 88 88 86 84 80 78 74 70 64
λh(Q7,2) 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
ξh(Q8,2) 135 140 145 148 153 156 159 160 165 168 171 172 175 176 177 176 181 184 187 188 191 192 193 192 195 196 197 196 197 196 195 192
λh(Q8,2) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
ξh(Q9,2) 168 174 180 184 190 194 198 200 206 210 214 216 220 222 224 224 230 234 238 240 244 246 248 248 252 254 256 256 258 258 258 256
λh(Q9,2) 168 174 180 184 190 194 198 200 206 210 214 216 220 222 224 224 230 234 238 240 244 246 248 248 252 254 256 256 256 256 256 256
h 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
ξh(Q8,2) 197 200 203 204 207 208 209 208 211 212 213 212 213 212 211 208 211 212 213 212 213 212 211 208 209 208 207 204 203 200 197 192
λh(Q8,2) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
ξh(Q9,2) 264 270 276 280 286 290 294 296 302 306 310 312 316 318 320 320 326 330 334 336 340 342 344 344 348 350 352 352 354 354 354 352
λh(Q9,2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
h 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
ξh(Q8,2) 195 196 197 196 197 196 195 192 193 192 191 188 187 184 181 176 177 176 175 172 171 168 165 160 159 156 153 148 145 140 135 128
λh(Q8,2) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
ξh(Q9,2) 358 362 366 368 372 374 376 376 380 382 384 384 386 386 386 384 388 390 392 392 394 394 394 392 394 394 394 392 392 390 388 384
λh(Q9,2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
h 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
ξh(Q9,2) 390 394 398 400 404 406 408 408 412 414 416 416 418 418 418 416 420 422 424 424 426 426 426 424 426 426 426 424 424 422 420 416
λh(Q9,2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
h 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
ξh(Q9,2) 420 422 424 424 426 426 426 424 426 426 426 424 424 422 420 416 418 418 418 416 416 414 412 408 408 406 404 400 398 394 390 384
λh(Q9,2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
h 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
ξh(Q9,2) 388 390 392 392 394 394 394 392 394 394 394 392 392 390 388 384 386 386 386 384 384 382 380 376 376 374 372 368 366 362 358 352
λh(Q9,2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
h 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
ξh(Q9,2) 354 354 354 352 352 350 348 344 344 342 340 336 334 330 326 320 320 318 316 312 310 306 302 296 294 290 286 280 276 270 264 256
λh(Q9,2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

1)(mn,1 − 1) + exmn,1−1(Qn,2) = 4. Similarly it can see that λmn,1−1(Qn,2) = min{ξh(Qn,2) : mn,1 − 1 ≤ h ≤ mn,1} =

ξmn,1−1(Qn,2) = 2n−1 − 2 < 2n−1 = λmn,1 (Qn,2) = ξmn,1 (Qn,2). Therefore, the lower bound is sharp.
(2) As |V(Qn,2)| = 2n, by the definition of h-extra edge-connectivity, there are at least two components with at least

h vertices. So, the upper bound of the above interval is 2n−1. Therefore, the upper bound is sharp.
There are some cases when 4 ≤ n ≤ 9 and h ≤ 2n−1, the data of λh(Qn,2) and ξh(Qn,2) have been presented in Table

4, where the values of λh(Qn,2) do not satisfy the equality λh(Qn,2) = ξh(Qn,2) are marked in red, otherwise are marked
in black. Based on these data, the scatter plots of ξh(Qn,2) and λh(Qn,2) are plotted. We plot the ξh(Qn,2) marked in “ ∆
” scatters and the λh(Qn,2) marked in “ ∗ ” scatters for 4 ≤ n ≤ 12 in Fig. 5. On the X-axis in Fig. 5, the result of this
article is represented by the green lines.

We make a simulation of computing the possible sizes of the edge-cuts of Qn,2 for n = 5. In the first figure of Fig. 6,
the simulink results for the edge-cuts [X, X]Q5,2 of Q5,2 with one component having h vertices and the function ξh

(
Q5,2
)

for 1 ≤ h ≤ 25 are displayed. The possible sizes of the edge-cuts [X, X]Q5,2 of Q5,2 for h = 6 are 22, 24, 26, 28, 30, 32,
and 34 according to the distribution of the first figure of Fig. 6. The lower bound for these values is ξ6

(
Q5,2
)
= 22.

The scatter plot of the function ξh
(
Q5,2 ) (depicted in blue “ △ ” scatters) is symmetric with regard to h = 24 because

|[X, X]| = |[X, X]|. In general, the theoretical function ξh
(
Q5,2
)

lower bounds our simulation on the sizes of all the
edge-cuts [X, X]Q5,2 with one component containing h vertices for each 0 ≤ h ≤ 24.

The sizes of the h-extra edge-cuts of Q5,2, ξh
(
Q5,2
)

and λh
(
Q5,2
)

for h ≤ 24 are are shown in the second figure
of Fig. 6. According to Lemma 4, λh

(
Q5,2
)
= min{ξm(Q5,2) : 1 ≤ h ≤ m ≤ 24}. We also find that the h-extra

edge-connectivity of the (5, 2)-enhanced hypercube Q5,2 presents a concentration phenomenon on the value 16 for
4 ≤ h ≤ 16. The results of the simulation are in consistent with those of theoretical analysis.
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Fig. 5: The scatter plot of λh(Qn,2) and ξh(Qn,2) for case 4 ≤ n ≤ 12.

Table 5: The values g(n) and R(n) for 4 ≤ n ≤ 31.
n g(n) R n g(n) R
4 7 87.5% 18 101035 77.083587%
5 13 81.25% 19 202070 77.083587%
6 25 78.125% 20 404139 77.083396%
7 50 78.125% 21 808278 77.083396%
8 99 77.34375% 22 1616555 77.083349%
9 198 77.34375% 23 3233110 77.083349%
10 395 77.148437% 24 6466219 77.083337%
11 790 77.148437% 25 12932438 77.083337%
12 1579 77.099609% 26 25864875 77.083334%
13 3158 77.099609% 27 51729750 77.083334%
14 6315 77.087402% 28 103459499 77.083333%
15 12630 77.087402% 29 206918998 77.083333%
16 25259 77.084350% 30 413837995 77.083333%
17 50518 77.084350% 31 827675990 77.083333% Fig. 7: The plot of function R(n).

Unexpectedly, we find that the h-extra edge-connectivity of Qn,2 exists a concentration phenomenon for some ex-
ponentially large h on the interval of ⌈ 11×2n−1

48 ⌉ ≤ h ≤ 2n−1. Let g(n) = |{h : λh(Qn,2) = 2n−1, h ≤ 2n−1}|. So
g(n) = 2n−1−⌈ 11×2n−1

48 ⌉+1. Due to |V(Qn,2)| = 2n, λh(Qn,2) is well-defined for any integer 1 ≤ h ≤ 2n−1. Let R(n) = g(n)
2n−1

be the percentage of the number of integer h with the corresponding λh(Qn,2) = ξh(Qn,2) = 2n−1 for 1 ≤ h ≤ 2n−1. For
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Fig. 6: The comparison of the sizes of h-extra edge-cuts in Q5,2 between the simulation and our results.

the sake of simplicity, Table 5 lists some exact values of the function R(n) for 4 ≤ n ≤ 31. Then R(n) = 2n−1−⌈ 11×2n−1
48 ⌉+1

2n−1 ,

lim
n→∞

R(n) = 37
48 . The function R(n) is shown in Fig. 7. The ratio of the length of the λh(Qn,2) = 2n−1 subinterval to the

0 ≤ h ≤ 2n−1 interval gets infinitely closer to 37
48 as n grows. For n→ ∞, 77.083% of λh(Qn,2) is 2n−1, which shows the

concentration phenomenon of λh(Qn,2). Furthermore, similar results can be obtained, even if the lower bound of h is
not ⌈ 11×2n−1

48 ⌉ for 4 ≤ n ≤ 8.

5. Conclusions

It is well known that the h-extra edge-connectivity is an important indicator for measuring the fault tolerance and
reliability of interconnection networks. This paper shows that the h-extra edge-connectivity of (n, 2)-enhanced hy-
percubes Qn,2 presents a concentration phenomenon in the subinterval ⌈ 11×2n−1

48 ⌉ ≤ h ≤ 2n−1 for n ≥ 9. For about
77.083% values of h ≤ 2n−1, the minimum number of link malfunctions is 2n−1, and these link malfunctions discon-
nect (n, 2)-enhanced hypercube Qn,2 and keep each resulting connected subnetworks with at least h processors. Our
results provide a more accurate measure for evaluating a large-scale Qn,2 network reliability and availability. In order
to completely solve the h-extra edge-connectivity of the remaining intervals, we will give an algorithm to determine
the exact value and the optimality of the h-extra edge-connectivity of Qn,2 for each integer h ≤ 2n−1. Moreover, for
the general network Qn,k an attempt to design an algorithm to solve the exact value and the optimality of λh(Qn,k) also
can be made.
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