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The Natural Language to Visualization (NL2Vis) task aims to transform natural-language descriptions into
visual representations for a grounded table, enabling users to gain insights from vast amounts of data. Recently,
many deep learning-based approaches have been developed for NL2Vis. Despite the considerable efforts
made by these approaches, challenges persist in visualizing data sourced from unseen databases or spanning
multiple tables. Taking inspiration from the remarkable generation capabilities of Large Language Models

(LLMs), this paper conducts an empirical study to evaluate their potential in generating visualizations, and
explore the effectiveness of in-context learning prompts for enhancing this task. In particular, we first explore
the ways of transforming structured tabular data into sequential text prompts, as to feed them into LLMs and
analyze which table content contributes most to the NL2Vis. Our findings suggest that transforming structured
tabular data into programs is effective, and it is essential to consider the table schema when formulating
prompts. Furthermore, we evaluate two types of LLMs: finetuned models (e.g., T5-Small) and inference-only
models (e.g., GPT-3.5), against state-of-the-art methods, using the NL2Vis benchmarks (i.e., nvBench). The
experimental results reveal that LLMs outperform baselines, with inference-only models consistently exhibiting
performance improvements, at times even surpassing fine-tuned models when provided with certain few-shot
demonstrations through in-context learning. Finally, we analyze when the LLMs fail in NL2Vis, and propose
to iteratively update the results using strategies such as chain-of-thought, role-playing, and code-interpreter.
The experimental results confirm the efficacy of iterative updates and hold great potential for future study.
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1 INTRODUCTION

Data visualizations, typically presented as charts, plots, and histograms, offer an effective means
to represent, analyze, and explore data, as well as enable the identification and communication
of valuable insights. Despite the availability of numerous tools (e.g., Tableau’s Ask Data [41] and
Amazon’s QuickSight [1]) and domain-specific programming languages (e.g., Vega-Lite [58] and
ggplot2 [47]) for data visualization, crafting effective data visualizations remains a complicated
effort for a range of users, particularly those with limited or no prior visualization experience.
Moreover, there is a pressing demand for visualizing data on smart devices such as tablets and
mobile phones without requiring users to acquire data visualization expertise.

To facilitate users in conducting data analytics, there has been an increasing interest in the auto-
mated generation of data visualizations from natural-language descriptions, denoted as NL2Vis [26,
27]. Existing approaches to NL2Vis mainly fall into two categories: the rule-based [8, 13, 40] and
deep-learning-based [25–28]. DataTone [8], Eviza [40], and Evizeon [13] employed a parser (i.e., the
Stanford Core NLP Parser [32]), along with a set of predefined rules, to translate natural-language
descriptions into visualization queries. DeepEye [25] introduced a novel approach that enables
the generation of visualizations based on keyword queries, akin to search engine functionality.
Current methods for deep-learning-based techniques rely mostly on the encoder-decoder paradigm,
which, in an end-to-end fashion, encodes the natural-language specification into hidden states and
subsequently generates visualization queries.
NL2Vis is similar to the the task of NL2SQL (also referred to as Text2SQL) [15], wherein the

objective is to translate natural-language descriptions into Structured Query Language (SQL) queries.
Generally, the visualization is articulated using the Visualization Query Language (VQL), a language
that shares similarities with SQL. Both NL2Vis and NL2SQL are based on input tables with diverse
structures and aim to generate queries of various complexities, including selection, comparison,
aggregation, and join operations. In comparison to NL2SQL, one distinction is that NL2Vis faces the
additional challenge of considering intricate visualization attributes during generation, including
the selection of chart types (e.g., bar, pie, line, and scatter). Drawing inspiration from an established
NL2SQL dataset (e.g., Spider [53]), Luo et al. [27] proposed the creation of a paired dataset for
NL2Vis. Based on this dataset, a benchmark called nvBench [26] is built and a Transformer-based
model (named ncNet [28]) is introduced.

LLMs for NL2Vis. Recently, Large Language Models (LLMs), such as GPT-3.5 [10] and LLaMA [45],
have demonstrated impressive capabilities for few-shot learning in many Natural Language Process-

ing (NLP) tasks, including question answering [12, 44], machine translation [30, 36, 49], and code
generation [23, 57]. As LLMs sequentially process the entire large-scale training dataset during the
pre-training phase, they face a limitation in directly handling structured data, including tabular
data. Alternatively, we can serialize the tabular data, input it into the LLMs, and prompt the LLMs
to generate data visualizations, which are in the form of domain-specific query language. To fill
this gap, this paper aims to address the following research question: “Can LLMs be utilized for

automating data visualization from natural-language descriptions grounded on a table and how?”.
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VQL Query

ChatGPT
API

Prompt

RQ2: How do the LLMs perform when compared with 
existing models in NL2Vis?

RQ1: How to feed the data  into 
LLMs via prompts?

RQ3: Can the results be optimized iteratively via some optimization strategies?

Show me …

Fig. 1. An illustration of NL2Vis. The framework presents our investigation into prompt engineering (RQ1),

overall performance (RQ2), and iterative updating (RQ3).

The challenges of leveraging the LLMs to automate data visualization from natural language are
twofold. C1: Feeding the structural table into LLMs. Given that LLMs exclusively accommodate
sequential prompts, converting a structured grounded table into sequential prompts while preserv-
ing semantics poses a notable challenge. Moreover, LLMs are recognized to face limitations due
to their restricted token length. Consequently, they are unable to process entire extensive tables,
making it challenging to comprehend comprehensive tabular information on a global scale. C2:
Iteratively updating via conversation. In contrast to traditional neural models for NL2Vis that
generate the data visualizations in a single attempt, one notable advantage of LLMs lies in their
capacity to iteratively refine predicted outputs during conversations. Adapting traditional neural
models to the new conversational paradigm also poses a significant challenge.

Our Work. To answer the aforementioned question, we conduct a pioneering empirical study to
evaluate the capabilities of LLMs (i.e., T5 [42] and GPT-3.5 [10]) in automating data visualization
from natural-language descriptions, comparing them with traditional approaches. Specifically, we
structure the empirical study around the following three Research Questions (RQs), as depicted in
Figure 1.
RQ1: How to feed the natural-language query as well as the structural table into LLMs via

prompting? In this RQ, we first (1) explore the ways (i.e., table serialization, table summarization,
table markup formatting, and table programming) to convert structured tabular data into sequential
prompts, and subsequently (2) investigate which table content contributes most to the NL2Vis in
prompting.
RQ2: How do the LLMs perform when compared with several existing models in NL2Vis?

In this RQ, we first (1) evaluate the performance of LLMs (i.e., finetuned models such as T5-Small
and T5-Base, and inference-only models such as text-davinci-002 and text-davinci-003) for
NL2Vis, against several traditional neural networks (i.e., Seq2Vis [27], Transformer [46], ncNet [28],
RGVisNet [43]), both under the in-domain and cross-domain settings, and (2) analyze how the
number of in-context demonstrations affects the performance of LLMs.
RQ3: Can the results be iteratively updated via some optimization strategies? In some
cases, we observe that LLMs may fail to generate the correct visualization in a single attempt. In
this RQ, we first (1) analyze when the LLMs fail in generating data visualization, and (2) propose
to iteratively update the results via optimization strategies such as Chain-of-Thought (CoT), role-
playing, self-repair, and code-interpreter.

Key Findings and Implications. In this paper, we observe the following important findings: (1)
To feed the structural table into LLMs, converting it into programs is an effective way. This finding
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inspires us to design programming patterns to encode tables. Additionally, the schema information is
sufficient for NL2Vis task, which facilitates exploration of how to encode extra large databases with
limited input length to LLMs. (2) LLMs demonstrate significantly superior performance compared
to traditional neural models for NL2Vis, highlighting their great potential under both in-domain
and cross-domain settings. With in-context learning of LLMs, the demonstrations drawn from
diverse tables can further increase performance. (3) The failure results can be further optimized via
several iterative optimization strategies, such as CoT, role-playing, self-repair, and code-interpreter.
To advance the visualization capability of LLMs, crafting multi-turn dialog prompts for automated
optimization offers a promising prospect.

Contributions. The key contributions of this paper are as follows.
• To the best of our knowledge, this paper reports the first empirical study to investigate the capa-
bility of LLMs in automating data visualization from natural-language descriptions. Additionally,
a benchmark of LLMs for NL2Vis is built for further study.

• This paper systematically studies how to feed the data to visualize into the LLMs via prompts,
and explores several optimization strategies for iteratively improving the failure results.

• To facilitate further study for other researchers, we release all the experimental data and source
code used in this paper at https://github.com/CGCL-codes/naturalcc/tree/main/examples/explore-
LLMs-for-NL2Vis [48].

Organization. The rest of this paper is structured as follows. We first introduce some background
knowledge that will be used in this paper in Sec. 2. We then introduce our pipeline for NL2Vis task
in Sec. 3 and the evaluation setup in Sec. 4. Sec. 5 reports the experiment results with comprehensive
analysis. Sec. 6 is dedicated to discussing the potential threats to validity and the broader impacts
of this paper. We review the related work to this paper in Sec. 7, and conclude this paper in Sec. 8.

2 BACKGROUND

In this section, we present foundational concepts of visualization query languages and LLMs,
essential for understanding our work.

2.1 VisualizationQuery Language (VQL)

In the realm of data visualization, one widely used grammar is Vega-Lite [58], which offers a concise
and declarative JSON syntax for creating a diverse range of expressive visualizations suitable for
data analysis and presentation. While Vega-Lite is intuitive and straightforward to use, training a
sequence-to-sequence model to automatically generate hierarchical outputs, such as JSON format
for Vega-Lite specifications, is challenging. Conversely, training a sequence-to-sequence model to
generate sequential outputs is relatively more manageable. In response to this challenge, several
works [25, 27] introduce the VQL, which empowers users to articulate their data visualization
requirements in a structured and efficient manner. In contrast to Vega-lite, VQL queries remove
structure-aware symbols such as parentheses, commas, and quotes, effectively transforming a JSON
object into a sequence of keywords. This streamlining greatly simplifies the process of generating
VQL queries. Moreover, having eliminated all language-specific configurations, VQL is deemed
language-agnostic that encompasses necessary data components (e.g., data operations) and vital
visualization formats (e.g., visualization types). The VQL query could be easily transformed to
diverse specifications (e.g., Vega-Lite, and ggplot2).

Table 1 shows the details of VQL [25] for specifying visualization queries. Specifically, “VISUALIZE”
specifies the visualization type, including bar, line, scatter, and pie. “SELECT” specifies the chosen
columns, where 𝑋 ′ represents either the original 𝑋 or its corresponding binned values, and 𝑌 ′
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Table 1. The visualization query language [25].

VISUALIZE 𝑇𝑌𝑃𝐸 (𝜖{𝑏𝑎𝑟, 𝑝𝑖𝑒, 𝑙𝑖𝑛𝑒, 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 })
SELECT 𝑋

′
, 𝑌

′ (𝑋 ′
𝜖{𝑋, BIN(𝑋 )}, 𝑌 ′

𝜖{𝑌, AGG(𝑌 )})
FROM 𝐷1
JOIN 𝐷1 ⊲⊳ 𝐷2
WHERE 𝑋 ′ 𝑂𝑃 𝑣

TRANSFORM 𝑋 → 𝑓 (𝑋 )where 𝑓 ∈ {BIN, GROUP}
ORDER BY 𝑋 ′, 𝑌 ′

AND/OR 𝜙1 ∧ 𝜙2 , 𝜙1 ∨ 𝜙2
Nested 𝑄 (subquery)

denotes either the original variable 𝑌 or its aggregated value, derived by operations of SUM, AVG,
and COUNT. “FROM” specifies the originating table. “JOIN” operation links tabular data from more
than one table. “WHERE” filters the values that meet a certain condition, for instance, those greater
than 10. “TRANSFORM” modifies the chosen columns, typically by binning 𝑋 into designated buckets
or applying a GROUP operation. “BIN” operation divides the temporal data for visualization into
several intervals, e.g., binning by year. “GROUP” operation transforms the data into specific groups
based on detailed stacked type or classification color. “ORDER BY” arranges the selected column
in a particular sequence. “AND/OR” operation filters data based on multiple conditions. “Nested”
operations nesting subquery, implements more complex data queries for visual representation.
Example 1. Considering a natural-language query: List the name of technicians whose team is not

“NYY”, and count them by a bar chart, rank x-axis in ascending order, the corresponding VQL query
is as follows.

VISUALIZE bar SELECT name , COUNT(name) FROM technician WHERE team != “NYY” GROUP BY
name ORDER BY name asc

We can see that this example is to select a name with its count from the technician table, where
team ! = “NYY”. Then, it groups the results by name with an ascend order, and finally visualizes
the results using a bar chart.

2.2 Large Language Models

Over the past year, we have observed a growing proliferation of LLMs, including GPT-3 [4]
and LLaMA [45]. These LLMs have spearheaded a revolution in the field of NLP, especially in
the related tasks of text generation [30, 49] and code generation [23, 36, 57]. As pre-training
LLMs on a large-scale dataset is a time-consuming and computationally expensive process (e.g.,
ChatGPT requires approximately 4,000 GPU hours for pre-training, at an estimated cost of 2 million
dollars [16]), numerous prompting techniques (e.g., in-context learning and chain-of-thought) have
been developed with the goal of maximizing the effective utilization of LLMs.

2.2.1 Prompting. With the emergence of LLMs, the learning paradigm is undergoing a transfor-
mation from the conventional “pre-train and fine-tune” paradigm to a more innovative “pre-train,
prompt, and predict” framework [24]. In this new paradigm, instead of extensively fine-tuning
LLMs to accommodate various downstream tasks, there is a shift towards reformulating these tasks
to align more closely with the tasks for which LLMs are initially trained, with textual prompts
guiding the process. For instance, when assessing the emotion in a customer review like “I like
the book I have read today.”, we may proceed with a prompt like “It was .” and request that LLM
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Prompt for NL2Vis task

K Demonstration
Examples 

Test Item

CoT

Task Instruction
Please generate VQL based on description of tabular data and question.
Let's think step by step. Generate the sketch as intermediate 
representation and then the final VQL.
Table Description
customers, customer_id, payment_method_code, customer_code, 
customer_name, customer_address, customer_phone…
Question 
For each payment method, return how many customers use it. Plot them 
as pie chart.
Sketch
visualize _ select _, _ from _ group by _
VQL
visualize pie select payment_method_code , count(*) from customers 
group by payment_method_code
Table Description
tv_channel, id, series_name, country, language, content, pixel_aspect, 
hight_definition_tv, pay_per_view_ppv, package_option,…
Question
For each language, list the number of tv channels that use it. Show a pie 
chart.
VQL Sketch [To be generated]
Desired VQL [To be generated]

Fig. 2. An example to illustrate the usage of prompt in in-context learning of LLMs, the 𝑘 demonstration

examples, the test item, and the CoT prompt.

complete the sentence with an emotion-laden word. In our specific scenario, involving a table and
a natural-language query, we can construct a prompt as follows: “[TABLE], [QUESTION], please
generate VQL based on the description of tabular data and question.”, where [TABLE] signifies the
structured tabular data, and [QUESTION] represents the natural-language query provided by the
end-user for exploring the data.

2.2.2 In-Context Learning (ICL). ICL is a special form of prompt-based learning that leverages
demonstration examples in prompts to promote the model’s performance. In ICL, in addition to
describing the current question in the prompt, a few demonstration examples that have the same
form as the question are also included in the prompt. For instance, to generate a VQL query to
count the number of television channels based on the language of each individual channel, a
demonstrative example of counting customers by their preferred payment method is provided. The
model is expected to learn the pattern hidden in the demonstration, infer downstream tasks from
examples, and accordingly make the right prediction.
Specifically, given a task instruction 𝐼 and a test question 𝑥𝑡 , ICL retrieves 𝑘 examples related

to 𝑥𝑡 from the task dataset as demonstration examples, and transforms these examples using the
prompt function 𝑓 to form a demonstration example set 𝐷𝑘 = {𝑓 (𝑥1, 𝑦1), . . . , 𝑓 (𝑥𝑘 , 𝑦𝑘 )}. The task
description 𝐼 , the example set𝐷𝑘 , and the problem is then fed into the language model for predicting
𝑦𝑡 . The ICL process can be expressed as follows.

𝑦𝑡 = LLM(𝐼 , 𝑓 (𝑥1, 𝑦1), . . . , 𝑓 (𝑥𝑘 , 𝑦𝑘 )︸                       ︷︷                       ︸
𝑘 demonstration examples

, 𝑓 (𝑥𝑡 , •)︸  ︷︷  ︸
test query

) ,
(1)

where 𝑘 stands for the number of demonstration examples in the ICL prompt, which typically
ranges from 0 to 20. In particular, for the special case of 𝑘 = 0, the ICL constructs the prompt
without demonstration example, referred to as zero-shot learning.
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{
"mark": "line",
"encoding": {
"x":{"field":"da

te","type":"temporal
","timeUnit":“year”},

"y":{"field“:"sh
are_count","type":"q
uantitative","aggreg
ate": "mean"}

},"data":…
}

Bin all date of transactions into the 
YEAR interval, and calculate the 
average the share count for each bin. 
Visualize the result using a trend line.

date share_count ···

1988-09-16 8718 ···

1982-06-06 9 ···

1979-04-27 8580 ···

··· ··· ···

(a) Feeding Data into LLMs via Prompting (c) Language-Aware Rending

VISUALIZE line 
SELECT date, AVG(share_count) 
FROM transactions
BIN date BY year

··· ···

Models

(b) Visualization Query Generation

Fig. 3. The pipeline of NL2Vis. The task process flows from (a) feeding data into the LLMs through prompts,

to (b) generating visualization queries, and finally to (c) rendering language-aware visual charts.

2.2.3 Chain-of-Thought (CoT) Prompting. CoT [52] is an improved prompting strategy that, when
employed in conjunction with ICL, significantly enhances the capabilities of LLMs in tackling
complex reasoning tasks. In addition to simply constructing the prompts with a few demonstration
examples as in ICL, CoT enriches these prompts by integrating intermediate reasoning steps, which
guide the reasoning process to the final output. Specifically, the CoT prompting strategy augments
each demonstration example ⟨𝑥,𝑦⟩ in ICL with a chain-of-thought prompt 𝐶𝑜𝑇 , constructing a
triplet prompt ⟨𝑥,𝐶𝑜𝑇 ,𝑦⟩. The design of the chain-of-thought prompt 𝐶𝑜𝑇 involves both hand-
crafted prompts that are independent from the problem, and the VQL sketch of each problem,
which is inspired by the logical execution process of SQL queries to establish step-by-step infilling
the VQL statements with the LLM.
Example 2. Figure 2 presents an example of in-context learning with chain-of-thought strategy in
NL2Vis. LLMs like ChatGPT, take the input text and infer the answer based on the task description,
demonstration, and the problem. In the few-shot scenario, we add the most relative samples from
the training dataset as examples in the demonstration. The demonstration part of the prompt for
the NL2Vis task consists of a table description, NL question, and golden VQL. In particular, we
select the most relevant three rows of the table by calculating the Jaccard similarity correlation.

3 LLMS FOR NL2VIS

In this section, we first formulate the problem of NL2Viswith a pipeline provided, and subsequently
detail each individual module.

3.1 Problem Statement

Let 𝑞 denote a natural-language query, 𝑠 denote the schema of the table from a database to analyze.
The task of NL2Vis is to generate the visualization query 𝑦, as follows:

𝑦 = LLM(𝑞, 𝑠) . (2)

It should be noted that the grounded tables are not restricted to one domain. We refer to scenarios
where the databases in the test dataset have appeared in the training set as in-domain, while
databases in the test dataset are unseen as cross-domain.

Figure 3 illustrates the pipeline of NL2Vis. The input to the models comprises a natural-language
description and the grounded table. The model will then generate the visualization query in Vega-
Zero. Subsequently, visualization specifications in various visual languages (e.g., Vega-Lite) can be
parsed from the visualization query. Subsequently, the visualization specification will be rendered
into an actual visualization chart, enabling users to observe and analyze the data effectively.
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115:8 Yang Wu et al.

table_name, 
Columns = [column_name,…] 
Foreign_keys = [‘table_name. column_name = 
table_name. column_name’,…]
Values=[column_name(value),…]

Column=[]

[    
{        

TableName: 
table_name, 

ColumnName:              
[column_name, ...],        

Data:             
[ [value,...], ...]    

}, 
...

]

Table2JSON
<database>    

<table_name>        
<row>                 

<column_name>                     
value            

</column_name>      
</row>    

</table_name> 
</database>

Table2XML

# table_name
| column_name |...
| :---: |...
| value |

table_name.column_name, ...
value,...

Table2CSV

Table2MD

###Postgres SQL tables, with their properties:
#
#table_name(column_name,...)

Table (Column)

table_name,column_name,value
Schema serialization

Use table table_name with columns column_name,…. 
The column column_name is type int64 and contains 
numeric values. The column column_name has 
categorical values:… 

Chat2Vis*

class Constraint:
pass

class Column:
def __init__(self, name, attribute_pk: Constraint = None, 

attribute_fk: Constraint  = None):
self.name = name
self.PK_attribute = attribute_pk
self.FK_attribute = attribute_fk

class Record:
def __init__(self, content: List):

self.content = content

class Table:
def __init__(self, name, column_list: List[Column], data_list: 

List[Record]):
self.name = name
self.column_list = column_list
self.data_list = data_list

class Primary_Key(Constraint):
pass

class Foreign_Key(Constraint):
def __init__(self, referenced_table: Table, 

referenced_column: "the name of the column with primary 
key constraint of the referenced_table"):        

super(Foreign_Key, self).__init__()
self.referenced_table = referenced_table
self.referenced_column = referenced_column

people_column_list = [Column("people_id", Primary_Key()), 
Column("name"), Column("country")]
people_data_list = [Record([1, "mike weir", "canada",])]
people = Table("people", people_column_list, 
people_data_list)

# this Foreign key mean the field refer to the primary key 
"people_id" of table people
FK_people_id = Foreign_Key(people, "people_id")

# both Column "male_id" and "female_id" refer to 
"people_id".
wedding_column_list = [Column("church_id"), 
Column("male_id", FK_people_id), Column("year")]
wedding_data_list = [Record([1, 1, 2014 ]),]
wedding = Table("wedding", wedding_column_list, 
wedding_data_list)

Table2Code

NL generated by ChatGPT
Table2NL

CREATE TABLE table_name (    
column_name data_type, column_name data_type,   
PRIMARY KEY (column_name),      
FOREIGN KEY (column_name) 
REFERENCES table_name(column_name))

Table2SQL

D

C

B

A

Fig. 4. A summary of approaches explored to transforming the table into textual prompts. (A) Table Serializa-

tion flattens database tables into linear schemas, (B) Table Summarization distills table content into concise

descriptions, (C) Table Markup Formatting converts data into XML, Markdown, and CSV formats, and (D)

Table Programming translates table structures into code representations.

3.2 Feeding Data into LLMs via Prompting

Given that most contemporary LLMs are primarily designed to process textual prompts due to their
pre-training on sequential textual datasets, it becomes imperative to efficiently integrate structured
tabular data into LLMs through effective prompting. In this study, we investigate various strategies,
i.e., table serialization, table summarization, table markup format, and table programming, to
transform structured tabular data into sequential texts while preserving semantics to the greatest
extent, as summarized in Figure 4.
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A. Table Serialization ( A in Figure 4). Generally, previous research has proposed to feed the
serialized schema into models [9]. For example, Table (Column) [22] lists each table along with
its columns inside parentheses to represent the table schemas. Column=[] represents each table
along with a list of its columns. On top of Column=[], +FK further adds foreign keys to indicate
the relationships between tables [37], and +Value adds rows of tables.

B. Table Summarization ( B in Figure 4). It is intuitive to simply describe the tables by generating
a natural-language summary. Based on this intuition, Chat2Vis [31] uses a description built from
a template to transform the table into a text prompt. The description is comprised of individual
entries, each signifying the data type of a corresponding column. In this paper, we generate the
table summaries by invoking the API of ChatGPT. Specifically, we accomplish this by flatting the
table column names and values into a prompt, delineated as “[TABLE], Describe the tabular data in
text, including all metadata such as its name and type.”.

C. Table Markup Formating ( C in Figure 4). In this strategy, we explore describing the tabular
data using markup languages, including CSV, JSON, Markdown, and XML. Table2CSV converts
tabular data into CSV format, where each line represents a data record containing one or more
comma-separated fields. Table2JSON aims to convert tabular data into a JSON object, where data
is represented in <name, value> pairs, enclosed by curly braces “{}” for objects and square brackets
“[]” for arrays. Table2MD aims to convert the table into a Markdown file, which uses simple and
intuitive syntax to denote structure and style. Table2XML aims to convert the table into an XML
file, which is an eXtensible Markup Language used to represent structured data in a human-readable
and machine-readable way.

D. Table Programming ( D in Figure 4). In order to feed the structured tabular data into LLMs,
we propose to represent the structured tabular data in programming languages. Table2SQL uses
Create statements to describe database schema [38], which emphasizes the relationship among
tables. For showcasing the content of a database, +Select [38] employs the “SELECT * FROM Table
LIMIT R” query to display the first 𝑅 rows of each table. Table2Code proposes to transform the
tabular data into general-purpose programming languages. In particular, we resort to the Python
programming language, which effectively employs an inherent object-oriented paradigm and is
well-suited for encoding structured data [50]. Moreover, we utilize Python’s type hinting feature
and represent tabular data using a class-based representation in Python. We define classes of Table,
Column, Constraint, Primary_Key, Foreign_Key, and Record, followed by the instantiation of
these classes to create a table object.

3.3 VisualizationQuery Generation

We utilize APIs provided by OpenAI in the GPT-3.5 and GPT-4 series to engage with LLMs. Specif-
ically, we initially represent the tabular data with the format as outlined in Figure 4. Then, we
construct the tables and queries into prompts as delineated in Figure 2. Finally, these prepared
prompts are subsequently fed into LLMs via API calls. Our research methodology can be applied to
any LLMs that support prompting.

3.4 Language-Aware Rending

According to nvBench [26], the visualization query can be presented as the tree format as introduced
in [27] for fair evaluation of grammar. These Abstract Syntax Trees (ASTs) can then be translated to
target visualization specification syntax, so as to render the visualization charts. The translation from
a visualization query to a target visualization specification is hard-coded based on the grammar of
ASTs. Currently, the nvBench provides a module of Python 3 code [27] for converting visualization
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query to Vega-Lite. Thus, the pipeline is fully automated and enables an effortless evaluation of the
visualization query.

4 EVALUATION SETUP

We investigate the capability of LLMs in automating data visualization from natural-language
descriptions, by answering the following three Research Questions (RQs).
• RQ1 [Prompt Engineering]: How to feed the natural-language query as well as the structural
table into LLMs via prompting?

• RQ2 [Overall Performance]: How do the LLMs perform when compared with several existing
models in NL2Vis?

• RQ3 [Iterative Updating]: Can the results be iteratively updated via some optimization strate-
gies?

To address RQ1, we first explore the conversion of structured tables into sequential prompts,
followed by an examination of how the content of these tables influences the results. To answer
RQ2, we conduct a comparative analysis of the performance exhibited by both conventional neural
networks and LLMs concerning NL2Vis. Furthermore, we analyze the impact of the number of
in-context demonstrations on the performance of LLMs. To answer RQ3, we delve into instances of
failure within the LLMs and subsequently propose strategies for enhancing model performance
through optimization techniques.
All experiments are conducted on a machine with 252 GB memory and 4 Tesla V100 32GB

GPUs. We use the default hyperparameter settings provided by each method. Besides, we split the
dataset into a training dataset, a valid dataset, and a test dataset with 7:2:1 based on in-domain
and cross-domain settings, as explained in Sec. 4.1. We use the test dataset for evaluation and the
training dataset for demonstrations.

4.1 Dataset

We employ the widely-recognized benchmark nvBench [26] to assess performance in the NL2Vis
task. The nvBench dataset encompasses 780 relational tables sourced from 153 databases across
105 diverse domains such as sports, colleges, hospitals, and more. It features 7,247 visualizations,
resulting in 25,750 pairs of natural-language descriptions and corresponding visualizations.

Domain Setting. In prior studies [27, 28], datasets are predominantly partitioned randomly based
on visualization queries, without considering database divisions. Upon re-implementing the ncNet1,
we notice that databases from the test set are exposed during the training process, constituting an
in-domain setting. We propose a cross-domain setting by partitioning the dataset such that there is
no overlap between databases in the training and test datasets. In this setup, models are required
to predict queries on the unseen databases. To ensure a fair and comprehensive evaluation, we
conduct experiments in both in-domain and cross-domain settings.

Multi-Table Setting. In our experiments, we categorize scenarios based on the number of tables
involved in the input. Instances with multiple tables are designated as “join” scenarios, while those
centered on a single table are categorized as “non-join” scenarios. In “join” scenarios, our objective
entails generating visualizations by integrating information from multiple tables. This process
involves merging data based on shared columns, presenting challenges to both data integration and
the subsequent visualization efforts. Conversely, “non-join” cases involve generating visualizations
from individual tables, acting as a benchmark for evaluating the model’s ability to manage less
complex data structures.
1https://github.com/Thanksyy/ncNet
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VISUALIZE

line Cj Ck Bi

ROOT

SELECT BIN

(a) 𝐴𝑆𝑇1

VISUALIZE

line Cj Ci Bi

ROOT

SELECT BIN

(b) 𝐴𝑆𝑇2

Fig. 5. An illustration of ASTs of VQL queries. Even though they may not be exactly matched, their execution

results are identical.

4.2 Evaluation Metrics

To ensure a thorough and equitable assessment of the generated VQL queries, we employ three
widely recognized metrics: exact accuracy, execution accuracy, and component accuracy, as estab-
lished in theNL2Vis task [27]. Before introducing these metrics, we first introduce two visualization
queries represented as ASTs, as shown in Figure 5. Each of them has three subtrees based on the
grammar of VQL described in Sec. 2.1. Specifically, the node of VISUALIZE denotes a line chart
type. The SELECT node combines the attributes of the columns 𝐶 𝑗 and 𝐶𝑘 . The BIN node with 𝐵𝑖
sets a bucket of values in the temporal column.

Exact Accuracy [27]. This metric is designed to assess the exact match between the predicted
AST and the ground-truth AST of VQL queries. It can be formulated as 𝐴𝑐𝑐𝐴𝑆𝑇 = 𝑁𝐴𝑆𝑇 /𝑁 , where
𝑁𝐴𝑆𝑇 represents the count of generated ASTs that are exactly equivalent to the ground truth ASTs
in each node, and 𝑁 signifies the total number of ASTs under consideration.

Execution Accuracy [27]. This metric measures the accuracy of the visualization results by
determining whether the predicted visualization aligns with the ground truth. It can be calculated
using the formula 𝐴𝑐𝑐𝑒𝑥𝑒 = 𝑁𝑒𝑥𝑒/𝑁 , where 𝑁𝑒𝑥𝑒 denotes the number of VQL whose results match
the ground truth in the execution, and𝑁 denotes the total number of visualizations. From Figure 5, it
is apparent that the subtrees rooted at “VISUALIZE” and “BIN” retain consistent structures between
𝐴𝑆𝑇1 and 𝐴𝑆𝑇2. While variations within the “SELECT” subtrees suggest they are not exact matches.
Even though, the VQL execution results could be matched if 𝑥/𝑦/𝑧-axis data (executed by VQL)
are correct, as exemplified by queries such as “VISUALIZE line SELECT date, COUNT(date)
from payments BIN date by month” and “VISUALIZE line SELECT date, date_count from
payments BIN date by month”.

4.3 Comparison Models for NL2Vis

Traditional Neural Models. Seq2Vis [27] is a sequence-to-sequence model that initially encodes
the natural-language query into a hidden embedding using an LSTM and subsequently decodes it
into a visualization through another LSTM. Transformer [46] is another encoder-decoder network
that has been considered a foundational component in LLMs. We also apply the Transformer into
NL2Vis. Based on Transformer, ncNet [28] designs several novel visualization-aware optimizations,
such as using attention-forcing to optimize the learning process and visualization-aware rendering
to produce better visualization results. RGVisNet [43] is a hybrid framework for NL2Vis to retrieve,
refine, and generate visualizations from a large codebase using a graph neural network.

LLMs (Finetuned Models). T5 [42] is an encoder-decoder model pre-trained on a multi-task
mixture of unsupervised and supervised tasks for which each task is converted into a text-to-text
format. T5-Small is a released T5 model with 60 million parameters. T5-Base is a released T5 model
with 220 million parameters.
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LLMs (Inference-only Models). Chat2Vis [31] leverages the power of code-davinci-002 to
enable users to generate data visualizations using natural-language queries in Python plots and
measures results against nvBench. Our evaluation focuses on the models accessible via the OpenAI
API: GPT-3.5 (text-davinci-002, text-davinci-003, gpt-3.5-turbo-16k), and GPT-4 (gpt-4).
GPT-3.5 is a set of models built on the InstructGPT [35], trained on a large corpus of programming
languages and natural languages. text-davinci-0032 is fine-tuned by reinforcement learning
from human feedback [6], which improves its ability to generate better quality and longer output.
text-davinci-0022 is trained with supervised fine-tuning instead of reinforcement learning.
gpt-3.5-turbo-16k is optimized for chat applications and increased input length. GPT-4 is a large
multimodal model that is capable of solving complex problems with greater accuracy than any of
the previous models, due to its excellent general knowledge and reasoning capabilities [11]. gpt-4
revolutionizes loss function computation by incorporating a scaling law and an irreducible loss
term [34], enabling precise prediction of final loss within the internal codebase.

5 RESULTS AND ANALYSIS

In this section, we present the experimental results for each RQ with comprehensive analysis.

5.1 RQ1: Prompt Engineering

In this RQ, we investigate various strategies for inputting structured tabular data into LLMs through
prompting and analyze which aspect of the table content has the greatest influence on NL2Vis.

5.1.1 RQ1-1: How to transform the structured tabular data into sequential prompts? We evaluate
the performance of the model text-davinci-003 while varying the methods for transforming
tabular data into textual prompts. We carry out this assessment in both cross-domain and in-domain
settings. Additionally, we investigate configurations for both non-join and join scenarios, where
single-table and multi-table contexts are considered, respectively. Note that when transforming
tabular data into a markup format, we only consider a single row of content, specifically the one
most relevant to the input question, as determined by Jaccard similarity.
Table 2 presents the model performance for text-davinci-003 across various methods of

transforming tabular data into textual prompts, considering both cross-domain and in-domain
scenarios. All results are derived from a single-shot example provided in the ICL. From this table,
it is clear that feeding LLMs with tables by encoding them in programming languages is the
most effective method, both in the in-domain and cross-domain settings. Specifically, under the
in-domain setting, prompting table via Table2SQL, Table2XML, and Table2JSON achieves the best
performance, reaching up to 61% in terms of the Exact Accuracy. While under the cross-domain
setting, prompting table via Table2Code, Table2SQL, and Chat2Vis* achieves the best Execution
Accuracy of 56%, 55%, and 55%, respectively. It suggests that converting structured tabular data
into machine-readable markup formats and using general-purpose programming languages can
effectively design prompts to interact with LLMs for NL2Vis. When comparing the prompts of
Table2Code to Chat2Vis*, we can see that Table2Code obtains 6% and 1% improvement in terms of
the Execution Accuracy in the in-domain and cross-domain settings, respectively. Interestingly,
we observe that the LLM-based model exhibits slight fluctuations in the performance of several
settings. In cross-domain scenarios, the optimal performance is achieved through the application
of table programming to transform input tables; however, this trend does not persist in in-domain
settings. One plausible explanation for this observation is that, in the in-domain scenario, where the
2Note that this study was conducted between April and October 2023. Subsequently, as of January 2024, the
text-davinci-003 and text-davinci-002 have been upgraded to gpt-3.5-turbo-instruct. More details are referred
to OpenAI documentation: https://platform.openai.com/docs/deprecations.
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Table 2. Performance of the model text-davinci-003 while varying the methods for transforming tabular

data into textual prompts, under both the cross-domain and in-domain settings.

Cross-domain In-domain

Non-join Join Overall Non-join Join Overall

Exa. Exe. Exa. Exe. Exa. Exe. Exa. Exe. Exa. Exe. Exa. Exe.

Table Serialization
Schema 0.33 0.50 0.06 0.09 0.32 0.47 0.30 0.31 0.27 0.23 0.29 0.28
Table (Column) 0.37 0.56 0.09 0.11 0.36 0.54 0.60 0.59 0.52 0.44 0.57 0.53
Column=[] 0.37 0.54 0.11 0.12 0.36 0.52 0.61 0.61 0.52 0.45 0.58 0.55
Table Summarization
Table2NL 0.35 0.54 0.13 0.17 0.34 0.52 0.63 0.63 0.53 0.46 0.60 0.57
Chat2Vis* 0.37 0.57 0.14 0.20 0.36 0.55 0.58 0.61 0.32 0.28 0.49 0.49
Table Markup Format
Table2JSON 0.36 0.54 0.08 0.15 0.35 0.52 0.63 0.63 0.56 0.48 0.61 0.57
Table2CSV 0.35 0.52 0.07 0.12 0.34 0.50 0.59 0.59 0.54 0.46 0.57 0.54
Table2MD 0.36 0.53 0.07 0.09 0.34 0.50 0.59 0.61 0.53 0.46 0.57 0.56
Table2XML 0.36 0.54 0.08 0.16 0.35 0.52 0.63 0.64 0.56 0.47 0.61 0.58

Table Programming
Table2SQL 0.39 0.58 0.17 0.25 0.38 0.55 0.64 0.64 0.53 0.47 0.61 0.58

Table2Code 0.36 0.59 0.18 0.08 0.34 0.56 0.53 0.58 0.47 0.43 0.55 0.55

data adheres to a similar distribution, the model has the opportunity to discern the schema of the
test database from demonstration examples during in-context learning. Consequently, the impact
of exploring table transformations becomes diminished within this specific in-domain context.

Furthermore, when comes to the non-join and join scenarios under the cross-domain setting, we
can see that our proposed methods of converting tabular data into code can still maintain the best
performance. For example, Table2Code surpasses the state-of-the-art Chat2Vis* by 2% and 4% in
terms of the Execution Accuracy and Exact Accuracy when handling the non-join cases and join
cases, respectively. We attribute the improvements to the effective preservation of inner structural
information within tables when concerting structured tabular data into source code. This benefit
arises from the inherent interplay between the structural aspects of source code and tabular data.

Finding 1-1. Converting structured tabular data into machine-readable markup formats
(e.g., JSON, XML) or utilizing general-purpose programming languages (e.g., SQL, Python)
yields superior performance compared to relying solely on natural-language summaries or
straightforward table serialization.

5.1.2 RQ1-2: What table content should be considered in NL2Vis? We further dive into analyzing
the importance of table components in prompt construction and pinpoint the most reliant table
component in different domain and few-shot settings. We categorize table contents into three
levels: (i) Table Schema, which encompasses table names and column names, (ii) +RS, denoting
relationships within the table, such as foreign keys, and (iii) +Cont, encompassing the actual content
of the table, including the data in table row values. To simplify our experiment, we have chosen table
serialization as the primary prompting approach. More specifically, our exploration encompasses
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Fig. 6. Exact Accuracy and Execution Accuracy of text-davinci-003 under the cross-domain and in-domain

settings, with 1, 3, 5, 7, and 15 demonstrations provided in in-context learning. RS and Cont correspond to the

table relationship and table content, respectively.

three distinct variants: (i) Column=[], (ii) Column=[]+FK, Table2SQL, and (iii) Column=[]+FK+Value3,
Table2SQL+Select3.
Figure 6 shows the Exact Accuracy and Execution Accuracy of text-davinci-003 under the

cross-domain and in-domain settings, with few demonstrations provided in in-context learning.
From this figure, it is evident that the performance of the Table Column=[] configuration surpasses
that of the Table+RS Column=[]+FK and Table+RS+Cont Column=[]+FK+Value configurations in
both in-domain and cross-domain settings. This observation underscores the significance of the
table schema as a comprehensive element within the prompt for Column=[].

Moreover, when comparing the disparity between Table Column=[] and Table+RS Column=[]+FK,
we observe that in the in-domain setting, the gap slightly narrows as the number of examples
increases. This suggests that table knowledge in prompts has minimal influence on input, likely due
to the fact that, in the in-domain setting, LLMs have seen test tables during demonstrations from
the same database domain. However, a significant gap emerges in the cross-domain setting (i.e.,
increasing from 2.5% to 7.2% in terms of Execution Accuracy as the number of examples increases
from 1 to 3), indicating that the additional table knowledge, specifically table relationships and
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Table 3. Results of comparing LLMs with several baselines.

Cross-domain In-domain

Exa. Acc. Exe. Acc. Exa. Acc. Exe. Acc.

Baseline
Seq2Vis 0.02 - 0.66 -
Transformer 0.03 - 0.73 -
ncNet 0.26 - 0.77 -
RGVisNet 0.45 - - -
Chat2Vis - 0.43 - -
Finetuned
T5-Small 0.60 0.61 0.92 0.81
T5-Base 0.71 0.72 0.93 0.82
Inference-only
text-davinci-002 0.57 0.68 0.84 0.75
text-davinci-003 0.58 0.70 0.87 0.77
gpt-3.5-turbo-16k 0.56 0.63 0.59 0.59
gpt-4 0.61 0.72 0.83 0.74

content, in the Column=[] prompt is superfluous. Moreover, this redundancy could potentially
introduce complexity and adversely impact the performance of LLMs in the NL2Vis task.
Additionally, when comparing the performance of Table+RS Table2SQL and Table+RS+Cont

Table2SQL+Select3, we observe that there is no reduction in the gap between these two prompts.
This observation suggests that Table2SQL remains effective even without the inclusion of row
values. This can be attributed to the nature of the NL2Vis task, where the importance of table
content often takes a secondary role. Users typically only need to reference table and column names
to convey their visualization requirements. Essentially, the model’s primary task is to establish a
seamless connection between the natural-language query and the database schema, subsequently
generating the visualization query successfully. This underscores that table content may not play a
significant role in this context.

Finally, when comparing the performance of Table+RS Column=[] +FK and Table+RS Table2SQL,
we can observe that while both prompts incorporate table schema and table relationship knowledge,
they yield markedly distinct results. This observation underscores the substantial impact of well-
crafted formats for representing structured tabular data.

Finding 1-2. Table schema plays an important role in the task of NL2Vis, both under the
cross-domain and in-domain settings.

5.2 RQ2: Overall Performance

In this RQ, we investigate the overall performance of LLMs, and compare them with several
traditional neural models for NL2Vis, in both in-domain and cross-domain settings.

5.2.1 RQ2-1: How do the LLMs perform when compared with existing works? To answer this RQ,
we conduct a comparative analysis to evaluate LLMs, including the fine-tuned T5 models together
with the inference-only GPT-3.5 and GPT-4 series models, against several state-of-the-art baseline
models. We fine-tune T5-Small and T5-Base for the NL2Vis task with a maximum of 11.6𝑘 steps
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Fig. 7. Exact Accuracy and Execution Accuracy with varying number of support examples. The x-axis indicates

the number of few-shot examples used.

and 100𝑘 steps, respectively. Our configurations specify a maximum learning rate of 1 × 10−3, a
batch size of 4, and a dropout rate of 0.1. To set up a fair comparison, we explore inference-only
models using the same Table2SQL prompt with 20 examples provided in the ICL (20-shot).
Table 3 shows the overall performance of LLMs as well as several baselines, under both the

cross-domain and in-domain settings for the NL2Vis task. From this table, it is clear that LLMs
(both the finetuned models and inference-only models) significantly outperform the traditional
baselines, both in the in-domain and cross-domain settings. A closer examination of in-domain
performance reveals that the predominant baseline models, namely, Seq2Vis, Transformer, and
ncNet, achieve their peak scores at 66%, 73%, and 77%, respectively. This underscores the role of
ncNet in enhancing the seq2seq models through attention forcing. Furthermore, the fine-tuned
language models, T5-Small and T5-Base, significantly outperform state-of-the-art methods with
scores of 92% and 93%, respectively. For in-context learning, inference-only models also achieve
commendable scores. Notably, text-davinci-003 stands out with an 87% score, surpassing existing
baseline methods by 10%. This underscores the idea that LLMs, trained on natural-language text or
code corpora, represent the preeminent models for the task. The enhancement is attributed to the
robust capabilities of LLMs in comprehending the inherent knowledge, including table schema and
structure, within the same domain, leading to superior responses to new queries.
Furthermore, when comparing performance in cross-domain scenarios, we are genuinely sur-

prised by the substantial decline observed across all baseline models (e.g., ncNet, plummeting from
77% to 26%). It is noteworthy that RGVisNet is the first to address this phenomenon and succeeds in
boosting cross-domain performance by 45%. This underscores the vast potential for enhancement
in this context. The underperformance of traditional neural models, designed for random-splitting
data settings, becomes evident as they struggle to generalize to previously unseen databases and
grapple with the task of linking natural language to table schema. However, the fine-tuned models,
specifically T5-Small (60%) and T5-Base (71%), significantly outshine the baseline models. Among
the inference-only models, gpt-4 shows the most impressive improvement, surging by 61%, while
gpt-3.5-turbo-16k lags behind with a 56% increase. This serves as a testament to the exceptional
generalization capabilities of LLMs, empowering them to effectively assimilate new knowledge and
establish connections with queries when applied to previously uncharted databases. The result is
an unequivocal improvement in visualization results.
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Table 4. Statistics of model parameters and cost time.

Parameters Cost Time Model Size

T5-Small 60M 3 days 200MB
T5-Base 220M 5 days 500MB
text-davinci-003 1.5B 15 hours 1GB
gpt-3.5-turbo-16k 4B 4 hours 2GB
gpt-4 - 4 hours -

Lastly, in comparing the performance of fine-tuned models with that of inference-only models,
we observe that while fine-tuned models exhibit the most desirable performance, their advantages
in fine-tuning can be equaled by inference-only models with in-context learning. As shown in
Figure 7, both fine-tuned T5-Small and T5-Base models achieve execution accuracies of 61% and
72%, respectively. The models text-davinci-003 and gpt-3.5-turbo-16k demonstrate superior
performance compared to the T5-Small model, particularly with 3-shot and 13-shot scenarios. This
suggests that, after exposure to an ample number of examples in contextual learning, LLMs acquire
the capability to utilize demonstrations for precise inference and the generation of visualizations in
tables not encountered before. Additionally, we investigate the comparative costs of fine-tuned
models and inference-only models with 20-shot in-context learning. From Table 4, we can observe
that even though the inference-only models typically incur significant computational costs due to
their huge size, they offer considerable time savings through in-context learning.

Finding 2-1. The LLMs demonstrate a remarkable ability to surpass state-of-the-art models
in both cross-domain and in-domain scenarios, achieving an improvement of 26% and
16% in terms of Exact Accuracy, respectively. This underscores the LLMs’ exceptional
generalization capabilities. Furthermore, with the provision of more few-shot samples, the
performance of inference-only models consistently improves, eventually surpassing that of
fine-tuned models.

5.2.2 RQ2-2: How does the number of in-context demonstrations affect the performance of LLMs?

In this RQ, we explore the impact of demonstration selection methods on in-context learning for
NL2Vis task, by selecting different databases and varying quantities of examples in demonstration.
To investigate the effect of the number of databases and examples per database in the demonstration,
we conduct experiments encompassing various combinations. Specifically, our demonstration
examples for in-context learning are drawn from 𝐴 distinct databases to simulate the cross-domain
scenario. From each of these databases, we extract 𝐵 paired instances consisting of a natural-
language query and its corresponding VQL query. Collectively, this amounts to𝐶 = 𝐴×𝐵 examples.
In our configuration, we permit both variables 𝐴 and 𝐵 to attain a maximum value of 4, ensuring
that their cumulative total does not surpass the length limit specified by the prompt. We conduct
this experiment using the Table2SQL prompt in a cross-domain scenario across all samples within
the test dataset.
In Figure 8, it is evident that there is a notable improvement (45%-47%) in performance when

all examples are sourced from the same database. This improvement is observed as the number of
examples increases from 1 to 4. When the total number of examples is fixed (e.g., at 4), sourcing
them from entirely different databases reveals superior performance (49%) compared to sourcing
them from the same database (47%). It indicates that, in in-context learning, selecting a greater
number of examples from diverse databases is beneficial.
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Fig. 8. The average Execution Accuracy across test dataset using Table2SQL by text-davinci-003 with

respect to different numbers of databases (DBs) and examples per database (Exp/DB) in the demonstration

for in-context learning.

Finding 2-2. Multiple cross-domain demonstrations are generally more beneficial than
examples derived from the same database domain.

5.2.3 User Study. We conduct a user study on LLMs to evaluate whether LLMs work well in the real
world with users from different backgrounds. First, we design two tasks as follows: (1) Given tables
and a target visualization with description, users express a natural-language query for creating such
a visualization. (2) If the query can not generate the target visualization correctly, the users could
choose to revise it three times. Next, we invite 3 graduate students as experts and 3 undergraduate
students as non-experts, all majoring in computer science, to participate in the user study. Each
expert possesses over six years of proficiency in software development, demonstrating advanced
skills in data analysis and visualization. On the other hand, non-experts, with approximately two
years of programming experience, are capable of executing basic visualization operations in Excel.
Then, we select 5 databases at random to ensure a diverse range of data for our study. From each
database, we pick 3 visualizations for each of the 4 difficulty levels (i.e., easy, medium, hard, and
extra hard), resulting in a total of 60 visualizations. We design a command-line interface that enables
users to engage in data visualization over the selected databases using LLMs by crafting natural-
language queries. Subsequently, these crafted natural-language queries, along with the serialized
table and a set of 20 demonstration examples, are input into the LLM (i.e., text-davinci-003)
through in-context prompting. The generated VQL queries will be transformed into visualizations
for users, allowing them to iteratively revise the natural-language queries.
Figure 10 shows the success rates of users querying for visualizations across four levels of

difficulty.We observe that the experts are excellent in formulating queries for complex visualizations,
successfully obtaining 95.6% hard charts. While the non-experts are proficient in queries for 84.4%
easy charts. Figure 9 reports that non-experts take approximately 16 seconds more for the initial
composition of queries and 15 seconds more for revision than experts. The system consistently
maintains an average response time of 3 seconds for generating prompt examples and 2 seconds for
VQL generation, applicable to both user groups. Finally, we collect feedback on the ability of LLMs
for the NL2Vis task. All users acknowledge the LLM’s proficient understanding of natural-language
query for NL2Vis task, and appreciate its substantial facilitation of the visualization process.
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Fig. 9. Quantitative analysis of the composition of user time on average.
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Fig. 10. The average success rates of experts and non-experts queried for 4 difficult levels of visualization.

5.3 RQ3: Iterative Updating

In this RQ, we commence by analyzing the conditions under which LLMs encounter failures in
NL2Vis. Subsequently, we propose a strategy to mitigate these failures by iteratively updating the
results through in-context learning with chain-of-thought.

5.3.1 RQ3-1: When do the LLMs fail in NL2Vis? To gain a deeper insight into the instances where
LLMs encounter challenges, we conduct a comprehensive analysis of erroneous outputs. Specifically,
we scrutinize all outcomes generated by the text-davinci-003model using the Table2SQL prompt
with a 20-shot approach in a cross-domain scenario. We classify the cases of failure into distinct
categories, depending on the component (e.g., wrong tables and wrong columns) of the VQL it
struggles to predict accurately. Based on the AST of visualization query [26], a visualization consists
of two components: the visual part (visualization types, axis) and the data part (transformation
from a database) [27]. Specifically, the evaluation of visualization types involves measuring type
tokens such as bar, scatter, line, and pie. With regard to the axis component, the assessment focuses
on the “SELECT” component of the visualization query. Data part includes “BIN”, “GROUP”, “JOIN”,
“COND (ORDER, WHERE, and AND/OR)”, and nested components.

Figure 11 presents a breakdown of these failure statistics. It is evident from this figure that
data-related errors constitute the majority at 73.8%, which is approximately three times more
prevalent than visual-related errors at 26.2%. This observation underscores the challenge of precisely
identifying and visualizing the relevant data. In terms of the data-related errors, the highest
proportion of errors is associated with the “cond” (condition) attribute (35.6%). This indicates a need
to enhance the ability of LLMs to effectively handle queries related to filtering operations. This
error analysis motivates us to iteratively update the results in a conversational manner, mirroring
the functioning of LLMs.

Finding 3-1. In summary, the analysis reveals that errors in the data part of the visualization
query are more frequent compared to those in the visual part. Respectively, errors are mainly
related to data filtering and the 𝑦-axis of visualization.
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Fig. 11. Statistics of failures by text-davinci-003 in 20-shot using Table2SQL.

5.3.2 RQ3-2: Can we iteratively update the results via optimization strategies? Here, we employ the
CoT strategy with manual construction [52] to enhance the prompts for NL2Vis, infusing LLMs
(i.e., gpt-3.5-turbo and gpt-4) with an intermediary cognitive process. Our approach utilizes
a sketch as an intermediate expression, containing essential keywords from the visualization
query. Additionally, we harness gpt-3.5-turbo’s innate self-instruct capability by introducing
the phrase “Let’s think step by step.” This combined strategy is denoted as CoT. Furthermore, we
delve into role-playing, where gpt-3.5-turbo takes on the persona of a visualization expert. In
consideration of gpt-4’s self-repair capabilities, we explore instructions for rectifying visualization
queries. The optimization strategy is elucidated in Figure 12. Additionally, we investigate GPT-4’s
newly introduced code-interpreter feature in ChatGPT Plus3, which enables GPT-4 to demonstrate
programming proficiency within a conversational context, thus facilitating user learning and
problem-solving.

We evaluate the total failure results of text-davinci-003 with Table2SQL in 20 shots to explore
the optimization strategy. For gpt-3.5-turbo, we employ the following strategies. (1) CoT guided
by the prompt “Let’s think step by step. Generate the sketch as an intermediate representation and

then the final VQL”. (2) Role-playing, where the prompt “You are a data visualization assistant” sets
the model’s persona. For GPT-4 (gpt-4), we explore the (3) self-repair by adopting the following
prompt “You are a helpful programming assistant and expert data visualization assistant. Please fix

the given VQL and generate a correct VQL”. We also explore the (4) code-interpreter by uploading
database files and entering natural-language queries on the ChatGPT Plus website. By pairing every
same VQL with only the first natural-language query as a test example, we filter 176 different charts
from the LLM’s failed dataset. The generated visualizations are manually checked for accuracy.
Figure 13 depicts the comparative performance of diverse optimization strategies employed

by both gpt-3.5-turbo and gpt-4. Our findings reveal significant improvements in Execution

3https://chat.openai.com/?model=gpt-4-code-interpreter
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Task Instruction
You are a helpful programming assistant and expert data 
visualization assistant. Please fix the given VQL and 
generate a correct VQL with ‘Fixed VQL’ in one line.
Demonstration
[Table Description] [Question] [Correct VQL]
Test Item
[Table Description] [Question] [Given VQL]
Fixed VQL [To be generated]

Prompt for CoT

Prompt for Role-play

Prompt for Self-repair

Prompt for Code-interpreter
[Table Files]

[Question]
Vis Charts [To be generated]

Task Instruction
You are a data visualization assistant. Please generate 
VQL based on description of tabular data and question. 
Demonstration
[Table Description] [Question] [VQL] 
Test Item
[Table Description] [Question]
VQL [To be generated]

Task Instruction
Please generate VQL based on description of tabular data 
and question. 
Let's think step by step. 
Generate the sketch as intermediate representation and 
then the final VQL.
Demonstration
[Table Description] [Question] [Sketch] [VQL]
Test Item
[Table Description] [Question]
VQL Sketch [To be generated]
Desired VQL [To be generated]

Fig. 12. Optimization strategies employed for LLMs to iteratively update the results.

Accuracy: the CoT strategy enhances accuracy by 9.3%, while the role-playing strategy shows an
impressive 12.8% boost. Notably, gpt-4’s self-repair strategy leads to a remarkable 13.3% accuracy
improvement. When subjected to the code-interpreter on ChatGPT Plus within the extract dataset,
the Execution Accuracy of visualization improves to 50.3%.

Finding 3-2. The Self-repair strategy outperforms the CoT and role-playing strategies in
updating the results within NL2Vis. Furthermore, the code-interpreter in gpt-4 excels,
indicating a promising avenue for future research.

6 DISCUSSION

In this section, we discuss our findings during the experiments and hope researchers can address
some of the issues in future work.

6.1 Findings and Implications

In this study, we have uncovered several significant findings that offer valuable insights.
Finding 1: Investigating the strategies of inputting tables into LLMs, we find that representing
tables in a programming language format is most effective, showcasing remarkable performance in
addressing NL2Vis tasks when working with structured tabular data. Future work should delve
deeper into investigating the intricacies of table representation within programming languages.
Finding 2: In analyzing the impact of three table components (i.e., schema, relationship, and
content) in prompts, we identify that table schema is the most crucial component in both cross-
domain and in-domain settings. Table content is found to be inconsequential in NL2Vis tasks,
emphasizing the importance of the format and relationships in future research, especially when
feeding extra large databases into LLMs.
Finding 3: LLMs exhibit superior capabilities for automating data visualization based on natural-
language descriptions, outperforming state-of-the-art models in both cross-domain and in-domain
scenarios. Furthermore, as more few-shot samples are provided, inference-only models excel, even
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Fig. 13. The Execution Accuracy of optimization strategy in the failed results of text-davinci-003 in one-

shot with Table2SQL. GS and SB refer to grouping scatter and stacked bar chart types, respectively.

surpassing fine-tuned models. It is suggested to apply our framework to open-source LLMs for
more general NL2Vis task, which involves implicit and multi-type table structures.
Finding 4: Investigating the selection of demonstrations in in-context learning, we determine that
multiple out-of-domain demonstrations generally offer greater benefits than examples from the
same database domain, which could guide the design of demonstration selection in the future.
Finding 5: The analysis of failed generation reveals that errors are more frequent in the data
part of the visualization query, with particular issues related to data filtering and the 𝑦-axis of
visualization. There is room for improvement in generating condition and group attributes, which
inspires further exploration of iterative updating based on multi-turn dialogs of LLMs.
Finding 6: Optimization strategies such as the self-repair of gpt-4 and ChatGPT Plus’s code-
interpreter demonstrate superior performance, although challenges persist in handling complex
natural-language queries and join cases. Future work should focus on intuitive interfaces to enhance
the usability and reliability of NL2Vis tasks in real-world applications.

6.2 Limitations

There are some potential limitations on the validity of our experimental results and conclusions.

Limited tasks and dataset. In this work, we explore the NL2Vis task with regular table structures
and descriptive table context. However, in practice, tables could be in irregular structures, such
as those featuring merged rows and columns in Excel, or containing mixed data content. On the
other hand, table schema and column headers may not be descriptive. Future studies can extend
the dataset to irregular tables for visualization, to enrich NL2Vis benchmarks in more applicable
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scenarios. Moreover, all experiments in this paper are assessed using a synthesized dataset derived
from the NL2SQL dataset. We anticipate extending our study to real-world datasets in future work.

Limited visualization specification. In this paper, we choose VQL, an intermediate language
that has been widely embraced in existing literature. While some may contend that visualizations
can be directly generated through the generation of high-level specifications, such as Vega-Lite
(in JSON format), we argue that this approach may encounter difficulties in accurately capturing
specific details, such as chart type and rendering color. As part of our future work, we plan to
explore the direct generation of diverse Vega-Lite specifications.

Support of conversational NL2Vis. Data analysts typically perform data visualization in a
conversational manner. Take conversational visual analysis for example, a conversational natural-
language inquiry can be made up of a number of separate but related natural-language inquiries. It
is an intriguing and promising avenue to extend the NL2Vis benchmark to conversational visual
data analytics.

Manual prompt design. Like other prompting strategies, the prompt design and optimizations
are based on human comprehension and observations. The designer’s knowledge may affect the
effectiveness of the used prompts. Nonetheless, the purpose of our study is to investigate the
viability of prompt design and related influential factors. Our experimental results demonstrate that
the designed prompts are effective. In the future, we will investigate automated prompt construction
techniques [24].

7 RELATEDWORK

In this section, we review the related literature about NL2Vis task, LLMs for code generation, and
LLMs for data engineering.

7.1 NL2Vis

NL2Vis is crucial in data analysis, aiming to generate visualization representations from brief
succinct natural language explanations. While many approaches harnessing rule-based NLP tech-
niques have been proposed [8, 13, 40] to address this challenge, their effectiveness is limited by
the inflexibility of predefined rules in handling open-form natural-language inputs. Owing to the
availability of large-scale corpora of natural-language descriptions paired with corresponding
visualizations, such as nvBench [26], deep-learning-based techniques [25–28] have been employed
to train a sequence-to-sequence model in an end-to-end manner for the NL2Vis task. For example,
Seq2Vis [27] utilizes an LSTM to encode natural-language queries into hidden states, which are
subsequently decoded into visualizations. Moreover, ncNet [28] considers another encoder-decoder
architecture, the Transformer [46], to translate natural-language descriptions into visualizations.
Leveraging the powerful capabilities of ChatGPT [5], Chat2Vis [31] invokes the API interfaces of
code-davinci-002 to enable users to create data visualizations using natural-language queries in
Python plots. More recently, RGVisNet [43] has introduced a retrieval-based model, designed to
retrieve the most pertinent visualization representation from an extensive visualization codebase
for a given natural-language query.

7.2 LLMs for Code Generation

Code generation targets the automatic generation of program code from natural-language de-
scriptions, which can assist developers in improving programming productivity and efficiency.
In recent years, LLMs have exhibited remarkable capabilities in generating code [3], including
Python programs, execution commands for Excel, and SQL queries for databases. These models are
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generally built upon the Transformer architecture and pre-trained on large-scale corpora using
self-supervised objectives such as masked language modeling and next-sentence prediction [7].
Examples of these models include CodeGen [33], CodeT5+ [51], ChatGPT [5], StarCoder [21],
and Code Llama [39]. To fully harness the zero-shot potential of LLMs, a range of techniques
have emerged, including prompt tuning, in-context learning, chain-of-thought, and instruction
tuning. In particular, in-context learning stands out as a method to fortify LLMs by providing
contextual information or illustrative examples, as explored in [20] for code generation. Similarly,
chain-of-thought is devised to ensure the logical coherence of LLM outputs, thereby enhancing the
performance of code generation [19]. Moreover, instruction tuning has been conceived to enhance
the generalization prowess of LLMs across various tasks, exemplified by the creation of Wizard-
Coder [29], which augments the capabilities of StarCoder through the innovative Evol-Instruct
approach to generate sophisticated code instructions.

7.3 LLMs for Data Engineering

In the field of data engineering and analysis, the integration of LLMs with data-centric tasks has
opened avenues for transformative approaches to data interaction, processing, and visualization.
Recently, numerous studies have been developed to weave natural language into tabular data anal-
ysis [14, 17, 18, 54, 55]. For instance, NL2SQL [14, 18] adeptly translates natural language into SQL
commands to manipulate relational databases. Additionally, ChatExcel [2] and NL2Formula [56]
have leveraged LLMs to generate Excel execution commands, thereby streamlining user interac-
tions. SheetCopilot [17] has explored translating languages to VBA (Visual Basic for Applications -
an embedded scripting language in Microsoft Excel), benefiting from a rich array of spreadsheet
software functionalities. Data-Copilot [55], an LLM-based system, facilitates the automated man-
agement, invocation, and processing of a substantial volume of data from various sources, crafting
sophisticated interface tools autonomously. Designed for table analysis, TableGPT [54], blends
tables, natural language, and commands to manipulate data, visualize information, generate analysis
reports, answer questions, and make predictions.

8 CONCLUSION AND FUTUREWORK

In this paper, we have investigated whether it is feasible to utilize LLMs for the NL2Vis task.
Specifically, we compare LLMs including fine-tuned models (e.g., T5-Small, T5-Base) and inference-
only models (e.g., text-davinci-002, text-davinci-003, gpt-3.5 -turbo, and gpt-4) against
the state-of-the-art models. To start with, we investigate different approaches to transforming the
structured tabular data into sequential prompts, so as to feed them into LLMs. Furthermore, we
evaluate the LLMs on the NL2Vis benchmark under in-domain and cross-domain settings, against
several traditional neural models for NL2Vis. At last, we analyze when the LLMs fail in NL2Vis,
and propose to iteratively update the results using strategies such as chain-of-thought, role-playing,
and code-interpreter.
In our future work, we plan to explore table representations by encoding tables with more

well-designed programming languages. Moreover, we will extend the benchmarks to implicit and
multi-type table structures for visualization in more applicable scenarios, to push forward the field
of NL2Vis. While our current focus is on few-shot NL2Vis in GPT-3.5, our framework can also
be applied to other LLMs, such as LLaMA [45]. Consequently, the application of our prompting
methods to multiple semantic parsing tasks represents an intriguing avenue for future exploration.

ACKNOWLEDGMENTS

This work is supported by the Major Program (JD) of Hubei Province (Grant No. 2023BAA024). We
would like to thank all the anonymous reviewers for their insightful comments.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 115. Publication date: June 2024.



Automated Data Visualization from Natural Language via Large Language Models: An Exploratory Study 115:25

REFERENCES

[1] [n. d.]. Amazon’s QuickSight. https://aws.amazon.com/cn/blogs/aws/amazon-quicksight-q-to-answer-ad-hoc-
business-questions.

[2] [n. d.]. ChatExcel. https://chatexcel.com.
[3] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein,

Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,
Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya,
Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John
Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri,
Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna,
Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,
Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa,
Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan,
Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher
Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher
Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori,
Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael
Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia
Zheng, Kaitlyn Zhou, and Percy Liang. 2021. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258 (2021).

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, JeffreyWu, ClemensWinter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Proceedings of the Advances in Neural Information

Processing Systems, Vol. 33. 1877–1901.
[5] ChatGPT. 2022. ChatGPT. https://openai.com/blog/chatgpt.
[6] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. 2017. Deep Reinforcement

Learning from Human Preferences. In Advances in Neural Information Processing Systems, Vol. 30.
[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association
for Computational Linguistics, Minneapolis, Minnesota, 4171–4186.

[8] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G. Karahalios. 2015. DataTone: Managing Ambiguity
in Natural Language Interfaces for Data Visualization. In Proceedings of the 28th Annual ACM Symposium on User

Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery, New York, NY,
USA, 489–500.

[9] Heng Gong, Yawei Sun, Xiaocheng Feng, Bing Qin, Wei Bi, Xiaojiang Liu, and Ting Liu. 2020. TableGPT: Few-shot Table-
to-Text Generation with Table Structure Reconstruction and Content Matching. In Proceedings of the 28th International

Conference on Computational Linguistics. International Committee on Computational Linguistics, Barcelona, Spain
(Online), 1978–1988.

[10] GPT3.5. 2023. GPT3.5. https://platform.openai.com/docs/models/gpt-3-5.
[11] GPT4. 2023. GPT4. https://openai.com/research/gpt-4.
[12] Jiaxian Guo, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Boyang Li, Dacheng Tao, and Steven Hoi. 2023. From

Images to Textual Prompts: Zero-shot Visual Question Answering with Frozen Large Language Models. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10867–10877.
[13] Enamul Hoque, Vidya Setlur, Melanie Tory, and Isaac Dykeman. 2017. Applying pragmatics principles for interaction

with visual analytics. IEEE Transactions on Visualization and Computer Graphics 24, 1 (2017), 309–318.
[14] Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo Zhao, and Hang Zhao. 2023. ChatDB: Augmenting LLMs with

Databases as Their Symbolic Memory. arXiv preprint arXiv:2306.03901 (2023).
[15] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural language to SQL: Where are we

today? Proceedings of the VLDB Endowment 13, 10 (2020), 1737–1750.
[16] Chuan Li. 2020. Demystifying gpt-3 language model: A technical overview. https://lambdalabs.com/blog/demystifying-

gpt-3. [Online; accessed 1-Aug-2022].
[17] Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and Zhaoxiang Zhang. 2023. SheetCopilot: Bringing Software Produc-

tivity to the Next Level through Large Language Models. arXiv preprint arXiv:2305.19308 (2023).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 115. Publication date: June 2024.

https://aws.amazon.com/cn/blogs/aws/amazon-quicksight-q-to-answer-ad-hoc-business-questions
https://aws.amazon.com/cn/blogs/aws/amazon-quicksight-q-to-answer-ad-hoc-business-questions
https://chatexcel.com
https://openai.com/blog/chatgpt
https://platform.openai.com/docs/models/gpt-3-5
https://openai.com/research/gpt-4
https://lambdalabs.com/blog/demystifying-gpt-3
https://lambdalabs.com/blog/demystifying-gpt-3


115:26 Yang Wu et al.

[18] Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo Si, and
Yongbin Li. 2023. Graphix-T5: mixing pre-trained transformers with graph-aware layers for text-to-SQL parsing. In
Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative

Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence

(AAAI’23/IAAI’23/EAAI’23). AAAI Press, Article 1467, 9 pages.
[19] Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023. Enabling Programming Thinking in Large Language Models Toward Code

Generation. CoRR abs/2305.06599 (2023).
[20] Jia Li, Ge Li, Chongyang Tao, Jia Li, Huangzhao Zhang, Fang Liu, and Zhi Jin. 2023. Large Language Model-Aware

In-Context Learning for Code Generation. CoRR abs/2310.09748 (2023).
[21] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,

Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier
Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov,
Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan
Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. 2023. StarCoder: may the source be with you! arXiv

preprint arXiv:2305.06161 (2023).
[22] Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S Yu. 2023. A comprehensive evaluation of ChatGPT’s zero-shot

Text-to-SQL capability. arXiv preprint arXiv:2303.13547 (2023).
[23] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is Your Code Generated by ChatGPT Really

Correct? Rigorous Evaluation of Large Language Models for Code Generation. In Advances in Neural Information

Processing Systems, Vol. 36. 21558–21572.
[24] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023. Pre-train, Prompt,

and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 9,
Article 195 (jan 2023), 35 pages.

[25] Yuyu Luo, Xuedi Qin, Nan Tang, Guoliang Li, and Xinran Wang. 2018. DeepEye: Creating Good Data Visualizations
by Keyword Search. In Proceedings of the 2018 International Conference on Management of Data (Houston, TX, USA)
(SIGMOD ’18). Association for Computing Machinery, New York, NY, USA, 1733–1736.

[26] Yuyu Luo, Jiawei Tang, and Guoliang Li. 2021. nvBench: A large-scale synthesized dataset for cross-domain natural
language to visualization task. arXiv preprint arXiv:2112.12926 (2021).

[27] Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin. 2021. Synthesizing Natural Language
to Visualization (NL2VIS) Benchmarks from NL2SQL Benchmarks. In Proceedings of the 2021 International Conference

on Management of Data (Virtual Event, China) (SIGMOD ’21). Association for Computing Machinery, New York, NY,
USA, 1235–1247.

[28] Yuyu Luo, Nan Tang, Guoliang Li, Jiawei Tang, Chengliang Chai, and Xuedi Qin. 2022. Natural Language to Visualization
by Neural Machine Translation. IEEE Transactions on Visualization and Computer Graphics 28, 1 (2022), 217–226.

[29] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qingwei Lin, and
Daxin Jiang. 2023. WizardCoder: Empowering Code Large Language Models with Evol-Instruct. CoRR abs/2306.08568
(2023).

[30] Chenyang Lyu, Jitao Xu, and Longyue Wang. 2023. New trends in machine translation using large language models:
Case examples with chatgpt. arXiv preprint arXiv:2305.01181 (2023).

[31] Paula Maddigan and Teo Susnjak. 2023. Chat2vis: Fine-tuning data visualisations using multilingual natural language
text and pre-trained large language models. arXiv preprint arXiv:2303.14292 (2023).

[32] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard, and David McClosky. 2014.
The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd Annual Meeting of the Association

for Computational Linguistics: System Demonstrations. 55–60.
[33] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. 2022.

Codegen: An open large language model for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

[34] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, SamAltman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom,
Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim
Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson,

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 115. Publication date: June 2024.



Automated Data Visualization from Natural Language via Large Language Models: An Exploratory Study 115:27

Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark
Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman,
Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha
Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei
Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey,
Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain,
Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun,
Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick,
Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz
Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai
Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey,
Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin
Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen
O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy
Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power,
Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real,
Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica
Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian
Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick
Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright,
Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder,
Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and
Barret Zoph. 2023. Gpt-4 technical report.

[35] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow
instructions with human feedback. In Advances in Neural Information Processing Systems, Vol. 35. 27730–27744.

[36] Shuyin Ouyang, Jie M. Zhang, Mark Harman, and Meng Wang. 2023. LLM is Like a Box of Chocolates: the Non-
determinism of ChatGPT in Code Generation. arXiv preprint arXiv:2308.02828 (2023).

[37] Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with
Self-Correction. In Proceedings of the Advances in Neural Information Processing Systems, Vol. 36. 36339–36348.

[38] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. 2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research 21, 140 (2020), 1–67.

[39] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain
Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton
Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin,
Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. 2023. Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950 (2023).

[40] Vidya Setlur, Sarah E. Battersby, Melanie Tory, Rich Gossweiler, and Angel X. Chang. 2016. Eviza: A natural language
interface for visual analysis. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology.
365–377.

[41] Vidya Setlur, Melanie Tory, and Alex Djalali. 2019. Inferencing underspecified natural language utterances in visual
analysis. In Proceedings of the 24th International Conference on Intelligent User Interfaces (Marina del Ray, California)
(IUI ’19). Association for Computing Machinery, New York, NY, USA, 40–51.

[42] Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and Kristina Toutanova. 2021. Compositional Generalization and
Natural Language Variation: Can a Semantic Parsing Approach Handle Both?. In Proceedings of the 59th Annual

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 115. Publication date: June 2024.



115:28 Yang Wu et al.

Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers). Association for Computational Linguistics, Online, 922–938.
[43] Yuanfeng Song, Xuefang Zhao, Raymond Chi-Wing Wong, and Di Jiang. 2022. RGVisNet: A Hybrid Retrieval-

Generation Neural Framework Towards Automatic Data Visualization Generation. In Proceedings of the 28th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (Washington DC, USA) (KDD ’22). Association for
Computing Machinery, New York, NY, USA, 1646–1655.

[44] Yiming Tan, Dehai Min, Yu Li, Wenbo Li, Nan Hu, Yongrui Chen, and Guilin Qi. 2023. Evaluation of ChatGPT as a
question answering system for answering complex questions. arXiv preprint arXiv:2303.07992 (2023).

[45] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume
Lample. 2023. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023).

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Ł. ukasz Kaiser, and Illia
Polosukhin. 2017. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems,
Vol. 30.

[47] Randle Aaron M. Villanueva and Zhuo Job Chen. 2019. ggplot2: Elegant Graphics for Data Analysis (2nd ed.).
Measurement: Interdisciplinary Research and Perspectives 17, 3 (2019), 160–167.

[48] Yao Wan, Yang He, Zhangqian Bi, Jianguo Zhang, Yulei Sui, Hongyu Zhang, Kazuma Hashimoto, Hai Jin, Guandong
Xu, Caiming Xiong, et al. 2022. NaturalCC: an open-source toolkit for code intelligence. In Proceedings of the ACM/IEEE

44th International Conference on Software Engineering: Companion Proceedings. 149–153.
[49] Longyue Wang, Chenyang Lyu, Tianbo Ji, Zhirui Zhang, Dian Yu, Shuming Shi, and Zhaopeng Tu. 2023. Document-

Level Machine Translation with Large Language Models. In Proceedings of the 2023 Conference on Empirical Methods in

Natural Language Processing. Association for Computational Linguistics, Singapore, 16646–16661.
[50] Xingyao Wang, Sha Li, and Heng Ji. 2023. Code4Struct: Code Generation for Few-Shot Event Structure Prediction.

In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Toronto, Canada, 3640–3663.

[51] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5: Identifier-aware Unified Pre-trained Encoder-
Decoder Models for Code Understanding and Generation. In Proceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic,
8696–8708.

[52] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V. Le, and Denny
Zhou. 2022. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. In Proceedings of the Advances

in Neural Information Processing Systems, Vol. 35. 24824–24837.
[53] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle

Roman, Zilin Zhang, and Dragomir Radev. 2018. Spider: A large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887 (2018).

[54] Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, Qingyi Huang, Saisai Yang, Jing Yuan, Changbao Su, Xiang Li, Aofeng
Su, Tao Zhang, Chen Zhou, Kaizhe Shou, Miao Wang, Wufang Zhu, Guoshan Lu, Chao Ye, Yali Ye, Wentao Ye, Yiming
Zhang, Xinglong Deng, Jie Xu, Haobo Wang, Gang Chen, and Junbo Zhao. 2023. TableGPT: Towards Unifying Tables,
Nature Language and Commands into One GPT. arXiv preprint arXiv:2307.08674 (2023).

[55] Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. 2023. Data-Copilot: Bridging Billions of Data and
Humans with Autonomous Workflow. arXiv preprint arXiv:2306.07209 (2023).

[56] Wei Zhao, Zhitao Hou, Siyuan Wu, Yang Gao, Haoyu Dong, Yao Wan, Hongyu Zhang, Yulei Sui, and Haidong Zhang.
2024. NL2Formula: Generating Spreadsheet Formulas from Natural Language Queries. In Findings of the Association

for Computational Linguistics: EACL 2024, St. Julian’s, Malta, March 17-22, 2024. 2377–2388.
[57] Li Zhong and Zilong Wang. 2023. A Study on Robustness and Reliability of Large Language Model Code Generation.

arXiv preprint arXiv:2308.10335 (2023).
[58] Jonathan Zong, Josh Pollock, DylanWootton, and Arvind Satyanarayan. 2023. Animated Vega-Lite: Unifying Animation

with a Grammar of Interactive Graphics. IEEE Transactions on Visualization and Computer Graphics 29, 1 (2023), 149–159.

Received October 2023; accepted January 2024

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 115. Publication date: June 2024.


	Abstract
	1 Introduction
	2 Background
	2.1 Visualization Query Language (VQL)
	2.2 Large Language Models

	3 LLMs for NL2Vis 
	3.1 Problem Statement
	3.2 Feeding Data into LLMs via Prompting
	3.3 Visualization Query Generation
	3.4 Language-Aware Rending

	4 Evaluation Setup
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Comparison Models for NL2Vis 

	5 Results and Analysis
	5.1 RQ1: Prompt Engineering
	5.2 RQ2: Overall Performance
	5.3 RQ3: Iterative Updating

	6 Discussion
	6.1 Findings and Implications
	6.2 Limitations

	7 Related Work
	7.1 NL2Vis
	7.2 LLMs for Code Generation
	7.3 LLMs for Data Engineering

	8 Conclusion and Future Work
	Acknowledgments
	References

