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Abstract

Considering the high computational demands of most methods, using network communication models
to simulate the brain is a more economical way. However, despite numerous brain network communication
models, there is still insufficient evidence that they can effectively replicate the real activation patterns of the
brain. Moreover, it remains unclear whether actual network structures are crucial in simulating intelligence.
Addressing these issues, we propose a large scale network communication model based on simple rules and
design criteria to assess the differences between network models and real situations. We conduct research
on the biggest adult Drosophila connectome data set. Experimental results show significant activation in
neurons that should respond to stimulus and slight activation in irrelevant ones, which we call quasi-real
activation pattern. Besides, when we change the network structure, the quasi-activation patterns disappear.
Interestingly, activation regions have shorter network distances to their input neurons, implying that the
network structure (not spatial distance) is the core to form brain functionality. In addition, giving the input
neurons a unilateral stimulus, we observe a bilateral response, which is consistent with reality. Then we
find that both hemispheres have extremely similar statistical indicators. We also develop real-time 3D large
spatial network visualization software to observe and document experimental phenomena, filling the software
gap. This research reveals network models power: it can reach the quasi-activation pattern even with simple
propagation rules. Besides, it provides evidence that network structure matters in brain activity pattern
generation. Future research could fully simulate brain behavior through network models, paving the way for
artificial intelligence by developing new propagation rules and optimizing link weights.

Keywords: brain network, network communication model, drosophila connectome, activation pattern

1 Introduction

The neural systems of intelligent beings maintain constant communication [1] [2]. The intricate mechanism
of this communication unfolds as follows: specific neurons, often input neurons, receive stimulus signals from
the external environment or other parts of the body, transitioning from a resting to an activated state. Subse-
quently, they relay these stimulus signals to the next tier of neurons through synapses. This process gives rise
to macroscopic emergence across the entire neural system. Such communication fosters the emergence of intelli-
gence in all intelligent life forms, including humans. Consequently, comprehending and replicating this process
has become an indispensable avenue for unraveling biological intelligence and realizing artificial intelligence [3].

Neural systems are interconnected networks [4], with neurons engaging in constant communication via
synapses within the network’s topology. The brain’s unique and complex network structure is pivotal to the
emergence of intelligence [5]. Many scientists posit that network science is crucial for deciphering the mechanisms
underlying the flexible regulation of neural communication [6] [7] [8]. Determining how to leverage network
science methodologies stands as a paramount challenge in contemporary neuroscience. Within this discipline,
neural networks are often represented as graphs, consisting of nodes (entities) and edges (relationships). From
the broadcasting model [9] to the diffusion model [10], researchers strive to craft network models that mimic
activation patterns observed in the brain, offering insights into the workings of neural networks.

However, despite artificial neural networks (ANNs)’ deviation from the brain’s actual structure, they get
full achievements in achieving intelligence, which cast doubt on the necessity of real network structures in
brain behavior simulation. Furthermore, some researchers have highlighted the absence of evidence linking
network model simulations to genuine brain activity patterns [11], undermining the models’ status as a robust
research tool in neuroscience. The effectiveness of network models in replicating the neuronal system’s activation
dynamics remains uncertain. This uncertainty partly stems from many models’ failure to replicate the brain’s
structure at the neuron and synapse level, compromising the models’ interpretability.
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Moreover, current brain network communication models often rely on prevalent metrics such as signaling
cost and activation time to assess model quality [11]. Yet, these metrics fall short of verifying whether a
network model accurately reflects the brain’s actual activation patterns, which is the fundamental goal of brain
simulation. There is a need for evaluation criteria that can affirm whether network communication models
genuinely mirror the brain’s communication processes. Additionally, observing the brain network communication
process is important for researches. The absence of 3D visualization software capable of real-time monitoring
of communication status and displaying networks with a vast number of nodes poses challenges for researchers,
including neuroscientists, by impeding real-time observation, display, and analysis of experimental outcomes.

Over the past few decades, biologists have dedicated themselves to determining the precise structure of the
connectome, ranging from C. elegans [12] to Drosophila larvae [13]. By understanding the connections within
an organism’s nervous system, researchers can gain insights into how the nervous system operates. A recent
study [14] has published the largest adult Drosophila connectome, providing data support for researches in
network science.

For these reasons, we conducted experiments utilizing the recently released comprehensive data set of the
largest adult Drosophila connectome, enhancing the interpretability of our findings. Our approach involves
crafting a large scale network communication model based on simple mechanisms, designed to simulate the
activation behavior observed in the connectome.

Specifically, We establish the network representation of the connectome. Then we design each neuron’s state
and threshold functions. When a neuron’s state meets the threshold, it activates and subsequently transmits
signals to other neurons. After a few iteration, the whole network emerges an activation pattern. Additionally,
we propose an evaluation criteria based on the ratio of actually activated neurons to the expected number of
activation. Experiments reveals that our model has significant activation in the type of neurons that should be
affected by the stimulus and slight activation in irrelevant neurons which called a quasi-real activation pattern.
To prove the vitalness of network structure, we calculate every node’s layer and shuffle part of the network
structure in same layer and find the shuffled network can’t generate any quasi-real activation pattern.

To enhance our understanding, we developed a 3D network visualization software, utilizing HTML5’s Canvas
and Three.js based on WebGL technology for large spatial network visualization effects. This tool enables real-
time observation of each neuron’s communication process.

To prove the network structure matters (rather than spatial structure) in activation pattern generation,
we calculate the average network and spatial distance of input and activation neurons and results reveal that
the average network distance between input neurons and their corresponding activation areas is shorter than
unrelated areas, which is a strong evidence to prove network structure matters in the process of message
transmission in brain.

Furthermore, by subjecting input neurons to the same stimulus, we observe significant responses in neurons
expected to be affected, with only slight responses in irrelevant neurons—characterized as a quasi-real activation
pattern. Notably, when providing unilateral stimuli to input neurons, we observe a bilateral response in the
Drosophila neuronal wiring diagram, aligning with reality. Then we calculate the statistics properties and
find that the left and right hemispheres have extremely similar degree, clustering coefficient, and eigenvector
centrality vector coefficient. The vectors’ Person coefficient are up to 0.9986, 0.9988, and 0.9991, respectively.

2 Related Works

Various models have been developed to mimic or understand aspects of brain function, ranging from the
cellular level to the whole brain. In this section we review the models that aim to simulate the brain’s behavior.
The review includes neural dynamic model that describes how action potentials in neurons are initiated and
propagated. In addition, we introduce the large scale brain simulating methods. At last, we introduce the
network communication models which refers to a computational or theoretical framework designed to understand
and simulate how different parts of the brain communicate with each other.

2.1 Neuron Dynamic Model

In past years, neuroscientists have aimed to describing the behavior of neurons by dynamic model. One of
the most famous works is the Hodgkin-Huxley (HH) model [15]. It includes a set of differential equations that
describe the changes in membrane potential and the dynamics of ion channels. The key variables in the model
are the membrane potential V , and the gating variables m, n, h that represent the probability of ion channels
being open.
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The currents are given by:

INa = ḡNam3h(V − ENa) (1)

IK = ḡKn4(V − EK) (2)

IL = ḡL(V − EL) (3)

Where ḡNa, ḡK and ḡL are the maximum conductances for sodium, potassium, and leak channels. ENa,
EK , and EL are the reversal potentials for sodium, potassium, and leak channels.

The gating variables obey first-order kinetics and are described by the following differential equations:

dm

dt
= αm(1−m)− βmm (4)

dn

dt
= αn(1− n)− βnn (5)

dh

dt
= αh(1− h)− βhh (6)

Where m, n, and h are the gating variables representing the activation and inactivation states of the ion
channels. αm, αn, αh, βm, βn, and βh are voltage-dependent rate constants for the gating variables. These
rate constants are defined by empirical equations based on experimental data. HH model accurately describes
the electrophysiological processes of neuronal activity through mathematical equations, allowing scientists to
understand the fundamental mechanisms of a group of neurons’ behavior at the molecular and cellular levels.

Another famous theory is cable theory [16]. Cable theory is a mathematical model used to understand
how electrical signals propagate along neurons, especially in their dendrites and axons. This theory applies the
principles of electrical circuits to describe how the passive properties of the neuron influence signal transmis-
sion. It’s particularly useful in explaining the conduction of graded potentials, such as synaptic potentials and
electrotonic (passive) spread of membrane potential changes.

The core equation of cable theory is derived from the cable equation, which is a form of the second-order
linear partial differential equation. It can be expressed as:

∂2V

∂x2
=

1

rm

(
∂V

∂t
+

V

rc

)
(7)

, where V is the membrane potential, x is the distance along the cable, t is time, rm is the membrane resistance
per unit length, rc is the cytoplasmic (axial) resistance per unit length. This equation describes how the voltage
V changes along the length of the neuron x and over time t.

Cable theory has several important applications in neuroscience, including understanding signal decay, neural
modeling and synaptic integration. Despite its usefulness, cable theory has limitations. First, real neurons have
complex geometries, which are simplified in cable theory. This can lead to inaccuracies in predicting real
neuronal behavior. The complex structure of neuron should not be neglected. Besides, cable theory primarily
addresses passive electrical properties and does not account for active properties like action potentials, which
are crucial for neural communication.

Apart from that, researchers proposed many variants of neuron dynamic models [17] [18]. These models
serve to elucidate the physiological activity of neurons and contribute to the description of neuron behavior.

However, these models has some limitations: these equations often contain a multitude of parameters.
In instances where measurement techniques fall short of quantifying each parameter individually, estimation
becomes a necessity.

Spiking Neural Networks (SNNs) [19] is designed to optimize the parameters in neural dynamic models.
Unlike their traditional counterparts, which process information through continuous values, SNNs utilize discrete
events known as spikes. These spikes, brief in duration, mimic the communication method of neurons within
the brain, facilitating the transmission of information.

One of the simplest and most commonly used models to describe neuron dynamics in SNNs [19] is the Leaky
Integrate-and-Fire (LIF) model [20]. The LIF model captures the essential characteristics of spike generation in
neurons. The membrane potential V (t) of a neuron at time t is described by the following differential equation.

τm
dV (t)

dt
= −[V (t)− Vrest] +RI(t) (8)

Where τm is the membrane time constant, which determines how fast the membrane potential decays towards
the resting potential Vrest in the absence of input. Vrest is the resting membrane potential. R is the membrane
resistance. I(t) is the input current at time t. When V (t) reaches a certain threshold Vthreshold, the neuron fires
a spike, and V (t) is reset to Vrest or another predefined value. After firing, the neuron may enter a refractory
period during which it cannot spike, regardless of the input.
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SNNs have enabled researchers to simulate networks comprising millions of neurons, tackling a wide array
of tasks ranging from image classification and natural language processing to controlling robotic arms [21] [22]
[23] [24].

Despite their advances, SNNs face significant challenges. One primary issue is that the SNN’s structure often
draws inspiration from anatomically defined from functional brain networks rather than accurately replicating
the intricate neural connections observed at the microscale. In terms of the connection method of artificial neu-
rons, SNNs usually use a structure similar to that of ANNs. Consequently, these models resort to architectures
akin to those found in artificial neural networks, hindering their ability to authentically emulate brain func-
tions. Additionally, SNNs are marked by their low computational efficiency, with a single forward propagation
frequently requiring several seconds to complete. These limitations underscore the difficulties in considering
SNNs as the optimal approach for brain simulation in their current state.

As for the large scale brain simulation model aims to simulate the whole brain’s behavior, Eugene et al. [25]
present the first large-scale brain simulation model based on experimental measures in several mammalian
species. The model is founded upon the global thalamocortical anatomy derived from diffusion tensor imaging
of the human brain. It incorporates multiple thalamic nuclei and a six-layered cortical microcircuitry, which is
grounded in in vitro labeling and three-dimensional reconstruction of single neurons from the cat visual cortex.
Additionally, the model simulates over 1,000,000 SNN neurons, calibrated to replicate known in vitro response
patterns recorded in rats. It boasts nearly half a billion synapses, incorporating accurate receptor kinetics,
short-term plasticity, and dendritic spike-timing-dependent synaptic plasticity (dendritic STDP). The model
can demonstrate behavioral patterns that mimic normal brain activity. This model is a comprehensive attempt
to simulate the whole neural system, which is a critical component of the brain involved in sensory processing
and consciousness.

Eliasmith et al. [26] introduce a more comprehensive brain simulating model, which consists of 2,500,000
neurons and serves to close this divide by demonstrating a variety of behaviors. This model receives only
sequences of visual images and produces all its responses through a simulated arm. Despite its simplifications
of real structure, the model encapsulates numerous elements of neuroanatomy, neurophysiology, and behavioral
psychology, as evidenced by its performance across eight distinct tasks.

As for the standardized platform, Zeng et al. [27] present BrainCog, a cognitive intelligence engine inspired
by the brain. This platform, based on SNN, offers critical infrastructure for the creation of brain-inspired
artificial intelligence and simulation of the brain. BrainCog encompasses a variety of biological neurons, encoding
methods, learning principles, brain regions, and a combination of hardware and software as its core elements.

However, it is essential to note that each neuron’s dynamic model involves multiple differential equations,
posing a significant challenge in simulating the complete behavior of the intact brain given the constraints of
available computing power. Therefore, there is a compelling need for a cost-effective simulation approach to
address this challenge.

As for the collective action of neuron populations, despite the success of neural system mean field models [28]
in areas such as modeling epileptic seizures [29], there is still a lack of models that precisely describe the large-
scale activity of whole brain.

2.2 Brain Network Communication Model

The network communication model is a conceptual framework that describes how data is transmitted from
one node to another over a network. It breaks down the complex process of communication into simpler, more
manageable layers or components, each with a specific role. The most widely recognized network communication
models are the Open Systems Interconnection (OSI) model and the Internet Protocol Suite, commonly known
as the TCP/IP model. Nowadays, scientists apply network communication models to neuron research, which
are mostly used to understand how brain networks operate [30] [31] [32].

Early studies have indicated that, similar to social and electrical networks [33], brain networks also exhibit
properties such as power-law distributions [34] and the rich-club phenomenon [35]. These results indicate that
brain networks contain a wealth of network statistical characteristics. To reveal the mystery of the brain,
researchers must take network characteristics into consideration.

Researchers designed many brain network models to describe the processes of message propagation in brain.
One category of brain network communication models is the routing protocol model. The most famous model
of this category is shortest path model [36], which assumes that signals between a pair of nodes travel along the
shortest path between them. Let d(v) represent the shortest path length from the starting node to node v, for
each node v in the network, initialize d(v) = ∞, then for the starting node s, set d(s) = 0. Next, process each
node in increasing order of d(v), for each node, update the d(u) value of its neighbors u. The update way can
be represented as follows:

d(u) = min(d(u), d(v) + w(v, u)) (9)

where w(v, u) is the weight of edge euv.
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However, the key disadvantage of the model is these methods require each neuron must have knowledge
about the entire network structure [37], which doesn’t correspond to the reality: every neuron only has the
message of its neighbor neurons.

Another well-known model is navigation model. It suggests that neurons always send information to the
neuron that can be reached with the least communication cost [38]. These models achieve the lowest commu-
nication cost. Greedy routing in Euclidean space identified paths with 70–100% of optimal signaling efficiency
in human, mouse and macaque connectomes [39].

However, the main disadvantage of navigation model is it supposes that neurons know the distance between
their neighbors and a desired target region. Recently their still has a lack of evidences that reveal how this
knowledge would be given to neurons in brain networks.

Another well-known category of models is the diffusion model. The diffusion model posits that signals
propagate through random walk dynamics. This process of propagation does not require individual neurons to
possess any prior knowledge beyond their immediate neighboring neurons. Among the most classic of these is the
random walk model [40]. In the random walk model, signals are transmitted to randomly selected neighboring
nodes with a probability proportional to the connection weights until they reach the target node. For unbiased
random walk, the function of random walk model is as follows.

Pij =
1

ki
(10)

Where Pij represent the probability of node i choosing node j.kiis the degree of node i.
As for biased random walk, for example, if the transition probability depends on the edge weights or certain

properties of the nodes, then the transition probability can be adjusted to

Pij =
wij∑

l∈N(i) wil
(11)

Where wij is the weight of node i to node j,N(i)is the set of node i.
However, studies have shown that the efficiency of signal transmission through random walks is relatively

low [41]. So it can’t describe the rapid communication process in the brain.
An effective category is threshold model [42]. The threshold model was originally proposed to characterize

collective behavior. In the threshold model, a node’s behavior depends on the behavior of its neighboring nodes.
Suppose that within a group, nodes can hold one of two states regarding a certain behavior: an active state and
a quiescent state. For a node, it will only transition from the quiescent state to the active state if the stimulus
given by its neighboring nodes in the active state surpasses a certain threshold; otherwise, it remains in the
quiescent state. The condition for node i to adopt the behavior at time t+1 can be formulated as follows.

ai(t+ 1) = 1 if
1

ki

∑
j∈Ni

aj(t) ≥ θi (12)

Where Ni is the set of neighbors of node i, ai(t) is the adoption state of node i at time t. θi is the threshold
of node i. ki is the degree of node i. The threshold model has been extensively applied in artificial neural
networks.

However, how to set the propagation thresholds for different neurons, and how to design the dynamics model
between neurons remains a challenge.

3 Data and Methods

3.1 Drosophila Connectome Data Set

We employ the recently released largest Drosophila brain connectome [14], offering a thorough mapping of
the entire neural network within a Drosophila female brain. This data set encompasses over 120,000 neurons
and 30,000,000 synapses, including detailed information on synaptic connections between neurons. Notably, it
provides high-precision 3D coordinates, accurate to the nanometer level, for both cell bodies and synapses. Ad-
ditionally, this data set offers extensive labeling for various types of neurons. For a more in-depth understanding,
please refer to [14] [43] for detailed information.

Table 1 shows the basic properties of the data set. Note that we combine multiple edges between two nodes
to calculate network statistic properties. The average degree before combining multiple edges is 501.6 while
average degree is 37.01 after combination. It means most of the pairs of neuron has many links.

Apart from that, we draw the curves of degree distribution. From Fig. 1 We found that the distribution of
log(degree) initially appears to be approximately linear, but at the end it exhibits a long-tail distribution, which
demonstrate that the original distribution of degree follows a power-law distribution. This result corresponds
to the earlier research that neural network also has the power-law property [34].
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Table 1: Statistical properties of Drosophila Brain Connectcome Graph
Number of Nodes Number of Edges Average Degree

131459 32970606 37.01
Average Degree (before combination) Clustering Coefficient Eigenvector Centrality

501.6 0.1527 0.0008817

Figure 1: Degree Distribution (Log-Log Scale)

Also, we plot the correlation curves between degree and cell surface area, volume, and cell length (See in
Fig. 2). The results indicate the degree distribution is logarithmically linearly correlated with these data.
These characteristics of the brain can explain Weber-Fechner’s law [44]: for any sensory pattern, the perceived
intensity is a logarithmic function of the physical intensity. The structural changes can only cause a logarithmic
change in the average connection strength.

Figure 2: Correlation between degree distribution and neuron characteristics

These statistic results are a valuable supplement to previous findings [45] and are crucial for a deeper
understanding of this data set.

3.2 Model

In this section, we introduce the large scale network communication model which consumes less computa-
tional resource and can efficiently utilize the network structure. First we introduce the symbol systems in this
article.

The original network presentation of neural systems often uses nodes to represent the neurons and using
edges to represent the links (chemical synapses, electrical synapses, etc) between neurons [4]. However, this
approach has a number of limitations: Firstly, there are more than one link (synapse) between two neurons [46]
and the links are spatially and temporally asymmetric. To illustrate, two neurons shown in Fig. 3 have multiple
synapses between them, and the dynamical properties of these different synapses may vary. Additionally, due
to their spatial locations, the signal transmission delay and the position of action on the downstream neurons
are also different, making it difficult to simply merge them.

For this reason, similar to previous research [47], we use the dual method on Drosophila connectome data
set. The method is introduced below.

A dual graph is a concept in graph theory which describes a special relationship between graphs. In a dual
graph, the nodes and edges of the original graph are interchanged, resulting in a new graph. In simple terms, a
dual graph is obtained by replacing the nodes of the original graph with edges, and the edges with nodes. Fig.
4 is an example of an original graph and a dual graph. After being processed, the new graph can be considered
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Figure 3: An example of Complex Connection

(a) Original Graph (b) Dual Graph

Figure 4: An example of original graph and dual graph

to be a hyper graph, whose nodes represent the synapses and links represent the cell body. Then we can use
the hyper communication model to describe it.

In order to standardize the symbol system, we use a set to represent the neuronal cell body and use an
element to represent a physical link between neurons. We regard the process of messages interactions as the
elements’ interactions on sets.

Let N = {n1, ..., ni, ...} represent the set of all elements and E = {e1, ..., ej ...} represent the probable sets of
elements. Note that the intersection of sets include some elements, which is formalized as the following manner.

ek ∩ eq = {ni|(ni ∈ ek) ∧ (ni ∈ eq)} (13)

Note that union of every element in N and E is the whole graph. Let G represent the graph. The graph’s
definition is given as follows.

G =
⋃
j

ej =
⋃
i

{ni}. (14)

Because neural link is directed, let ej
+ ( ej

−) represent the set of elements which output (input) the signals,
note that ej

+ = ej
+ ∪ ej

−.
Every neuron and synapse has a activate state (state = 1) or resting state (state = 0). So set the statement

of the element i as Xi. Xi = 1 if the element ni is active, otherwise Xi = 0. Then let Yj represent the statement
of set ej . Yj = 1 if the set ej is active, otherwise Yj = 0.

We use a linear threshold activation function. Then, general transmission function is defined in the following
manner,

Yj =
∑

{i|e+i ∩e−j ̸=∅}

∑
nk∈e+i ∩e−j

σ(ω(nk, ei, ej)Xk) (15)

where ω(nk, ei, ej) represents the link weight between set i and set j (specifically, two neurons). Here we consider
that the link weight between two neurons is not only related to the neurons themselves, but also to the synapses
between them. σ(.) is the activate function.
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The statement of an neuron will influence the statement of all output synapses. The equation between
neuron j and output synapse i is as the following manner.

Xi = Yj (16)

The link weights between neurons determine the extent of influence they have on each other. Larger link
weights mean a tighter ”link” between two neurons. In everyday life, the brain continuously changes the link
weights between neurons in response to inputs from the external world, allowing intelligence to emerge from the
micro to the macro. Therefore, if researchers want to simulate the process of information propagation in the
brain on large scale in a computer, determining the link weights between neurons is essential. However, existing
experimental methods are not well-suited for directly measuring the weights between neurons in a whole brain,
so adopting some alternative approach is necessary. Below, we introduce two hypotheses that use different
methods to estimate the connection weights between neurons.

3.2.1 Average Hypothesis

As previously mentioned, there exists a large number of synapses between two neurons. However, in practical
applications, it is difficult to set the parameters for these edges individually. Consequently, a simple assumption
naturally arises: assuming that the source neuron has the same influence on the target neuron through every
synapse. We propose an assumption that every synapse is equivalent, which is widely used in neuron graph
statistics analysis [45]. That is to say,

ω(nk, ei, ej) = 1 (17)

Then the normalized equation is as follows.

Yj = σ(

∑
{i|e+i ∩e−j ̸=∅}

∑
nk∈e+i ∩e−j

σ(ω(nk, ei, ej)Xk)

Max({ω(nk, ei, ej)|e+i ∩ e−j ̸= ∅, nk ∈ e+i ∩ e−j })
) (18)

3.2.2 Distance Hypothesis

The continuous evolution of organisms has led to the brain’s spatial structure being highly complex, with a
small area possibly containing a large number of neurons. Besides, a fact is messages are transmitted through
bioelectric currents. Assuming that the distance is longer, the resistance will be greater, resulting in a smaller
communication effect. Based on this, there emerges a hypothesis: Is the strength of interactions between neurons
inversely proportional to the spatial distance between them? So in the distance hypothesis we assume that the
impact of input synapses on neurons is inversely proportional to the distance between them. Then the norm
can be formulated as follows.

ω(nk, ei, ej) = (∥ r⃗k ∥2 − ∥ r⃗j ∥2)
1
2 (19)

Where rk, rj are the center position vector of synapse and cell body, respectively.
Then the transmission function is defined as the following manner.

Yj = σ(

∑
{i|e+i ∩e−j ̸=∅}

∑
nk∈e+i ∩e−j

σ(ω(nk, ei, ej)Xk)

Max({ω(nk, ei, ej)|e+i ∩ e−j ̸= ∅, nk ∈ e+i ∩ e−j })
) (20)

3.3 Evaluation Criteria

In previous study, researchers used classic indicators such as signaling cost and activation time to evaluate
the quality of the model [11] [48] [49]. However, these indicators can’t prove the model accords with the true
communication process even if the activation time is short and the signaling cost is minimum, etc. To better
assess whether a model can reflect the real situation of brain communication, we use the percentage of activated
neurons in regions that should work under a certain stimulus. To illustrate, if the brain gets a visual stimulus,
the region related to vision should work while the region not related to vision should keep in a resting state. Then
we record the percentage of neurons activated and if regions related to the certain function have a significant
higher activation percentage than the average activation percentage of the whole brain, we call it a quasi-real
activation pattern.

We define the consistency indicator C. The consistency indicator C in region r which has a certain function
(visual, olfactory, etc) is defined in the following manner.

Cr = Nact
r /Nr (21)

Where Nact
r represents the number of neurons activated in area r at the final state, Nr represent the number

of neurons in area r and N represent the total number of neurons.
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3.4 Large Spatial Network Visualization

The visualization software of experiment observation on large spatial networks is important for researchers
[50] [51]. However, there is still a lack of visualization system that can observe information propagation on large
spatial networks in real-time, which poses difficulties in experiment. To observe directly the communication
progress on this super large Drosophila connectome, we develop a large spatial network visualization software.

The drawing part mainly employs the Canvas provided by HTML5 and we use the Three.js based on WebGL
technology to achieve spatial network visualization effects, while the user interface display is constructed by
Vue.js, providing users with an intuitive and interactive interface to display and analyze data. Fig. 5 is an
example of the 3D visualization system. This software will be made available to other researchers with the
author’s permission.

(a) Side view 1 (b) Side view 2 (c) Side view 3

(d) Top view 1 (e) Top view 2 (f) Top view 3

(g) Front view 1 (h) Front view 2 (i) Front view 3

Figure 5: Visualization of Spatial Drosophila Brain Network

3.4.1 Front End Technical Details

We use the Vue.js framework to build the user interface. Vue.js is a popular JavaScript framework that
simplifies the development of web applications through componentization, enabling the creation of front-end
interfaces with rich interactivity and good user experience.

The rendering of three-dimensional complex networks relies heavily on the Three.js library. Three.js is a
powerful JavaScript library for creating and displaying 3D graphics. It offers a rich set of 3D objects, materials,
lights, and animations, allowing for the easy creation of high-quality 3D scenes and objects.

To improve rendering performance, GPU acceleration technology is utilized. GPU acceleration takes ad-
vantage of the computational power of the Graphics Processing, significantly enhancing rendering speed and
efficiency through parallel processing and stream processing modes. The GPU acceleration capabilities of
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Three.js, especially through the creation of point objects using Float32BufferAttribute, which contains their
position information in three-dimensional space, greatly enhance the rendering speed and smoothness.

3.4.2 Back End Technical Details

We use the Spring Boot framework, an open-source framework based on Java for quickly building inde-
pendent, production-grade Spring applications. With Spring Boot, backend services can be rapidly set up to
provide RESTful API interfaces for frontend consumption. The backend also utilizes the PostgreSQL database
to store network data.

Besides, We use PostgreSQL, which is a powerful open-source relational database management system
that offers a rich set of data types and robust querying capabilities. To store 3D network data, we leverage
PostgreSQL’s JSONB type, which allows storing JSON-formatted data within PostgreSQL and provides a series
of functions and operators for querying and manipulating this data. With the JSONB type, information about
nodes and edges in the network can be stored, enabling fast querying and updating operations.

4 Experimental Results and Analysis

In this part we introduce the experimental results and analysis. Above all, we introduce the activation pattern
experiment. We give different stimuli and record the activation pattern of different neurons. In addition, we
give a unilateral stimulus (stimulus one hemisphere) and record the bilateral response of neurons. Finally, to
prove the network structure matters in brain network communication, we calculate the average physical and
network distance between different areas.

4.1 Experimental Settings

The basic methodology of the experiment is described as follows. In this study, a continuous stimulus signal
(binary 0-1 signal) is applied to a subset of input neurons (such as visual or olfactory neurons) in the brain.
Subsequently, we compute the signal’s propagation process within the brain and record the responses of both
intermediate and output neurons. The evaluation criterion is determined by calculating the ratio of neurons
that ought to be activated to those that are actually activated in a specific area. Given that the brain functions
as a type of shallow neural network [52], we document the outcomes at an iteration step size of 5, by which
point the majority of neurons have achieved a state of stability. Moreover, as the input remains constant and no
randomization parameters have been introduced, the outcomes of each experiment are consistent, eliminating
the need for repetition.

Next, we will introduce the background knowledge of the neurons involved in this paper. Here are introduc-
tions of these neurons.

Optic neurons, also known as retinal ganglion cells, are the first neurons in the visual pathway. They receive
signals from the photoreceptor cells in the retina and transmit this information via the optic nerve to the brain.
These neurons play a crucial role in carrying visual stimuli from the eye to the brain, where further processing
and interpretation of the visual information occur.

Visual projection neurons are a type of neuron found in the visual system that transmit visual information
from one region of the brain to another. They play a crucial role in processing and relaying visual signals from
the retina to various visual centers in the brain, including the thalamus, hypothalamus, and primary visual
cortex (V1), among others.

Antennal Lobe Input Neurons (ALINs) are primarily olfactory sensory neurons (OSNs) that carry olfactory
information from the sensory structures, such as the antennae and maxillary palps, directly to the antennal
lobe. Each OSN expresses a specific odorant receptor and responds to particular chemical cues. The axons of
these neurons synapse with projection neurons and local neurons within the glomeruli of the antennal lobe.

Antennal Lobe Projection Neurons (ALPNs) transmit the olfactory information in the antennal lobe. These
neurons receive input from the olfactory sensory neurons within the glomeruli and project their axons to other
brain areas, such as the mushroom body and the lateral horn, where further processing and integration of
olfactory information occur.

Antennal Lobe Output Neurons (ALONs) refer to the projection neurons that serve as the primary output
pathways of the antennal lobe, sending processed olfactory information to higher brain regions.

Antennal Lobe Local Neurons (ALLNs) are inter neurons that are confined to the antennal lobe. They
typically have processes (dendrites and axons) that branch extensively within the antennal lobe and form
connections with multiple glomeruli. These neurons play a critical role in modulating and refining the olfactory
information by providing inhibitory or excitatory input to projection neurons and other local neurons, thus
shaping the olfactory responses and contributing to odor discrimination and perception.

For further information, please read [43].
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4.2 Activation Patterns on Different Type of Neurons

Primarily, to validate the efficacy of our model in modifying signal transmission between input and output
neurons, we showcase the activation patterns of intermediate and output neurons throughout the information
transmission process. This demonstration serves to substantiate that our model accurately reflects real-world
scenarios, shaping a quasi-real activation pattern.

The specific idea for the experiment is following : we stimulate different types of neurons (such as visual
input neurons, olfactory neurons, etc.), and record the rate that neurons that are activated in different brain
areas. If a specific stimulus causes a significantly greater response than the average in the brain area that it
is theoretically supposed to activate, then it is considered that the model can generate a quasi-real activation
pattern in the brain. We give 2 types of input neurons (visual,olfactory) stimulus display 6 type of neurons:
optic (visual), visual projection (visual), ALLN (olfactory), ALIN (olfactory), ALPN (olfactory) and ALON
(olfactory).

To demonstrate the importance of network structure, we add a comparative model that randomly reconnects
networks. Specifically, we calculate the average network distance from input neurons (visual/olfactory) to
corresponding neurons (optic, visual projection/ALLN, ALPN, ALON, ALLN), round it to the nearest integer
to determine the average layer of that neuron, and then randomly swap the connections between nodes within
each layer.

Fig. 6 shows the activation patterns of different models. The different neuron types are on the horizontal
ordinate and the activation percentage is on the vertical ordinate. The horizontal line represents the percentage
of activated neurons in the whole brain. From Fig. 6 we can find that under the average hypothesis, visual
stimulus cause a strong impact (significantly more than average) on visual neurons (optic, visual projection)
while causing a slight impact (significantly less than average) on other type of neurons. Specifically, under
visual stimulus, in response to visual stimuli, the optic (vision related area) exhibit a 10.26% higher activation
rate compared to the average level, while no olfactory-related neurons are activated. In addition, olfactory
stimulus cause a strong impact (significantly bigger than average level) on olfactory neurons (ALLN, ALIN,
ALPN, ALON), exceeding the average level by 81.49%. And it cause a slight impact (significantly less than
average) on other type of neurons. For example, it only activates 0.04% of optic and 0.79% of visual projection.

Furthermore, the results are not as significant on the distance model. Some incorrect areas were activated:
The activate rate of ALLN is only 7.08%, with a 5.16% difference from the average level (Fig. 6(c)). Besides,
ALIN, ALPN and ALLN, which should not be activated, have activate rates of 12.50%, 0.15%, and 1.89%,
respectively (Fig. 6(c)). These results indicate that whether distance hypothesis can describe the actual
situation remains to be discussed, which is a refutation for previous research [53].

As for the shuffle model, the ALIN, ALPN, ALON and ALLN which should not be activated have activate
rates of 70.00%, 54.13%, 61.25% and 62.31%, respectively (Fig. 6(e)). Although these activate rates do not
meet the average level, they are significant activation rates that means many neruons are activated incorrectly.
Moreover, optic and visual projection are activated incorrectly, with activate rates of 55.11% and 42.52%,
respectively (Fig. 6(f)). Besides, ALLN, ALPN, ALON, and ALLN which are supposed to exceed the average
level are actually lower than the average level by 0.01%, 17.74%, 21.25% and 9.34%, respectively (Fig. 6(f)).

These results indicate that after shuffling the network structure, the original quasi-real activation patterns
completely disappear. It means the real network structure matters in generating the quasi-real activation
patterns. In addition, even just designing simple models, it is feasible to simulate the propagation of information
in the brain at the level of neurons and generate a quasi-real activation pattern.

4.3 Distances between Input and Activation Areas

In the previous section, the quasi-real activation patterns on different type of neurons of the brain was pre-
sented. Through observation, this relationship was identified, and a quasi-real activation pattern was observed
in the drosophila brain. There is an issue here: Is the quasi-real activation pattern determined by the brain
network’s structure, the spatial structure of the brain, or the quality of the network communication model?
Based on the puzzle, we calculated the average network distance and spatial distance between different areas of
the brain network. The optic and visual projection area are related to vision and ALLN, ALIN, ALON, ALPN,
LHCENT and LHLN are related to olfactory. The results are presented in Tab. 2.

From Tab. 2, it is evident that neurons which are closer in spatial distance are not necessarily easier to acti-
vate. For example, all areas and visual input neurons have similar average spatial distances, but the quasi-real
activation patterns can only be observed in specific neural types (optic, visual projection). In contrast, the aver-
age network distance between input neurons and neurons should be activated is closer than irrelevant neurons.
For instance, the distance between visual input neurons and optic, visual projection are 5.7018 and 5.7432,
respectively. And the distance between visual input neurons and ALLN, ALIN, ALON, ALPN, LHCENT,
LHLN which are irrelevant with vision are 6.6442, 6.2350, 6.1506, 6.5380, 6.3094 and 6.8206, respectively. The
network distance of neurons related to visual input neurons is generally closer than the distances of unrelated
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(a) visual stimulus, average model (b) olfactory stimulus, average model

(c) visual stimulus, distance model (d) olfactory stimulus, distance model

(e) visual stimulus, shuffle model (f) olfactory stimulus, shuffle model

Figure 6: Experiment of intrinsic neurons’ activation. σ0 = 0.8. For shuffle model, we conduct 5 repeated
experiments and take the average and standard deviation.

neurons. Besides, The average network distance of neurons related to olfactory input neurons is approximately
twice as close as the distance of unrelated neurons. These results indicates that compared to spatial distance,
the average network distance between input neurons and their corresponding activation areas is closer, meaning
that compared to spatial structure, network structure is more important, determining these quasi-real activation
patterns of the brain network.

This results reflect the importance of network structure in neural networks, that is, the ability to reproduce
certain functions of the brain by considering only the network structure.

4.4 Bilateral Response under Unilateral Stimulus

In real life, the left and right hemispheres cooperate to perform complex tasks. We are interested in whether
network models can simulate this cooperative effect to some extent. So we administer a unilateral stimulus
to the input neurons and monitor the varying activation ratios across both hemispheres. More precisely, we
independently simulate visual input neurons in the left and right hemispheres and record the rate of activated
neurons in each hemisphere over time. Figure 7 illustrates the curve depicting how the response ratio evolves
with each time step. It’s noteworthy that when simulating one hemisphere alone, visual processing neurons
in both hemispheres are activated. At time step 5, the unstimulated hemisphere begins to have a activate
pattern, which corresponds to the hypothesis of shallow connection [52]. Furthermore, our observations reveal
a concurrent effect: the activation pattern in one hemisphere mirrors that in the unstimulated hemisphere.

These findings are reflective of reality. Although the left and right hemispheres of the brain possess certain
functional specializations, they also demonstrate a synergistic effect. Typically, they collaborate to fulfill specific
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Table 2: Spatial and network distance between input and main areas. The unit of spatial distance is nm and
the unit of network distance is the number of edges in the shortest path.

distance type
Neuron type

Area Name
optic visual projection ALLN ALIN

Spatial Distance

Visual Input Neurons 365012 354725 351919 348901
Olfactory Input Neurons 302690 251144 110827 173345

ALON ALPN LHCENT LHLN
Visual Input Neurons 346925 348517 362825 366013

Olfactory Input Neurons 123179 115089 212515 246719
optic visual projection ALLN ALIN

Network Distance

Visual Input Neurons 5.7018 5.7432 6.6442 6.2350
Olfactory Input Neurons 5.7967 5.1706 3.4458 3.3845

ALON ALPN LHCENT LHLN
Visual Input Neurons 6.1506 6.5380 6.3094 6.8206

Olfactory Input Neurons 3.6312 3.6820 3.9557 3.9758

functions [54]. For instance, during complex cognitive tasks, both hemispheres coordinate their efforts to
contribute to task completion. Even when simulating input to neurons on just one side of the brain, our model
reveals similar synergistic effects, indirectly attesting to the model’s effectiveness. Besides, the mirror effect align
with real situation, underscoring the brain’s resilience as a system. In instances of disease or physical damage
leading to impairment in one hemisphere, this interconnected structure supports the continuation of critical
functions, such as vision. Visually, the shape of the brain appears to be physically similar, but whether the

(a) Left stimulus (b) Right stimulus

Figure 7: Experiment of activation rate under single stimulus. We set threshold σ0 = 0.8.

network structures are similar remains unknown. To explore the principle behind similar responses caused by
a unilateral stimulus, we calculated the degree, clustering coefficient, and eigenvector centrality distribution for
each hemisphere. The Pearson correlation coefficient of degree, clustering coefficient, and eigenvector centrality
vector is 0.9986, 0.9988, and 0.9991, respectively. According to Fig. 8, these statistical indicators for both
hemispheres are extremely similar, indicating that the brain exhibits strong symmetry in network structure.
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(a) Degree (b) Clustering (c) Eigenvector centrality

Figure 8: Degree, clustering coefficient, and eigenvector centrality distribution

5 Conclusion

Considering the insufficient evidence supporting the vitalness of network structure in brain message trans-
mission and the effectiveness of network models in simulating brain activation patterns, we propose a large scale
network communication model based on simple propagation rules. We also design an evaluation criteria to com-
pare real and simulated activation patterns. Our research utilizes the largest adult Drosophila connectome data
set, where we analyze the basic statistical properties and explore the relationship between neuron length, area,
size, and connectivity degree. Experimental results demonstrate that our model produces an activation pattern
across the brain that closely resembles reality when subjected to identical stimulus on input neurons. This
result strongly suggests that even with simple propagation rules, network models can approximate the brain’s
activation patterns. Besides, when changing the network structure, there is an incorrect activation pattern on
the brain network. It is an evidence that network structure matters in generation real brain activation patterns.
Furthermore, to prove network structure matters rather than propagation rules or spatial structure, we assess
the network and spatial distances across different areas, discovering that the average network distance between
input neurons and their corresponding activation areas is shorter. Notably, applying unilateral stimulus to in-
put neurons elicit bilateral responses, mirroring bilateral brain coordination in reality and providing additional
evidence that simple network models can closely replicate reality. Moreover, we calculate the statistic properties
and find that the network structures of two hemispheres are extremely similar. We also make a large spatial
network visualization software. This research reveals network models can reach the brain’s quasi-activation
pattern even with simple propagation rules. Besides, it provides evidence that network structure matters in
brain activity pattern generation. Other artificial neural network research may need to make their own struc-
ture close to the real network structure. However, it does not perfect the model to achieve a full-activation
pattern. Future research could enable complete simulation of brain behavior by optimizing propagation rules
and automatically adjusting link weights, paving the way for achieving genuine artificial intelligence.
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