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ABSTRACT

In recent years, there has been increasing interest in network dif-
fusion models and related problems. The most popular of these
are the independent cascade and linear threshold models. Much
of the recent experimental work done on these models requires
a large number of simulations conducted on large graphs, a com-
putationally expensive task suited for low-level languages. How-
ever, many researchers prefer the use of higher-level languages
(such as Python) for their flexibility and shorter development times.
Moreover, in many research tasks, these simulations are the most
computationally intensive task, so it would be desirable to have a
library for these with an interface to a high-level language with
the performance of a low-level language. To fill this niche, we in-
troduce CyNetDiff, a Python library with components written in
Cython to provide improved performance for these computationally
intensive diffusion tasks.

Artifact Availability: CyNetDiff—the Python library introduced
in this paper is available at https://pypi.org/project/cynetdiff/. The
source code, data, and/or other artifacts for this paper are available
at https://github.com/eliotwrobson/CyNetDiff/blob/main/examples.
Refer to the Jypyter notebook titled visualizations.ipynb for a demon-
stration of the performance of CyNetDiff.

1 INTRODUCTION

Motivation. Network diffusion is central to studying information
propagation [20, 21] and epidemic spreading [3] over social net-
works. There are several discrete-time stochastic models of diffusion
over social networks. In this work, we focus on the independent cas-
cade (IC) [6, 7] and linear threshold (LT) [9, 18] models of diffusion
(discussed in Section 2). In particular, many research tasks related
to these models involve simulating their execution over large net-
works. This can become computationally expensive as both the
size of the graphs and the number of simulations grow. Of partic-
ular note is the task of influence maximization (IM), introduced
by Domingos and Richardson [5]. This involves selecting users
on social networks to sponsor to maximize influence under some
network diffusion models. This has been widely studied in different
settings, namely the discrete [12, 19, 21], continuous [4, 20], and
online [1, 16]. Many algorithms for this task involve computing
the influence of a given set under a network diffusion model that
requires a large number of simulations.

Related Work. Other Python libraries have been written for this
task, most notably NDlib [17]. This is a library that can simulate
various network diffusion models (including the IC and LT models
described here), written in pure Python, on top of the NetworkX

graph library [10]. NDlib suffers from shortcomings inherent to
many pure Python libraries, including large memory overhead, and
slower execution of iterative algorithms than a compiled language.
In addition, NDlib simulates these models by looping through every
node in each time step of the model, meaning that this computation
is inefficient when only a few nodes are active.

Contribution. In this work, we introduce the CyNetDiff library
for simulating these diffusion tasks. We describe the technologies,
data structures, and algorithms used in the implementation. We
demonstrate this greater performance with a detailed set of bench-
marks. We apply this library to influence maximization by imple-
menting the CELF algorithm [13] and reporting the performance.

Organization. The rest of this paper is organized as follows. In
Section 2, we discuss the background for the use cases served by
CyNetDiff. In Section 3, we discuss the implementation details of
the package and how it is optimized for the previously discussed
use cases. In Section 4, we detail the demonstration scenarios.

2 PRELIMINARIES

In this section, we give formal statements for the network diffusion
models and the influence maximization problem.

Diffusion Models. Diffusion models describe how the cascade
takes place in a social network. In linear threshold (LT) model,
given a (possibly directed) graph 𝐺 = (𝑉 , 𝐸), the process starts
at time 0 with an initial set of active nodes 𝑆 , called the seed set.
When a node 𝑣 ∈ 𝑆 first becomes active at time 𝑡 , it will be given
a single chance to activate each currently inactive neighbor 𝑤 .
The activation succeeds with probability 𝑝𝑣,𝑤 (independent of the
history thus far). If𝑤 has multiple newly activated neighbors, their
attempts occur in an arbitrary order. If 𝑣 succeeds, then 𝑤 will
become active at time 𝑡 +1; but whether or not 𝑣 succeeds, it cannot
make any further attempts to activate𝑤 in subsequent rounds. The
process runs until no further activation is possible. In the linear
threshold (LT) model, given a (possibly directed) graph 𝐺 = (𝑉 , 𝐸),
a node 𝑣 is influenced by each neighbor 𝑤 according to a weight
𝑝𝑣,𝑤 such that

∑
𝑤∈𝜕𝑣 𝑝𝑣,𝑤 ≤ 1, where 𝜕𝑣 represents the set of

(in-)neighbors of 𝑣 . Each node 𝑣 chooses a threshold 𝜃𝑣 uniformly
from the interval [0, 1]; this represents the weighted fraction of
𝑣 ’s neighbors that must become active for 𝑣 to become active. The
process starts with a random choice of thresholds for the nodes,
and an initial set of active nodes 𝑆 , called the seed set. In step 𝑡 , all
nodes that were active in step 𝑡 − 1 remain active, and we activate
any node 𝑣 for which the total weight of its active neighbors is at
least 𝜃𝑣 . The process runs until no more activation is possible.
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Influence Maximization (IM). For a given model, let 𝜎 (𝑆) denote
the expected number of nodes activated after running the diffu-
sion process to completion with initial seed set 𝑆 . Given a diffusion
model and a budget 𝑘 , we wish to choose the set 𝑆 such that |𝑆 | = 𝑘

and 𝜎 (𝑆) is maximized. Notably, for both the IC and LT models,
Kempe et al. [12] showed that the influence function 𝜎 (·) is sub-
modular, and thus its maximum value can be approximated with
the greedy algorithm [15]. The greedy algorithm for this problem
is computationally expensive, as it requires a large number of eval-
uations of the influence function 𝜎 (·). To improve this, the CELF
algorithm [13] was introduced as an optimized version of the greedy
algorithm, requiring fewer evaluations of 𝜎 (·). Despite this opti-
mization, the CELF algorithm still requires a substantial number of
evaluations of 𝜎 (·), and optimizing the speed of these evaluations
is a point of focus for implementations of this algorithm.

3 CYNETDIFF

In this section, we detail the technologies and implementation
techniques used in CyNetDiff—the library introduced in this paper.

Cython. The desire for greater speed and lower memory usage
immediately suggests the use of a compiled language instead of an
interpreted one like Python. However, we would like our software
package to maintain the greater flexibility provided by Python
and its ecosystem. To accomplish both of these goals, we wrote
the performance-critical portions of our library in Cython [2] and
included some supporting Python utilities.

Cython is a Python language extension that allows for compila-
tion in C and C++ while still providing code callable from Python.
This made Cython the ideal technology for providing a high-level
Python interface with similar performance to a compiled language.

Data Structures. To take full advantage of the additional perfor-
mance provided by Cython, we represent graphs within the library
using array-based data structures tailored to lower-level languages.
These data structures have lower memory overhead and allow for
faster execution time by Cython.

We opted to store the underlying graphs in the compressed sparse
row (CSR) format [11], using the built-in Cython array data struc-
ture. At a high level, this format stores the out-neighbors for each
node in contiguous memory (unlike an adjacency list, which uses
pointers), with an additional indexing array indicating where the
neighbors for each node start.

Although the CSR format makes it difficult to modify the graph
once it is stored, it has a lower memory footprint than the adjacency
list, and allows efficient queries for the outgoing neighbors of a
node without the need for pointer lookups. Thus, CSR format is
conducive to efficient, repeated traversals, making it ideal for the
internal graph representation used by the library.

We also provide utility functions for the creation of model classes
directly from NetworkX graphs. These functions convert NetworkX
graphs into the CSR format, instantiate the corresponding model,
and return the resulting model class to the client code. This has a
substantial impact on the usability of the package, as NetworkX is a
well-established library for graph analysis tasks, allowing for easy
integration of CyNetDiff into existing research pipelines. This
makes CyNetDiff an effective drop-in replacement for NDlib.

Algorithms. To facilitate an efficient implementation, we need
the following folklore observation about the locality of node acti-
vation.

Observation 1. In both the IC and LTmodels, any node 𝑣 activated
at time 𝑡 must have at least one in-neighbor 𝑢 activated at time
𝑡 − 1, unless 𝑣 is a seed node.

This immediately suggests that the newly activated nodes in each
iteration can be determined from the out-neighbors of the activated
nodes from the previous iteration. We applied this observation
in our implementation of these models, as we use a BFS-based
traversal algorithm to determine which nodes are activated in each
iteration. As a result, the work performed during the simulation of
these models by CyNetDiff is proportional to the number of edges
incident to activated nodes. This can be much smaller than the size
of the entire graph when the number of seed nodes is small.

This optimization is very important for improving the runtime
in workloads like the CELF algorithm, where many simulations
have very few nodes activated. This is especially the case at the
beginning of the algorithm’s execution, since the marginal gains for
every individual seed must be computed, and only a small portion
of the graph is traversed in each iteration as a result.

4 DEMONSTRATION

We describe the demonstration scenarios for CyNetDiff. As this
package is intended to augment existing research applications in
Python, the demo will focus on how the package integrates into
the Python ecosystem for data analysis, and how it handles the in-
creased scale of datasets. These will be conducted within a Jupyter
notebook. For brevity, we focus on the ICmodel only for our demon-
stration, although CyNetDiff can simulate the LT model.

Benchmarks. The first scenario guides participants through in-
teractive benchmarks that introduce the IC model, and compare the
performance of CyNetDiff with other implementations for these
tasks. This is done through the introduction of the simple_benchmark
function, which can be used to run comparative benchmarks for net-
work diffusion on an arbitrary input graph. This function outputs
performance information for different diffusion implementations
over a configurable number of trials. This will allow participants to
easily benchmark additional graphs of their choosing and observe
the performance of CyNetDiff. Output from running this is shown
in Figure 1a. The benchmarks in this section cover both synthetic
data (generated using graph generation functions provided by Net-
workX) and real-world data obtained from SNAP [14]. Participants
are encouraged to experiment with different benchmark parameters
and observe the effect this has on the performance of the different
implementations. An example of a benchmark run on a real-world
dataset is shown in Figure 1b.

We next provide some sample benchmarks in Table 1. These
benchmarks were conducted on a Dell Precision Tower 5810 with a
3.0 GHz Intel Xeon E5-1660 v3 processor. The three implementa-
tions were the CyNetDiff library, NDlib library, and a fast pure
Python implementation of the diffusion model written for com-
parison purposes. The benchmarks consisted of running the IC
model 1, 000 times over the input graph using different edge-weight
models (EWM). The first is the trivalency (TV) model [8], where
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(a) Benchmark output on a synthetic random graph.

(b) Benchmark output on a real-world graph.

Figure 1: Outputs from simple_benchmark in the demonstration. The it/s in the output refers to the number of independent

model simulations executed per second.

each edge-weight was drawn uniformly at random from a small set
of constants {0.1, 0.01, 0.001}. The second is the uniformly random
(UR)model, where the edge-weight was drawn uniformly at random
in the interval [0, 1]. The third is the weighted cascade (WC) model
[12], where for each node 𝑣 ∈ 𝑉 , the weight of each edge enter-
ing 𝑣 was set to 1/in-degree(𝑣). In all of these weighting schemes,
undirected edges in the graph were treated as two directed edges.
We used two synthetic networks and a real-world network for our
benchmarks. An Erdős-Rényi graph with parameters 𝑛 = 2, 000
nodes, 𝑝 = 0.002, leading to 4, 018 edges. A Watts-Strogatz Small-
World graph with parameters 𝑛 = 10, 000 nodes, 𝑘 = 10, 𝑝 = 0.007,
leading to 50, 000 edges. More details about these graph models and
corresponding parameters can be found in the NetworkX documen-
tation. The Facebook graph was obtained from the SNAP dataset
and has 4, 039 nodes and 88, 234 edges.

Visualizations. The next part of the demonstration focuses on
visualizations that can be created using CyNetDiff. The graphics
are created using other libraries with data provided from simula-
tions run with CyNetDiff. Each of these visualizations is created
in real-time with reasonably large graphs and a large number of
simulations. This demonstrates how the speed of CyNetDiff can
be used to enhance different applications, as the creation of these
visualizations would not be possible using a slower library.

The first visualization we create is a heatmap based on how
many times a node was activated across many simulations. The
demonstration provides an example of how to run simulations and
create a graph with the results, where a node displays redder if it
has been activated in more simulations as seen in Figure 2.

As a second visualization, we use Matplotlib to plot the mean
number of activated nodes over time for different initial seeds. Each
of these plots shows the mean number of activated nodes in each
iteration across 1, 000 independent simulations. As before, partici-
pants are given multiple scenarios and encouraged to experiment
with different parameters to see how this affects the output.

Influence Maximization. The final scenario in the demonstration
focuses on the task of influence maximization. To demonstrate the

Figure 2: A heatmap created by running CyNetDiff and

coloring nodes based on how often they were activated. The

seed nodes appear completely red, as theywere always active.

performance of our implementation of network diffusion, we im-
plement the CELF [13] algorithm using all of the network diffusion
implementations mentioned here as backends. We then compare
the influence of the seed set generated by this algorithm to that of
the other methods using the plotting functions introduced earlier.

Participants are encouraged to try different backend implemen-
tations for this algorithm, but CyNetDiff is used in the demon-
stration to keep a reasonable runtime. The plot generated by this is
shown in Figure 3.

For completeness, we also include a sample comparative bench-
mark for the CELF algorithm, see Table 2. This was performed on a
random 7-regular (each node has degree 7) graph with 5, 000 nodes
and 35, 000 edges, generated by NetworkX.
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Figure 3:Mean number of nodes activated over time. The data

for this plot was dynamically generated during the demon-

stration on a random regular graph generated by NetworkX.

Graph EWM CyNetDiff pure Python NDlib

Erdős-Rényi
TV 1 11 194
UR 1 12 203
WC 1 11 198

Watts-Strogatz
TV 1 9 283
UR 1 11 327
WC 1 9 312

Facebook
TV 1 8 81
UR 1 12 45
WC 1 8 71

Table 1: Comparison of run-times for independent cascade

run with 100 seeds on different graphs. Runtimes are normal-

ized and rounded over each row so that the fastest benchmark

in each row is 1.

Graph EWM CyNetDiff pure Python

Random 7-regular TV 2 26
WC 10 153

Table 2: Comparison of run-times for the CELF algorithm run

with 10 seeds. Runtimes are in seconds. Results for NDlib are

not reported because they did not finish within 5 minutes.

5 CONCLUSION AND FUTUREWORK

In this work, we have described and demonstrated the effectiveness
of CyNetDiff on a variety network diffusion tasks. The demonstra-
tion scenarios and benchmarks show how the speed of the library
enables running larger experiments and the creation of interesting
visualizations. This will enable faster and more comprehensive ex-
periments going forward by researchers studying network diffusion
and influence maximization.

There are several avenues for further work. In one direction,
there is potential to continue to improve the performance of CyNet-
Diff by adding parallelism. In another, introducing this library en-
ables performing larger-scale experiments, enabling an expansion
of the scope of experiments conducted in prior work.
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