
CarbonCP: Carbon-Aware DNN Partitioning with
Conformal Prediction for Sustainable Edge

Intelligence
Hongyu Ke

Department of Computer Science
Georgia State University

Atlanta, USA
hke3@student.gsu.edu

Wanxin Jin
Ira A. Fulton Schools of Engineering

Arizona State University
Tempe, USA

wanxin.jin@asu.edu

Haoxin Wang
Department of Computer Science

Georgia State University
haoxinwang@gsu.edu

Abstract—This paper presents a solution to address carbon
emission mitigation for end-to-end edge computing systems,
including the computing at battery-powered edge devices and
servers, as well as the communications between them. We
design and implement, CARBONCP, a context-adaptive, carbon-
aware, and uncertainty-aware AI inference framework built
upon conformal prediction theory, which balances operational
carbon emissions, end-to-end latency, and battery consumption
of edge devices through DNN partitioning under varying system
processing contexts and carbon intensity. Our experimental
results demonstrate that CARBONCP is effective in substantially
reducing operational carbon emissions, up to 58.8%, while
maintaining key user-centric performance metrics with only 9.9%
error rate.

Index Terms—Sustainable AI, carbon efficiency, conformal
prediction

I. INTRODUCTION

Recently, the implementation of artificial intelligence (AI)
and machine learning (ML) at the network edge has emerged
as a promising solution for bringing computing and storage
resources closer to users, thereby meeting the stringent la-
tency requirements of AI applications. Today, edge computing
has progressively permeated a variety of mainstream service
domains, including smart cities, healthcare, manufacturing,
agriculture, and transportation. Considerable research efforts
have been undertaken to accelerate the latency and enhance the
accuracy of AI inference on the edge. However, environmental
sustainability, particularly in terms of the carbon emissions
from the overall edge computing system (including the com-
puting at battery-powered devices and edge servers as well as
the communications between them), is under-explored, yet it is
becoming increasingly significant as the deployment of these
systems expands.

Environmental Sustainability in Edge Intelligence: Why
It Matters. Carbon abatement is critically important in ad-
dressing the escalating threat of climate change. As of 2019,
the energy consumed by information and computing technolo-
gies (ICT) accounts for 2% of global carbon emissions, half
that of the aviation industry [1]. This sustainability challenge
is further exacerbated by the widespread adoption of AI-

A-optimal
L-optimal

B-optimal
C-optimal0

1

2

3

4

5

Ba
tte

ry
 c

on
su

m
pt

io
n

pe
r i

nf
er

en
ce

 (j
ou

le
)

0

1

2

3

Ca
rb

on
 e

m
iss

io
ns

 p
er

1M

 in
fe

re
nc

es
 (k

gC
O

2)

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

(s
ec

on
ds

)Battery consumption
Carbon emissions
Latency

Fig. 1: Trade-offs among the operational carbon emissions of
the end-to-end edge computing system, end-to-end latency, and
battery consumption. Lower is better.

empowered edge devices, the super-linear growth in the com-
plexity of AI models, and the exponential increase in demand
for computing and networking capabilities. For instance, the
volume of data used for AI has increased by 2.4×, resulting
in a 3.2× increase in the demand for data ingestion bandwidth
[2]. Moreover, the size of AI models used for language
translation tasks has expanded by 1000× [3], leading to a
substantial increase in the demand for computing resources
at the edge. Additionally, emerging edge applications, such
as augmented reality that requires a consistent latency of less
than 33 ms, have led to significant increases in computational
and communication power in edge computing systems, often at
the expense of their operational carbon footprint. Therefore, it
is imperative that our research aligns with emission reduction
targets and focuses on identifying and developing innovative,
sustainable solutions to address the significant sustainability
challenges in edge intelligence.

To this end, the goal of this paper is to design a novel
carbon-aware AI inference framework that incorporates deep
neural network (DNN) partitioning to mitigate the overall
operational carbon emissions of an end-to-end edge computing
system (including the computing at battery-powered devices
and edge servers, as well as the communications between
them). Unfortunately, the integration of carbon-awareness into
AI inference processes often compromises other critical user-
centric properties, such as latency, inference accuracy, and en-
ergy consumption in battery-powered edge devices. To demon-

ar
X

iv
:2

40
4.

16
97

0v
1

 [
cs

.N
I]

 2
5

A
pr

 2
02

4

(a) Carbon-minimal DNN partitioning under processing context 1 (b) Latency-minimal DNN partitioning under processing context 1

(c) Carbon-minimal DNN partitioning under processing context 2 (d) Latency-minimal DNN partitioning under processing context 2

Fig. 2: Impact of dynamic processing contexts on DNN partitioning solutions, achieving minimal overall operational carbon
emissions vs. minimal end-to-end latency in edge computing systems.

strate these trade-offs, we implement four system and network
configurations driven by distinct objectives: maximizing in-
ference accuracy (A-optimal), minimizing end-to-end latency
(L-optimal), minimizing edge device battery consumption (B-
optimal), and minimizing overall operational carbon emissions
(C-optimal). Performance results are presented in Figure 1. C-
optimal achieves the lowest overall operational carbon emis-
sions but dramatically increases battery consumption and end-
to-end latency by 90.5% and 161.3%, respectively, compared
to B-optimal. This suggests that optimizing for carbon emis-
sions from the end-to-end edge computing system generally
leads to significantly higher battery consumption and increased
latency, as it requires more computations on low-power edge
devices.

Additionally, these complex trade-offs can be further ex-
acerbated by the dynamics of the processing context within
the edge computing system and environment. Such dynamics
might include variations in carbon intensity, computational
resources on edge devices (e.g., GPU and CPU utilization
and frequencies), available network bandwidth between edge
devices and the server, and server computational resources
(e.g., GPU utilization). We have conducted experimental stud-
ies to demonstrate these impacts, which will be discussed in
Section II. Consequently, it is imperative yet challenging to
effectively minimize overall operational carbon emissions from
the edge computing system without compromising critical user-
centric performance metrics.

Our Contributions Towards Sustainable Edge Intelli-
gence. In this paper, we study these research challenges and
design a novel AI inference framework for edge computing
systems, named CARBONCP that dynamically balances overall
operational carbon emissions, end-to-end latency, and battery
consumption of edge devices through adaptively optimizing
the DNN partition solutions in response to varying system
processing contexts and carbon intensity. Our proposed CAR-
BONCP framework adopts a practical and effective uncertainty
estimation method built upon Conformal Prediction (CP) the-

ory [4], which obtains an interval for the DNN partition point
that is stochastically guaranteed to contain the accurate optimal
solution, adhering to a confidence level (§V-C) preferred by
the user.

In summary, our main contributions are as follows:
• To the best of our knowledge, this study is the first

to systematically explore the design of environmentally
sustainable edge computing systems, presenting exper-
imental evidence that highlights the opportunities and
trade-offs in DNN partitioning for carbon abatement.

• We design and implement CARBONCP, a context-
adaptive, carbon-aware, and uncertainty-aware AI in-
ference framework based on CP, specifically aimed at
minimizing overall operational carbon emissions while
maintaining key user-centric performance metrics, such
as latency and battery consumption of edge devices.

• We extensively evaluate our approach, and the experimen-
tal results demonstrate that CARBONCP can significantly
reduce carbon emissions by accurately predicting the
optimal DNN partition solutions.

II. PRELIMINARY EXPERIMENTS AND KEY INSIGHTS

In this section, we describe our preliminary experiments de-
signed to evaluate the impact of various factors on operational
carbon emissions and user-centric performance metrics within
an edge computing system. These experimental results yield
three key insights that motivate the design of our CARBONCP
inference framework for edge intelligence.

A. The Impact of Dynamic Processing Context on DNN Par-
titioning

Figure 2 visualizes the impact of processing context dy-
namics on determining the optimal DNN partitioning within
the edge computing system, aimed at minimizing overall
operational carbon emissions or end-to-end latency. In these
experiments, we employ ResNet-18 on edge devices and a
GPU server. Figures 2a and 2c compare the optimal DNN

0

200

400

CA

600

800

CI
 (g

CO
2/

kW
h)

NE

00:00
02-06

12:00
02-06

00:00
02-07

12:00
02-07

00:00
02-08

12:00
02-08

00:00
02-09

12:00
02-09

00:00
02-10

200

400

600

GA

CA OR NE GA
0

200

400

600

Av
er

ag
e

CI
 (g

CO
2/

kW
h)

Fig. 3: Carbon intensity (CI) varies both spatially and tempo-
rally in the United States [8].

partition solutions with the least overall operational carbon
emissions under two distinct processing contexts. We observe
that the most carbon-efficient partition point significantly
shift depending on the processing context, as shown by the
transition from the 59th layer to the 46th layer. Figures 2c
and 2d demonstrate the optimal DNN partition solutions that
cater to different objectives under consistent . The optimal
solutions for minimizing latency are different from those for
minimizing carbon emissions, indicating a trade-off between
latency and environmental sustainability. For instance, Figure
2d shows that the 0th layer is preferred for the lowest latency,
whereas Figure 2c reveals that this does not offer the lowest
operational carbon emissions.

While previous work has leveraged DNN partitioning pri-
marily for improving latency and inference accuracy [5, 6, 7],
to the best of our knowledge, it has not yet been exploited for
carbon reduction within the context of edge computing. The
complex variations in optimal partition solutions, as depicted
in these results, suggest the importance of a sophisticated
approach to balance the competing demands of latency and
carbon emission reduction. This balance becomes especially
challenging in CARBONCP’s case because the system frame-
work must dynamically respond to the varying processing
context1 and carbon intensity of the energy source (§II-B).

Insight 1. Partitioning DNNs offers opportunities to
reduce the overall operational carbon emissions with
edge computing systems by enabling more efficient use
of computational and communication resources. How-
ever, the inherent trade-offs between latency and carbon
emissions, along with the dynamic processing contexts,
pose challenges in exploiting this opportunity, thereby
necessitating the integration of contextual adaptation
into the design of the CARBONCP.

B. The Impact of Carbon Intensity on DNN Partitioning

The carbon intensity is a critical metric that measures the
“greenness” of the generated energy, quantifying the amount
of carbon dioxide (CO2) emissions produced per unit of energy

1In this paper, the system processing context includes: computational
resources on edge devices (e.g., GPU and CPU utilization and frequencies),
available network bandwidth between edge devices and server, and server
computational resources (e.g., GPU utilization)

(a) G-optimized DNN partitioning with CI = 600 gCO2/kWh

(b) G-optimized DNN partitioning with CI = 549 gCO2/kWh

Fig. 4: Impact of carbon intensity on DNN partitioning.

consumed (e.g., gCO2/kWh). In the United States, carbon
intensity varies both spatially and temporally. We evaluate
the carbon intensity of all states in the United States and
visualize the data of four representative states in Figure 3. We
observe that there is considerable variation among different
states in terms of the characteristics of carbon intensity, specif-
ically regarding their average values, variance, and patterns
of variation. For instance, California’s (CA) carbon intensity
exhibits a clear diurnal pattern, fluctuating within a 24-hour
period. Typically, carbon intensity peaks during the night
and early morning due to the decreased solar generation and
rising demand. However, Nebraska’s (NE) carbon intensity
exhibits more abrupt changes and lacks the predictable pattern
observed in CA. Particularly, while fluctuations in carbon
intensity occur in NE, they do not appear to be systematically
linked to the time of day. This could be attributed to the fact
that the primary renewable energy source in NE is wind power,
which, unlike solar energy, can provide a more consistent
output irrespective of the time of day or weather conditions.
Additionally, Georgia’s (GA) carbon intensity remains rel-
atively stable, largely due to the very low contribution of
renewable energy, which stands at only 7.6%.

These observations suggest that the carbon intensity is a
function of geographical location where the edge computing
system is deployed and operated, and the time during its
operation. Variations in carbon intensity can introduce new
design space for optimizing overall operational carbon emis-
sions through strategic DNN partitioning. To support our idea,
we evaluate the optimal DNN partitions under two different
carbon intensity scenarios. Furthermore, we define a new
objective, denoted as G, aimed to strike a balance the battery
consumption (a critical user-centric metric) of edge devices
and overall operational carbon emissions. The results, depicted
in Figure 4, demonstrate that the optimal partition point shifts
from the 49th to the 0th layer when carbon intensity is reduced
from 600 to 549 gCO2/kWh.

Insight 2. Carbon intensity exhibits both spatial and

temporal variability. The design of the CARBONCP
framework must, therefore, exploit this opportunity to
adapt the DNN partitioning both geographically and
over time, incorporating carbon awareness to improve
environmental sustainability.

C. Lack of Uncertainty Assessment in DNN Partitioning

Most existing studies on DNN partitioning typically employ
a pre-trained predictor (e.g., a linear model or neural network)
to estimate the inference latency or energy consumption of
individual layers within a specific DNN model, such as Mo-
bileNet, VGG, and ResNet [7, 9, 10, 11]. These predictors
(treated as black boxes) are trained to establish direct map-
pings between the configurations of a DNN layer, including
layer type, kernel size, and input feature map size, and its
associated layer-wise latency [10]. Then, the optimal partition
solution is identified through an iterative search process, which
targets the layer yielding the best predicted performance, such
as the lowest latency. However, the partitioning performance
of these explicit approaches often suffers from potential in-
accuracies due to inherent uncertainties associated with these
predictors. For instance, epistemic uncertainty may result from
the pre-trained predictor being underfitted or the training
data not being representative of the entire data space; and
aleatoric uncertainty arises from noise and errors in system
profiling and data collection. Consequently, it is crucial to
quantify the uncertainty associated with black-box predictions
and to understand the trade-offs between the accuracy of DNN
partitioning and the levels of uncertainty.

Insight3. This observation advocates for the integration
of uncertainty awareness into the design of the CAR-
BONCP framework to assess the underlying uncertainty
and ultimately improve the accuracy and decision-making
quality of DNN partitioning solutions.

In summary, these three key insights drive our efforts to de-
sign and implement CARBONCP, a context-adaptive, carbon-
aware, and uncertainty-aware inference framework aimed at
advancing environmentally sustainable edge computing sys-
tems.

III. CONFORMAL PREDICTION

To address the challenge of uncertainty assessment (Insight
3), we propose to connect conformal prediction (CP) to
the DNN partitioning process. CP is a statistical approach
designed to provide reliable uncertainty estimates in predic-
tions [4, 12]. It offers multiple advantages over conventional
approaches for measuring uncertainty. First, CP allows for
customization of the desired confidence level, providing the
ability to manage the trade-off between accuracy of DNN
partitioning and the level of uncertainty - a feature that is par-
ticularly crucial in high-performance AI inference frameworks
(e.g., accuracy of DNN partitioning). Second, CP operates in-
dependently of the model type, allowing its application to any
black-box model without the need to understand its internal
workings. This attribute is particularly beneficial in scenarios

where the underlying model is complex and its mechanics
are not thoroughly understood. Lastly, CP is data distribution-
free and provides statistical guarantees along with reliable
uncertainty estimates from finite samples, which reduces the
efforts on measurement and data collection.

In CP, decisions are presented as intervals that are guar-
anteed to contain the accurate result within a pre-defined
target uncertainty level. Our goal is to obtain a prediction
interval C that guarantees the inclusion of the true value Ytest

for new test data Xtest at a user-specified coverage rate of
1 − α ∈ (0, 1), where α represents a nominal error level.
Assume we have a training set Dt and a calibration set Dc,
with Dt ∩ Dc = ∅. Dt consists of a number of pairs of data
(Xj , Yj), where j = 1, . . . , |Dt|. Dc consists of a number
of pairs of data (Xi, Yi), where i = 1, . . . , |Dc|. (Xi, Yi) is
following any distribution P . Let (Xtest, Ytest) denotes the
test point, which is also sampled from the same distribution P .
Dc ∪ (Xtest, Ytest) satisfies exchangeability, which is weaker
than i.i.d. (independent and identically distributed) condition.

We construct a confidence interval C based on the training
dataset Dt and calibration dataset Dc. Concretely, we train
a predictor f(x) = ŷ (any prediction function works), e.g.
regression function or classification function, with the training
dataset (Xj , Yj) ∈ Dt, such that f(Xj) predicts the value
of Yj that we expect to see at Xj . One of the key ideas
behind conformal prediction is to construct nonconformity
scores symmetrically. We can calculate the nonconformity
score Vi = S((Xi, Yi), f) for any data point (Xi, Yi) ∈ Dc

in the calibration dataset Dc, i = 1, ..., |Dc|, where S(·, ·) is
the score function to indicate how the model f fits to the data
(Xi, Yi) ∈ Dc, in other words, conforms to the calibration
dataset Dc. We can then establish an empirical distribution of
nonconformity scores {V1, V2, ..., V|Dc|} ∪∞:

1

|Dc|+ 1

|Dc|∑
i=1

δVi
+ δ∞. (1)

For a new test point Xtest, we can find a confidence interval
C, defined as

C(Xtest) = {Y : S((Xtest, Y), f) ≤ q̂1−α}, (2)

where q̂1−α is the level 1 − α quantile of the empirical
distribution of nonconformity scores in (1), i.e.,

q̂1−α = Quantile(1− α,
1

|Dc|+ 1

|Dc|∑
i=1

δVi
+ δ∞). (3)

Then, C(Xtest) satisfies

P(Ytest ∈ C(Xtest)) ≥ 1− α. (4)

The confidence interval C(Xtest) constructed by conformal
prediction is guaranteed with the assumption of exchangeabil-
ity in the data. With such assumption, conformal prediction
furnishes a mechanism to quantify the uncertainty of the
prediction in a statistically rigorous framework. However,

when test data (Xtest, Ytest) experiences a covariate shift from
the calibration dataset Dc [13], i.e.,

(Xi, Yi)
i.i.d.∼ P = PX × PY |X , i = 1, . . . , |Dc|, (5)

(Xtest, Ytest) ∼ P̃ = P̃X×PY |X , P̃X is different from PX .
(6)

the generated confidence interval and its stochastic guarantee
(4) does not hold. In a nutshell, the test and calibration
covariate distributions differ (as known as covariate shift).
This compromises the reliability of the confidence intervals
constructed by vanilla CP. In such case, following [13], we
have to re-weight the distribution of Vi in (1) to align the
calibration input data distribution Xtest ∼ PX with the test
data dsitribution x ∼ P̃X . Specifically, we can obtain a re-
weighted empirical distribution of nonconformity scores at
calibration dataset [13]

|Dc|∑
i=1

pwi (Xtest)δVi
+ pw|Dc|+1(Xtest)δ∞, (7)

where the weights are defined as

pwi (Xtest) =
w(Xi)∑|Dc|

i=1 w(Xi) + w(Xtest)
, i = 1, . . . , |Dc|, (8)

pw|Dc|+1(Xtest) =
w(Xtest)∑|Dc|

i=1 w(Xi) + w(Xtest)
, (9)

with w(x) = P̃X(x)
PX(x) .

Given a nominal error level α and a test point Xtest ∼ P̃X ,
the weighted confidence bond of conformal prediction for this
new test point Xtest will be

C(Xtest) = {Y : S((Xtest, Y), f) ≤ q̂1−α}, (10)

where q̂1−α is

Quantile(1−α;

|Dc|∑
i=1

pwi (Xtest)δVi
+pw|Dc|+1(Xtest)δ∞). (11)

IV. PROBLEM STATEMENT

Each frame captured at the edge device is fed into a DNN
for inference. The DNN computations of each layer can be
performed at the edge device or offloaded to the server. Per-
layer inference on servers has to suffer from unpredictable
communication overhead between the edge and the server, as
well as dynamic changes of its own computation resource.
While per-layer inference on edge devices does not incur
communication overhead, it fails to meet stringent real-time
requirements and generates more computation due to limited
resources.

We consider a general DNN with the number of N layers,
such that L = {L1, L2, . . . , LN} denotes layers in the DNN.
The same DNN model deployed on edge device and server.
As mentioned above, we aim to find an optimal partition
solution ŷ, which specifics a best guaranteed partition point to
orchestrate the distribution of computation between the edge

device and server. Note that the per-layer inference mechanism
provides execution semantics for DNN partitioning, i.e., parti-
tioning computation after a specific layer represents executing
the DNN to that layer on the edge device, transmitting the
output of that layer to the server over the wireless network,
and executing the remaining layers on the server.

Since we consider the dynamic contexts changing for the
whole system including contexts in edge device, wireless net-
work and server, such that the changing affects the best guar-
anteed partition point even for the same DNN architecture. For
instance, while performing DNN inference on the edge device,
other programs run concurrently, such as GPU consumption
driven type and CPU consumption driven type, which directly
affects the DNN inference computation consumption. The
wireless connection of edge device often experience high vari-
ances, which also directly affect the communication overhead.
The carbon intensity varies from region to region and over time
in the same region, which directly affect the carbon footprint.
For server side, it typically experience diurnal load patterns,
such as the GPU usage, which leads to high variance in
its DNN inference computation consumption. Suffering from
such dynamic contexts changing in the system, there is an
urgent demand for an automatic system to intelligently search
the best point to partition the DNN to optimize the carbon
footprint while taking into account end-to-end latency and
edge device energy consumption.

Modeling Inference Latency. Once the partition is made,
each frame is processed at the edge, and then sent the
intermediate result from the edge to the server, and then
processed at the server. Let tei and tsi be the time needed
to process Li on edge and server respectively. Let B be
network bandwidth. We define Dt = {d1, d2, . . . , dN}, such
that di represents the output data size of Li. Note that B
is dynamically changed and we need to adapt such changes.
We define Fe = {te1, te2, . . . , teN}, Ft = {tt1, tt2, . . . , ttN}, and
Fs = {ts1, ts2, . . . , tsN} to represent inference latency at the
edge, communication latency, and inference latency at the
server of each layer Li.

The latencies of the three stages are characterized as fol-
lows: In the edge-computing stage, the inference latency is
defined as Te =

∑ŷ
i=1 t

e
i . In the wireless communication

stage, the transmission latency is defined as Tt =
dŷ

B . In
the server-computing stage, the inference latency is defined
as Ts =

∑N
i=ŷ+1 t

s
i .

The per frame end-to-end latency can be defined as

T = Te + Tt + Ts. (12)

Modeling Battery Consumption of Edge Devices. Since
the dominant contexts we consider for the edge device are
relative to CPU and GPU, we can break down the total energy
consumption into energy consumption of CPU Ecpu, energy
consumption of GPU Egpu, and energy consumption of others
Eothers. We define the power consumption of CPU, power
consumption of GPU, and power consumption of others as
pcpu, pgpu, and pothers respectively. Note that the pcpu, pgpu,

Fig. 5: Overview of the proposed CARBONCP framework.

and pothers are dynamically changed and we need to adapt
such changes.

The energy consumption for each of the three compo-
nents is defined as follows: the CPU energy consumption is
Ecpu = pcpu · Te, the GPU energy consumption is Egpu =
pgpu ·Te, and the energy consumption for other components is
Eothers = pothers ·Te. Hence, the per frame processing energy
consumption on the edge device can be defined as

Ee = Ecpu + Egpu + Eothers. (13)

Modeling Operational Carbon Footprint. We consider
the carbon footprint of the whole system, which includes the
carbon footprint of the processing on the edge device, trans-
mission, and server. Let cis denote the current carbon intensity
of the local area of the system. In reality, the carbon intensity
can vary across different geographical locations and during
different seasons/time. For carbon footprint of processing in
area s, we can calculate the overall carbon emissions of the
edge computing system as

C = (Ee + Et + Es) · cis. (14)

The variance of the system processing contexts reiterates the
need for a context-adaptive solution. To better understanding
DNN computation partitioning with dynamic contexts chang-
ing, we formulate the problem of searching the partitioning
point as a multi-objective optimization problem. The objective
is to minimize the per frame carbon footprint of a end-to-
end system while satisfying the user preference of each. We
introduce three positive weight parameters λ1, λ2 and λ3

to characterize the user preference of each component. We
adopt the weighted sum method to formulate the optimization
problem as

P0 : min
ŷ

Q = λ1T + λ2Ee + λ3C. (15)

V. CARBONCP DESIGN

As shown in the previous section, problem P0 is a integer
non-linear programming problem. In this section, we present

Algorithm 1: CARBONCP Algorithm
Input: A new data Xtest, a desired nominal error level

α
Output: Confidence interval C(Xtest)
Data: Dataset Dt = {(Xj , Yj , Qj)}, j = 1, . . . , |Dt|

Dataset Dc = {(Xi, Y
opt
i)}, i = 1, . . . , |Dc|

1 Train a predictor model Qθ(X,Y) with Dt to predict
the corresponding Q,

2 Take Qθ(X,Y opt) as the score function to calculate
nonconformity scores Vi for each pair of calibration
set Dc

3 Add ∞ to the list of Vi, and rank list Vi in
non-decreasing order,

4 Estimate the distributions of calibration and test
covariate points P , P̃ ,

5 Calculate the probability proportional ratio
w(Xtest), p

w
i (Xtest), and pw|Dc|+1(Xtest),

6 Calculate error level α quantile q̂1−α of the weighted
distribution

∑n
i=1 p

w
i (Xtest)δVi

+ pw|Dc|+1(Xtest)δ∞,
such that q̂1−α = Quantile(1−
α;

∑n
i=1 p

w
i (Xtest)δVi + pw|Dc|+1(Xtest)δ∞)},

7 C(Xtest) = [],
8 for n in range(|DNN | + 1) do
9 if Qθ(Xtest, Yn) ≤ q̂1−α then

10 C(Xtest).append([Qθ(Xtest, Yn), Yn]);

11 Return C(Xtest)

the proposed CARBONCP, a context-adaptive, carbon-aware,
and uncertainty-aware inference framework based on CP, to
solve the DNN partition problem formulated in Section IV.

In order to utilize the CP theory, we need to design the
predictor model, score function, and confidence interval. Note
that the design of these three modules is critical to the
success of CP-based approaches. Our design well captures
dynamic system processing contexts and the key components
of the DNN partition problem without including redundant
information. The core of CARBONCP is an interval, which
runs a CP algorithm to find a set naturally encodes the model’s
uncertainty about any particular input.

A. Implicit Predictor Model

We exhaustively collected relevant dynamic contexts and
the corresponding values for target variables, training dataset
Dt and calibration dataset Dc. Nevertheless, the prediction
accuracy is highly affected by the dynamic contexts. The better
the predictor fθ(x) (from the proper training set), the tighter
the prediction interval will be.

We intend to fit a predictor neural network on the training
dataset Dt, such that fθ(x) = ŷ, where x represents the system
contexts, and ŷ is the optimal index of the DNN partitioned
layer. However, we noticed that one needs to provide the label
of the optimal partitions in order to train such neural network,
which could be challenging because the optimal label might
not be directly available. Therefore, instead of learning such

explicit particition predictor model fθ, we could adopt an
implicit approach where for each set of system contexts x, we
consider each DNN layer y as a potential partitioning point (y
is not the optimal partitioning point). As shown in line 1 of
Algorithm 1, we then fit a predictor Qθ on the (x, y) and use
it to predict its corresponding Q which is defined in equation
(15). The optimal partitioning point ŷ is then determined as the
value of y that minimizes the predicted Q value, formulated
as:

ŷ = argmin
y

Qθ(x, y). (16)

This formulation allows us to circumvent the need for explicit
labels of the optimal partitions by instead leveraging the
predictions of the predictor to determine the most effective
partition point based on the predicted performance metric Q.
To address the complexity and non-linear relationships present
in our high-dimensional Dt, instead of building linear models
to estimate each layers’ performance, we utilize the neural
network as our predictor.

B. Score Function

The score function S(·, ·) in conformal prediction is used to
measure the level of non-conformity of the predicted partition
decision for the calibration dataset Dc. Moreover, unlike Dt,
our collected Dc includes only the optimal partitioning data
Y opt. Formally, we can calculate nonconformity score such
that

Vi = S((Xi, Y
opt
i), Qθ), (Xi, Y

opt
i) ∈ Dc, (17)

where Y opt
i is the optimal partitioning point for its correspond-

ing system contexts Xi.
Intuitively, the expression Vi can have the same mathemat-

ical meaning as the loss Qθ(·, ·), as in fact, a large value
indicates that the model assigns a low probability to data
(Xi, Y

opt
i). So that we could directly use Qθ to be our score

function as mentioned in line 2 of Algorithm 1, such that

S((Xi, Y
opt
i), Qθ) = Qθ(Xi, Y

opt
i). (18)

Then, we iterate the Dc to calculate the nonconformity score
of each point.

C. Confidence Interval

Next, by sorting the nonconformity score Vi in non-
decreasing order, and by adding ∞ to the nonconformity score
list (line 3 in Algorithm 1), for any new test data Xtest,
a matching confidence interval can be subsequently created
based on the user specified nominal error level α such that

C(Xtest) = {Y : Qθ(x, y) ≤ q̂1−α}. (19)

Even though vanilla CP has been proved to work well
on establishing valid prediction intervals, our experimental
results, however, show that direct application of vanilla CP
to the DNN partition problem does not lead to satisfying per-
formance (Section VI). We suspect this is due to the following
two reasons: 1) There is a strong correlation between the test
error of the predictor model and the average length of the

Fig. 6: Simplified CARBONCP workflow.

prediction interval (mentioned in [14]). 2) Our test dataset and
calibration dataset are no longer exchangeable, which means
the calibration data is drawn i.i.d. from a single distribution
PX , while the test point comes from a second distribution P̃X .
This leads to the empirical distribution of nonconformity score
will not work for our case [13]. Typically, vanilla conformal
prediction requires that data in Dc ∪ (Xtest, Ytest) satisfies
exchangeability, so that we can form a prediction interval
through comparing the nonconformity score at the test point
with the empirical distribution of nonconformity scores at the
calibration dataset. But in practice, Dc ∪ (Xtest, Ytest) are no
longer exchangeable for most of cases, which is also applied
in our dataset. To address these two issues, we begin by fine-
tuning our prediction model including optimizing the model’s
hyperparameters and feature selection. Based on the work
[13], for covariate shift, we should no longer consider the
empirical distribution of nonconformity scores at calibration
dataset, one of the promising solution is to weight each
nonconformity score by the likelihood ratio between P̃X and
PX , such that w(x) = P̃X(x)/PX(x). For exploration, we
estimate the probability density function about the test data
P̃X and calibration dataset PX (line 4 in Algorithm 1). The
PX is estimated as multivariate uniform distribution since Dc

consists of 7 context variables, each of which was exhaustively
collected and is independently and uniformly distributed across
its respective range. For P̃X , we use multivariate normal
distribution to estimate it. Before system running, we do a
single system contexts measurement to parameterize P̃X . So
that we can obtain a weighted distribution of nonconformity
scores at calibration dataset

|Dc|∑
i=1

pwi (Xtest)δVi
+ pw|Dc|+1(Xtest)δ∞, (20)

where the weights pwi (x) and pw|Dc|+1(x) are defined in equa-
tion (8) and (9).

Given a nominal error level α and a new test data Xtest,
the weighted confidence bond of conformal prediction for this
new test data Xtest will be (line7-10 in Algorithm 1)

Fig. 7: The impact of Carbon Intensity for different states on Q value and carboon footprint of DNN partitioning.

C(Xtest) = {Y : Qθ(Xtest, Y) ≤ q̂1−α}, (21)

where q̂1−α is

Quantile(1−α;

|Dc|∑
i=1

pwi (Xtest)δVi
+pw|Dc|+1(Xtest)δ∞). (22)

The overall CARBONCP framework and workflow are de-
scribed in Algorithm 1 and Fig. 6. We first fit a implicit
predictor Qθ on Dt to predict Q for each DNN layer y under
the system contexts x. Then we use this Qθ as the score
function to calculate nonconformity scores of each optimal
data in Dc. After that, we weight each nonconformity score
and get the desired q̂1−α. Lastly, for any new test data
Xn+1, its confidence interval can be get through line 7-10
in Algorithm 1.

D. Assess Prediction Interval Performance

When working with the confidence interval from conformal
prediction, which contain multiple possible true values, the
challenge is choosing a single best prediction. To transform
the uncertainty of the confidence interval into a concrete basis
for decision-making, we utilize this interval through three
approaches. The first approach is to take a random point
of the interval as the single predictive value, represented
as CARBONCP-R. The second approach to take the mean
of the interval as the single predictive value, represented as
CARBONCP-M. The third approach is to adaptively take the
point from the interval that minimizes the objective function
value, represented as CARBONCP-A.

Fig. 5 shows the overview of our proposed system. In the
first step, the edge device send the service requests to build the

connection with server. To determine the bandwidth between
an edge device and a server, we utilize the tool “ping” at
edge device, transmitting two data packets of different sizes
to the server in succession, and measure the response times.
The bandwidth equals to the ratio between the difference of
data size and the difference of response times. In the second
step, the server continuously sends its GPU utilization to
edge device. In the third step, after the edge device combines
itself current contexts with server’s contexts, carbon intensity
and bandwidth, taking those system contexts as the input for
CARBONCP to obtain the partitioning point. Then the edge
device sends the partitioning point and intermediate results
to the server. In the final step, the server returns the DNN
inference results to the edge device.

VI. PERFORMANCE EVALUATION

In this section, we evaluate both the proposed carbon-
aware DNN partition model and CP algorithm. We implement
a context-adaptive prototype system to execute Resnet-18
model. We use the NVIDIA Jetson Nano Developer Kit as
the edge device, integrated with a Linksys WUSB6300 USB
WiFi adapter. We use the server with a single GPU GeForce
RTX 3080Ti 12GB. We employ WiFi as the communication
link between edge device and the server. We use Linksys
WRT1900AC as the WiFi rounter. We implement our client-
server interface utilizing gRPC, an open source flexible RPC
interface for inter-process communication. For flexibility in
dynamically selecting partition points, both edge devices and
server host complete DNN models.

The duty of edge device is to 1) receive the current system
contexts of the server and estimate the real-time network
bandwidth, 2) make partition decision, 3) execute the layers

(a) Partition solutions over time.

(b) Operational carbon emissions over time.

(c) Battery consumption over time.

Fig. 8: The Comparison between CARBONCP-A and Neuro-
surgeon for different metrics in real system.

allocated to the edge device, 4) send partition decision and
the intermediate result to server. The duty of server is to 1)
receive the partition decision and the intermediate result from
edge device, 2) execute the layers allocated to the server.
A. Dataset Construction

To evaluate CARBONCP, we need the training dataset Dt

and the calibration dataset Dc that can concurrently provide the
dynamic contexts data when inferencing, including bandwidth,
server GPU utilization, client GPU utilization, client GPU fre-
quency, client CPU utilization, partition point, carbon intensity,
end-to-end latency, client energy, communication energy, and
server energy. To the best of our knowledge, we are not aware
of any existing dataset that satisfies all these requirements. To
this end, we conduct a measurement study and generate system
contexts datasets with sufficient contexts data and ground truth
labels. Overall, we collect fine-grained and accurate data with
around 7.7 million unique configurations.

B. Performance Comparison

We compared our CP-based context-adaptive framework
with two widely used baseline solutions as well as Neuro-
surgeon:

• Carbon-R: the partition result is randomized from the
point corresponding the confidence interval.

• Carbon-M: the partition result come from the point
corresponding to the value nearest to the mean of the
confidence interval.

• Carbon-A: the partition result come from the point
corresponding to the minimum value of objective function
within the confidence interval.

• Edge-only: the edge device performs all DNN layers
locally with limited computation recourse.

• Cloud-only: the server performs all DNN layers with
communication.

• Neurosurgeon: it can partition DNN between the edge
device and server at granularity of neural network layers
by directly using regression model to predict per-layer
performance explicitly. But it only considers the band-
width and server workload as dynamic changing and it
targets for optimize latency and edge side energy.

We first compare our CARBONCP between Carbon-R,
Carbon-M, and Carbon-A, and compare CARBONCP with
Edge-only, Server-only and Neurosurgeon under the test
dataset with dynamic contexts changing in Fig. 7. We see that
CARBONCP achieves a lower Q value and carbon footprint
compared with other methods.

More specifically, to show CARBONCP can work for
different area, we randomly select the carbon intensity of
three states (New York, Georgia, and Montana) in our test.
CARBONCP-A has a Q value reduction of 2.3%, and 2.7%
compared with CARBONCP-R and CARBONCP-M respec-
tively. CARBONCP-A has a Q value reduction of 13.8%,
49.9%, and 30.1% compared with Edge-only, Server-only and
Neurosurgeon respectively under dynamic contexts changing.
CARBONCP-A has a carbon footprint reduction of 6.4%, and
6.9% compared with CARBONCP-R and CARBONCP-M re-
spectively. CARBONCP-A has a carbon footprint reduction of
24.5%, 74.1%, and 59.2% compared with Edge-only, Server-
only and Neurosurgeon respectively under dynamic context
changing shown in graph of Fig. 7. This is because, Edge-only
method executes the entire DNN on the edge side, it avoids
data transmission and benefits the lower power consumption
of edge devices. Server-only method ignores the effect of
computation limitation. Neurosurgeon ignores the dynamic
contexts changing of inter edge devices and server. CAR-
BONCP consider both dynamic contexts of whole system and
transmission, and it makes a proper trade-off between them.
For the inter-comparison between CARBONCP, since Carbon-
A iterate over each element within the confidence interval to
obtain the minimum value on objective function, it is logical
that Carbon-A can achieve the best possible result than others.
But at the corresponding cost is the computational complexity
is O(|Cn(Xn+1)|), which is highly depends on the length
of confidence interval. In a nutshell, these results confirms
that CARBONCP significant outperforms Edge-only, Server-
only and Neurosurgeon methods, and Carbon-A outperforms
Carbon-R and Carbon-M.

C. Performance Evaluation of CARBONCP-A

We examine the performance of CARBONCP-A and Neu-
rosurgeon under dynamic contexts changing in real system, as
illustrated in Fig. 8a. We observe that the partition solution of
CARBONCP-A changes dynamically and with high frequency
along with time, whereas Neurosurgeon also changes the par-
titioning solution to some extent, but with very low frequency.

Fig. 9: The impact of system processing contexts and carbon intensity on overall carbon footprint.

This indicates that Carbon-A is context sensitive and able to
adjust the partition solution as the context changes.

In addition, we further examine the carbon footprint and
energy emissions corresponding to the performance results
as shown in Fig. 8b and 8c respectively. For the carbon
footprint, in average, the CARBONCP-A has a reduction
of 58.8% compared with Neurosurgeon. We also can see,
for energy emissions, the average Neurosurgeon’s is 17.6%
lower than CARBONCP-A, which illustrates CARBONCP-A is
relatively comparative with Neurosurgeon in energy emission.
This observation validates the usefulness of CARBONCP-A
for not only works for carbon footprint, but also consider the
impact of energy emission.
D. Processing Context Variations

In evaluating the performance of CARBONCP-A, we con-
sider key metrics that include bandwidth, edge CPU utiliza-
tion, edge GPU utilization, edge GPU frequency, server GPU
utilization, and carbon intensity. The analysis of these metrics
provides insights into their respective impacts on the carbon
footprint.

For bandwidth, edge CPU utilization, edge GPU utiliza-
tion, and carbon intensity as shown in Fig. 9, a consistent
trend emerges. These figures collectively demonstrate a direct
proportionality between each metric and the carbon footprint.
Specifically, augmentations in bandwidth, edge CPU and GPU
utilization are accompanied by a commensurate increase in
carbon emissions, indicating a robust linkage to energy con-
sumption. Notably, carbon intensity is revealed as a paramount
factor, with a stark positive correlation to carbon emissions,
suggesting that the choice of carbon intensity, is vital for
managing the carbon footprint.

Conversely, edge GPU frequency and server GPU utiliza-
tion depict more intricate relationships in Fig. 9. The edge
GPU frequency presents a non-linear association with carbon
footprint, intimating an optimal frequency range that mini-
mizes emissions. This suggests that optimizing the operating
frequency of GPUs will be beneficial in reducing the carbon
footprint. The carbon footprint begins to decrease after the
server GPU utilization increases to a certain point, potentially
indicating a regime of enhanced energy efficiency at specific
utilization thresholds.

Among all the analyzed factors, edge GPU utilization and
carbon intensity appear to have the greatest impact on the
carbon footprint. This implies that reducing GPU utilization
and opting for electricity with lower carbon intensity would

Fig. 10: The error rate of CARBONCP and Neurosurgeon.
be the most effective measures in reducing the overall carbon
footprint of CARBONCP-A. Moreover, the optimization of
operational frequencies for GPUs emerges as an actionable
measure for carbon footprint reduction.
E. Confidence Interval Utilization

In this experiment, we implement CARBONCP-R, CAR-
BONCP-M, and CARBONCP-A to further explore the potential
utilization of the confidence interval obtained from conformal
prediction. As shown in Fig. 10, the error rate of each CP
method when applied to the test data, with the neurosur-
geon’s error rate included for comparison. CARBONCP-R
and CARBONCP-M have relatively similar error rates 30.86%
and 43.2% respectively, indicating a comparable level of
performance. Neurosurgeon has highest error rate, 90.5%.
CARBONCP-A, however, shows a significantly lower error rate
9.9%, suggesting a more accurate or calibrated method under
the conditions of this test.

VII. RELATED WORK

Deep Neural Network partition. Previous research efforts
focusing on offloading the resource-constrained mobile device
to the powerful server/cloud will reduce inference time. Neuro-
surgeon [9], Edgent [15], and JALAD [16] are typical partition
methods that split a DNN into two parts at the granularity
of layers. However, those methods are not applicable for the
computation partition performed by CARBONCP for a number
of reasons: 1.) they do not consider the dynamic contexts
changing of the whole system while running. 2.) they do not
consider the optimization performance for the whole system
carbon footprint while balancing the latency and mobile device
energy.

Conformal Prediction. To build more trustworthy machine
learning models, it is significant to reliably characterize the
uncertainty in their predictions [17, 18]. There exists a plethora
of uncertainty quantification approaches such as Bayesian
methods [19, 20], Monte Carlo dropout [21], ensembles [22,
23]. However, many such methods can be limited in practice
due to their computational overhead, incorrect distributional
assumptions, or predisposition to specific architectures and
training procedures. For example, Bayesian methods are com-
putationally intensive and require algorithmic modifications.
Ensembles require significant computational resources due to
the need to train multiple models.

VIII. CONCLUSION

This paper has presented a novel framework, CARBONCP,
to improve the environmental sustainability of deploying
intelligence at the network edge. CARBONCP offers an
uncertainty-aware solution to balance the trade-offs between
carbon emissions, latency, and battery consumption under
dynamic processing contexts and varying carbon intensity. We
hope that CARBONCP will instigate a fundamental reevalua-
tion of edge computing systems, fostering a transition towards
environmental sustainability.

REFERENCES

[1] Charlotte Freitag, Mike Berners-Lee, Kelly Widdicks,
Bran Knowles, Gordon S Blair, and Adrian Friday.
The real climate and transformative impact of ICT: A
critique of estimates, trends, and regulations. Patterns,
2(9):100340, 2021.

[2] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge
Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang,
Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable
AI: Environmental implications, challenges and opportu-
nities. In Proc. Machine Learning and Systems (MLSys),
volume 4, pages 795–813, 2022.

[3] Danny Hernandez and Tom B Brown. Measuring the
algorithmic efficiency of neural networks. arXiv preprint
arXiv:2005.04305, 2020.

[4] Glenn Shafer and Vladimir Vovk. A tutorial on confor-
mal prediction. Journal of Machine Learning Research,
9(3), 2008.

[5] Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu.
Dynamic adaptive dnn surgery for inference acceleration
on the edge. In IEEE Conference on Computer Commu-
nications (INFOCOM), pages 1423–1431, 2019.

[6] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai:
On-demand accelerating deep neural network inference
via edge computing. IEEE Transactions on Wireless
Communications, 19(1):447–457, 2019.

[7] Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and
Massoud Pedram. Jointdnn: An efficient training and
inference engine for intelligent mobile cloud computing
services. IEEE Transactions on Mobile Computing,
20(2):565–576, 2019.

[8] Electricity Maps. Reduce carbon emissions with action-
able electricity data. accessed on Mar. 2024.

[9] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovin-
ski, Trevor Mudge, Jason Mars, and Lingjia Tang. Neu-
rosurgeon: Collaborative intelligence between the cloud
and mobile edge. ACM SIGARCH Computer Architecture
News, 45(1):615–629, 2017.

[10] Guozhi Liu, Fei Dai, Xiaolong Xu, Xiaodong Fu,
Wanchun Dou, Neeraj Kumar, and Muhammad Bilal.
An adaptive DNN inference acceleration framework with
end–edge–cloud collaborative computing. Future Gener-
ation Computer Systems, 140:422–435, 2023.

[11] Amir Erfan Eshratifar, Amirhossein Esmaili, and Mas-
soud Pedram. Bottlenet: A deep learning architecture
for intelligent mobile cloud computing services. In
2019 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), pages 1–6, 2019.

[12] Vladimir Vovk, Alexander Gammerman, and Glenn
Shafer. Algorithmic learning in a random world, vol-
ume 29. Springer.

[13] Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Can-
des, and Aaditya Ramdas. Conformal prediction under
covariate shift. Advances in neural information process-
ing systems, 32, 2019.

[14] Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tib-
shirani, and Larry Wasserman. Distribution-free predic-
tive inference for regression. Journal of the American
Statistical Association, 113(523):1094–1111, 2018.

[15] En Li, Zhi Zhou, and Xu Chen. Edge intelligence: On-
demand deep learning model co-inference with device-
edge synergy. In Proc. the 2018 Workshop on Mobile
Edge Communications, pages 31–36, 2018.

[16] Hongshan Li, Chenghao Hu, Jingyan Jiang, Zhi Wang,
Yonggang Wen, and Wenwu Zhu. Jalad: Joint accuracy-
and latency-aware deep structure decoupling for edge-
cloud execution. In 2018 IEEE 24th International Con-
ference on Parallel and Distributed systems (ICPADS),
pages 671–678, 2018.

[17] Timothy John Sullivan. Introduction to uncertainty
quantification, volume 63. Springer, 2015.

[18] Christian Soize. Uncertainty quantification. Springer,
2017.

[19] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural network.
In International Conference on Machine Learning, pages
1613–1622. PMLR, 2015.

[20] Radford M Neal. Bayesian learning for neural networks,
volume 118. Springer Science & Business Media, 2012.

[21] Yarin Gal and Zoubin Ghahramani. Dropout as a
bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine
learning, pages 1050–1059. PMLR, 2016.

[22] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov,
and Dmitry Vetrov. Pitfalls of in-domain uncertainty
estimation and ensembling in deep learning. arXiv
preprint arXiv:2002.06470, 2020.

[23] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Proc. the 31st Inter-
national Conference on Neural Information Processing
Systems (NIPS), page 6405–6416, 2017.

	Introduction
	Preliminary Experiments and Key Insights
	The Impact of Dynamic Processing Context on DNN Partitioning
	The Impact of Carbon Intensity on DNN Partitioning
	Lack of Uncertainty Assessment in DNN Partitioning

	Conformal Prediction
	Problem Statement
	CarbonCP Design
	Implicit Predictor Model
	Score Function
	Confidence Interval
	Assess Prediction Interval Performance

	Performance Evaluation
	Dataset Construction
	Performance Comparison
	Performance Evaluation of CarbonCP-A
	Processing Context Variations
	Confidence Interval Utilization

	RELATED WORK
	Conclusion

