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Detecting fast vanishing loops in complex-analytic germs
(and detecting germs that are inner metrically conical)

Dmitry Kerner and Rodrigo Mendes

Abstract. LetX be a reduced complex-analytic germ of pure dimension n ≥ 2, with arbitrary
singularities (not necessarily normal or complete intersection). Various homology cycles on
Linkǫ[X ] vanish at different speeds when ǫ → 0. We give a condition ensuring fast vanishing
loops on X. The condition is in terms of the discriminant and the covering data for “convenient”
coverings X → (Cn, o). No resolution of singularities is involved.

For surface germs (n = 2) this condition becomes necessary and sufficient.
A corollary for surface germs that are strictly complete intersections detects fast loops via

singularities of the projectivized tangent cone of X.

Fast loops are the simplest obstructions for X to be inner metrically conical. Hence we get
simple necessary conditions to the IMC property. For normal surface germs these conditions
are also sufficient.

We give numerous classes of non-IMC germs and IMC germs.
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1. Introduction

1.1. Take a complex-analytic germ X ⊂ (CN , o). The first step in its visualization is Mil-
nor’s Conic structure theorem: X is homeomorphic to the (standard) cone over the link,
Cone[Link[X ]] ⊂ (CN , o). In “most cases” this (non-embedded) homeomorphism cannot be
chosen differentiable in any sense.

In some cases this topological equivalence can be strengthened to (non-embedded) bi-Lipschitz
equivalence, as follows. The (standard) metric on (CN , o) induces the inner metrics on X and
Cone[Link[X ]], by the length of the shortest path between two points. The germ X is called
inner-metrically-conical (IMC) if the homeomorphism X −→∼ Cone[Link[X ]] can be chosen bi-

Lipschitz with respect to these inner metrics. The metrically conical structure is the simplest
possible metric structure. E.g. if X metrically conical, then it is bi-Lipschitz equivalent to its
triangulation.

Any complex analytic curve germ is IMC. In higher dimensions the situation is more com-
plicated. Initially many complex-analytic surface germs were thought to be IMC. The first
weighted-homogeneous non-IMC surface germs were found in [Birbrair-Fernandes.08]. If X
is a weighted-homogeneous IMC-germ of quotient type, C2/µ , then its two lowest weights are
necessarily equal, [B.F.N.08]. The converse statement was verified in [B.F.N.09] for Brieskorn-
Pham singularities in (C3, o). Finally, [B.N.P.14] established the thick-thin decomposition
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for normal surface germs. In particular, this gave an algorithm to verify the (non)IMC-
property via the resolution graph of the singularity. See also [B.F.G.17]. Using this [Okuma.17]
proved: a Brieskorn-Pham surface germ that is an isolated complete intersection is IMC iff
its two lowest weights are equal. In higher dimensions, among the Ak-types (with equation∑n

i=1 x
2
i + xk+1

n+1 = 0), the only IMC-case is A1, [B.F.N.G.O’S.09].
In all these cases the first reason be non-IMC is the existence of so-called “fast loops”, and

their generalizations, “choking horns”, [B.F.G.17] These are topologically non-trivial loops on
Link[X ] that vanish faster than linearly, as one approaches the base point o ∈ X.

Fast loops (and fast cycles in higher dimensions) are important far beyond the IMC-context.
They carry essential information on the (Lipschitz part of) local geometry and topology of
X. E.g., each fast loop lies inside a thin zone, a rigid sector of the germ, where the metric is
essentially distorted (as compared to the metric on a cone). To detect/forbid these fast loops
is in general a complicated task. The only well-studied case is the normal surface singularities,
[B.N.P.14], with the fast-loops criteria via the resolution graph of X .

In [Kerner-Mendes.23] we gave sufficient criteria for fast cycles on complete intersection germs
of any (co)dimension that are perturbations of weighted-homogeneous germs. In “most cases”
if the n lowest weights do not all coincide, then X has a fast cycle.

All these results suggested: IMC-germs are very rare, to the extent that, e.g. complex-
analytic IMC’s in (C3, o) could be possibly classified, up to the ambient topological equivalence.

Now we give simple necessary/sufficient conditions for reduced germs to posses fast loops.
These germs are of any dimension and codimension, not necessarily normal or complete inter-
section, possibly with non-isolated singularities.

• For surface germs the conditions are in terms of the discriminant of the covering. They
are necessary and sufficient.
For normal surface germs this allows simple verification of the IMC property. In particular
one gets: while IMC’s are rare, their classification is in some sense impossible. (Even in
the case X ⊂ (C3, o).)
• The higher dimensional case admits (in many cases) a reduction to the surface case. Hence
an easy way to detect a fast cycle. (And thus an obstruction to the IMC-property.)

Some of our results (for normal surface germs) could be possibly obtained by the methods of
[B.N.P.14]. But our proofs do not use resolution of singularities and are independent of those
of [B.N.P.14].

A remark: our results allow to detect the homotopy types of fast loops, and their vanishing
speeds. This will be done in the subsequent work.

1.2. The fast cycles and (non)IMC-criteria.

1.2.1. Let X be a reduced, complex-analytic surface germ, of multiplicity p, not necessarily

normal, possibly with non-isolated singularity. Present it as a covering space, π : X
p:1→ (C2, o).

(This covering is assumed to be “convenient”.) This map is ramified over the discriminant,
∆ ⊂ (C2, o). We detect fast loops by the explicit numerical condition.
Theorem 3.2. X has no fast loops iff the inequality p > rk − 1 +

∑
qi ·mult(∆k,i) holds for

each non-smooth tangential component of ∆.

The ingredients {rk}, {qi}, {mult(∆k,i)} form the ramification data of the coveringX
p:1→ (C2, o),

and are defined in §3.1. In many cases this data is easily computable from the equations of X.
Thus the theorem is handy in applications. In fact, as the proof shows, rk+

∑
qi ·mult(∆k,i)−p

is the lower bound on the number of fast loops “hanging over ∆k”.
Corollary 3.3. A normal surface germ is IMC iff p > rk − 1 +

∑
qi · mult(∆k,i) for each

non-smooth tangential component of ∆.
The absence of fast loops, i.e. this numerical inequality, imposes strong restrictions on the

projectivized tangent cone. Let X ⊂ (C2+c, o) be an isolated strictly complete intersection
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surface germ. Its projectivized tangent cone, PTX ⊂ P1+c, is a curve (singular, possibly non-
reduced). Take its degree, deg[PTX ], and the degree of is reduced locus, deg[PT red

X ]. Suppose
the germs (PTX , pti) are reduced and singular for some points {pti}. Take their Milnor numbers,
µi := µ(PTX , pti).
Theorem 3.10. 1. Suppose these points {pti} lie in one hyperplane, Pc ⊂ P1+c, that is “non-
tangent” to PTX . If

∑
µi ≥ 1 + deg[PTX]− deg[PT red

X ], then X has a fast loop.
2. In particular, if PTX is reduced, and X is IMC, then PTX must be smooth. (Hence X is
an ordinary multiple point.) Additionally, when PTX = PT red

X any reduced singular point of
PTX ∩ Pc produces a fast loop.

This is a very simple (and useful) IMC-obstruction. For example:

• The only IMC’s among the super-isolated surface germs are the ordinary multiple points.
(Example 3.11)
• The only IMC’s among the surface singularities in (C3, o) of right modality≤ 2 are:
A1, D4, X9, P8. (Corollary 3.13)

1.2.2. In higher-dimensional case our results are weaker, giving just a sufficient condition for
fast loops. Take a convenient covering π : X → (Cn, o), with the discriminant ∆ ⊂ (Cn, o),
and restrict it to a smooth surface germ, πS : X ∩ π−1S → S ∼= (C2, o). Accordingly one gets
the discriminantal curve ∆S := ∆ ∩ S, and the ramification data, rk, {qi}, {mult(∆k,i)}, as
above. Suppose S is “weakly non-special”, i.e. the same numerical data is obtained for any
other surface that is tangent to S.
Proposition 3.14. If p ≤ rk−1+

∑
qi ·mult(∆k,i) for some non-smooth tangential component

of ∆S then X has a fast loop.
This gives a quick check of fast loops/non-IMC property in higher dimensions. E.g. (corollary

3.16): if PT∆ has a point of high multiplicity, then X has a fast loop.

1.3. Acknowledgements. Our thanks are to Lev Birbrair, Alexandre Fernandes, Andrey
Gabrielov, Edson Sampaio, for important advices.

1.4. The contents/structure of the paper.

§2 contains basic definitions/facts on singular germs. They are used in §3 to detect fast loops.
§2.2 recalls the tangent cone, TX , and its projectivization, PTX , for complete intersections.

In the later case PTX is a complete intersection only if X is a “strictly complete inter-
section”.

§2.3 defines “convenient” coverings π : X → (Cn, o). The critical/discriminantal loci are
defined set-theoretically.

§2.4 describes the blowup of the covering π, and the finiteness/flattness of the strict transform
π̃.

§2.5 recalls the standard scheme structure on the critical locus when X is a complete intersec-
tion. Then the critical locus is also a complete intersection. Its image (with the Fitting
scheme-structure) is the discriminant, a hypersurface.

§2.6 The covering π : X → (Cn, o) is a Lipschitz map. It is far from being locally bi-Lipschitz.
Yet, we have: the preimage of a thin set is thin. In particular, any pair of tangent arcs
in (Cn, o) can be lifted to a pair of inner-tangent arcs in X.

§2.7 recalls fast cycles, the basic obstruction to the IMC-property. For normal surface germs
the fast loops are the only obstructions. For non-normal surface germs there are various
other obstructions.

§3 detects fast loops on X .
§3.1 defines the covering data of π : X → (C2, o) ⊃ ∆, i.e. the tangential components {∆k}

of ∆, the total ramification orders {qi}, and the special invariant rk.
§3.2 contains Theorem 3.2: the condition p ≤ rk − 1+

∑
qi ·mult(∆k,i) means the existence

of a fast loop.
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In the proof one studies the covering X → (C2, o). Suppose the discriminant ∆ has
a non-smooth tangential component, ∆k ⊂ C2

x1,x2
. Let its tangent line be SpanC(x̂1).

The intersection ∆k ∩ {Im(x1) = 0} consists of several arcs. Connecting them inside
the planes {Re(x1) = t} produces a (subanalytic) Hölder polyhedron. (Which is a
thin set.) Its lifting, HöldX ⊂ X, is still a thin set, by §2.5. It remains to verify:
one of the components of HöldX \ o is not “linkwise contractible”. Which means:
for ǫ > 0 small enough, one of the connected components of HöldX ∩ V (x1 − ǫ) is
non-contractible. And this is verified via the homology H1(HöldX ∩ V (x1 − ǫ)), by
computing the Euler characteristic.

Then go explicit examples. We classify all the IMC-surface germs of multiplicity two.
Then we classify IMC’s among the surfaces of type V (zp+a1(x, y)z+ao(x, y)) ⊂ (C3, o).

§3.3 gives the condition on the tangent cone imposed by fast-loop, Theorem 3.10. The proof
uses Theorem 3.2 and the facts established in §2.3, §2.4.
Now fast loops are detectable immediately and we deduce the applications mentioned
in §1.2.1.

§3.4 is the higher dimensional case. We give a sufficient condition for fast loops via the
ramification data (proposition 3.14). In some cases even singularities of PT∆ that have
high multiplicity ensure vanishing cycles (corollary 3.16).

1.5. Notations and conventions.

i. Through the paper by germs we mean their small representatives.
Everywhere in the paper X ⊂ (CN , o) is a reduced pure-dimensional complex-analytic

germ, of dimension n ≥ 2, and multiplicity p, possibly with non-isolated singularity.
All the other germs are subanalytic and closed.

ii. All our arcs are (real) subanalytic. Usually we take their length-parametrization, γ(t) =
(s1 · t + o(t), . . . , sN · t + o(t)), with (s1, . . . , sN) 6= (0, . . . , 0).

By a foliation we always mean a singular foliation of the germ X by real arcs, all passing
through the origin.

iii. The (inner) tangency order of two arcs γ1, γ2 ⊂ X is tordX(γ1, γ2) := ordtdX(γ1(t), γ2(t)).
Here dX : X × X → R is a subanalytic distance equivalent to the distance given by
the infimum of lengths of paths connecting points of X [Kurdyka-Orro.97]. Note that
tordX(γ1, γ2) can be non-integer.

If X = (RN , o) then dX = ‖ . . . ‖ (the usual Euclidean distance) and we write just
tord(γ1, γ2).

By a LNE germ X means a representative where the inner distance dX and the outer
distance ‖ . . . ‖ on X are equivalent.

The tangency order of an arc and a subgerm, γ, Y ⊂X, is tordX(γ, Y) := sup
γY ⊂Y

tordX(γ, γY )≤
∞. The “order of difference” of two subgerms, Y1, Y2⊂X, is

(1) diff.ordX(Y1, Y2) := inf
γ1⊂Y1

tordX(γ1, Y2) = inf
γ2⊂Y2

tordX(γ2, Y1) ≤ ∞.

iv. Take an R-analytic germ Z ⊂ (RN , o). The tangent cone TZ can be defined set-theoretically,
e.g. as the Whitney cone C3, [Whitney, Chapter 7], [Chirka, Chapter 2]. The definition
of TZ is the same for subanalytic germs. The tangent cone is subanalytic as well, with
dimRTZ ≤ dimRZ. In particular, if dimRTZ = 1, then TZ is a finite union of lines and
half-lines.

v. Let Y ⊂ RN be a sub-analytic set. Every homology class in H∗(Y,Z) admits a subanalytic
representative. Indeed, the singular homology is isomorphic to the simplicial homology.
And sub-analytic manifolds admit subanalytic triangulations, [Coste, §4.3].

vi. The singular locus of a complete intersection X = V (f1, . . . , fc) ⊂ (Cn+c, o) is defined
(insideX) by the ideal of maximal minors Ic[f

′
1, . . . , f

′
c]. Here {f ′

j} are the column gradients.
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2. Preparations

2.1. The (projectivized) tangent cone for complete intersections.

2.1.1. Hypersurfaces. Let X= V (f) ⊂ (CN , o), then TX = V (l.t.(f)) ⊂ CN , the lowest-order
terms of f. Observe that the polynomial l.t.(f) can be not square-free, in which case TX is
non-reduced.

The projectivized tangent cone is PTX = V (l.t.(f)) ⊂ PN−1. This is a projective hypersurface,
possibly reducible, non-reduced. Its (total) degree equals the multiplicity of X, i.e. the Taylor
order ord(f).

2.1.2. Complete intersections. Let X = V (f) ⊂ (Cn+c, o), where f := f1, . . . , fc ∈ C{x} is a
regular sequence. Then TX = V (l.t.(f )), defined by the lowest order terms of all the elements
of the ideal (f). In particular, l.t.(f) ⊇ (l.t.(f1), . . . , l.t.(fc)). This inclusion can be proper.

Example 2.1. For f1(x, y)=x2y+y4, f2(x, y)=xy2+x4, one has l.t.(f)=(x2y, xy2, x5−y5))
(l.t.(f1), l.t.(f2)).

Therefore TX ⊂ Cn+c is not necessarily a complete intersection. The germ X is called a
strictly complete intersection if both X and TX are complete intersections, [Bennett.77]. In this
case:

• There exists a choice of defining equations, X = V (f1, . . . , fc) with TX = V (l.t.(f1), . . . , l.t.(fc))
and deg(PTX) = multX =

∏
ord(fi).

• The projectivization PTX ⊂ Pn+c−1 is a complete intersection (possibly reducible, non-
reduced).

• The strict transform under blowup, X̃ ⊂ Blo(Cn+c, o), is a locally complete intersection
at all its points.

2.2. The convenient covering and its critical locus. Let X be as in §1.5.i. Take the
coordinate plane Cn = V (xn+1, . . . , xN) ⊂ CN and the projection CN ∋ x→ (x1, . . . , xn) ∈ Cn.
We call the restriction of this projection to the germ, X π→ (Cn, o), convenient if:

i. π is a (finite) ramified covering;
ii. The kernel of the projection at o is non-tangent to X, i.e. TX ∩ V (x1, . . . , xn) = o ∈ CN .

These assumptions hold for generic projections (observe that the condition ii. is enough to get
convenience). A projection can be quite non-generic, and yet convenient. E.g. the covering
(C3, o) ⊃ V (zp − f(x, y))→ (C2, o) is totally ramified over the
curve germ V (f) ⊂ (C2, o). This covering is convenient iff ord f ≥
p. The critical locus of π consists of those points where π is locally
not an isomorphism onto its image. ThusCrit(π)⊂X is an analytic
subgerm, and dimCCrit(π)≤(n− 1). (By Sard’s theorem.)

(CN , o) ⊃ X ⊃ Crit(π)
ց ↓ π ↓ π|

(Cn, o) ⊃ ∆

We remark: Crit(π)⊇Sing(X).
The discriminant of π is the image of the critical locus, ∆ := π(Crit(π)). As π is a finite

morphism, ∆ ⊂ (Cn, o) is an analytic subgerm, dimC∆ ≤ n − 1. (By Grauert’s direct image
theorem.) The inequality can occur here. E.g. let X be the union of two planes (of dimension
n) intersecting at one point. Then ∆ is just one point, o ∈ Cn.

WhenX is a complete intersection, these set-theoretic definitions are replaced by more precise
algebraic ones, §2.4, and ∆ is well-behaved, e.g. dimC∆ = n− 1.

Recall the basic properties of convenient projections.

• A small deformation of the projection π preserves the convenience of the covering.
• If π is convenient, then the restriction πY = π|π−1Y is a convenient covering for any
smooth subvariety Y ⊂ (Cn, o), assuming Y 6⊆ ∆ and π−1Y is reduced.
• A small deformation of the base point does not preserve the convenience. E.g., let o 6=
xo ∈ Crit(π) be a smooth point of X. Then the projection (X, xo) → (Cn, π(xo)) is
non-convenient.
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2.3. The blowup of π. Let X be as in §1.5.i. Suppose the projection π : X → (Cn, o) is
convenient.

Lemma 2.2. 1. The blowup of the origin produces the diagram:

(CN , o) ⊃ X ← X̃ := BloX ⊃ PTX = X̃ ∩ PN−1

π ↓ π̃ ↓ ↓ π̃|
(Cn, o) ← Blo(Cn, o) ⊃ Pn−1

Here the morphisms π̃, π̃| are finite.
2. If X ⊂ (CN , o) is a strictly complete intersection (§2.1.2), then the morphisms π̃, π̃| are

flat.

Proof.

1. The projection BloCN 99K BloCn is (x1, . . . , xN , [σ1 : · · · : σN ]) → (x1, . . . , xn, [σ1 : · · · :
σn]), it is defined only for (σ1, . . . , σn) 6= (0, . . . , 0). But π is a convenient projection,

therefore X̃ ∩ V (σ1, . . . , σn) = ∅. Therefore the projection π̃ : X̃ → Blo(Cn, o) is well
defined.

All the fibres of X̃ \ PTX → Cn \ {o} are finite. And the restriction of the projection

to the exceptional divisor, π̃| : X̃ ∩ PN−1 → Pn−1, has finite fibres. Indeed, if a fibre over

a point [σ1 : · · · : σn] ∈ Pn−1 is infinite, then π̃−1(0, . . . , 0, [σ1 : · · · : σn]) ⊂ PTX ⊂ X̃
is an algebraic subset of positive dimension. But then dim(TX ∩ V (x1, . . . , xn)) > 0,
contradicting the convenience of π.
Thus π̃ is a projective morphism with finite fibres. Hence π̃ finite. And therefore π̃| is
finite as well.

2. As X is a strictly complete intersection, both X̃ and PTX are locally complete intersec-
tions, while π̃ and π̃| are finite morphisms with smooth images.

Thus to verify the flatness it is enough to verify: the degree of fibres is constant. For
each point x̃ ∈ Blo(Cn, o) \ Pn−1 the fibre π̃−1(x̃) is of degree p (=the degree of the
covering π). For each point x̃ ∈ Pn−1 we have:

(2) degπ̃−1(x̃) = deg π̃−1
| (x̃) = deg (PTX ∩ PN−n) ∗

= deg(PTX)
∗∗
= multX = p.

Here (after a GL(Cn) transformation) PN−n = V (σ1, . . . , σn−1) ⊂ PN−1. The equalities ∗,
∗∗ hold because X,PTX have no embedded components of dimension< n (being complete
intersections). �

2.4. The scheme structure on the critical locus and the discriminant. Let X be as in
§1.5.i. Let X π→ (Cn, o) be a (not necessarily convenient) ramified p : 1 covering.

Lemma 2.3. If the germ X ⊂ (Cn+c, o) is a complete intersection then the critical locus and
the discriminant (with the scheme structure defined in the proof) have the following properties.

1. Crit(π) ⊂ (Cn+c, o) is a complete intersection of dimension n − 1, ∆ ⊂ (Cn, o) is a
hypersurface.

2. Let X=V (f)⊂(Cn+c, o), for f = (f1, . . . , fc), the column. Denote pi :=ord(fi). Then

mult(Crit(π))≥(
∏

pi) ·ord(det[f ′]) ≥(
∏

pi) ·
∑

(pj − 1).
Here [f ′] ∈ Matc×c is the Jacobian matrix of derivatives with respect to the variables
xn+1 . . . xn+c.

3. The diagram of §2.2 is functorial on pullbacks. Namely, for each morphism φ : (Cm, o)→
(Cn, o) with φ(Cm, o) 6⊆ ∆, and the corresponding projection φ∗π : X ×(Cn,o) (Cm, o) →
(Cm, o) one has:
• Crit(φ∗π) = φ∗Crit(π), i.e. OCrit(φ∗π) = OCrit(π) ⊗(Cn,o) O(Cm,o),
• ∆φ∗π = φ∗∆, i.e. O∆φ∗π

= O∆ ⊗(Cn,o) O(Cm,o).
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Here X ×(Cn,o) (Cm, o) := Spec(OX ⊗(Cn,o) O(Cm,o)) is the pullback of X via φ.
Proof. First we define Crit(π) ⊂ X and ∆ ⊂ (Cn, o) as analytic subgerms. Then we deduce
the statements.

a. Recall the standard definitions [Looijenga], [A.G.L.V.II]. When X is smooth, the critical
locus of the projection X → (Cn, o) is the degeneracy locus of the induced morphism TX →
T(Cn,o). In the general case the critical locus is defined as the degeneracy locus of the n-form
dx1 ∧ · · · ∧ dxn|X ∈ Ωn

X . For the defining equations, X = V (f1, . . . , fc) ⊂ (Cn+c, o), one has

Ωn
X = OX⊗

Ωn
(Cn+c,o)�

Span{dfi} ∧Ωn−1
(Cn+c,o)

. Thus the critical locus is the set of points of X where

the form dx1 ∧ · · · ∧ dxn|X belongs to the submodule Span{dfi} ∧Ωn−1
(Cn+c,o)|X . Equivalently,

dx1∧· · ·∧dxn∧df1∧· · ·∧dfc|X = 0. Writing this in coordinates, the critical locus is defined
(inside X) by the equation det[∂n+1f . . . ∂n+cf ] = 0.
We get the analytic subgerm Crit(π) ⊂ (Cn, o) and its local ring

(3) OCrit(π) =
O(Cn+c,o)�

(f, det[∂n+1f, . . . , ∂n+cf ])
.

b. We claim: the subgerm Crit(π) ⊂ (Cn+c, o) is a complete intersection, i.e. the sequence
f1, . . . , fc, det[. . . ] is regular in O(Cn+c,o). Indeed, dim(Crit(π)) ≥ n− 1, as the critical locus
is defined by (c+1) equations. But the projection X → (Cn, o) is generically unramified on
every irreducible component of X. Therefore dim(Crit(π)) ≤ n−1. Altogether, the sequence
f1, . . . , fc, det[. . . ] of length (c+1) defines a subgerm Crit ⊂ (Cn+c, o) of codimension (c+1).
Hence this sequence is regular, [Eisenbud, §17].
Equation (3) gives then Part 2 of the statement.
The discriminant is the image of Crit(π). As π is a finite morphism, ∆ is an analytic

subset, dim(∆) = n− 1, i.e. ∆ ⊂ (Cn, o) is (set-theoretically) a hypersurface.
The natural scheme structure on ∆ is the image structure. The pushforward π∗OCrit(π) is

a module over O(Cn,o). Its support is ∆ ⊂ (Cn, o), of dimension n − 1. Therefore we define
∆ ⊂ (Cn, o) as an analytic subgerm by the zeroth Fitting ideal, Fitt0[π∗OCrit(π)] ⊂ O(Cn,o),
[Eisenbud, §20]. In detail, take a presentation matrix, π∗OCrit(π) = coker[A]. Below we show
that A is a square matrix. Then Fitt0[π∗OCrit(π)] = (det[A]).

c. As ∆ ⊂ (Cn, o) is a (set-theoretic) hypersurface germ, we can assume: the intersection
V (x1, . . . , xn−1)∩∆ is a point. Thus x1, . . . , xn−1 goes to a regular sequence in the ring O∆.
We claim: the sequence x1, . . . , xn−1 is regular also on the ring OCrit(π), and hence on the

module π∗OCrit(π) as well. First, x1 is not a zero-divisor on OCrit(π). Indeed, Crit(π) has no
embedded components, being a complete intersection. In addition, V (x1) intersects Crit(π)
properly.
Now restrict onto V (x1). One has:

(4)

OCrit(π) ⊗
O(Cn+c,o)�

(x1)
=
O(Cn+c,o)�

(x1, f , det[. . . ])
∼= O(Cn+c−1,o)�

(f |V (x1), det[. . . |V (x1)])
=OCrit(π|V (x1)

).

The restricted map X|V (x1) → (Cn−1, o) is still a ramified covering. Therefore the restric-
tions (f1|V (x1), . . . , fc|V (x1), det[. . . ]|V (x1)) still form a regular sequence and OCrit(π|V (x1)

) is a
complete intersection. Repeat the argument for x2, and so on.

d. The sequence x1 . . . xn−1 is regular on the module π∗OCrit(π). Therefore the O(Cn,o)-module
π∗OCrit(π) is of depth = n − 1 = dim(∆), [Eisenbud, §18]. Hence π∗OCrit(π) is Cohen-
Macaulay. By Auslander-Buchsbaum formula, the O(Cn,o)-resolution of π∗OCrit(π) (over
O(Cn,o)) is of length one. Thus the presentation matrix, π∗OCrit(π) = coker[A], is square.
Hence Fitt0(π∗OCrit(π)) = (det[A]) is a principal ideal. Thus the subscheme ∆ ⊂ (Cn, o) is
a hypersurface (possibly with multiple components). �

Example 2.4. i. Let X := V (zp−f(x, y)) ⊂ (C3, o), where ord(f), p ≥ 2. Take the covering
X → (C2

xy, o), it is convenient iff ord(f) ≥ p. Then the defining ideal of Crit(π) ⊂
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(C3, o) is (zp−1, f(x, y)) ⊂ O(C3,o). Set-theoretically one gets: ∆ = V (f(x, y)) ⊂ (C2, o). To
obtain the image scheme structure on ∆ we consider OCrit(π) = C{x, y, z}/(zp−1, f(x, y)) as
an C{x, y}-module. Its natural generators are {1, z, . . . , zp−2}, and the module splits as a
direct sum. We get the presentation

(5)
p−1
⊕ C{x, y} ⊕[f ]−→

p−1
⊕ C{x, y} → OCrit(π) → 0.

Hence the defining ideal of the discriminant is I∆ = det[⊕[f ]] = (f)p−1 ⊂ C{x, y}.
ii. (Functoriality on restrictions) Take a linear subspace (Cm, o) ⊂ (Cn, o) with (Cm, o) 6⊆ ∆.

Take the restricted projection π| : π−1(Cm, o)→ (Cm, o). One gets: Crit(π|) = Crit(π) ∩
π−1(Cm, o) and ∆(π|) = ∆ ∩ (Cm, o).

2.4.1. The discriminant for hypersurface germs. Take a hypersurface germ X = V (f) ⊂
(Cn+1, o) of multiplicity p. Suppose the projection X → (Cn

x1,...,xn
, o) is convenient. Thus

TX ∩ V (x1, . . . , xn) = (o), therefore f contains the monomial xp
n+1. By Weierstraß preparation

theorem one can present:

(6) f(x) = u(x)
(
xp
n+1 + xp−1

n+1 · ap−1(x1, . . . , xn) + · · ·+ a0(x1, . . . , xn)
)
.

Here u is invertible and a0, . . . , ap−1 are analytic power series, with ord(aj) ≥ p − j. Thus we
omit u.

This hypersurface is the pullback of the universal hypersurface, V (zp+zp−1ap−1+ · · ·+a0) ⊂
C1+p

z,ap−1,...,a0
, under the map (x1, . . . , xn)→ (ap−1(x), . . . , a0(x)). Therefore (by part 3 of lemma

2.3) the discriminant of the projection, ∆ ⊂ Cn, is obtained as the pullback of the classical
discriminant ∆class of the polynomial zp + zp−1ap−1 + · · · + a0. Here ∆class ∈ Z[{a•}] is a
(complicated) polynomial in the coefficients {a•}. We use the following properties [G.K.Z.]:

• Assign the weights to the coefficients, w(aj) = p − j, then the polynomial ∆class is
weighted-homogeneous, of total weight p(p− 1).
• ∆class({a•}) = ( a0

p−1
)p−1 − (a1

p
)p + g({a•}), where g({a•}) ∈ (a0, a1) · (a2 . . . ap−1).

• For p ≥ 3 the hypersurface V (∆class) ⊂ Cp is singular in codimension 1.

2.4.2. The polar multiplicity of a curve germ. Take a reduced complete intersection curve germ,
(C, o) = V (f1, . . . , fc) ⊂ (C1+c, o). Suppose the projection (C1+c, o) ⊃ (C, o) → (C1

x1+c
, o) is

convenient, §2.2. The critical locus of the projection is V (f1, . . . , fc) ∩ V (det[∂ifj]i,j≤c), see
equation (3). This is a one-point scheme, a complete intersection. Its degree is the polar
multiplicity, m1(C, o) = deg[V (f1, . . . , fc) ∩ V (det[∂ifj ]i,j≤c)], see [Gaffney.93], [Nuñ-Tom.08].
In particular, one has: µ(C, o) = m1(C, o)−mult(C, o) + 1, [Nuñ-Tom.08, Theorem 2.6]. (See
also [Brieskorn-Greuel.75], [Lê.74].)

Example 2.5. For plane curves (c = 1) this one-point scheme is V (f, ∂yf) ⊂ (C2
xy, o). Its degree

is the classical kappa invariant, κ(C, o)=µ(C, o)+mult(C, o)−1, see e.g. [G.L.S., pg.212].

2.5. Preimage of a thin set is thin (lifting tangent arcs to tangent arcs). The con-
venient covering (CN , o) ⊃ X π→ (Cn, o) is a Lipschitz map. But π is far from being locally
bi-Lipschitz. In particular, π can increase the tangency order of arcs. Yet, a weaker property
holds.

Recall, a subanalytic germ Y is called thin if dimRY > dimTY , see §2.1. The following
statement is well known.

Lemma 2.6. Let π : X → (Cn, o) be a convenient covering and Y ⊆ X a subanalytic sub-germ
with connected link.

1. The tangent cones satisfy: dimRTY = dimRTπ(Y ). In particular, Y is thin iff (π(Y ), o) is
thin.

2. Suppose T(π(Y ),o) is a (real) half-line.
a. Then the tangent cone TY ⊂ CN is a half-line, i.e. any two arcs on Y are outer-

tangent.
b.Moreover, any two arcs on Y are inner-tangent, i.e. tordY (γ1, γ2) > 1.
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Remark 2.7. Suppose the arcs γ1, γ2 ⊂ Y ⊂ (RN , o) are real-analytic, i.e. their length-
parametrization is by power series with only integer exponents. Then their outer tangency order
(in RN ) is an integer. One might hope that the inner tangency order will be an integer and
Part 2.b will give a stronger bound: tordY (γ1, γ2) ≥ 2. This does not hold. Take a real-analytic
germ Y ⊂ (R3, o) that is not LNE, and such that TY is a half-line. Suppose the (real-analytic)
arcs γ1, γ2 ⊂ Y realize the non-LNE assumption, i.e. tordY (γ1, γ2) < tordR3(γ1, γ2) = 2. Then
1 ≤ tordY (γ1, γ2) < 2.

An explicit example is the set Y ⊂ R3 defined by the equation (x2+y2)2 = z3(x2−y2)+ ǫ2z7,
with 0 < ǫ≪ 1. (It is instructive to draw its section by z = 1.) The tangent cone is the ẑ-axis.
The two arcs of the intersection Y ∩ {x = 0, z ≥ 0} are real-analytic. Their parametrization is

(0, ±2ǫz2√
1+

√
1+z

, z). Their outer contact is 2. But their inner contact is 3
2
.

Corollary 2.8. Suppose two arcs γ1, γ2 ⊂ (Cn, o) are tangent. For any preimage γX
1 ⊂ X ⊂

(CN , o) there exists a preimage γX
2 ⊂ X satisfying tordX(γ

X
1 , γX

2 ) > 1.

Proof. As the arcs are tangent, we can assume the parameterizations γi(t) = (t, hi(t)), where
all the entries of hi(t) are o(t). Build the Hölder triangle on these arcs,

(7) Höld[γ1, γ2] := ∪s∈[0,1]
[
sγ1 + (1− s)γ2

]
:= ∪s∈[0,1]

[
t, s · h1(t) + (1− s) · h2(t)

]
⊂ Cn.

By its construction Höld[γ1, γ2] ⊂ Cn is a subanalytic subset (with connected link) whose tan-
gent cone is the (real) half-line. For a fixed lifting γX

1 ⊂ X we lift the curve Link[Höld[γ1, γ2]]
(homeomorphically) to a curve LinkX [Höld[γ1, γ2]] ⊂ X that starts at Link[γX

1 ]. This defines
the lifting HöldX [γ1, γ2] ⊂ X. Now apply lemma 2.6, with Y = HöldX [γ1, γ2]. �

Remark 2.9. This corollary fails if any of its assumptions are omitted.

i. (Non-convenient covering) Take the covering C3
xyz ⊃ X := V (zp − x) → C2

xy and the

parameterized arcs γ1(t) = (0, t), γ2(t) = (tl, t) for 1 < l ≤ p. Then the only liftings are

γX
1 (t) = (0, t, 0) and γX

2 (t) = (tl, t, ω · t l
p ), where ωp = 1. And 1 = tordC3(γX

1 , γX
2 ) Thus

1 = tordX(γ
X
1 , γX

2 ) < tordC2(γ1, γ2) = l.
ii. (Non-finite map) Let C3

xyz ⊃ V (zy) → C2
xy. Take γ1(t) = (t, o) and γ2(t) = (t, t2), thus

tordC2(γ1, γ2) = 2. For the lifting γX
1 (t) = (t, 0, t) there does not exist γX

2 satisfying:
tordC3(γX

1 , γX
2 ) > 1.

iii. The conclusion cannot be strengthened to tordX(γ
X
1 , γX

2 ) = tordCn(γ1, γ2). For example,
let f(x, y, z) = z2 + x(xp + yp), p > 1. The projection C3 ⊃ V (f) → C2

xy ⊃ ∆ is ramified
over ∆ = V (x(xp + yp)). Take two arcs, γ1 = (0, t) ⊂ ∆ and γ2 = (tq, t), with q > p. Then

tordCn(γ1, γ2) = q, γX
1 = (0, t, 0), γX

2 = (tq, t,±
√
tq+p(1 + tq−p)).

Therefore tordX(γ
X
1 , γX

2 ) ≤ q+p

2
< q.

2.6. Fast cycles. A fast cycle is (roughly speaking) a thin germ that does not admit a hornic
deformation-retraction onto a non-thin germ.

Definition 2.10. Fix a (subanalytic) subgerm Y ⊂ X.

1. A subanalytic neighborhood Y ⊆U(Y )⊆X is hornic if diff.ordX(Y,U(Y ))>1, see (1).
2. Y is called linkwise retractible to a subgerm Y ′ ⊂ Y if there exists a deformation-retraction

Y  Y ′ (inside X) that retracts the links, i.e. Linkt[Y ] Linkt[Y
′] for all 0 < t≪ 1.

3. A thin subgerm Y ⊂ X is called a fast cycle if Y does not admit a hornic neighbor-
hood, Y ⊆ U(Y ) ⊂ X, that linkwise retracts to a subgerm Y ′ ⊂ U(Y ) with dimR(Y

′) =
dimR(TY ′) ≤ dimRTY .

4. Let Y ⊂ X be a fast cycle. Suppose Y admits a hornic linkwise-retraction to Y ′ ⊂ X, with
dimRY

′ = 1+l, and this l is the minimal possible. Then Y is called a fast cycle of dimension l.

A fast cycle whose link is S1 is called a fast loop.
5. The exponent of a fast cycle is diff.ordX(Y, TY ), see (1).
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A remark: these properties depend on the (subanalytic) inner-Lipschitz type of X only, not
on a particular embedding X →֒ (RN , o).

Example 2.11. i. If a (subanalytic) neighborhood, Y ⊂ U(Y ), is hornic, then TY = T(U(Y ),o).
In particular, if dimRU(Y ) > dimRY, then U(Y ) is a thin set.

ii. A simple fast loop is the horn Y = {x2 + y2 = z2β , z ≥ 0} ⊂ R3, with β > 1, considered
inside X = Ball1(o) \ {(0, 0, t)| t ≥ 0}. Note that Link[Y ] is contractible inside Link[X ],
but not hornically.

A simple fast cycle with dimRTY > 1 is the cylinder over the horn, Y = {x2
1 + x2

2 =

x2β
3 , x3 ≥ 0} ⊂ Rn, considered inside the cylinder X = Rn−3 × [Ball1(o) \ {x1 = 0 =

x2, x3 ≥ 0}].
iii. Suppose X is a hornic neighborhood of its arc γ, and moreover, X linkwise retracts to γ.

Then X has no fast cycles.
For non-hornic neighborhoods X can linkwise retract to γ and yet can have fast cycles.
See example ii.

iv. If π1(Link[X ]) 6= {1} then one can expect fast loops on X. However, fast loops/cycles exist
also for exotic spheres, with Link[X ] ∼= S2n−1, see Example 4.8 of [Kerner-Mendes.23].

Lemma 2.12. [Kerner-Mendes.23, §2] An IMC-germ (subanalytic, with closed link) has no fast
cycles.

2.6.1. For normal complex-analytic surface germs the converse of Lemma 2.12 holds:
Theorem 7.5 and Corollary 1.8 of [B.N.P.14]: If X does not contain fast loops, then X is
IMC.

For non-normal surface germs the fast loops are not the only IMC-obstructions.

Example 2.13. Let X = V (xz(x− y2)) ⊂ (C3, o). It has no fast loops. But X is not IMC.
Proof. The locus Sing(X) consists of 2 lines and a parabola. At each point of Sing(X) the
set X is not a topological manifold. If X is inner-Lipschitz equivalent to Cone[Link[X ]] ⊂
(RN , o), then Sing(X) must be sent to Sing[Cone[Link[X ]]] = Cone[Sing[Link[X ]]]. But the
parabola V (z, x − y2) ⊂ Sing(X) is inner tangent to the line V (z, x). Hence their images in
Cone[Sing[Link[X ]]] must be tangent as well. This gives the contradiction. �

3. Detecting fast loops via the discriminant of covering

3.1. The covering data. Take a reduced complex-analytic germ X⊂(Cn+c,o), possibly with
non-isolated singularity, not necessarily a complete intersection.
Take a convenient covering, of degree p. Take the discriminant
∆ with its reduced structure. Below n = 2, and we assume:
∆ ⊂ (C2, o) is a curve germ, see §2.2.

(Cn+c, o) ⊃ X ⊃ Crit(π)
ց ւ π ւ π|
(Cn, o) ⊃ ∆ = ∪∆k︸ ︷︷ ︸

for n=2

• Take the tangential decomposition ∆ = ∪∆k. Here T∆k
is one (possibly multiple) complex

line, and T∆k
∩ T∆i

= o for i 6= k. (But each ∆k can be further reducible.)
Usually we assume that ∆ is not an ordinary multiple point. Thus mult(∆k) ≥ 2 for
some k.
• For each k with mult(∆k) ≥ 2 we take the irreducible decomposition into (complex)
branches, ∆k = ∪∆k,i. They are all tangent, their common tangent (complex) line is T∆k

.
For each ∆k,i let qi be the total ramification index of the covering π : X → (C2, o) over

∆k,i. Namely, qi = p− ♯|π−1(x)| for x ∈ ∆k,i \ o.
For generic projections, and X with an isolated singularity, the ramification is minimal,

{qi = 1}. But we often take convenient non-generic projections.
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• Blowup the origin, take the strict transforms and exceptional divisors, see the diagram.
Note that the curve germs {∆̃j} are now disjoint.
Fix some ∆k, its tangent cone T∆k

is just one line.

Thus the intersection ∆̃k ∩ P1 is just one point.
Denote it by ok. The fibre π̃−1(ok) ⊂ X̃ is a finite
set of points, of cardinality ♯π̃−1(ok) ≤ p.

P1+c ⊂ Blo(C2+k, o) ⊃ X̃ ⊃ π̃−1(ok)
←−π̃ ց

P1 ⊂ Blo(C2, o) ⊃ ∆̃ =
∐

∆̃j ∋ ok

Some of them can be not on a critical locus.
• Accordingly (X̃, π̃−1(ok)) is a (reduced) multi-germ. The number of its connected compo-
nents is just ♯π̃−1(ok). Each connected component of (X̃, π̃−1(ok)) can be further reducible
(even if X is irreducible), see Example 3.1. Denote the total number of the connected

components of the multi-germ (X̃, π̃−1(ok)) \ PTX by rk. Thus 1 ≤ ♯π̃−1(ok) ≤ rk ≤ p.
In Step 2 of the proof of theorem 3.2 we identify rk also as the number of conected

components of π−1Ball, where Ball ⊂ C2 is a small section transversal to some ∆k.

Example 3.1. i. If X has an isolated singularity, then X̃ \PTX is smooth. Then rk coincides
with the total number of irreducible components of the multi-germ (X̃, π̃−1(ok)) \ PTX .

ii. Cases with rk > ♯π̃−1(ok) occur often, even if X is irreducible, with an isolated singularity.
As the simplest case consider the surface germ X = V (z2 − f(x, y)) ⊂ (C3, o). Suppose
ord(f) = 2d ≥ 4 and moreover f(x, y) contains the monomial x2d. Blowup the origin, the
space Blo(C3) ⊂ C3×P2 is defined by the condition (x, y, z) ∼ [σx : σy : σz]. Take the chart
with σx = 1, its coordinates are x, σy, σz. (Thus y = xσy, z = xσz.) The strict transform

X̃ is then defined by σ2
z + x2d−2(1 + g(x, σy)), where g(x, σy) ∈ (x, σy). This surface germ

is reducible, hence rk = 2 > ♯π̃−1(ok) = 1.

3.2. Fast loop criterion for surface germs. (Keeping the notations of §3.1.)

Theorem 3.2. The germ X has no fast loops iff one the following holds:

• either ∆ is one point or a curve germ that is an ordinary multiple point (i.e. all its
branches are smooth and pairwise non-tangent);
• or ∆ is a curve germ and each non-smooth tangential component∆k ⊂ ∆ (with mult(∆k) ≥
2 and the data ∆k = ∪i∆k,i, qi, rk, as above) satisfies: p > rk − 1 +

∑
i qi ·mult(∆k,i).

Proof. We realize Link[X ] as X ∩ V (|x1|2 + |x2|2 − ǫ), 0 < ǫ ≪ 1, by the convenience of the
covering.

A fast loop (if any) must lie in a hornic neighborhood of the critical locus, Crit(π) ⊂ X.
Therefore in the case “∆ is one point” (and hence Crit(π) is a finite set) there can be no fast
loops.

Below we assume that the critical locus is a curve germ, and hence also ∆. Then the image
of a fast loop must lie in a hornic neighborhood U(∆k) for some tangential component ∆k ⊂ ∆.
Moreover, this image cannot lie in U(∆k) for a smooth component ∆k. Indeed, if mult(∆k) =
1, then each component of X lying over U(∆k) is linkwise-contractible, see definition 2.10.
Therefore below we consider only tangential components with ord ∆k ≥ 2.

• In Step 1 we show: Link[X ] contains a non-contractible loop “over U(∆k)” iff X has a
fast loop in a hornic neighborhood of π−1∆k. Here the direction ⇚ is immediate.
• In Step 2 we translate the condition “Link[X ] contains a non-contractible loop over
U(∆k)” into “p ≤ rk − 1 +

∑
i qi ·mult(∆k,i)”.

Step 1. Take the x̂1-axis as the tangent of ∆k ⊂ C2
x1x2

. We work hornically near ∆k. For each
0 < to ≪ 1 take the section V (x1 − to) ∩∆k. These are several points, their number
is mult(∆k).

As the parameter t ∈ R>0 goes to zero these points draw the subanalytic arcs,
{γi}i ⊂ ∆k ⊂ C2. Each of these arcs has the length-parametrization (t, gi(t)), here
gi(t) = o(t) because T∆k

= SpanC(x̂1). In particular, these arcs {γi} are all tangent
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in (C2, o). For each pair of these arcs we take the Hölder triangle, as in (7),

(8) Höld[γi, γj] := ∪s∈[0,1]
[
s · γi + (1− s) · γj

]
:= ∪s∈[0,1]

[
t, s · gi(t) + (1− s) · gj(t)

]
⊂ C2.

This defines the tangent foliation on each Höld[γi, γj]. Indeed, any two arcs γs, γs′ ⊂
Höld[γi, γj] intersect at o only and are tangent. (Because gi(t) = gj(t) occurs when
either i = j or t = 0.)

The union C2 ⊃ Höld := ∪i 6=jHöld[γi, γj] is the “Hölder polyhedron”. This is a
subanalytic set and its tangent cone is the real line SpanR(x̂1). Its link is connected
and can be realized as Höld ∩ V (x1 − to).

The lifted Hölder polyhedron is the full pre-image:

(9) HöldX := π−1Höld = ∪i 6=jπ
−1(Höld[γi, γj]) ⊂ X.

Puncturing at o we get several connected components, HöldX \ o =
∐

l(HöldXl \ o).
Each HöldXl is a (real) subanalytic surface, foliated by the preimages of the foliations
on Höld[γi, γj] for all i, j. And Link[HöldXl ] is connected. Lemma 2.6 gives: the
tangent cone of each HöldXl is a real line, and on each HöldXl the arcs of our foliation
are inner-tangent.

Inside the complex line V (x1 − to) ⊂ C2 take an open ball Ball satisfying:

(10) ∆k ∩ V (x1 − to) ⊂ Ball and (∆ \∆k) ∩Ball = ∅.

Such a ball exists for 0 < to ≪ 1 as every branch of ∆ \∆k is non-tangent to ∆k.
Suppose the full preimage π−1Ball ⊂ X∩V (x1−to) contains a (compact, connected)

non-contractible loop Z. By deforming/shrinking Z ⊂ π−1Ball we can assume π(Z) ⊂
Höld ∩ Ball. Indeed, fix a simply-connected path η ⊂ Höld ∩ Ball that visits all the
points of ∆k ∩ V (x1 − to). The retraction Ball  η lifts to π−1Ball  π−1η.

Therefore Z lies insideHöldX∩V (x1−to). Then it lies inside a connected component,
Z ⊂ HöldXl ∩ V (x1− to) for some l. Finally, one can assume: Z is subanalytic, §1.5.v.

Using the (inner-tangent) foliation on that component HöldXl we get the subanalytic
surface germ

(11) R>0Z := ∪z∈Zγz ⊂ HöldXl ⊂ X.

Its tangent cone is a real half-line, it lies inside the tangent cone of HöldXl . Thus
R>0Z is a thin germ. By our construction the germ R>0Z is not linkwise-retractible
inside π−1Cone[Ball], see §2.6. Hence it is not linkwise retractible inside any hornic
neighborhood of TR>0Z Therefore R>0Z is the promised fast loop.

Step 2. It remains to check whether a non-contractible (connected, compact) loop Z ⊂ π−1Ball
exists. Namely (in terms of the first homology), whether h1(π−1Ball) > 0. Therefore
it remains to show the equivalence:

(12) h1(π−1Ball) > 0 if and only if p ≤ rk − 1 +
∑

i

qi ·mult(∆k,i).

Thus we compute the Euler characteristic χ(π−1Ball) and the number of connected
components h0(π−1Ball).

• The map X ⊃ π−1Ball
p:1→ Ball ⊂ V (x1 − to) ⊂ C2 is a covering of complex

analytic curves. If X has a non-isolated singularity then the complex-analytic curve
π−1(Ball) can be singular. The covering is ramified over the discriminantal points
∆k ∩ V (x1− to). For the branch decomposition ∆k = ∪∆k,i we get ♯|∆k,i ∩ V (x1−
to)| = mult(∆k,i), and these points are of ramification index qi. Riemann-Hurwitz
formula applied to this covering gives:

(13) χ(π−1Ball) = p · χ(Ball)−
∑

qj = p−
∑

qi ·mult(∆k,i).



13

• We compute the number of connected components: h0(π−1Ball)=rk. Blowup the
origin to get the diagram, as in §3.1. Take the

intersection point ok := ∆̃∩P1∩ ˜Cone[Ball]=
∆̃k ∩ P1. Take the pre-images π̃−1(ok) ⊂
PTX ⊂ X̃.

∐
∆̃k ⊂ Bl(C2, o) π̃← X̃ ⊂Blo(CN , o)
↓ ↓ σ ↓ ↓
∪∆k ⊂ (C2, o) π← X ⊂ (CN , o)

We get the multi-germ (X̃, π̃−1(ok)). By definition, rk is the number of connected

components of (X̃, π̃−1(ok)) \ PTX =:
∐

Ỹl. Here each Ỹl is a connected (locally-
closed) complex-analytic surface.

Starting from Ball ⊂ V (x1−to) ⊂ C2, we get (σ◦π̃)−1Ball ⊂ ˜V (x1 − to)∩X̃. As we

work with the multi-germ (X̃, π̃−1(ok)) we can assume: (σ◦π̃)[ ˜V (x1 − to)∩(
∐

Ỹl)] ⊂
Ball. Therefore we can ignore all the components of ∆ \ ∆k, i.e. we can assume
∆ = ∆k.

It is enough to prove: Ỹl ∩ ((σ ◦ π̃)−1Ball) is connected for each l. This will imply:
the number of connected components of

∐
Ỹl ∩ ((σ ◦ π̃)−1Ball) coincides with the

number of connected components of
∐

Ỹl. And therefore:

(14) h0(π−1Ball) = h0((σ ◦ π̃)−1Ball) = h0((
∐

Ỹl) ∩ ((σ ◦ π̃)−1Ball)) = h0(
∐

Ỹl) = rk.

Fix two points, p̃1, p̃2 ∈ Ỹl∩(σ◦π̃)−1Ball.We can assume (w.l.o.g.) p̃1, p̃2 6∈ Crit(π̃).

Take a path [p̃1
η̃
 p̃2] ⊂ Ỹl. We want to deformation-retract η̃ into a path inside

Ỹl∩ (σ ◦ π̃)−1Ball. Take the image η := (σ ◦ π̃)(η̃) ⊂ C2 \{o}. It connects the points
σ(π̃(p̃1)), σ(π̃(p̃2)) ∈ Ball.

i. Suppose η̃ ∩ Crit(π̃) = ∅. Then we can assume η ∩∆ = ∅, i.e. η ⊂ C2 \∆.
Then η can be deformation-retracted (inside C2 \∆, and preserving the end-
points) to a path inside Ball \ (Ball ∩∆).

This deformation lifts uniquely to the deformation of η̃ inside X̃ \ Crit(π̃),

while preserving the points p̃1, p̃2. The deformed path, [p̃1
η̃1
 p̃2] lies fully

inside Ỹl ∩ (σ ◦ π̃)−1Ball.
ii. The path η̃ can happen to intersect the critical locus Crit(π̃). Moreover, η̃

can be non-deformable off Crit(π̃). E.g. let Yl be connected but reducible,
with p̃1, p̃2 lying in distinct components. Then η̃ inevitably intersects the
locus Sing(Ỹl) ⊆ Crit(π̃).

We claim: η̃ can be deformed (inside Ỹl) to a path [p̃1
η̃1
 p̃2] satisfying:

η̃1 ∩ Crit(π̃) ⊆ (σ ◦ π)−1Ball ∩ Ỹl. Indeed, we can assume (w.l.o.g) that
η̃1∩Crit(π̃) is a finite number of points. Therefore the set η∩∆ is finite. Over
each such intersection point we can slightly deform η̃ to get: the intersection
η ∩∆ is transverse.
Now we slide-move all the points of η ∩ ∆ (along ∆) into Ball ∩ ∆. This
deformation lifts uniquely to a deformation of η̃. (Because ∆ \ o is a smooth
curve and η ⋔ ∆.)

Finally, having reached the path with η̃1 ∩Crit(π̃) ⊆ (σ ◦ π)−1Ball ∩ Ỹl, one
applies part i. to all the connected components of η̃1 \ (η̃1 ∩ Crit(π̃)).

We have proved: h1(π−1Ball) = rk − p +
∑

qi ·mult(∆k,i). This gives equation (12)
Hence the statement. �

Combining this theorem with §2.6.1, we get:

Corollary 3.3. Suppose X is a normal surface germ and ∆ is a curve germ. Then X is
IMC iff all the non-smooth tangential components ∆k ⊂ ∆ (with mult(∆k) ≥ 2 and the data
∆k = ∪i∆k,i, qi, rk, as above) satisfy: p > rk − 1 +

∑
i qi ·mult(∆k,i).
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3.2.1. An example: X ⊂ (C2+c, o) is weighted-homogeneous, with weights ω1 ≤ ω2 ≤ · · · ≤ ω2+c.

Corollary 3.4. Suppose ω1 = ω2 and the projection X → (C2
x1x2

, o) is convenient. Then X
has no fast loops. If, moreover, X is a normal surface germ then X is IMC.

A remark, if ω1 < ω2, then X necessarily has a fast loop, [Kerner-Mendes.23, §4].
Proof. The discriminant ∆ ⊂ (C2, o) of the projection X → (C2

x1x2
, o) is weighted-homogeneous

with weights ω1, ω2. Hence it is homogeneous, i.e. an ordinary multiple point. Now invoke
(trivially) theorem 3.2. �

3.2.2. An example: surface germs of multiplicity 2. Such a germ is necessarily a surface in
(C3, o). Thus we start from X = V (z2 − a0(x, y)) ⊂ (C3, o), where ord(ao) ≥ 2.

Corollary 3.5. X has no fast loops iff the curve germ V (ao(x, y)) ⊂ (C2, o) is set-theoretically
an ordinary multiple point.

For X with an isolated singularity this gives the IMC criterion.
Proof. The covering X → (C2, o) is totally ramified over the discriminantal curve, ∆ :=
V (ao(x, y)) ⊂ (C2, o), taken set-theoretically. If ∆ is an ordinary multiple point, then there is
nothing to check in theorem 3.2. Otherwise ∆ contains a non-smooth tangential component,
∆k, with mult(∆k)≥2. Then p=2≤mult(∆k) · (2− 1) + (rk − 1). Hence X has a fast loop. �

Example 3.6. (IMC’s of multiplicity 2 and right-modality≤ 2)

• Among the simple types (i.e. ADE’s) the only IMC’s are: A1 (x2 + y2 + z2) and D4

(z2 + x3 + y3). This is well known, see e.g. [B.F.N.08].
• The only non-simple IMC germ of multiplicity 2 and right-modality≤ 2 is X9 (z2 + x4 +
y4+a ·x2y2), see the tables in [A.G.L.V.I, pg.24]. The next case, z2+x5+y5+a3,2x

3y2+
a2,3x

2y3 + a3,3x
3y3, has modality≥ 3.

3.2.3. An example: germs of type V (zp + za1(x, y) + a0(x, y))⊂(C3, o), p≥3. Here ord(ao)≥p,

ord(a1)≥ p − 1. By §2.4 we get a simple expression for the discriminant, ∆ = (a0(x,y)
p−1

)p−1 −
(a1(x,y)

p
)p ∈ C{x, y}. This can be not square-free. Denote its reduced version by ∆red. Take

the lowest order terms, l.t.(∆), resp. l.t.(∆red). These homogeneous polynomials define the
tangent-cone of V (∆), resp. of V (∆red). Blowup the origin, P2 ⊂ Bl(C3, o)→ (C3, o), and take
the strict transform X̃ → X.

Corollary 3.7. 1. Suppose a1 = 0. Then X has no fast loops iff V (ao) ⊂ (C2, o) is set-
theoretically an ordinary multiple point.

2. Suppose a1 6= 0. Factorize the lowest order terms, l.t.(∆) =
∏

lk(x, y)
mk , resp. l.t.(∆red) =∏

lk(x, y)
mk,red. Then X has no fast loops iff for each k with mk,red ≥ 2 the following con-

ditions hold:
i. mk ≤ p.
ii. The total number of irreducible components of the analytic germ X̃ at all the points

of X̃ ∩ P2 ∩ Ṽ (lk) is at most p−mk.

A remark: in most cases already the condition 2.i. is violated, i.e. one has mk > p.
Proof. In both cases we should verify the bound p > rk − 1 +

∑
i qi ·mult(∆k,i) of theorem 3.2.

1. If a1 = 0 then the covering X → (C2, o) is totally ramified over the curve V (ao(x, y)) ⊂
(C2, o). The total ramification index is then qi = p−1, and rk ≤ p. Then the bound holds
iff mult(∆k) = 1 for all k.

2. In this case mk,red = mult(∆k) and
∑

i qi ·mult(∆k,i) = mk. Thus the necessary and suf-
ficient condition to be IMC, i.e. p > rk−1+mk, means exactly the conditions i. and ii. �

Already in this (very particular) case we get a vast amount of IMC’s.
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Example 3.8. Let X = V (zp + za1(x, y) + a0(x, y)) ⊂ (C3, o), with p ≥ 3, and an isolated
singularity. Suppose the power series a0(x, y), a1(x, y) are co-prime.

• Suppose ord(a1(x,y))
p−1

> ord(a0(x,y))
p

. Then l.t.(∆) = l.t.(a0(x, y)
p−1). Thus X is IMC iff the

(set-theoretic) curve germ V (a0(x, y)) ⊂ (C2, o) is an ordinary multiple point.

• Suppose ord(a1(x,y))
p−1

< ord(a0(x,y))
p

. Then l.t.(∆) = l.t.(a1(x, y)
p). Thus X is IMC iff the

(set-theoretic) curve germ V (a1(x, y)) ⊂ (C2, o) is an ordinary multiple point.

3.3. Fast loops imposed by singular points of the tangent cone. Suppose a surface
germ X ⊂ (C2+c, o) is a strictly complete intersection with isolated singularity, §2.1.2. The
projectivized tangent cone is then a (globally) complete intersection curve, PTX ⊂ P1+c ⊂
Blo(C2+c, o). It can be reducible, non-reduced, i.e. can have multiple components. Occasionally
we take the underlying set-germ (with reduced structure), PT red

X . One has the total degree,
deg[PTX ] = p, and the set-theoretic degree, deg[PT red

X ] ≤ p.
Call a point pt ∈ PTX reduced if the curve germ (PTX , pt) is reduced. Thus (PTX , pt) is an

ICIS, and its Milnor number, µ(PTX , pt), is well defined.
Call a hyperplane Pc ⊂ P1+c ⊂ Blo(C2+c, o) non-tangent to the curve PTX if Pc is transverse

to the tangent cone of the germ (PTX , pt) at each intersection point pt ∈ Pc ∩ PTX .

Example 3.9. i. The generic hyperplane Pc ⊂ P1+c is non-tangent. It intersects PT red
X

transversally and only at smooth points of PT red
X .

ii. Suppose the germ (PTX , pt) is reduced and singular. Among all the hyperplanes through
pt, take the generic one. It is non-tangent to PTX .

iii. More generally, take some reduced singular points, pt1, . . . , ptj ∈ Sing(PTX), with j ≤ c.
The linear system of hyperplanes through these points has dimension≥ c+ 1− j. And the
generic member of this family is non-tangent to PTX at the points pt1, . . . , ptj, unless these
points are in degenerate position with respect to the curve PTX .

Theorem 3.10. 1. If X is IMC and the curve PTX is reduced then PTX is smooth. (I.e.
TX has an isolated singularity, i.e. X is a “generalized ordinary multiple point”.)

2. Suppose a hyperplane Pc ⊂ P1+c is non-tangent to PTX , and contains reduced singular
points {pti} of the curve PTX . If their Milnor numbers satisfy

∑
µ(PTX , pti) ≥ 1 +

deg[PTX ]− deg[PT red
X ], then X has a fast loop.

In particular, if PTX = PT red
X , any (reduced) singular point of PTX ∩Pc produces a fast

loop.

The converse to part 1 is Example 3.8 in [Kerner-Mendes.23].
Proof. Part 1 follows straight from Part 2. Part 2 is proved in steps.

• Take the (convenient) projection C2+c → C2 associated to Pc. Then Pc is sent to a point
ok ∈ P1 ⊂ Blo(C2, o). Take the corresponding tangential component of the discriminant,
∆k ⊆ ∆. To use theorem 3.2 we verify the condition p ≤ rk − 1 +

∑
qi ·mult(∆k,i). First

we bound rk ≥ ♯π̃−1(ok).
• We express

∑
qi ·mult(∆k,i) as the multiplicity of the polar curve, and use the formula

of §2.4.2.

Step 1. The projection (C2+c, o) π→ (C2
x1x2

, o) lifts to Blo(C2+c, o) ⊃ P1+c \ ˜V (x1, x2) → P1 ⊂
Blo(C2, o). By a preliminary GL(C2+c) transformation one can assume:

(15) Pc = Ṽ (x1) ∩ P1+c, ˜V (x1, x2) ∩ PTX = ∅,

the intersection ˜V (a1x1 + a2x2) ∩ PTX is finite for all[a1 : a2] ∈ P1.

Indeed, once the first condition is satisfied, one uses the remaining freedom xi →
xi + li(x1 . . . x2+c) for i = 2, . . . , 2 + c, and generic linear forms {li}.

Thus π sends Pc \ ˜V (x1, x2) to the point ok := [0 : 1] ∈ P1. We get the diagram:
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(16)

(C2+c, o) ← Blo(C2+c, o) ⊃ P1+c

∪ ∪ ∪
Crit(π) ⊂ X ← X̃ ⊃ PTX ⊃ π̃−1(ok) ⊇ {pti}
↓ π ↓ π̃ ↓ ↓ π̃| ↓
∆ ⊂ (C2, o) ← Blo(C2, o) ⊃ P1 ∋ ok

Here are the needed properties of this diagram.

i. The projection π is convenient, as TX ∩ V (x1, x2) = (o), as ˜V (x1, x2)∩ PTX = ∅.
ii. The projection π̃ is finite, as π is convenient. (By part 1 of Lemma 2.2.)
iii. The curve PTX ⊂ P1+c is a complete intersection of the (total) degree p. Therefore,

π̃| is a (flat, ramified) p : 1 covering. (Part 2 of Lemma 2.2.)
iv. The fibre π̃−1(ok) ⊂ PTX contains the reduced singular points {pti}. Its cardinality

is bounded, ♯π̃−1(ok) ≤ p−∑
õj∈π̃−1(ok)

(mult(PTX , õj)− 1). As the hyperplane Pc

is non-tangent to PTX , this bound is an equality.
Altogether, we get:

(17) rk ≥ ♯π̃−1(ok) = p−
∑

õj∈π̃−1(ok)

(mult(PTX , õj)− 1) =

= p−
∑

(mult(PTX , pti)− 1)− deg[PTX ] + deg[PT red
X ].

v. The projection Crit(π) → ∆ lifts to the (finite) projection Crit(π̃) → ∆̃ ∪ P1.

Here X̃ is locally-complete intersection, thus Crit(π̃) as well (part 1 of Lemma
2.3).

We claim: Crit(π̃) = C̃rit(π)∪Non.Red(PTX), the non-reduced components of
PTX . Indeed, π̃ is not a local isomorphism at any point of Non.Red(PTX). (Be-
cause the local ramification index of π̃ at each point of Non.Red(PTX) is the
multiplicity of Non.Red(PTX), hence ≥ 2.) Vice versa, Crit(π̃) is a locally com-

plete intersection curve, thus Crit(π̃) \Non.Red(PTX) is of pure dimension 1.

Hence, besides C̃rit(π), it can consist only of some irreducible components of
PTX . But the restriction of π̃ to each irreducible, reduced component of PTX is a
local isomorphism (over P1) except at a finite number of points.

Step 2. Take the image ∆̃k := π̃(Crit(π̃), π−1(ok)) ⊂ (Blo(C2, o), ok). This is the strict trans-
form of ∆k ⊂ (C2, o), a tangential component of ∆.

Take the coordinate change Φ : x→ x+h(x), where the terms h(x) = (h1(x), . . . , h2+c(x))
of order two and generic. This lifts to an automorphism Φ̃ � Blo(C2+c, o), with

Φ̃|P1+c = Id. (Because Φ′|o = Id.) Therefore Φ̃ preserves ok, and all the properties of
Step 1 are preserved. And applying Φ the covering X → (C2, o) becomes generic in
the following sense: qi = 1 for all i.

Therefore
∑

i qi ·mult(∆k,i) = mult(∆k, o), and we compute this multiplicity.

Pass from (C2, o) to Blo(C2, o) by mult(∆k) = 〈∆̃k,P1〉. By our choice of co-
ordinates, ok = [0 : 1] ∈ P1, i.e. the tangent line of ∆k is Span(x̂2). Thus at
any point of π̃−1(ok) the exceptional divisor is defined locally by x2 = 0. Then

〈∆̃k,P1〉 = 〈∆̃k, ˜V (x2 − to)〉, as ∆̃k ⊂ Blo(C2, o) is a hypersurface. Take the multi-
germ Critk(π̃) := (Crit(π̃), π̃−1(ok)). Then

(18) mult(∆k) = 〈Critk(π̃), ˜V (x2 − to)〉 ≥ 〈Critk(π̃) \ PTX ,P
1+c〉 ≥

∑
〈(Crit(π̃), pti),P

1+c〉.

Both inequalities hold here as Crit(π̃) (with its scheme structure) is a locally complete
intersection (lemma 2.3).

At the chosen reduced singular points, pti ∈ PTX ∩Pc, one has: 〈Crit(π̃),P1+c〉pti =
µi +mult(PTX , pti)− 1. (Apply §2.4.2 to the reduced curve germ with (PTX , pt).)
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Altogether we have: mult(∆k)≥
∑

(µi+mult(PTX , pti)−1). In particularmult(∆k)≥
2.

Combine this with (17) to get: rk +mult(∆k)− p ≥
∑

µi− deg[PTX ] + deg[PT red
X ]. Together

with the assumption
∑

µi ≥ 1 + deg[PTX]− deg[PT red
X ] we get: rk +

∑
qi ·mult(∆k,i) ≥ p+ 1.

Hence the statement. �

Example 3.11. i. For any super-isolated surface singularity in (C3, o) the projectivized tan-
gent cone is reduced. In this case X is IMC iff it is an ordinary multiple point. This was
obtained in [B.N.P.14], example 15.1.

ii. Suppose a strictly complete intersection surface germ (with isolated singularity) is both
LNE and IMC. Then X is an ordinary multiple point. In particular, X ∼= (TX , o).

Indeed, TX of an LNE is reduced, [Fernandes.Sampaio.19]. Thus PTX is smooth.

Remark 3.12. Part 2 of this theorem does not hold for germs with non-isolated singularities.
E.g. let X ⊂ (C3, o) be an arrangement of planes (through the origin). Then X is an IMC and
LNE, and PTX is reduced but non-smooth.

3.3.1. An example: IMC’s of right modality ≤ 2. (Continuing example 3.6.)

Corollary 3.13. Among the surface singularities in (C3, o) of right modality ≤ 2 the only
IMC’s are: A1, D4, P8 (x3 + y3 + z3 + a · xyz), and X9 (z2 + x4 + y4 + a · x2y2).

Proof. The case of corank=2 was treated in §3.2.2. Thus we consider only the cases of corank=3.
Their tables are listed e.g. in [A.G.L.V.I, pg. 24]. In particular, the only ordinary multiple
points of modality ≤ 2 are D4, P8.

Suppose X is IMC and not an ordinary multiple point. Then the curve PTX must have
multiple components. But all the corank=3 surface singularities of modality ≤ 2 have reduced
tangent cone. (By the direct check of those tables.) �

3.4. Detecting fast loops in higher dimensions, n ≥ 3. Let X ⊂ (CN , o) be as in §1.5.i,
with an arbitrary singularity. Take a convenient covering, (CN , o) ⊃ X → (Cn, o) ⊃ ∆. We
assume dimC∆ = n− 1, e.g. this holds if X is a complete intersection.

Fix a smooth surface germ S ⊂ (Cn, o), and (set-theoretically) restrict the covering, X ∩
π−1S π|S→ S ⊂ (Cn, o). Then X ∩ π−1S is a (pure dimensional, possibly reducible) surface, and
the projection π|S is still a convenient covering (see §2.2), of degree p. Now π|S is ramified over
the curve germ ∆|S := ∆∩S. As in §3.1 we take a tangential component, ∆|S  ∆k = ∪(∆k,i, o),
and the corresponding covering data rk, {qi}, {mult(∆k,i)}.

Observe that the embedded topological type of the planar curve germ ∆|S ⊂ S ∼= (C2, o) can
vary when the section S ⊂ (Cn, o) varies.

Proposition 3.14. Suppose the section ∆|S has a tangential component ∆k with mult(∆k) ≥ 2.
Suppose any deformation S(t) of the surface S = S(o) that preserves the tangent plane TS ⊂ Cn

results in an equisingular family of the planar curve germs, ∆k(t) ⊂ S(t). If p ≤ rk−1+
∑

i qi ·
mult(∆k,i) is satisfied for S(0), then X has a fast loop.

Here t ∈ R1 in the family S(t), i.e. t is not necessarily small.
Proof. Restrict the covering as in the assumption, X ⊃ XS → S ⊃ ∆|S . This is still a convenient
covering. As in the proof of theorem 3.2 we get a fast loop R>0Z ⊂ XS . We show that it is a
fast loop also inside X.

Any deformation of S that preserves the tangent plane TS induces an equisingular family
∆k(t). Thus it induces a family of fast loops, R>0Z(t) ⊂ XS(t), with no hornic link-wise retrac-
tion, §2.6. Thus R>0Z could be possibly link-wise retractible inside X only in a family with
varying tangent planes. But such a retraction is non-hornic. Therefore R>0Z is a fast loop also
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inside X , by §2.6. �

Remark 3.15. The assumption of equisingularity of ∆k(t) ∩ S(t) is important. Without it
one could start, e.g. from a homogeneous ∆ ⊂ (Cn, o), and take an intersection with a tangent
smooth surface, to get a singular branch of high multiplicity. This would ensure a germ that is
a fast cycle inside X ∩ π−1S, but admits a hornic linkwise retraction inside X.

As a corollary we get: points of high multiplicity of PT∆ ⊂ Pn−1 ⊂ Blo(Cn, o) ensure fast
loops in X.

Corollary 3.16. Let X ⊂ (Cn+c, o) be a complete intersection of dimension n ≥ 3 and mul-
tiplicity p. Take a convenient covering X → (Cn, o) ⊃ ∆ and suppose the total ramifica-
tion index over each point of ∆ is at least q, see §3.1. Suppose a point ok ∈ PT∆ satisfies:
mult(PT∆, ok) ≥ p

q
and mult(PT∆, ok) > mult(∆̃, ok). Then X has a fast loop.

Proof. To apply proposition 3.14 we blowup Blo(Cn, o) σ→ (Cn, o) and fix a smooth (C-analytic)
surface germ S ⊂ (Cn, o) satisfying:

ok ∈ S̃ ∩ Pn−1 ⊂ Blo(Cn, o) but S is generic otherwise.

Then S∩∆ is a reduced plane curve germ. One of its tangential component is ∆k := σ(S̃∩∆̃, ok).

We bound its multiplicity, mult(∆k) = 〈∆̃k,Pn−1〉 = mult(PT∆, ok) ≥ p

q
. Therefore we have the

assumption of proposition 3.14:

(19) p =
p

q
· q ≤ (rk − 1) + q ·mult(∆k) ≤ (rk − 1) +

∑

i

qi ·mult(∆k,i).

It remains to verify: any deformation S(t) that preserves the tangent plane, TS(t) = TS(0),
induces an equisingular family of planar curve germs, ∆k(t) ⊂ S(t). This is done by ex-
plicit computation. Denote mult(∆) = d and mult(PT∆, ok) = m. Choose the coordinates
in (Cn, o) such that ok = [0 : · · · : 0 : 1] ∈ PT∆, but generically otherwise. Then the defin-
ing equation of ∆ belongs to the ideal (x1, . . . , xn−1)

m · (x1, . . . , xn)
d−m + (xn)

d+1 ⊂ C{x}.
Moreover, by the genericity of the coordinate choice, the defining equation of ∆ contains the
monomials xd

1, . . . , x
d
n−1, x

m
1 x

d−m
n , . . . , xm

n−1x
d−m
n , xd+m−1

n . (The last monomial is ensured by the

condition mult(PT∆, ok) > mult(∆̃, ok).) After a GL(n− 1)-transformation on the coordinates
x1, . . . , xn−1, the surface S is defined by the ideal 〈x2−a2(x1, xn), . . . , xn−1−an−1(x1, xn)〉, with
ai ∈ (x1) + (xn)

2. Thus the curve germ ∆∩ S is defined by : xd+m−k
n + xm

1 x
d−m
n + xd

1 + (h.o.t.),
for some m > k > 0, and with some coefficients. Any deformation S(t), i.e. a deformation of
a2(x1, xn), . . . , an−1(x1, xn) by terms in (x1, xn)

2, results in monomials strictly above the New-
ton diagram. Hence it gives an equisingular family ∆k(t). Thus both assumptions of proposition
3.14 are satisfied. �

Example 3.17. Consider hypersurface germX = V (xp
n+1−f(x1, . . . , xn)) ⊂ (Cn+1, o). Suppose

ord(f) ≥ p ≥ 2 and f is square-free. Then the covering X → (Cn
x1...xn

, o) is convenient, and its
discriminant, ∆ = V (f) ⊂ (Cn, o), is reduced. The total ramification index over each point of ∆
equals (p−1). Therefore the ratio in corollary 3.16 is p

q
= p

p−1
≤ 2. Suppose ∆ is not an ordinary

multiple point, i.e. PT∆ has a singular point, say ok ∈ Pn−1. If mult(PT∆, ok) > mult(∆̃, ok),
then X has a fast loop.

As a particular case, let X = V (xp
n+1 −

∑n

i=1 x
di
i ) ⊂ (Cn+1, o), with d1 ≥ d2 ≥ · · · ≥

dn ≥ p ≥ 2. The discriminant is ∆ = V (
∑n

i=1 x
di
i ) ⊂ (Cn, o). Suppose d1 > dn, then PT∆

has multiplicity dn at the point ok := [1 : 0 : · · · : 0] ∈ Pn−1 ⊂ Blo(Cn, o). Define the local
coordinates at this point via x1 = x̃1, x2 = x̃2 · x̃1,. . . , xn = x̃n · x̃1. Take the strict transform
∆̃ = V (x̃d1−dn

1 + · · · + x̃dn
n ) ⊂ Blo(Cn, o). Then mult(PT∆, ok) > mult(∆̃, ok) iff d1 < 2dn.

Altogether, if dn < d1 < 2dn then X has a fast loop. In fact, a sufficient condition for a fast
loop is just dn < d1, see [Kerner-Mendes.23].
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