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Abstract: Quantitative analysis of microstructural features on the nanoscale, including 

precipitates, local chemical orderings (LCOs) or structural defects (e.g. stacking faults) 

plays a pivotal role in understanding the mechanical and physical responses of 

engineering materials. Atom probe tomography (APT), known for its exceptional 

combination of chemical sensitivity and sub-nanometer resolution, primarily identifies 

microstructures through compositional segregations. However, this fails when there is 

no significant segregation, as can be the case for LCOs and stacking faults. Here, we 

introduce a 3D deep learning approach, AtomNet, designed to process APT point cloud 

data at the single-atom level for nanoscale microstructure extraction, simultaneously 

considering compositional and structural information. AtomNet is showcased in 

segmenting L12-type nanoprecipitates from the matrix in an AlLiMg alloy, irrespective 

of crystallographic orientations, which outperforms previous methods. AtomNet also 

allows for 3D imaging of L10-type LCOs in an AuCu alloy, a challenging task for 

conventional analysis due to their small size and subtle compositional differences. 

Finally, we demonstrate the use of AtomNet for revealing 2D stacking faults in a Co-

based superalloy, without any defected training data, expanding the capabilities of APT 

for automated exploration of hidden microstructures. AtomNet pushes the boundaries 

of APT analysis, and holds promise in establishing precise quantitative microstructure-

property relationships across a diverse range of metallic materials. 
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1. Introduction 

The overall set of physical properties in materials is governed by microstructures 

across multiple length scales, spanning from grain-level phase constitution [1-3] down 

to atomic-level solute distribution [4-6]. Understanding these features necessitates 

advanced characterization techniques at different length scales for specific applications. 

Difficulties arise at finer scales, largely owing to the more significant challenges in 

balancing spatial resolution and statistical reliability [7, 8]. Atom probe tomography 

(APT), with excellent elemental sensitivity and near-atomic resolution [9], can perform 

a quantitative 3D assessment of nanoscale microstructures in engineering materials and 

as such allows for direct correlation with macroscopic properties. This includes not only 

nanoscale precipitates [10-12], complex oxides [13, 14] and multiphases [15, 16], but 

also crystalline defects such as dislocations [17, 18] and grain boundaries [19, 20]. 

Their successful detection generally depends on a certain degree of compositional 

segregation. Relevant algorithms include isosurface analysis, K nearest neighbor, and 

radial distribution function to visualize or indicate the degree of segregation [21-24]. 

An obvious limitation occurs when there are subtle or even negligible elemental 

segregations, as can be the case for local chemical ordering (LCO) [25] or 2D stacking 

faults [26] that have been reported as challenging to analyze. Finding ways to exploit 

the partial structural information within APT data becomes crucial to characterizing 

those elusive microstructural features.  

Following reconstruction, APT data takes the form of a 3D point cloud along with 

the atomic or ionic identity [27, 28]. APT’s chemical sensitivity is in the range of 10–

100 ppm, but its spatial information is anisotropic due to the trajectory aberrations (the 

resolution of the best scenario is 0.3 nm in the lateral direction and 0.1 nm in the depth 

direction) [29, 30]. In addition, 20–65% of the ions are randomly lost, because of the 

limited open area of the particle detector or due to grids with limited transparency on 

the path of the ions. As a result, the mining of the remaining high-quality yet partial 

crystallographic information requires expertise, sophisticated tools, and remains both 

time-consuming and user-dependent [31-34]. Machine-learning-based algorithms are 

being developed to improve data extraction, simplify and automate data analyses, 

including user-independent mass spectrometry analysis [35-38], intelligent interface 

detection [19, 39, 40], or more complete APT data analysis workflow [41, 42].  

Another example is the analysis of the partial structural information retrained 

within APT data [43]. This is typically analyzed through the use of spatial distribution 

maps (SDM). The generation of a single SDM requires the integration of signals from 

a certain volume of atoms (1–2 nm), and the 3D structural data is reduced to 1D- of 2D-

histograms enabling the quantification, along specific crystallographic orientations, of 

inter-atomic distances. Systematically generating and analyzing SDMs large datasets 

from which millions of SDM patterns require automated analysis workflows as recently 

enabled by machine-learning [44, 45], including for challenging LCO detection [25, 46, 

47].  

With APT’s point cloud being intrinsically 3D, it is natural to extend these 

methodologies for extracting microstructural features directly to 3D, going beyond 

conventional analyses that start with a data dimensionality reduction into 1D/2D 
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descriptors, causing potential information loss [25, 31]. Our recent work demonstrated 

the possibility of applying a 3D convolutional neural network (CNN) to analyze 

voxelized APT data to segment the 3D distribution of L12-type nanoprecipitates from a 

disordered FCC matrix [48]. However, the required data region was limited to specific 

crystallographic poles and did not address situations where no clear elemental 

segregations exist. Moreover, the nature of voxelization limited the size range of the 

recognized domain using CNN, thus not reaching down to the single-atom scale. 

Here, we propose a 3D point-cloud-based neural network, named AtomNet, to 

handle the information at the single-atom level without voxelization to reveal different 

nanoscale microstructures. AtomNet is based on PointNet [49], which can effectively 

and robustly handle point cloud data. Prior knowledge about continuous phase 

distribution is also introduced to AtomNet for better recognition ability. First, AtomNet 

is tested by 3D imaging nanoprecipitates in an AlLiMg alloy used as a benchmark, and 

we showcase its ability beyond previous work that would only work in the highest 

spatial resolution. Then, the more challenging case of the detection of L10-type LCOs 

in red gold, which has a composition close to equiatomic AuCu, for which previous 

segregation-based analysis isosurface failed to identify ordered domains. Finally, the 

ability of AtomNet to indicate the positions of stacking faults is explored in a Co-based 

superalloy. The advantages and limitations of AtomNet are discussed, along with 

directions for future developments. 

2. Materials and methods 

2.1. Materials 

APT data of Al-6.79Li-5.18Mg (at.%, thereafter) alloy annealed at 150°C for 8h 

was selected as a benchmark, as it has been previously used in Ref. [31, 48, 50]. The 

data was collected on the Cameca LEAP 3000XSi with a 55% detection efficiency [50]. 

A deformed Au-46.8Cu-5.3Ag red gold [51] and Co-based superalloy (Co-32Ni-8Al-

5.7W-6Cr-1.8Ta-2.8Ti-0.1Hf-0.4Si) alloy were chosen to show the LCO and defects 

recognition ability of AtomNet, respectively. The former APT measurement was 

performed on a LEAP 5000XS with an 80% detection efficiency, while the latter was 

on a LEAP 5000XR with a 52% detection efficiency. All site-specific (along the {002}) 

needle-like specimens were prepared using the FEI Helios focused ion beam with a Ga 

ion source. The APT experiments were performed in laser pulsing mode at 50-60 K, 

0.8-1.0 % detection rate, 40-45 pJ laser energy, and 125-250 kHz pulse rate. APSuite 

6.3 was used for all initial reconstructions by tuning two important parameters, i.e. the 

field factor and image compression factor according to the method introduced in Ref. 

[52, 53]. 

2.2. Feature engineering 

 Appropriate feature engineering is a cornerstone of machine learning [54]. APT 

data has two primary components: the Euclidean spatial coordinates (X, Y, and Z) of 

each atom of the point cloud; the other is the mass-to-charge information of each atom 

to identify the chemical species. Inspired by how scientists distinguish different crystal 

structures with specific elemental site occupations, a simple and efficient feature 

extraction method is proposed. For each atom, we extracted its relative 3D atomic 
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position relative to the nearest neighbor (NN), i.e. ∆X ∆Y ∆Z, as shown in Fig. 1a. N 

(neighbor) and S (self) represent the elemental species of neighboring atoms and the 

selected atom itself, respectively. Here we use A, B, C … to represent different elements. 

After careful tuning, it was found that the relative coordinate (X, Y, and Z) and 

compositional information (N and S) from the 32NNs of each atom, which falls between 

the second layer (18NNs) and third layer (42NNs) of FCC structure, are appropriate for 

the following training procedure. Ultimately, an input feature with the shape of (32, 5) 

was extracted for each atom.  

2.3. Workflow of AtomNet 

 PointNet is a popular 3D neural network that handles point clouds directly and 

efficiently, respecting the permutation invariance of inputs [49]. This avoids generating 

large amounts of sparse data and losing information that was encountered when using 

the CNN-based strategy to transform point clouds into regular 3D voxels, 2D images 

or 1D curves [31, 48]. Here, we propose AtomNet, which utilizes PointNet as a 

fundamental building block, to identify challenging nanoscale microstructures in APT 

data. As shown in Fig. 1b, the applied PointNet block mainly consists of 2 T-Nets, 3 

MLPs and 1 MaxPool layer. The T-Net allows affine transformations such as translation, 

rotation, shearing, and so on. It was originally designed to ensure 3D spatial invariance. 

T-Net consists of 3 Conv1D, 2 Dense, 1 MaxPool and 1 Transformation layers, followed 

by the original input dotting with a transformation matrix to complete the affine 

transformation. MLP stands for the multi-layer perceptron with 2 to 3 weights shared 

Conv1D or Dense layers. MLP is the primary computational processing unit, and 

traditional artificial neural networks could be constructed only with it. MaxPool is a 

pooling or aggregating layer that stores the maximum value and discards others, 

providing interactions within nearby atoms. After training the first PointNet block, 

AtomNet shows moderate predictive ability, for example, with the obtained AUC (area 

under the receiver operating characteristic curve) value being 0.78 in the Au-Cu alloy.  

To further improve model performance, a feature updating strategy was utilized to 

introduce prior knowledge, as an inductive bias [55] to help model learn specific 

notions efficiently. Here, the notion refers that precipitates, LCOs or distinct phases 

usually consist of continuous and compact groups of atoms. If most of the neighbor 

atoms belong to the specific phase, the target atom would also belong to the same phase. 

The original features were updated after the first PointNet block, as shown in Fig. 1b. 

Then the updated features were fed into the second PointNet block, and a higher AUC 

of 0.86 was obtained in the Au-Cu alloy. Fig. 1c visualizes the results before and after 

the first feature update, suggesting that the number of incorrectly predicted atoms has 

been greatly reduced. Fig. 1d shows the detail of feature update, by adding/updating 

predictions from the last PointNet block. Theoretically, this iteration can be repeated to 

get better performance, at the expense of heavy computations. A detailed test is 

provided in Section 2.5. 
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Fig. 1 Overview of the proposed AtomNet architecture. (a) The details of feature 

engineering of each atom. The left part shows the schematic of sampling information 

from neighboring atoms in APT data. The right part shows the input feature matrix of 

the “A” atom. (b) Architecture of AtomNet model. From left to right, AtomNet, 

PointNet block and T-Net are painted successively. Brackets in AtomNet indicate data 

shape and in T-Net mean the number of filters/neurons. All activation functions are 

“Relu” except the output layer which uses “Sigmoid”. (c) Visualization of nanoparticles 

before/after feature updating. Green atoms represent a correct prediction, while red 

atoms represent an incorrect prediction. (d) Feature updating for incorporating prior 

knowledge to improve accuracy. 

2.4. Simulated data bank 

As a supervised algorithm, AtomNet requires reliable training datasets. Here, a 

pipeline is proposed to generate synthetic APT point cloud datasets by simulating the 
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trajectory aberration and imperfect detection efficiency encountered in APT 

experiments [52]. As shown in Fig. 2, a perfect 3D FCC-matrix superlattice was built 

with a size of 4×4×4 nm3 at first. Then, different sizes of spherical L12 

(Al0.75Li0.2Mg0.05), L10 (AuCu), and L12 (Co0.4Ni0.35Al0.095W0.043X, X representing all 

remaining elements) nano-domains were embedded into an FCC matrix of Al-Li-Mg, 

Au-Cu and Co-based superalloys, respectively. The detailed size information for each 

system is listed in Table 1. The matrix composition was based on APT experimental 

data, while the secondary phase composition was approximated by rounding the 

elemental ratio to 3:1 for L12 and 1:1 for L10. Note that the compositions of L12 

(Al0.75Li0.2Mg0.05) and L12 (Co0.4Ni0.35Al0.095W0.043X) were determined based on the 

measured APT data. Third, the superlattice was rotated to simulate experimental data 

along different crystallographic orientations, allowing to simulate regions of high and 

low spatial resolution (i.e. near and away from crystallographic poles). As listed in 

Table 1, AlLiMg alloy was randomly rotated to ±90° to simulate all possibilities of 

crystallographic orientations. While for the other two systems, the rotation along the x 

and y axis was limited to ±3° and along the z axis was randomly chosen between ±90° 

to simulate experimental data along the {002} pole. Note that the local rotations along 

x and y are intended to reflect the local distortion of the atomic planes along the pole 

[56]. Finally, atoms were shifted in 3D according to different degrees of Gaussian noise 

and a certain fraction of atoms were removed randomly to simulate the anisotropic 

spatial resolutions and imperfect detection efficiency (See Table 1).    
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Fig. 2 Pipeline of simulated APT data. Adding some specific nano-structures 

(Al0.75Li0.2Mg0.05 nanoparticles here) into a perfect FCC matrix, then rotating and 

disturbing to simulate the crystallographic orientation and trajectory abbreviation 

encountered in APT data, respectively. 

 

Table 1 Parameters of simulated data in different alloying systems. 

Alloys 

L12/L10- 

domain 

radius 

(nm) 

Rotation 

(°) Detection 

efficiency 

Trajectory 

aberration (nm) 

X/Y Z X/Y Z 

Al-Li-Mg 1.2-2.0 ±90 ±90 40%-80% 0.2-0.5 0.08-0.02 

Au-Cu 0.8-1.2 ±3 ±90 40%-80% 0.2-0.5 0.08-0.02 

Superalloy 1.4-2.0 ±3 ±90 40%-80% 0.2-0.5 0.08-0.02 
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2.5. Training details 

 AtomNet was implemented by the TensorFlow-GPU 2.10.0 backend on Python 

3.9.7. Training/validation/testing data contained 80/10/10 cubes with a 4/4/10 nm 

length, respectively. Each 4-nm cube included approx. 3000 atoms. After a thorough 

tuning procedure, the chosen loss function was ‘BinaryCrossEntropy’ and the optimizer 

was ‘Adam’ with a learning rate of 10-3. AUC was used as the metric to measure 

unbalanced datasets (the ratio of atoms between the labeled L12/L10-domain and the 

matrix is close to 1:4). For the training procedure, the chosen batch size was 256, and 

callbacks were used to monitor and save the best model. An Au-Cu example of the 

evolution of AUC and loss is shown in Fig. 3. The change in background color indicates 

the feature updating by training another PointNet block. The obtained AUC value in the 

validation dataset increases significantly from about 0.78 to 0.86 after the first update 

due to the introduced prior knowledge, while the loss increases from about 9.22 to 9.45 

at the same time. The higher loss may be related to the newly added dimension, which 

introduces more variables and uncertainties. Thus, we pay more attention to AUC 

instead of loss when evaluating the obtained classification model [57]. Based on the 

balance between the AUC value and computation costs, the number of PointNet blocks 

in the Al-Li-Mg, Au-Cu, and Co-based superalloy is 2, 3, and 2, respectively. 

  

 

Fig. 3 Training and validation of AtomNet. (a) AUC and (b) loss of AtomNet with 

epochs in the Au-Cu system. Loss/BinaryCrossEntropy is a differentiable function that 

helps gradient descent during training and judges whether the overfitting occurs. 

Metric/AUC is the decisive factor of model performance. The background color will 

change after adding another PointNet block with the updated features. The orange star 

marks the final choice.  

3. Application of AtomNet 

3.1. Nanoprecipitates in AlLiMg 

Nanoscale precipitates play a critical role in influencing the mechanical properties 

of alloys primarily through precipitation hardening mechanism [1, 2, 12, 58]. 

Quantifying these nanoprecipitates is beneficial for establishing microstructure-

property relationships that can help further in designing advanced materials [59, 60]. 

The Al-Li-Mg dataset used in Ref. [31, 50] was used as a benchmark to test AtomNet. 
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Fig. 4a shows an example of the simulated L12-type Al3(Li, Mg) particles with a radius 

of 1.2-2 nm embedded in a disordered FCC matrix. AtomNet accurately predicted if an 

atom belongs to the L12 phase, as shown in Fig. 4b. After performing once feature 

updating strategy mentioned in Section 2.3, the final AUC score is 0.890±0.033. The 

AUC reflects how well the model is trained on unbalanced datasets (See Section 2.5), 

but not sufficient to judge the recognition ability for each class.  

Recall and precision metrics were used to further assess the recognition ability, as 

displayed in Fig. 4c and d. Recall is a metric that reflects how many positive samples 

can be detected, while precision tracks the reliability of predictions, defined as below:  

 

 

(1) 

 

 

(2) 

AtomNet obtained an overall recall and precision of 0.79 and 0.72 (Fig. 4), respectively. 

It is interesting to note that both recall and precision of Li are higher than those of Al 

and Mg elements, which can be explained by its higher tendency for partitioning 

between the ordered precipitates (20 at.%) and the disordered matrix (5 at.%). This first 

example showcases AtomNet’s capability for reliably identifying L12-ordered 

precipitates in simulated datasets. 

 

Recall =  
Total number of correctly predicted oredered atoms

Total number of truely oredered atoms
 

Precision =  
Total number of correctly predicted oredered atoms

Total number of predicted oredered atoms
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Fig. 4 Performance of AtomNet on the simulated AlLiMg test datasets. (a) An example 

of some simulated L12 nanoprecipitates and (b) corresponding predicted results. Only 

atoms from nanoprecipitates are shown. (c) Recall and (d) precision from different 

elemental species, respectively. 10 cubes with a length of 10 nm were analyzed to obtain 

a statistical result with the default classification threshold of 0.5 (a more detailed 

discussion about the choice of thresholds will be given later). 

 

AtomNet was then applied to the experimental data, both close to and away from 

the {110} pole, in regions-of-interest indicated in the detector hit map shown in Fig. 5a. 

Analysis of structural information in APT can normally be done only in regions near 

poles, i.e. where the corresponding crystallographic planes are imaged. Fig. 5b shows 

nanoprecipitates captured by AtomNet, at the {110} pole. Fig. 5c shows the distribution 

of L12 particles marked by an 8 at.% Li isosurface. The AtomNet prediction closely 

matches the isosurface result, with similar average size and spatial locations.  

AtomNet is also consistent with the previous CNN method (Fig. 5d) [31]. It’s a 

voxelization method and can only work along specific pole sites. The prediction is 

based on cubes of a certain size, so the interface between the matrix and the 

nanoparticles is facetted. Instead, AtomNet sets out from every single atom and thus 

can retain the intrinsic nature (nearly atomic resolution) of APT data. Moreover, the 

blue box in Fig. 5d marks one missing nanoprecipitate via CNN, although it ought to 

exist (compared with Fig. 5b and Fig. 5c). Third, as compared to previous CNN result, 

some noisy points/atoms remain via AtomNet due to its single-atom nature, which may 

be eliminated with a clustering algorithm by setting the minimum number of atoms in 

a cluster. 

We further obtained the spatial distribution maps along the depth direction (z-

SDMs) [61] of Al-Al pairs of the recognized L12 particles and remaining matrix, as 

shown in Fig. 5e. The matrix has an interplanar distance of 0.14 nm while the L12 

nanoparticle has an interplanar distance of 0.28 nm. This difference relates to the atomic 

occupancy of Al, which is random in FCC and face-centered in L12, as discussed in Ref. 

[50].  

 Poles are not always visible or planes imaged, and this has limited the application 

of previous approaches to small reconstructed volumes near poles. As Fig. 5f and g 

reveal, AtomNet can also detect precipitates in the subset of the data in which atomic 

planes are not imaged, and these agree well with segmentation based on isosurface. 

Although AtomNet was trained using spherical particles, this example demonstrates 

that non-spherical domains (Fig. 5f) can be identified.  
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Fig. 5 Validations on AlLiMg experimental data. (a) 2D detector hit map to highlight 

the pole and non-pole sites for further analysis. The orange circle marks {110} pole, 

while the yellow circle is non-pole. Reconstructions are based on pole (b, c, d) and non-

pole (f, g) respectively. (b) is the prediction by AtomNet. Here only nanoprecipitates 

are displayed. (c) is the isosurface method to show nanoparticles on Li maps. The 

concentration threshold is 8 at.% Li. (d) Prediction with previous CNN method [31]. 

Blue box in (d) marks a missing nanoprecipitate. (e) z-SDMs of Al-Al pair of 

nanoprecipitates and the remaining matrix from (d). (f) and (g) are predictions by 

AtomNet and isosurface respectively, at non-pole sites. 

 

3.2. Local chemical orderings in red gold 

 The last case study exhibits obvious elemental segregations, which can also be 

handled using other approaches. Here, we will further explore the performance of 

AtomNet in a more challenging case with LCOs. Red gold is generally considered to 

have a transformation from FCC to the ordered L10 phase, which hardens the material 

but limits its workability [51]. An interesting shape memory effect is also related to this 
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L10 phase [62]. In-situ synchrotron X-ray diffraction technique indicated the presence 

of LCOs by observing weak peaks [51] or peak dissymmetry [63], however the 

characterization of the early stage of L10 ordering remains challenging due to the lack 

of obvious segregation, coherent interfaces with the matrix, and the small size of the 

ordered domains (typically below 2 nm). Here we apply AtomNet to capture these tiny 

L10-type LCOs. Note that the isosurface approach cannot work here due to the absence 

of obvious compositional differences between LCOs and FCC matrix. 

 First, AtomNet was tested on simulated datasets. As displayed in Fig. 6a, we built 

several L10 LCO domains with a diameter of 1.6 nm embedded in FCC matrix. After 

simulating the 40% detection efficiency, a domain would only contain in the range of 

50 atoms, making its detection arduous compared to larger precipitates as in Al-Li-Mg. 

This analysis achieved an AUC score of 0.822±0.052 on test datasets when using the 

default threshold of 0.5, while the predicted LCOs experienced significant size 

shrinkage in Fig. 6b (the average radius is reduced from about 0.8 nm to about 0.6 nm). 

To improve the shape and size accuracy of predicted LCOs, different thresholds were 

compared, and finally 0.3 was chosen, as shown in Fig. 6c. A higher threshold of 0.7, 

Fig. 6d, only leaves a few atoms per domain due to the strict classification criterion. 

The obtained recall and precision showed a trade-off in Fig. 6e and Fig. 6f. As the 

threshold increases, the precision tends to increase while the recall tends to decrease. 

For these difficult tasks, keeping a high recall can ensure that the targeted nanodomains 

are recognized more completely. A low threshold of 0.3 is preferred in this case. 

 



13 

 

 
Fig. 6 Trade-off between recall and precision in simulated Au-Cu test dataset with L10 

LCOs. (a) Ground truth of simulated L10 LCOs with a diameter of 1.6 nm. The matrix 

is hidden. (b), (c), and (d) are corresponding predictions by AtomNet with different 

thresholds (represented by “Th” with the value from 0 to 1). (e) and (f) The evolutions 

of recall and precision with varied thresholds, respectively. 10 cubes with a length of 

10 nm were analyzed to obtain the statistical result. 
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 Fig. 7a shows the obtained distributions of 3D L10 LCO domains along the {100} 

pole, and in Fig. 7b each identified domain is displayed with a separate color. Note that 

the clustering method in APSuite 6.3 was applied to assess the size distribution of LCO 

domains with a maximum separation distance of 0.4 nm and a minimum number of ions 

in the cluster of 3. The domain appears spherical. Fig. 7c plots the z-SDMs of different 

elemental pairs in the matrix (FCC) and LCO domains. Both peak-to-peak distances of 

Au-Au and Cu-Cu z-SDMs are half than those in LCOs, which is consistent with the 

expected crystal structures (FCC and L10). The distribution of size (number of atoms) 

versus count of LCOs is given in Fig. 7d, and compared with that from a chemically 

randomized dataset. The latter was generated by maintaining the x, y, and z coordinates 

but randomly shuffling the mass-to-charge and the associated elemental identities [25, 

46]. We compare the size distributions of four randomized datasets with each other 

based on the contingency coefficient (μ) [46]. The upper limit of the obtained μ being 

near 0.25 is regarded as a baseline for these randomized size distributions in 

experimental data. After analyzing the experimental data, an average value of 0.270±

0.011 was obtained, which suggests the occurrence of non-statistical L10-LCOs in this 

system. A fraction of LCO domains with a size above 1 nm diameter (>55 atoms) exist 

in the experimental data while no obvious sign in the randomized dataset. 

 

Fig. 7 3D distribution of L10-typed LCOs in Au-Cu along the {100} pole. (a) Elemental 

distributions predicted by AtomNet. (b) Corresponding cluster distribution in (a). (c) 

Au-Au and Cu-Cu z-SDMs from L10-typed LCOs in (a) and remaining FCC matrix. 

The right part displays the ideal crystal structure of matrix (FCC) and LCOs (L10). (d) 

Size distribution of L10-typed LCOs in (b). A chemical-randomized dataset is compared. 

The inserted table gives a μ value, a parameter that indicates the degree of 
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randomization. 

 

3.3. Stacking faults in a deformed Co-based superalloy 

 Stacking faults (SFs) are 2D crystallographic defects along which the stacking of 

{111} close-packed planes is out of order [64, 65]. SFs reduce the dislocation mobility 

in single crystal superalloys, and affect their creep responses [66, 67]. Recent studies 

also suggested that deformation faults could be used to further design metastable alloys 

[8, 64, 68], as they can serve as the loci for local phase formation and transformation 

[69-71]. This motivates the third application of AtomNet. Assessing the potential 

presence of SFs within APT data is however challenging, and has often required the use 

of correlative electron microscopy [26], and depends on the degree of elemental 

segregations to the SFs, which is unknown beforehand and can be subtle. Here, we 

considered a deformed Co-based superalloy as an example to explore the potential of 

AtomNet on recognizing hidden patterns associated with defects like SFs. The training 

data only consists of the L12 phase (Co0.4Ni0.35Al0.095W0.043X) and FCC matrix. To 

ensure AtomNet focuses more on the structural information rather than compositional 

variations, we set the same concentration in the FCC matrix as that in the L12 phase. 

Fig. 8a shows data containing primarily a L12-ordered γʹ precipitate, with only a small 

volume of the FCC γ–matrix. Based on previous reports [26, 72, 73], SFs have so far 

been sought by depletion in the Al concentration projection map, as shown in Fig. 8a, 

in which subtle planar variations are observable.  

Here, two zones marked in Fig. 8a were analyzed using AtomNet to automatically 

search the sites of SFs. In Zone 1 (Fig. 8b), a reduction in the density map of ordered 

domains is marked by the red arrow, indicating a zone in which the atomic organization 

is not the L12 phase and thus possibly a SF. Zone 2 (Fig. 8c) exhibits a vertical wide 

zone with a low density of L12-ordered domains, marked by the gray arrow, which was 

found to go through the entire volume and corresponds to a crystallographic pole. 

Another zone with a lower density marked by the green arrow can be associated with a 

SF. AtomNet can hence indicate the position of defects, even without relevant training 

data. 
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Fig. 8 Exploration in a deformed Co-based superalloy (Co0.4Ni0.35Al0.095W0.043X, X 

represents remaining elements) with SFs. (a) Traditional 2D Al concentration projection 

map to indicate potential sites of SFs. Two zones inside the L12 phase were analyzed 

by the proposed AtomNet. Predictions of AtomNet in (b) zone 1 and (c) zone 2 with 

atom (up) and density (bottom) maps. Arrows indicate the sites of SFs and pole. The 

classification threshold is 0.5. 

 

4. Discussion 

In this work, a point-cloud-based AtomNet was proposed to intelligently dig out 

microstructural information hidden within APT data. We successfully applied it in a 

series of FCC-based case studies with nanostructures spanning from 3D to 2D. 

AtomNet offers several advantages over previous methods based on isosurface 

thresholding [27, 28] or CNN-assisted APT analyses [31, 48]. First, unlike previous 

CNN methods based on voxelization, AtomNet handles every single atom. For instance, 

the segmentation from AtomNet exhibits a smooth phase boundary while previous 

methods show an obvious jagged boundary (Fig. 5c, d). Moreover, previous methods 

partially focus on either the compositional differences, i.e. isosurface, or the structural 

changes, CNN-APT [31]. AtomNet considers both compositional and structural 

information simultaneously, by integrating features from 32 nearest neighbors with 

respect to each atom. These features were transformed and trained via a PointNet block 

to tackle some challenging situations – including, for instance, precipitates imaged 

away from regions in which atomic planes are imaged in the case of the AlLiMg alloy 

(Fig. 5), small LCO domains without obvious compositional segregation in Au-Cu (Fig. 

7). Third, AtomNet can indicate nanostructures that do not exist in the training datasets, 

like SFs in the Co-based superalloy. In this case, the composition of the matrix and 
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precipitates was the same in the simulated data, to focus AtomNet only on the structural 

information. Thus, AtomNet will respond to those never-seen defects by judging the 

occupations of atoms. Better performance could be achieved if these defects could be 

simulated and then used to train AtomNet. Last but not least, AtomNet still works well 

in non-spherical nanodomains whose composition differs from the simulated one like 

Figs. 5 and 7, further demonstrating its robustness.  

Nevertheless, AtomNet has some limitations. For a specific alloy, relevant training 

data need to be acquired from either experiments or simulations. While conventional 

methods like isosurface only require manual analysis and trial and error. Of course, this 

cannot work in the case of Au-Cu with the existence of LCOs. 

For the Au-Cu case, the classification threshold was adjusted to test the 

performance of the recognition model. A trade-off between the recall and precision 

(corresponding to the size and count accuracy, respectively) is inevitable (Fig. 6e and 

f). When choosing a low threshold (Fig. 6c), AtomNet achieves a high recall, i.e., a high 

size accuracy, which is desired for size-focused research. However, the corresponding 

precision is low and AtomNet falsely classifies more random atoms as ordered ones, 

i.e., over-recognition phenomenon. By selecting a high threshold (Fig. 6d), AtomNet 

will get a high precision, i.e., a high count accuracy, which is better for number-density-

focused research. For some tasks like detecting L12 from FCC in the AlLiMg with 

obvious segregation and relatively large size (above 2-nm diameter), selecting the 

default threshold of 0.5 would be appropriate for the most time (Figs. 4 and 5). For 

some challenging tasks like recognizing L10 LCOs in the Au-Cu with weak segregation 

degree and small size (below 2-nm diameter), a lower threshold, like 0.3, can ensure 

that atoms belonging to the hidden nanostructures are recognized as complete as 

possible. To further validate the reasonability of the selected threshold of 0.3, we 

analyzed the z-SDMs of the atoms with a threshold between 0.3 and 0.5. The double 

interplanar spacing still existed for this part of data like Fig. 7c, suggesting its nature of 

L10-typed structure. 

Our previous work [25, 46] has the ability to detect LCOs, even smaller chemical 

short-range orders (approx. 0.5 nm in radius), focusing more on structural information. 

However, as highlighted in the introduction, this necessitates the transformation of 3D 

point cloud data into 1D signals, a computationally intensive process that is 

circumvented in the proposed AtomNet. While AtomNet facilitates the detection of 

LCOs in the Au-Cu alloy, its optimal performance lies in characterizing chemical 

medium-range orders, approximately 0.8 nm in radius. AtomNet exhibits less 

satisfactory performance in recognizing smaller chemical short-range orders, attributed 

to the disturbance caused by lateral atoms with lower resolution. 

 The current approach deals with FCC-based alloys, but it can be easily extended to 

other structures (BCC, HCP) without limiting the number of components. This would 

broaden the capability and application of AtomNet, including e.g. compositionally-

complex alloys or recognizing grain boundaries in nanocrystalline materials. Moreover, 

better performance of AtomNet could be achieved with more realistic training datasets, 

which can be synthesized via advanced generation models like generative adversarial 

networks [74] and diffusion models [75]. Finally, the recognized accuracy of AtomNet 



18 

 

is dependent on the data quality, like the detection efficiency and spatial resolutions. 

With the improvement of data quality, the boundary of AtomNet can be pushed to more 

complex situations, even for the detection of 1D (like dislocations) and 0D (like 

vacancies) nanoscale features. 

5. Conclusions 

 In this work, we designed a 3D deep neural network named AtomNet to 

intelligently mine hidden nanoscale 3D/2D features from APT data in various FCC-

based metallic materials. During training, a crucial feature updating strategy was 

introduced to achieve a better recognition ability. AtomNet considers both the 

compositional and structural information, and enables to recognize different 

microstructures at the singe-atom level, ranging from nanoprecipitates in the AlLiMg, 

LCOs in the Au-Cu, and even 2D SFs in the Co-based superalloy. AtomNet outperforms 

previous isosurfaces and CNN-APT methods in its ability to detect nanoprecipitates 

independently of the presence of crystallographic orientations and to reveal small LCOs 

without obvious elemental segregation. AtomNet has the ability to display unseen 

structures that are not present in the training data, such as SFs in the Co-based 

superalloy. In the near future, AtomNet will be extended to include other crystal 

structures (BCC, HCP) and more complex compositions, and enable the detection of 

grain boundary and dislocation. 
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