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As quantum hardware continues to improve, more and more application scientists have entered the field of
quantum computing. However, even with the rapid improvements in the last few years, quantum devices, espe-
cially for quantum chemistry applications, still struggle to perform calculations that classical computers could
not calculate. In lieu of being able to perform specific calculations, it is important have a systematic way of
estimating the resources necessary to tackle specific problems. Standard arguments about computational com-
plexity provide hope that quantum computers will be useful for problems in quantum chemistry but obscure
the true impact of many algorithmic overheads. These overheads will ultimately determine the precise point
when quantum computers will perform better than classical computers. We have developed QREChem to pro-
vide logical resource estimates for ground state energy estimation in quantum chemistry through a Trotter-based
quantum phase estimation approach. QREChem provides resource estimates which include the specific over-
heads inherent to problems in quantum chemistry by including heuristic estimates of the number of Trotter steps
and number of necessary ancilla, allowing for more accurate estimates of the total number of gates. We utilize
QREChem to provide logical resource estimates for a variety of small molecules in various basis sets, obtaining
estimates in the range of 107 − 1015 for total number of T gates. We also determine estimates for the FeMoco
molecule and compare all estimates to other resource estimation tools.

I. INTRODUCTION

Quantum chemistry is often quoted as a potential “killer
app” for quantum computers, with grand targets such as solv-
ing nitrogen fixation [1]. While there is much promise for
quantum computers in quantum chemistry, due to a potential
for an exponential speed up in eigenvalue estimation in quan-
tum chemistry via the quantum phase estimation (QPE) algo-
rithm [2, 3], realistic resource estimates, both at the logical
and physical level, point to extremely large numbers of quan-
tum gates and qubits necessary for even small systems [1, 4].
Alternate algorithms, more suited to near-term, noisy inter-
mediate scale quantum (NISQ) [5] devices, such as the vari-
ational quantum eigensolver (VQE) [6], provide a potential
reduction in gate depth, but add additional complexity in
optimization [7] and still require substantial gate depth for
more interesting, classically intractable systems. With fault-
tolerant, error-corrected quantum computers capable of the re-
quired gate depth and numbers of qubits still potentially years
away, accurate resource estimates will play a key role in un-
derstanding the progress of quantum algorithms and the trade-
offs of various architectural choices. There already exists sev-
eral tools for estimating resources to varying degrees of preci-
sion. For example, TFermion [8] provides estimates of a wide
variety of quantum algorithms for quantum chemistry but re-
lies on strict error bounds, sometimes greatly overestimating
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the resources for certain algorithms, while OpenFermion pro-
vides estimates of certain specific quantum chemistry meth-
ods and also provides some tools for estimating surface code
overhead [9]. Microsoft has released a ‘full-stack’ resource
estimation framework and tool [10], which allows for a more
general resource estimation, including many potential hard-
ware overheads.

Here, we detail QREChem, which provides accurate logical
resource estimates with a specific focus on quantum chem-
istry. Within QREChem we have implemented a detailed
resource estimation of the Trotter algorithm [11, 12], using
heuristic, rather than worst-case, estimates for various algo-
rithmic overheads. We have also included minimal imple-
mentations of error correction and hardware overheads. To
benchmark our method, we compare our resource estimates
to both TFermion [8] and OpenFermion [9] by estimating the
total number of logical T gates for various small molecules
and for the larger FeMoco molecule [1].

QREChem was developed in mind as a tool for providing
realistic estimations of resources to simulate ab initio quan-
tum chemistry calculations on various quantum computers,
both existing and future ones. It serves multiple purposes,
with a primary goal of eventual co-design of future quantum
computers and development of new quantum algorithms. For
example, given a molecule, QREChem will be able to pre-
dict the resources (the number of qubits, gates, fidelities, sam-
pling rate) required to accurately estimate the ground state
energy. Or another way around given quantum hardware
and molecule, QREChem could calculate a potential success
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rate. The current version of QREChem focuses on the al-
gorithmic implementations; further development will involve
adding more detailed implementations for the hardware and
error correction overheads to provide more precise estimates.

Figure 1. Schematic diagram of QREChem.

II. METHODS

A. Design of QREChem

QREChem is designed to allow for efficient and accurate
logical resource estimates of ground state energy calculations
in quantum chemistry problems. Figure 1 details the overall
design. QREChem consists of several modules: the ‘Chem-
istry’ module, which defines the chemical system of interest;
the ‘Algorithm’ module, which defines the quantum algorithm
to be used; the ‘Hardware’ module, which defines the target
hardware; and the ‘Error Correction’ module, which defines
the quantum error correcting code. These modules work in
tandem to produce the final resource estimates. Our primary
focus in this work was to provide detailed implementations of
the ‘Chemistry’ and ‘Algorithm’ (focusing on Trotterization
algorithms [11, 12]) modules; the ‘Hardware’ and ‘Error Cor-
rection’ modules are relatively simple, by comparison. In the
following sections, we provide detailed descriptions of each
module, as implemented in the initial version QREChem, as
well as ways in which each module can be further developed.

1. Chemistry Module

The first step in performing quantum chemistry calculations
is to generate the chemical Hamiltonian, which describes the

energy operator of the molecular system in terms of the po-
sitions of its constituent atoms. In the Chemistry module
of QREChem, we generate the Hamiltonian using the self-
consistent field (SCF) methods implemented in the PySCF
program [13, 14].

The Hamiltonian matrix elements, which represent the con-
tributions of the various terms in the Hamiltonian, are defined
in terms of one-electron integrals, hpq, and two-electron in-
tegrals, hpqrs [15]. These integrals depend on the molecular
properties such as the atomic coordinates, the charge, and the
choice of basis set. SCF calculations, such as the restricted
Hartree-Fock (RHF) method, are performed to obtain the one-
and two-electron integrals for the chosen molecular system.
QREChem requires the definition of the chemical system of
interest, in terms of the atomic coordinates, the charge, and
the target basis set.

It is important to note that the SCF calculations can be time-
consuming, especially for larger numbers of atoms and larger
basis sets, and can be tricky to properly converge. How-
ever, QREChem supports the standard fcidump file format,
which stores the one- and two-electron integrals, allowing a
user to generate these integrals using a different program and
then interface with the other modules of QREChem. The
fcidump file format is a widely used format for storing quan-
tum chemistry Hamiltonians [16] and can be produced by
other quantum chemistry packages, such as Gaussian [17],
MolPro [18], or Psi4 [19]. Once the one- and two-electron
integrals are obtained, the data is available to other modules
within QREChem.

2. Algorithm Module

There are many proposed quantum algorithms for solving
for the ground state energy in chemical problems, including
quantum phase estimation (QPE) [2, 3], the variational quan-
tum eigensolver (VQE) [6], combinations of the two [20, 21],
and quantum machine learning methods [22]. Within each of
these families of algorithms, there are a substantial number
of possible variations. In this work, we focus on QPE using
Trotterization [11, 12]. Here, we provide a brief overview of
QPE using Trotterization.

QPE solves for the eigenvalue, λk, for an eigenvector |vk⟩
of some unitary matrix, U . Aside from its use in ground
state energy estimation in quantum chemistry, it also finds
use in Shor’s prime number factoring algorithm [23] and the
Hassidim–Harrow–Lloyd algorithm for matrix inversion [24].
Given a Hamiltonian generated by the Chemistry module, the
unitary matrix, U is can be written as:

U |vk⟩= eiĤτ |vk⟩= ei2πφ |vk⟩, (1)

where τ is a scale factor to map the eigenvalues of Hτ onto
(0, 2 π] or (-π , π]. Assuming |vk⟩ is the ground state, the
ground state energy is then mapped to the phase acquired, E =
2πφ/τ , where units have been chosen such that h̄ = 1. The
computational complexity of QPE is dependent on how the
unitary matrix of Equation 1 is implemented. In QREChem,
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we focus on Trotterization [11, 12], but many other strategies,
such as Taylorization [25] and qubitization [26] have been
proposed. The Trotterized version of the propagator, U , is

U = lim
n→∞

(
∏

j
eiH jτ/n

)n
. (2)

By choosing some finite number of Trotter steps, n, U is only
represented approximately. A first-order Trotter formula trun-
cates Equation 2 at some number of steps. Choosing a suffi-
cient number of Trotter steps for a given accuracy is impor-
tant for obtaining an accurate estimate of the total resources.
Higher-order Trotter-Suzuki formulas [27] can be used to de-
crease the number of steps at the cost of increasing the com-
plexity of each step. The standard fermionic quantum chem-
istry Hamiltonian has O(N4) terms. A fermion-to-spin map-
ping is required to implement each fermionic term on qubits.
Using the Jordan–Wigner [28] transformation introduces an
O(N) overhead, leading to a total complexity of O(N5) for the
Trotterized evolution. The evolution of the phase is mapped to
an ancilla register (introducing limits on the precision, based
upon the number of ancilla) and, using the quantum Fourier
transform (QFT) [29], the ground state energy can be read
out. In realistic settings, the true eigenstate |vk⟩ is unknown
and an approximation must be used. This introduces an addi-
tional overhead in the success probability which scales as the
overlap of the approximate state, |φ⟩, with the true eigenstate,
i.e., |⟨φ |vk⟩|2.

Within QREChem, we provide resource estimates for Trot-
terized QPE by first estimating the resources required for a
single Trotter time step and then estimating the total number
of Trotter steps. The resource estimation tools within Mi-
crosoft Quantum Development Kit (QDK) [15, 30] are able
to efficiently provide such logical gate estimates, even for
very large systems. We estimate the total number of Trot-
ter steps necessary as n3/2

o , where no is the number of or-
bitals used in the Hamiltonian which is based on heuristic
estimates [1, 31]. Beyond number of Trotter steps, we also
need to accurately compute the number of ancilla necessary
to reach the a user-defined desired precision εp (which, by
default, we take to be 1 mHa). This allows us to calculate the
base number of binary digits necessary, nb =− log2(εp/∆ER),
where ∆ER is a scaling factor that estimates the spectral range
(i.e., ∆ER ≈ Emax −Emin) [21] and is taken to be 1 Ha (a num-
ber chosen heuristically to cover all studied molecules). The
phase resulting from a QPE is given as a binary fraction and
the number of bits in this fraction (the precision) is determined
by the number of ancilla qubits used in the QPE algorithm. If
the eigenvalue is not exactly representable with nb bits of pre-
cision, the returned value will, instead, be mapped into the
finite precision of nb bits, causing a chance for error. To in-
crease the QPE success probability, additional ancilla can be
used. If the eigenvector is known precisely, the total number
of ancilla, na, is a function of the desired failure probability,
p f , [32]

na = nb + log2(2+
1

2p f
). (3)

It is very unlikely to know the true eigenstate a priori.
More accurate formulas can be derived which take into ac-
count errors in the Trotterization, εt , as well as the true gap
∆E = E1 −E0 [33]

na = nb + log2(2+
ε2

t

2p f (∆E)2 ). (4)

Since the true gap, ∆E, is generally unknown, we instead use
equation-of-motion (EOM) coupled-cluster with singles and
doubles (CCSD) as implemented in PySCF [13] to estimate
the gap. In cases where CCSD becomes too expensive, other
methods with tunable cost and accuracy, such as selected con-
figuration interaction [34] (which can be as cheap as Hartree-
Fock) can be used. We also use a target Trotter error of chem-
ical accuracy (εt = 1.6mHa), rather than an observed Trotter
error.

To calculate the total number of rotation gates, CNOT gates,
and the total depth, we combine the estimates for a single Trot-
ter step (using Q# and the Microsoft QDK) with the estimate
of the total number of Trotter steps (n3/2

o ) and multiply that by
the number of ancilla, na, as each ancilla will require evolu-
tion to some long time, giving, for example, the total number
of rotation gates

nr,tot = nrn
2/3
o na, (5)

where nr is the number of rotation gates for a single Trotter
step. Similar equations are used for the total depth and total
number of CNOTs.

Using the same Hamiltonians generated in the Chemistry
module, we utilized TFermion [8] and OpenFermion [9] to
provide comparison logical resource estimates. TFermion
provides estimates of a variety of quantum algorithms, in-
cluding variants of Trotterization [35] and Taylorization [36],
among others. It uses properties of the computed Hamilto-
nians, such as the 1-norm, combined with analytic formulas
derived from the literature. OpenFermion provides estimation
of more advanced algorithms, such as qubitization with low
rank factorization [37].

Future improvements to the Algorithm module would in-
volve the implementation of resource estimates for other evo-
lution algorithms with explicit circuit constructions, such as
qubitization and Taylorization, as well as other algorithms,
such as VQE. Furthermore, overheads relating to the prepa-
ration of sufficient overlap initial states will also be imple-
mented.

3. Error Correction Module

Quantum error correction (QEC) is an essential feature of
any viable quantum computing system due to the intrinsic sus-
ceptibility of quantum systems to errors. These errors can be
caused by a variety of factors, including decoherence and op-
erational imperfections. In simple terms, QEC codes encode a
logical qubit into several physical qubits, and through the pro-
cess of measurement and classical post-processing, corrects
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the inevitable errors, extending the effective processing time
before errors destroy the quantum state.

There are many proposed codes within QEC. Among them,
the surface code [38] stands out due to its high error thresh-
old, relative ease of implementation, and planar geometry,
which matches many proposed quantum architectures. Like
any QEC code, the implementation of surface code necessi-
tates a large number of physical qubits to encode a single log-
ical qubit and presents a significant overhead in terms of re-
source requirements. Various implementations of the surface
code have a given distance, d, which refers to the minimum
number of physical qubits that must be affected by errors in
order to cause a logical error. Within QREChem, we pro-
vide estimates of the QEC space and time overheads of the
surface code using OpenFermion [9]. The surface code cost
estimator takes in the number of Toffoli gates, the number of
logical qubits, a physical error rate, and the estimated surface
code cycle time. It then estimates the total error, including
error contributions from both magic state distillation (which
is necessary to produce the Toffoli gates) [39] and due to the
physical error rate. The physical error rate, pP, logical error
rate, pL, and distance are approximately related via [40, 41]

pL = 0.1(100pP)
(d+1)/2. (6)

The total error and space-time (number of qubits times num-
ber of seconds) is estimated for a various distances d of the
surface code. The best, in terms of space-time, distance d es-
timate which has total error below a threshold εsc (which we
by default take to be 0.1) is returned as the optimal surface
code.

QREChem allows a user to input the desired total algorith-
mic success probability. Along with the total depth, which is
estimated in the Algorithm module, and the physical error rate
and cycle time, which is provided by the Hardware module,
the error correction module provides the best surface code dis-
tance d. This provides an initial estimate of the QEC overhead
in terms of the number of physical qubits and total runtime.
Future module development will include more accurate esti-
mates of the overhead in numbers of gates needed for the sur-
face code (via, for example, the methods in Ref. [42]), as well
as estimates for other QEC codes (such as color codes [43]).

4. Hardware Module

The underlying quantum computing architecture plays a
pivotal role in the overall resource estimates. Various quan-
tum hardware can have vastly different error rates, gate times,
connectivities, native gate sets, etc [7]. The Hardware mod-
ule captures several hardware-specific factors that can signif-
icantly affect the performance and resources of quantum al-
gorithms. Within the initial release of QREChem, the Hard-
ware module consists of a high-level description of the under-
lying hardware, including gate times and physical error rates.
With this simplistic Hardware module, we estimate the logical
depth by assuming that all single qubit gates can be performed
in parallel batches using no, the number of orbitals, qubits, and
the CNOT gates cannot be performed in parallel (d = nr

no
+nc,

where nr is the number of rotation gates and nc is the number
of CNOTs). To estimate the number of T gates nt , which are
likely to be the most expensive gate for fault-tolerant, error-
corrected quantum computers [44, 45], we use estimates of the
circuit synthesis cost of arbitrary rotations from Clifford+T
gates [46]

nt = nr(10+12log2(ε
−1
ss )), (7)

where εss is the synthesis error, which we take to be 10−9.
We choose this value of the threshold to keep the synthesis
error well below the standard 1/

√
Ng bound, where Ng is the

number of gates [47], for all circuits studied. This is a tunable
parameter which can be varied by a user. Total runtime is
computed by interfacing with the Error Correction module,
which requires a surface code cycle time, physical error rate,
number of Toffoli gates (which is related to the number of T
gate) and number of logical qubits. In the initial release of
QREChem, we use experimentally demonstrated cycle times
to abstract away the hardware details.

Future development of this module will incorporate under-
lying connectivity, specific noise models, and compilation to
native gate sets, along with gate times, to computer the sur-
face code cycle time, as it is evident from the results of this
work that a fault-tolerant quantum computer will be required
to execute QPE quantum circuits.

III. RESULTS

A. Benchmark Molecules

Using QREChem, TFermion, and OpenFermion, we esti-
mated the required logical quantum resources for the Trotter-
based QPE algorithm to compute the ground state properties
of various small molecules, including H2, HF, H2O, NH3,
CH4, Be2, and C2. The geometries of these molecules were
taken from the NIST database [48]. For these molecules, we
investigated the relationship between the number of orbitals
and the quantum resources by considering several Gaussian-
type orbital basis sets for the smaller molecules (STO-6G, 6-
31G*, cc-pVDZ, and cc-pVTZ). All orbitals were included
in the active space. These small molecule benchmarks rep-
resent some of the most commonly found molecules, while
stressing different types of molecular bonding. The choice of
basis sets follows a progression of complexity, starting from
where Gaussian orbitals are fit to a single Slater orbital (STO-
6G) [49], to more complete basis functions (6-31G*) [50]
to more consistent basis sets designed for converging post-
Hartree-Fock calculations (cc-pVDZ, cc-pVTZ) [51] to the
complete basis set limit.

We also consider the much larger FeMoco molecule, also
known as the iron-molybdenum cofactor, which is crucial for
biological nitrogen fixation; however, its fixation mechanism
is not fully understood [1]. FeMoco is a well-known bench-
mark molecule that has been used in previous resource esti-
mations. To compare our results with those of other studies,
we used the same Hamiltonians (i.e., active spaces) as used in
[1] and [52].
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B. Resource Estimates

Figure 2. Estimated total numbers of logical
T gates for various algorithms over many molecules at many basis

set levels. See text for the definitions of the algorithms.

Using QREChem, we obtained the total number of logical
T gates necessary for various algorithms for each molecule
at different basis set levels. The data for all molecules is
shown in Figure 2. “This Work" represents the QREChem
estimate of number of Trotter gates, as described above. “SF"
uses OpenFermion’s resource estimation tools for the single
factorization algorithm [37] to estimate the number of Tof-
foli gates, which is then scaled by 4, as that is the number
of T gates necessary for one Toffoli gate [37]. “TF-Trot"
uses TFermion [8] to estimate the number of T gates in the
qDRIFT algorithm [35] and “TF-SF" uses TFermion to es-
timate the single factorization algorithm. Most striking is
the comparison between TFermion’s Trotter algorithm (“TF-
Trot") and the one estimated in QREChem (“This Work").
This is likely due to the fact the qDRIFT estimates use worst-
case error bounds to calculate the total number of operations.
In QREChem’s Trotter estimates, we instead use heuristic
estimates, which result in orders of magnitude lower num-
ber of necessary Trotter steps and, thus, orders of magnitude
lower resource estimates. Furthermore, QREChem uses ex-
plicit gate counting provided by the Microsoft QDK, rather
than the more pessimistic estimates used in the formula of
TFermion. These more realistic estimates put Trotter close
to the estimates of the more advanced single factorization al-
gorithm (which requires additional ancilla qubits).

We further compare the resource estimates of the number of
logical T gates for various algorithms using FeMoco, which
is the standard benchmark molecule for evaluation of quan-
tum algorithms. We used the same Hamiltonian as in previ-
ous studies [1] and [52] to obtain a precise comparison with
other works. Table I shows the comparison of the number of T
gates between QREChem’s Trotter estimation (“This Work")
and others from [1, 8, 37]. Ref. [1] provided the first theo-

retical estimates for FeMoco, which were approximately 1015

T gates. Again, we see that QREChem’s Trotter estimation
lines up with the estimation from Ref. [1], which is reason-
able, given that both works used similar heuristic estimates.
The single factorization algorithm [37] performs the best out
of those studied.

All estimates presented in Figure 2 and Table Iare only
for the number of logical T gates required, not including
additional overheads from hardware or error correction. To
provide more realistic estimates, we estimated the surface
code overhead for two benchmark systems: a superconducting
qubit system and a trapped ion system. To parameterize the
hardware, we use slight variations of parameters from recent
demonstrations of error correction in each system [53, 54],
which are summarized in Table II. The results are plotted in
Figure 3 for our benchmark small molecules. The much lower
error rates of the trapped ion system used (3e-5 vs 5e-4 for the
superconducting qubit system) allow for smaller surface code
distances, d, and, hence, smaller numbers of physical qubits.
The total runtime is several orders of magnitude higher, due to
the increased cycle time (70ms vs 1µs for the superconduct-
ing qubit system). This leads to several orders of magnitude
increase in the total space-time (measured in qubit-seconds)
of the algorithm. These results point to the need for fast cycle
times to achieve reasonable runtimes for quantum chemistry
algorithms on quantum computers. Tabulated data for both
physical qubit count and total runtime can be found in the
Supplementary Materials for both architectures.

The data used in Figure 2 in collated in tabular form in
the Supplementary Materials. Further tables, including our
parameter settings, the number of rotation and CNOT gates
and the number of physical qubits and runtime assuming a
surface code error correction scheme on both superconduct-
ing qubit and trapped ion hardware can also be found in the
Supplementary Materials as can details about the code and
how to reproduce the results. The code is available from
https://github.com/Argonne-QIS/QREChem/.

IV. DISCUSSION

We utilized the QREChem to provide accurate logical and
physical resource estimations of a simple Trotter based algo-
rithm over a broad range of molecules. Our heuristic-based
Trotter estimates offers a more realistic estimate of the true
cost of using Trotter, compared with more pessimistic esti-
mates based on worst case bounds. On large systems such as
the FeMoco molecule, the resource estimates are still large
and do not include the necessary overheads of initial state
preparation. The initial estimates of the overheads of quan-
tum error correction and hardware limitations are significant
and point to the need to have fast operations.

Accurate logical resource estimates, as currently imple-
mented in QREChem, is a necessary first step for the larger
goal of co-desiging future fault-tolerant quantum quantum
computers capable of executing high-depth quantum chem-
istry circuits. Co-design allows for the optimization of both
the hardware and algorithmic aspects of future quantum com-
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Figure 3. Estimated total resources with hardware and surface code
error correction overheads included for QREChem’s Trotter algo-
rithm. The total space-time volume (shown in (a)), in qubit-seconds,
is larger for a trapped ion system compared with a superconducting
qubit system. While the number of physical qubits is smaller for a
trapped ion system due to the lower error rates (see (b)), the total
time (see (c)) is much higher due to the slower error correction cycle
time.

puters to facilitate the optimization of performance, scalabil-
ity, accuracy, and energy efficiency. Moreover, co-design us-
ing a future version of QREChem will ensure that the simu-
lation algorithms are tailored to the specific characteristics of
the target quantum computers, ultimately enabling more effec-
tive and realistic quantum simulations. Future developments
will include a detailed examination and implementation of ad-
vanced features in the Hardware and Error Correction mod-
ules, as well as inclusion of additional quantum algorithms.

These enhancements will allow QREChem to continue to pro-
vide accurate, comprehensive, and actionable resource esti-
mates for quantum chemistry.
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TABLES

Table I. The number of T gates for FeMoco molecule as estimated by
various sources. The Hamiltonians were taken from the repository of
[55] used in [1] and [52]. See text for definitions of the algorithms.

FeMoco active space: Reiher [1] Li [52]
This work: 1.45e15 3.73e16

TF-Trot [8]: 7.34e23 3.62e23
TF-SF [8]: 2.36e13 2.17e13

SF [37] 4.8e12 3.9e12
[1]: 1.10e15
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Table II. Hardware parameters used in the error correction calcula-
tions. *Error rates used are two orders of magnitude lower than re-
ported in Refs. [53] and [54], due to the need to be below the stan-
dard surface code threshold of 1e-3. † The cycle time of 70ms for the
trapped ion is a third of that reported in Ref. [54] as their protocol
was a more complicated color code protocol.

Hardware Cycle Time Error rate
Superconducting Qubit [53] 1µs 5e-4*

Trapped Ion [54] 70ms† 3e-5*
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