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Abstract

We push the definition of multiple operator integrals (MOIs) into the realm of unbounded
operators, using the pseudodifferential calculus from the works of Connes and Moscovici, Hig-
son, and Guillemin. This in particular provides a natural language for operator integrals in
noncommutative geometry. For this purpose, we develop a functional calculus for these pseu-
dodifferential operators. To illustrate the power of this framework, we provide a pertuba-
tive expansion of the spectral action for regular s-summable spectral triples (A,H, D), and an

asymptotic expansion of Tr(Pe−t(D+V)2
) as t ↓ 0, where P and V belong to the algebra gener-

ated by A and D, and V is bounded and self-adjoint.

1 Introduction

1.1 Operator Integrals

Operator integrals appear in various areas of noncommutative geometry (NCG) [Con94], one of
the most prominent examples of which is the JLO cocycle [JLO88]

∫

Σn
Tr(ηa0e−t0D2

[D, a1]e
−t1D2 · · · [D, an]e

−tnD2
)dt.

The expansions and other identities derived for these operator integrals are often very simi-
lar in nature, and it would therefore be useful to have a framework to systematize these tech-
niques. The language tailored to provide such a framework is that of multiple operator integrals
(MOIs) [ACDS09; Pel06; Pel16; ST19]. However, the existing literature on MOIs is not equipped to
make sense of multiple operator integrals as pseudodifferential operators in the style of Connes–
Moscovici, Higson and Guillemin [CM95; Gui85; Hig04], which would be necessary for advanced
applications in NCG.

We therefore first generalise the MOI construction of [ACDS09; Pel06], realising the operator
integral as an abstract pseudodifferential operator on the condition that the operator integrand
is itself an abstract pseudodifferential operator. Then we develop a functional calculus for el-
liptic pseudodifferential operators, which completes the technical framework. Finally, we derive
various identities for these MOIs that are often used in the NCG literature, and conclude by show-
ing that these identities can be used to provide a perturbative expansion of the spectral action
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and prove a new result on the existence of asymptotic expansions in regular s-summable spectral
triples (A,H, D) of

Tr(Pe−t(D+V)2
)

as t ↓ 0, where V is some self-adjoint bounded element in the algebra generated by D and A, and
P is an arbitrary element in this algebra. The assumptions needed to deduce the existence of these
asymptotic expansions was an open problem, communicated to the authors by Bruno Iochum.

Multiple operator integrals find their origin in the work of Daletskiı̆–Kreı̆n [DK56], Birman–
Solomyak [BS66; BS67; BS73], Pavlov [Pav71] and Sten’kin [SS71; Ste77]. In the theory that we
adapt from [ACDS09; Pel06], classical MOIs have a symbol φ : Rn+1 → C which can be written as

φ(λ0, . . . , λn) =
∫

Ω
a0(λ0, ω) · · · an(λn, ω)dν(ω), (1)

for some finite measure space Ω and bounded measurable functions ai : R × Ω → C. A MOI with
such a symbol is the well-defined operator

TH0,...,Hn
φ (X1, . . . , Xn) :=

∫

Ω
a0(H0, ω)X1a1(H1, ω) · · · Xnan(Hn, ω)dν(ω), (2)

where Hi are closed densely defined self-adjoint operators on a separable Hilbert space, and Xi

are bounded operators. For n = 0 this is simply functional calculus, but for n > 0 MOIs are
multilinear maps

TH0,...,Hn
φ : B(H)× · · · × B(H)

︸ ︷︷ ︸

n

→ B(H).

Here, and throughout the paper, B(H) denotes the algebra of all bounded linear operators on

a separable Hilbert space H. The notation TH0,...,Hn
φ is justified since this multilinear map does

not depend on the chosen representation (1) (see [ACDS09, Lemma 4.3]). To ease notation, if

H0 = · · · = Hn =: H we simply write TH
φ := TH0,...,Hn

φ .
The quintessential symbol for MOIs is a divided difference, namely, for f : R → C regular

enough we can recursively define

f [0](λ0) := f (λ0), f [n](λ0, . . . , λn) :=
f [n−1](λ1, . . . , λn)− f [n−1](λ0, . . . , λn−1)

λ0 − λn
, λ0 6= λn,

replacing the above by a limit in case λ0 = λn, so that

f [n](λ, . . . , λ) =
1

n!
f (n)(λ).

For a nice enough function f the divided difference f [n] : Rn+1 → C admits a decomposition of
the required form, and it then holds that

1

n!

dn

dtn

∣
∣
∣
∣
t=0

f (H + tV) = TH
f [n]

(V, . . . , V) ∈ B(H).

For commuting operators, this formula reduces to the chain rule.

2



MOIs with divided differences as their symbols appear in NCG in the context of spectral
flow [ACS07], spectral shift [ACDS09], the spectral action [Skr14; Skr18; Sui11], the heat trace
expansion [Les17; NSZ23], and cyclic cocycles [CPRS06a; CPRS06b; Liu22; NS22]. The JLO cocy-
cle mentioned earlier can explicitly be written as

∫

Σn
Tr(ηa0e−t0D2

[D, a1]e
−t1D2 · · · [D, an]e

−tnD2
)dt = Tr(ηa0TD2

f [n]
([D, a1], . . . , [D, an])),

where f (x) = exp(−x). The properties and expansions of these cocycles are derived from a small
list of MOI-identities, which have also proved instrumental in [ACDS09; Liu22; Pel06; PSS13;
PS11; NSZ23; NS22]. Under reasonable assumptions, these identities are

f (H + V)− f (H) = TH+V,H

f [1]
(V), (3)

[ f (H), a] = TH,H

f [1]
([H, a]), (4)

and their higher-order analogues, cf. Proposition 5.1.
Applying an identity like (4) to the JLO cocycle where H = D2 gives an unbounded argu-

ment [D2, a] in the multiple operator integral, for which the current theory of multiple operator
integrals [AP22; ACDS09; FP19; Pel16; ST19] is not applicable. In literature on noncommutative
geometry, ad-hoc arguments have been made to handle this [CPRS06a; CM95; Hig04], but never
by generalising multiple operator integrals techniques to deal with unbounded arguments.

1.2 Summary of Main Results

The pseudodifferential calculus we use in our approach was pioneered by Connes–Moscovici,
Higson and Guillemin [CM95; Gui85; Hig04]. A succinct overview of this calculus is given
in [Uuy11].

Definition 1. Let Θ be a possibly unbounded invertible positive self-adjoint operator on a separable Hilbert

space H. Define the Hilbert spaces Hs := dom Θs‖·‖s
for s ∈ R where ‖φ‖s := ‖Θsφ‖ – though taking

this closure is not necessary for s ≥ 0. We write H∞ :=
⋂

s≥0 Hs, which is dense in H. We say that a linear
operator A : H∞ → H∞ is in the class opr(Θ) (it has analytic order ≤ r) if A extends to a continuous
operator

A
s+r,r

: Hs+r → Hs

for all s ∈ R. If no confusion can arise, we often write

A : Hs+r → Hs,

and we write opr instead of opr(Θ) for brevity, op :=
⋃

r∈R opr, and op−∞ := ∩r∈R opr. Finally, we
define OPr(Θ) ⊆ opr(Θ) as those A ∈ opr for which δn

Θ(A) ∈ opr for each n ≥ 0, where δΘ(A) :=
[Θ, A].

Both op(Θ) and OP(Θ) :=
⋃

r∈R OPr(Θ) form a filtered algebra, as opr(Θ) ·opt(Θ) ⊆ opr+t(Θ)
and OPr(Θ) · OPt(Θ) ⊆ OPr+t(Θ).

Commonly, this paradigm is also used when dealing with unbounded operators

T : dom(T) → H.
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In this case, one writes T ∈ opr if H∞ ⊆ dom(T), T(H∞) ⊆ H∞, and

T
∣
∣
H∞ ∈ opr .

Conversely, for T ∈ opr with r > 0,

T
r,0

: Hr ⊆ H → H
can be interpreted as an unbounded operator. Furthermore, note that op−r ⊆ B(H) for r ≥ 0 in

the sense that for A ∈ op−r we have A
−r,0|H ∈ B(H). Similarly if Θ−1 ∈ Ls(H), a Schatten–von

Neumann class, then op−s ⊆ L1(H).
Let us provide a few examples of this abstract pseudodifferential calculus.

• Taking Θ = (1 − ∆)1/2 on L2(Rd), where ∆ = ∑
d
j=1 ∂2

j is the Laplace operator, gives the

classical (Bessel potential) Sobolev spaces Hs = Ws
2(R

d). (Pseudo)differential operators of
order k, and (unbounded) Fourier multipliers Tφ with symbols |φ(ξ)| . (1 + |ξ|)k , ξ ∈ Rd

are contained in OPk((1−∆)1/2). Note though that OP((1−∆)1/2) is a larger class than this,
which for example also contains translation operators.

• For spectral triples (A,H, D) taking Θ = (1 + D2)1/2 recovers the calculus of Connes and
Moscovici as used in noncommutative geometry.

• Taking Θ = (1 − ∆)1/2, where ∆ is the sub-Laplacian on a stratified Lie group, gives the
Sobolev spaces defined by Folland and Stein [FS74; RS76].

• Related to the previous example is the anharmonic oscillator Θ2 = 1 − ∆2l + |x|2k on Rd for
integers l, k ≥ 1 and generalisations thereof, which define Sobolev spaces and a pseudodif-
ferential calculus that appear in the study of sub-Laplacian operators on stratified Lie groups
too [CDR21]. The special case where Θ2 is the harmonic oscillator gives Shubin’s Sobolev
spaces Qs(Rd) [Shu01, Section IV.25], see also [BT06].

• In recent work by Androulidakis, Mohsen and Yuncken, Sobolev spaces are constructed with
a similar procedure in order to prove the Helffer–Nourrigat conjecture [AMY22].

• A similar calculus has been constructed for quantum Euclidean spaces [GJM22].

• Finally, we note the case where Θ = 1H, which gives that H∞ = Hs = H for all s ∈ R, and
opr = B(H), r ∈ R.

In this formalism, we prove a generalisation of the MOI framework by Peller and Azamov–
Carey–Dodds–Sukochev [ACDS09; Pel06]. Recall the following definition, cf. [Sch12, Chapter 4], [ST19,
Section 3.2]. Throughout this paper, we use the notation 〈x〉 := (1 + |x|2)1/2.

Definition 2. Let E be a spectral measure on R with the Borel sigma algebra. For a Borel measurable
function f : R → C we define the essential supremum seminorm

‖ f‖L∞(E) := sup{y ∈ R : E(| f |−1((y, ∞))) = 0},

which defines L∞(E) in the usual way, namely as the quotient of the set of measurable functions with finite

seminorm, by the set of those of zero seminorm. In the same way we define L
β
∞(E) by the seminorm

‖ f‖
L

β
∞(E)

:= ‖x 7→ f (x)〈x〉−β‖L∞(E),

for any β ∈ R, where 〈x〉 = (1 + x2)1/2.
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Theorem 3. Let H0, . . . Hn be self-adjoint operators on H with spectral measures Ej, and let φ : Rn+1 → C

be of the form

φ(λ0, . . . , λn) =
∫

Ω
a0(λ0, ω) · · · an(λn, ω)dν(ω),

for a finite measure space (Ω, ν) and measurable functions aj : R × Ω → C such that (x, ω) 7→
aj(x, ω)〈x〉−β j is Ej × ν-a.e. bounded for β j ∈ R. Suppose that we have aj(Hj, ω) ∈ opk j , kj ∈ R,
and

‖aj(Hj, ω)‖Hs+kj→Hs ≤ Cs,Hj
‖aj(·, ω)‖

L
β j
∞ (Ej)

(5)

for every j ∈ {0, . . . , n}, s ∈ R, and ω ∈ Ω, and certain constants Cs,Hj
∈ R. Then the integral

TH0,...,Hn
φ (X1, . . . , Xn)ψ :=

∫

Ω
a0(H0, ω)X1a1(H1, ω) · · · Xnan(Hn, ω)ψ dν(ω), ψ ∈ H∞,

for X1, . . . , Xn ∈ op, converges as a Bochner integral in Hs for every s ∈ R, and defines an n-multilinear

map TH0,...,Hn
φ : opr1 × · · · × oprn → op∑j r j+∑j k j depending on Ω and a0, . . . , an only through the sym-

bol φ. Specifically, for s ∈ R we have the estimate

∥
∥TH0,...,Hn

φ (X1, . . . , Xn)
∥
∥
Hs+∑j rj+∑j k j→Hs .

n

∏
j=1

‖Xj‖Hsj+rj→Hsj

∫

Ω

n

∏
j=0

‖aj(·, ω)‖
L

β j
∞ (Ej)

d|ν|(ω),

for some s1, . . . , sn ∈ R.

For Θ = 1H and β0 = · · · = βn = 0, it is immediate that aj(Hj, ω) ∈ op(1H) = B(H) and

‖aj(Hj, ω)‖Hs→Hs = ‖aj(·, ω)‖L0
∞(Ej)

,

and the above theorem reduces to Peller’s and Azamov–Carey–Dodds–Sukochev’s construction
of MOIs [ACDS09; Pel06; Pel16]. For general Θ, the question is for which self-adjoint operators
H and functions f we have f (H) ∈ op(Θ) with the required norm estimate (5). In particular, for

H ∈ oph, h > 0, the extension H
r,0

can be considered an unbounded operator on H and hence (if

it is self-adjoint) we might ask whether f (H
r,0
) ∈ op. We draw inspiration from the traditional

theory of pseudodifferential operators and consider elliptic symmetric operators in op.
We say that an operator A ∈ opr, r ≥ 0, is symmetric or self-adjoint with domain Hr respectively,

if the extension
A

r,0
: Hr ⊆ H0 → H0,

regarded as an unbounded operator on H0, is a symmetric or self-adjoint operator. See Section 3
and Appendix A for an investigation of these properties.

We say that A ∈ opr(Θ) is elliptic if there exists a parametrix P ∈ op−r(Θ) such that

AP = 1H∞ + R1;

PA = 1H∞ + R2,

where R1, R2 ∈ op−∞(Θ). This is similar to [Gui85, Definition 2.1]. The notion of ellipticity de-
pends on Θ and on the order r ∈ R, however, we simply abbreviate this to ‘A ∈ opr is elliptic’.

Elliptic operators are discussed in more depth in Section 3, where it is shown that symmetric
elliptic operators in opr, r ≥ 0 are self-adjoint with domain Hr. Therefore, when we mention
the spectrum or spectral measure of such operators, we are referring to the spectrum or spectral

measure of the extension A
r,0

.
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Theorem 4. Let A ∈ opr, r > 0, be elliptic and symmetric, and let E denote its spectral measure. If

f ∈ L
β
∞(E), β ∈ R, then

f (A
r,0
) ∈ opβr,

and we simply write f (A) := f (A
r,0
). More precisely,

‖ f (A)‖Hs+βr→Hs ≤ Cs,A‖ f‖
L

β
∞(E)

.

This theorem is proved in Section 3. The result might be surprising: for traditional elliptic
pseudodifferential operators, a similar functional calculus is only constructed with smooth func-
tions f in Sβ(R) [Bon13, Theorem 2.4][Rob82; Str72][Tay81, Chapter XII]. A functional calculus
for op0(Θ) is developed in Appendix B.

Definition 5. For I ⊆ R an interval and β ∈ R, we define Sβ(I) as the class of smooth functions
f : I → C such that

‖ f‖Sβ(I),k := sup
x∈I

| f (k)(x)|〈x〉k−β
< ∞, k ∈ Z≥0.

The quantities above are seminorms. Similarly, we define Tβ(I) as the space of smooth functions f : I → C

such that

‖ f‖Tβ(I),k :=
∫

I
| f (k)(x)|〈x〉k−β−1dx < ∞, k ∈ Z≥0.

In case I = R, we note the inclusions
⋃

α<β

Sα(R) ( Tβ(R) ( Sβ(R) ( L
β
∞(E)

for any spectral measure E.

Theorem 6. Let H0, . . . , Hn be such that each Hi ∈ ophi , hi > 0, is symmetric and elliptic with spectral
measure Ei. Let φ : Rn+1 → C be such that

φ(λ0, . . . , λn) =
∫

Ω
a0(λ0, ω) · · · an(λn, ω)dν(ω),

for a finite measure space Ω and measurable functions ai : R ×Ω → C such that (x, ω) 7→ ai(x, ω)〈x〉−βi

is Ei × ν-a.e. bounded for βi ∈ R. Then Theorem 3 applies, and for operators Xi ∈ opri , r := ∑
n
i=1 ri, we

have that
TH0,...,Hn

φ (X1, . . . , Xn) ∈ opr+∑
n
i=0 βihi

independent of the chosen representation of φ.
In particular, if h0 = · · · = hn =: h and f ∈ Cn+2(R) such that ‖ f‖Tβ(R),k < ∞, k = 0, . . . , n + 2

for some β ∈ R, then

TH0,...,Hn

f [n]
(X1, . . . , Xn) ∈ opr+(β−n)h,

with the estimate

‖TH0,...,Hn

f [n]
(X1, . . . , Xn)‖Hs+r+(β−n)h→Hs ≤ Cs,H0,...,Hn

(
n+2

∑
k=0

‖ f‖Tβ(R),k

)
n

∏
i=1

‖Xi‖Hsi+ri→Hsi

for some s1, . . . , sn ∈ R.
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Proof. The first part of the theorem is a combination of Theorem 3 and Theorem 4. The second
part is a consequence of the fact that under the listed assumption for f ∈ Cn+2(R), the divided
difference f [n] satisfies the conditions required of a symbol in Theorem 3, which is proved through
Lemma 4.6 and Remark 4.7.

Remark 7. The functional calculus for elliptic symmetric operators in op(Θ) in Theorem 4 can be extended
to self-adjoint operators H (not necessarily in op(Θ)) that strongly commute with some elliptic operator in
op(Θ) of positive order. See Proposition 3.11 for details. The multiple operator integral theory presented in
Theorem 6 therefore also extends to the case where the operators Hi are of this type.

Theorem 6 can of course be applied when all operators Hi and Xi are of the class OP(Θ) ⊆
op(Θ), and it may be of interest to know when the resulting operator is again of the class OP(Θ).
In case the symbol is a divided difference we have the following result, proved in Section 5.1.

Theorem 8. If H0, . . . , Hn ∈ OPh(Θ) are symmetric and elliptic of the same order h > 0 and Xj ∈
OPr j(Θ), r := ∑

n
j=1 rj, and if f ∈ Tβ(R), then the multiple operator integral TH0,...,Hn

f [n]
(X1, . . . , Xn) ∈

op(β−n)h+r(Θ) whose existence follows from Theorem 6, is again an element of OP(Θ), i.e.

TH0,...,Hn

f [n]
(X1, . . . , Xn) ∈ OP(β−n)h+r(Θ).

In particular, the n = 0 case gives that

f (H0) ∈ OPβh(Θ).

Remark 9. The operators TH0,...,Hn
φ (X1, . . . , Xn) constructed in Theorem 3, Theorem 6 and Theorem 8

depend on the symbol φ only through the function value of φ on the spectra σ(H0)× · · · × σ(Hn) ⊆ Rn.
Hence all statements regarding the operators of the form TH

f [n]
(X1, . . . , Xn) where f ∈ Cn+2(R) or f ∈

Tβ(R) remain valid if f is in Cn+2(I) or Tβ(I) respectively, where I ⊆ R is an open neighbourhood of the
spectrum of H.

For a regular spectral triple, which means that A, [D,A] ⊆ OP0((1 + D2)1/2), the applicability
of the above theorems is obvious.

Given these constructions for multiple operator integrals, various identities follow quite im-
mediately, as will be shown in Section 5. Of particular interest are the following expansions. We
say that [Hig04]

A ∼
∞

∑
k=0

Ak

for A, Ak ∈ op, if we have

A −
N

∑
k=0

Ak ∈ opmN (6)

with mN ↓ −∞.

Theorem 10. 1. Let f ∈ Tβ(R), take H ∈ oph, h > 0 elliptic and symmetric, let V ∈ opr be
symmetric. If the order of the perturbation V is strictly smaller than that of H, i.e. r < h, we have

f (H + V) ∼
∞

∑
n=0

TH
f [n]

(V, . . . , V).
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2. Let f ∈ Tβ(R), take H ∈ oph, h > 0 elliptic and symmetric, and take Xi ∈ opri . If there exists some
ε > 0 such that δn

H(Xi) ∈ opri+n(h−ε) for all i and all n ≥ 0, then we have an asymptotic expansion

TH
f [n]

(X1, . . . , Xn) ∼
∞

∑
m=0

∑
m1+···+mn=m

Cm1,...,mn

(n + m)!
δm1

H (X1) · · · δmn
H (Xn) f (n+m)(H),

where

Cm1,...,mn :=
n

∏
j=1

(
j + m1 + · · ·+ mj − 1

mj

)

.

3. Under the assumptions of the first two parts combined, we obtain

f (H + V) ∼
∞

∑
n,m=0

∑
m1+···+mn=m

Cm1,...,mn

(n + m)!
δm1

H (V) · · · δmn
H (V) f (n+m)(H).

This theorem is proved through Theorem 5.3, Proposition 5.4 and Corollary 5.5. The first part
of the theorem above should be interpreted as a Taylor expansion. Special cases of the second
part of the theorem have proved essential in proofs of the local index formula [CM95; CPRS06a],
where they have been derived in a case by case basis. A version for C∗-algebras has also appeared
in [Les17], and a version for classical pseudodifferential operators in [Pay07]. The condition that
δn

H(Xi) ∈ opri+n(h−ε) is for example satisfied for H = Θ and Xi ∈ OP(Θ), with ε = 1.
Apart from its use in finding asymptotic expansions of trace formulas, a seemingly disparate

application of the above theorem is given by the following corollary which is also used through-
out the literature on noncommutative geometry. In particular, a version appears as Theorem B.1
in Connes–Moscovici [CM95]. It has been used repeatedly in the noncommutative geometry liter-
ature, see for example [CPRS06b; Hig04], and for a more recent example [Rod15].

Corollary 11. For X ∈ OPr(Θ) and f ∈ Tβ(R>ε) we have

[ f (Θ), X] ∼
∞

∑
k=1

1

k!
δk

Θ(X) f (k)(Θ).

In particular,

[Θα , X] ∼
∞

∑
k=1

(
α

k

)

δk
Θ(X)Θα−k, α ∈ C,

and

[log(Θ), X] ∼
∞

∑
k=1

(−1)k−1

k
δk

Θ(X)Θ−k,

and we have that [Θα, X] ∈ OPr+ℜ(α)−1(Θ) and [log(Θ), X] ∈ OPr−1(Θ).

Proof. This is a simple combination of Theorem 10 with the identity

[ f (Θ), X] = TΘ

f [1]
([Θ, X])

mentioned earlier, which will be proved in Proposition 5.1.
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Finally, the expansions in Theorem 10 can be refined to provide trace expansions. We apply
this to prove a pertubative expansion of the spectral action in noncommutative geometry [Sui15,
Chapter 7][EI18], and a result on the existence of asymptotic expansions of the heat trace of the
perturbed Dirac operator. For the purpose of understanding the following theorem, one only
needs to know that a regular s-summable spectral triple (A,H, D) consists of a Hilbert space H,
an algebra of bounded operators A and an unbounded self-adjoint operator D. The triple being
regular (sometimes called smooth or QC∞) means that if we write Θ = (1 + D2)1/2, we have

A, [D,A] ⊆ OP0(Θ),

and the s-summability means that Θ−1 ∈ Ls. For a more indepth overview, see [CGRS14; CPR11;
EI18; Hig04; Ren03; Sui11].

Theorem 12. Let (A,H, D) be a regular s-summable spectral triple, s > 0. Let V, P ∈ B, V self-adjoint
and bounded, where B is the algebra generated by A and D. Then for all f ∈ Tβ(R) with β < −s, the
expressions

Tr( f (tD + tV)), Tr(Pe−t(D+V)2
) and Tr(Pe−t|D+V|)

admit an asymptotic expansion as t ↓ 0 given respectively by

Tr( f (tD+ tV)) =
N

∑
n=0

N

∑
m=0

∑
m1+···+mn=m

tn+m Cm1,...,mn

(n + m)!
Tr
(
δm1

H (V) · · · δmn
H (V) f (n+m)(tD)

)
+O(tN+1−s),

where Cm1,...,mn is the same as in Theorem 10,

Tr(Pe−t(D+V)2
) =

N

∑
n=0

N

∑
m=0

∑
m1+···+mn=m

(−t)n+m Cm1,...,mn

(n + m)!
Tr(PA(m1) · · · A(mn) exp(−tD2))+O(t

N+1−s
2 ),

where A := DV + VD + V2, and A(m) := δm
D2(A), and

Tr(Pe−t|D+V|)

=
N

∑
n=0

N

∑
m=0

∑
m1+···+mn=m

(−t)n+m Cm1,...,mn

(n + m)!
Tr(Pδm1

|D|(B) · · · δmn

|D|(B) exp(−t|D|)) + O(t(N+1)(1−ε)−s),

where B := |D + V| − |D| and ε > 0 can be picked arbitrarily small.

This theorem is proved in Section 5.2. In the context the spectral action, this expansion is
closely related to [Skr14; Sui11]. Both these cited papers and Theorem 12 are based on a Taylor ex-
pansion of the spectral action, but the expansion in Theorem 12 goes one step further by applying
the second part of Theorem 10. Observe that we do not assume that f is the Laplace transform of
a measure on R+, which is a common condition in the literature.

In Section 2 we cover some preliminary material for this paper and prove Theorem 3. Section 3
proves the existence of a functional calculus for elliptic symmetric pseudodifferential operators,
and Section 4 shows that divided differences of functions in Tβ(R) satisfy the conditions required
for symbols by Theorem 3, thus completing the proof of Theorem 6. Finally, in Section 5 we prove
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some identities for our construction of a MOI and we finish with a number of results on asymp-
totic expansions. Appendix A contains a brief study on adjoints of abstract pseudodifferential
operators, Appendix B gives a functional calculus for op0(Θ) and Appendix C contains the (com-
binatorial) proof of one of the expansions in Section 5.
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2 Multiple Operator Integrals as Pseudodifferential Operators

In this section we prove Theorem 3. The proof is a subtle modification of the proof presented
in [ACDS09; Pel06], so the material presented here is mostly an adaptation of known results.

2.1 Operator Integrals

We start with standard definitions and results on measurability and integrability of operator val-
ued functions. Throughout the paper we fix a separable Hilbert space H and a positive invertible
operator Θ on H, which yields separable Hilbert spaces Hs by Definition 1.

Definition 2.1. Let H0,H1 be separable Hilbert spaces and let (Ω, Σ, ν) be a measure space with complex
measure. A function f : Ω → B(H1,H0) is called weak operator topology measurable (weakly measurable
for short) if for all η ∈ H0, ξ ∈ H1 the scalar-valued function

ω 7→ 〈η, f (ω)ξ〉H0
, ω ∈ Ω,

is measurable. Similarly, f is said to be weak operator topology integrable if for all ξ and η the above map is
integrable.

Lemma 2.2. [LMSZ23, Lemma 1.4.2] Let H0,H1, (Ω, Σ, ν) be as above, and let f : Ω → B(H1,H0) be
weakly measurable. Then the norm function

ω 7→ ‖ f (ω)‖H1→H0
, ω ∈ Ω,

is measurable. If moreover
∫

Ω
‖ f (ω)‖H1→H0

d|ν|(ω) < ∞,

then there exists a unique I f ∈ B(H1,H0) such that

〈η, I f ξ〉H0
=
∫

Ω
〈η, f (ω)ξ〉H0

dν(ω), η ∈ H0, ξ ∈ H1,

and

‖I f ‖H1→H0
≤
∫

Ω
‖ f (ω)‖H1→H0

d|ν|(ω).

We then write I f =
∫

Ω
f (ω)dν(ω).
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Proposition 2.3. [DDSZ20, Lemma 3.11] Let (Ω, Σ, ν) be a σ-finite measure space, let a : R × Ω → C

be measurable and bounded, and let H be an (unbounded) self-adjoint operator on H. Then

ω 7→ a(H, ω)

is weakly measurable.

Proof. Though [DDSZ20, Lemma 3.11] is only formulated for bounded H, the unbounded case
follows with the same proof.

Lemma 2.4. Let H0, . . . ,H2n+1 be separable Hilbert spaces, Xi ∈ B(H2i,H2i−1), and let fi : Ω →
B(H2i+1,H2i) be weakly measurable functions. Then

Ω → B(H2n+1,H0)

ω 7→ f0(ω)X1 f1(ω) · · · Xn fn(ω)

is weakly measurable. Furthermore, if
∫

Ω
‖ f0(ω)‖H1→H0

· · · ‖ fn(ω)‖H2n+1→H2n
d|ν|(ω) < ∞,

the map

B(H1,H0)× · · · × B(H2n−1,H2n−2) → B(H2n,H0)

(X1, . . . , Xn) 7→
∫

Ω
f0(ω)X1 f1(ω) · · · Xn fn(ω)dν(ω),

whose existence follows from Lemma 2.2, is so-continuous when restricted to the unit ball in each argument
B(H2i,H2i−1).

Proof. The first part of the lemma is a consequence of the fact that the pointwise product of weakly
measurable functions is weakly measurable, see [DDSZ20, Lemma 3.7].

The so-continuity follows from the joint continuity of the multiplication

(X1, . . . , Xn) 7→ a0(H0, ω)X1a1(H1, ω) · · · Xnan(Hn, ω)

in the strong operator topology when restricting to the unit balls [Bla06], in combination with the
Dominated Convergence Theorem for the Bochner integral of Hilbert space-valued functions [DS88,
Corollary III.6.16].

We use the notation ‖ · ‖∞ for the essential supremum.

Lemma 2.5. Let (Ω, Σ, ν) be a σ-finite measure space, let a : R × Ω → C be measurable and bounded,
and let E be a spectral measure on H. Then the functions

ω 7→ ‖a(·, ω)‖∞ , ω 7→ ‖a(·, ω)‖L0
∞(E)

are measurable.

Proof. Both claims can be proved with the Fubini–Tonelli Theorem or by combining Lemma 2.2
and Proposition 2.3. It is vital that ‖ · ‖∞ is the essential supremum, and that E is a spectral measure
on a separable Hilbert space as pointed out in [Nik23, Remark 4.1.3].
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2.2 Abstract Pseudodifferential Calculus

In this subsection we cover some basics on the pseudodifferential calculus given in Definition 1.
See also [Uuy11].

A quick first observation is that the embedding Hs →֒ Ht is continuous for all s ≥ t. It follows
that opr ⊆ opt for r ≤ t.

For s > 0, there is a pairing between Hs and H−s given by

〈u, v〉(Hs,H−s) := 〈Θsu, Θ−sv〉H, u ∈ Hs, v ∈ H−s.

This pairing identifies H−s with the (continuous) anti-linear dual space of Hs and vice-versa.
The space H∞ =

⋂

s∈R Hs is a Fréchet space equipped with the norms ‖ · ‖s, s ∈ R. By con-
struction, H∞ ⊆ Hs for any s ∈ R, and in fact H∞ is dense in Hs. Since a subspace of a separable
metric space is itself separable it follows that every Hs admits an orthonormal basis consisting of
vectors in H∞.

We define H−∞ as the continuous anti-linear dual space of H∞, which can be identified with

H−∞ =
⋃

s∈R

Hs. (7)

This is an LF-space, in the sense of [Trè67, Chapter 13]. From this perspective H∞ can be inter-
preted as a Schwartz space and H−∞ as a space of distributions. Given u ∈ H∞ and v ∈ H−∞ it
follows from (7) that v ∈ H−s for some particular s ∈ R. It is immediate that u ∈ Hs, and we have

〈u, v〉(H∞,H−∞) = 〈u, v〉(Hs,H−s).

Proposition 2.6. The Sobolev spaces Hs in Definition 1 form an interpolation scale. That is, let s0 ≤ s1,
r0, r1 ∈ R, and let 0 < θ < 1. Set

sθ := (1 − θ)s0 + θs1, rθ = (1 − θ)r0 + θr1.

If T is a bounded linear map
T : Hs0 → Hr0 , T

∣
∣
Hs1

: Hs1 → Hr1 ,

then T|Hsθ is bounded from Hsθ to Hrθ for every θ. Moreover we have

‖T‖Hsθ→Hrθ ≤ ‖T‖1−θ
Hs0→Hr0‖T‖θ

Hs1→Hr1 .

Proof. After identifying Hs with a weighted L2-space through the spectral theorem, this follows
from the Stein–Weiss interpolation theorem for Lp-spaces [BL76, Theorem 5.4.1].

2.3 Proof of Theorem 3

Theorem 3 and its proof are heavily inspired by [ACDS09; Pel06; Pel16], see also [ST19].

Proof of Theorem 3. We have self-adjoint operators H0, . . . , Hn on H with spectral measures Ej, and

a function φ : Rn+1 → C of the form

φ(λ0, . . . , λn) =
∫

Ω
a0(λ0, ω) · · · an(λn, ω)dν(ω),

12



where (Ω, ν) is a finite measure space and the functions (x, ω) 7→ aj(x, ω)〈x〉−β j are measurable

and Ej × ν-a.e. bounded. Furthermore, aj(Hj, ω) ∈ opk j , kj ∈ R.
Fix ω ∈ Ω and take η, ξ ∈ H∞ ⊆ dom aj(Hj, ω). Then [Sch12, Theorem 4.13] gives that

aj(Hj, ω)ξ = lim
n→∞

aj(Hj, ω)χ[−n,n](Hj)ξ,

where χ[−n,n] is the indicator function of the interval [−n, n], because ess sup|λ|≤n |aj(λ, ω)| < ∞.
Now Proposition 2.3 gives that

ω 7→ 〈η, aj(Hj, ω)ξ〉Hs = lim
n→∞

〈Θ2sη, aj(Hj, ω)χ[−n,n](Hj)ξ〉H

is measurable for all s ∈ R.
Let now Xi ∈ opri , i ∈ {1, . . . , n}. Fix s ∈ R and define s0, . . . , s2n+1 ∈ R with

s0 := s, s2n+1 := s +
n

∑
i=0

ki +
n

∑
i=1

ri,

so that the operators aj(Hj, ω) and Xj extend to bounded operators

aj(Hj, ω) ∈ B(Hs2j+1,Hs2j),

Xj ∈ B(Hs2j ,Hs2j−1).

By the previous argument,
ω 7→ aj(Hj, ω) ∈ B(Hs2j+1,Hs2j)

is weakly measurable since H∞ is dense in both Hs2j and Hs2j+1.
Using assumption (5), i.e.

‖aj(Hj, ω)‖Hs2j+1→Hs2j ≤ Cs,Hj
‖aj(·, ω)‖

L
β j
∞ (Ej)

,

we have that
∫

Ω
‖a0(H0, ω)X1a1(H1, ω) · · · Xnan(Hn, ω)‖Hs2n+1→Hs0 dν(ω)

.
n

∏
j=1

‖Xj‖Hs2j→Hs2j−1

∫

Ω

n

∏
j=0

‖aj(·, ω)‖
L

β j
∞ (Ej)

d|ν|(ω) < ∞,

where Lemma 2.5 ensures the right-hand side is defined. This is a finite quantity since aj(x, ω)〈x〉−β j

is Ej × ν − a.e. bounded and ν is a finite measure space. Therefore, Lemma 2.2 provides that

∫

Ω
a0(H0, ω)X1a1(H1, ω) · · · Xnan(Hn, ω)dν(ω)

defines an operator in the weak sense in B(Hs2n+1,Hs0) with
∥
∥
∥
∥

∫

Ω
a0(H0, ω)X1a1(H1, ω) · · · Xnan(Hn, ω)dν(ω)

∥
∥
∥
∥
Hs2n+1→Hs0

.
n

∏
j=1

‖Xj‖Hs2j→Hs2j−1

∫

Ω

n

∏
j=0

‖aj(·, ω)‖
L

β j
∞ (Ej)

d|ν|(ω).
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With Pettis’ theorem [VTC87, Propositions 1.9 and 1.10], it now follows that for ψ ∈ Hs2n+1,

ω 7→ a0(H0, ω)X1a1(H1, ω) · · · Xnan(Hn, ω)ψ ∈ Hs

is Bochner integrable in Hs. This holds in particular for ψ ∈ H∞, and as s ∈ R was taken arbitrarily
it follows that for ψ ∈ H∞,

∫

Ω
a0(H0, ω)X1a1(H1, ω) · · · Xnan(Hn, ω)ψdν(ω) ∈ H∞.

It is therefore clear that
∫

Ω
a0(H0, ω)X1a1(H1, ω) · · · Xnan(Hn, ω)dν(ω) ∈ op∑j r j+∑j k j .

That this operator is independent of the chosen representation of φ

φ(λ0, . . . , λn) =
∫

Ω
a0(λ0, ω) · · · an(λn, ω)dν(ω)

follows from the proof of [ACDS09, Lemma 4.3]. Namely, given η, ξ ∈ H∞, it is easy to check that
θη,ξ : H∞ → H∞ defined by

θη,ξ(ψ) := 〈η, ψ〉Hξ, ψ ∈ H∞,

is an element of op−∞. The computations in [ACDS09, Lemma 4.3] give that, for ηk, ξk ∈ H∞, the
integral

∫

Ω
a0(H0, ω)θη1,ξ1

a1(H1, ω) · · · θηn,ξn
an(Hn, ω)dν(ω) ∈ B(H)

does not depend on the chosen representation of φ, and so neither does

∫

Ω
a0(H0, ω)θη1,ξ1

a1(H1, ω) · · · θηn,ξn
an(Hn, ω)dν(ω)

∣
∣
∣
∣
H∞

∈ op−∞ .

The so-density of the span of {θη,ξ : η, ξ ∈ H∞} in B(Hs2i ,Hs2i−1) combined with Lemma 2.4
concludes the proof.

Proposition 2.7. The MOI constructed in Theorem 3 is linear in its symbol:

TH0,...,Hn

αφ+βψ (X1, . . . , Xn) = αTH0,...,Hn
φ (X1, . . . , Xn) + βTH0 ,...,Hn

ψ (X1, . . . , Xn), α, β ∈ C.

Proof. If both φ, ψ : Rn+1 → C have an integral representation of the required form over measure
spaces Ω and Σ respectively, then αφ + βψ can be decomposed appropriately as an integral over
the disjoint union Ω ⊔ Σ. The assertion then follows by elementary arguments.

Remark 2.8. The MOI constructed in Theorem 3 is independent of the operator Θ defining the abstract
pseudodifferential calculus in the following sense. If Hi and Xi are operators on H such that Xi|H∞ ∈
opri(Θ) and ai(Hi, ω)|H∞(Θ) ∈ opki(Θ) satisfying the conditions of Theorem 3, then the proof of Theo-

rem 3 shows that we can define TH0,...,Hn
φ (X1, . . . , Xn) : H∑i ri+∑i ki → H by

TH0,...,Hn
φ (X1, . . . , Xn)ψ =

∫

Ω
a0(H0, ω)V1a1(H1, ω) · · · Vnan(Hn, ω)ψdν(ω) ∈ H, ψ ∈ H∑i ri+∑i ki ,

which is a map that, apart from the definition of its domain, does not depend on Θ.
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3 Functional Calculus for Abstract Pseudodifferential Operators

The construction of multiple operator integrals as abstract pseudodifferential operators now hinges
on finding a class of self-adjoint operators A on H and a class of functions f such that f (A) ∈
op(Θ) with the appropriate estimate of norms (5). To accomplish this, and in particular prove

Theorem 4, we will take A ∈ opr, r ≥ 0, such that A
r,0

: Hr ⊆ H → H is self-adjoint and study

when f (A
r,0
) defined via the Borel functional calculus is an operator in op(Θ). An obstacle for a

naive approach is that f (A
s+r,s

) is not easily defined for s 6= 0, as A
s+r,s

is generally not normal or
symmetric. As for classical pseudodifferential operators, ellipticity provides the right notion for
developing a functional calculus.

3.1 Elliptic Operators

To prepare the way for a functional calculus on the Sobolev scale, we will show in this subsection
that for A ∈ opr, r ≥ 0, elliptic and symmetric we have that A is self-adjoint with domain Hr.
Furthermore, if A is invertible in an appropriate sense, then A−1 ∈ op−r.

First recall the definition of an elliptic operator in op(Θ).

Definition 3.1. We say that an operator A ∈ opr is elliptic if there exists a parametrix for A of order −r,
that is, there exist operators P1, P2 ∈ op−r such that

AP = 1H∞ + R1;

PA = 1H∞ + R2,

where R1, R2 ∈ op−∞ =
⋂

s∈R ops.

As emphasised in the introduction, the notion of ellipticity depends on Θ and on the order
r ∈ R.

We quickly note that the definition of ellipticity above is equivalent to the formally weaker
condition of A having a right-parametrix P1 and a left-parametrix P2, as it would then follow that
P1 − P2 ∈ op−∞ and hence P1 and P2 are both left- and right-parametrices.

Proposition 3.2. Let A ∈ opr be elliptic. If the bounded extension

A : Hs0+r → Hs0

admits a bounded inverse
A−1 : Hs0 → Hs0+r,

for a specific s0 ∈ R, then A−1
∣
∣
H∞ ∈ op−r. Simply writing A−1 = A−1

∣
∣
H∞ , we have that

A−1A = AA−1 = 1H∞ .

Proof. Let P be a parametrix of A and take x ∈ H∞, so that

A−1x = (PA − R2)A−1(AP − R1)x

= PAPx − R2Px − PR1x + R2A−1R1x.
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Observe that for y ∈ Ht, t ∈ R, we have A−1R1y ∈ Hs0+r, so that R2A−1R1y ∈ H∞. Hence,

R2A−1R1 ∈ op−∞,

and therefore

A−1 = PAP − R2P − PR1 + R2A−1R1

∈ op−r + op−∞ = op−r .

Recall the notion of an asymptotic expansion of pseudodifferential operators (6).

Lemma 3.3 (Borel lemma). Let {Ak}∞
k=0 be a sequence of linear operators from H∞ to H∞ for which

Ak ∈ opmk(Θ) such that mk ↓ −∞ as k → ∞. There exists a linear operator A ∈ opm0(Θ) such that

A ∼
∞

∑
k=0

Ak.

Proof. Let η ∈ C∞
c (R) be equal to 1 in a neighbourhood of zero, and let {εk}∞

k=0 be a sequence of
positive numbers tending to zero in a manner to be determined shortly. Formally we define

A :=
∞

∑
k=0

Ak(1 − η(εkΘ)).

We will prove that {εk}∞
k=0 can be chosen such that this series makes sense and A ∈ opm0(Θ) with

the desired asymptotic expansion.
Let ξ ∈ H∞. Then for every k ≥ 0 and n ∈ Z, we have

‖Ak(1 − η(εkΘ))ξ‖Hn ≤ ‖Ak‖Hn+mk→Hn‖(1 − η(εkΘ))ξ‖Hn+mk

≤ ‖Ak‖Hn+mk→Hn‖1 − η(εkΘ)‖Hn+m0→Hn+mk‖ξ‖Hn+m0 .

Let a > 0 be a number such that a < Θ. The norm of 1 − η(εkΘ) from Hn+m0 to Hn+mk is deter-
mined by functional calculus as

sup
t>a

tmk−m0(1 − η(εkt)) ≤ εm0−mk

k sup
s>0

smk−m0(1 − η(s)) ≤ Cηεk.

for some constant Cη, and for k sufficiently large so that m0 − mk ≥ 1. Now we choose εk suffi-
ciently small such that

0 ≤ εkCη max
|n|≤k

{‖Ak‖Hn+mk→Hn} < 2−k.

With this choice of sequence {εk}∞
k=0, we have just proved that the series

Aξ =
∞

∑
k=0

Ak(1 − η(εkΘ))ξ

converges in every Hn, and defines a bounded linear operator

A : Hn+m0 → Hn, n ∈ Z.
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Since this holds for every n ∈ Z, it follows that A : H∞ → H∞ and by interpolation (Proposi-
tion 2.6) A ∈ opm0(Θ). Note that with this fixed choice of {εk}∞

k=0, we have proved the stronger
result that the “tail” of A

∞

∑
k=N+1

Ak(1 − η(εkΘ))

converges in every Hs and defines a linear operator in opmN+1 .
Now we prove that A has the desired asymptotic expansion. For every N > 0 we have

A −
N

∑
k=0

Ak = −
N

∑
k=0

Akη(εkΘ) +
∞

∑
k=N+1

Ak(1 − η(εkΘ))

Since η is compactly supported, it is easy to see that the first summand has order −∞ for every
N ≥ 0, and the second summand has order at most mN+1 due to the result just proved.

Corollary 3.4. Suppose that A ∈ opr has an inverse B ∈ op−r up to order −1. That is,

AB = 1H∞ + R1;

BA = 1H∞ + R2

where R1, R2 have order −1. Then A is elliptic.

Proof. Since R
j
1 has order at most −j, we can use the Borel lemma to construct an operator B′ such

that

B′ ∼
∞

∑
k=0

BR
j
1.

Then AB′ − 1 has order −∞. Similarly we can construct a left inverse.

Proposition 3.5. Let A ∈ opr be elliptic of order r ≥ 0. Then the unbounded operator

A : Hs+r ⊆ Hs → Hs

is closed for each s ∈ R.

Proof. Define the graph norm of A on dom(A) = Hs+r as

‖x‖G(A) := ‖Ax‖s + ‖x‖s, x ∈ Hs+r.

By definition, A is a closed operator if and only if dom(A) is complete with respect to this graph
norm. We will show that for elliptic operators, the graph norm is equivalent to ‖ · ‖s+r, which
immediately implies that Hs+r is complete with respect to the graph norm. First, we have that

‖Ax‖s + ‖x‖s ≤ ‖A‖Hs+r→Hs‖x‖s+r + ‖Θ−r‖Hs→Hs‖Θr x‖s

. ‖x‖s+r.

Next, let P be a parametrix for A, and take x ∈ H∞ so that

‖x‖s+r ≤ ‖PAx‖s+r + ‖R2x‖s+r

≤ ‖P‖Hs→Hs+r‖Ax‖s + ‖R2‖Hs→Hs+r‖x‖s

. ‖Ax‖s + ‖x‖s.

The assertion of the proposition is now immediate.
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Elliptic operators have a property which is often called elliptic regularity, or maximal subellip-
ticity.

Proposition 3.6. Let A ∈ opr be an elliptic operator. If x ∈ H−∞ is such that Ax ∈ Hs for an s ∈ R,
then x ∈ Hs+r.

Proof. Take x ∈ H−∞, and suppose that Ax ∈ Hs. Then PAx ∈ Hs+r, which implies that

x = PAx − R2x ∈ Hs+r.

Finally we will now show that if A ∈ opr, r ≥ 0 is elliptic and symmetric, then A is self-adjoint
with domain Hr.

Definition 3.7. For A ∈ opr, we define the adjoint A† : H−∞ → H−∞ by

〈Au, v〉(H∞,H−∞) = 〈u, A†v〉(H∞,H−∞) u ∈ H∞, v ∈ H−∞.

It is shown in Appendix A that A†|H∞ ∈ opr, and for any s ∈ R, we have that

〈Au, v〉(Hs,H−s) = 〈u, A†v〉(Hs+r,H−s−r), u ∈ Hs+r, v ∈ H−s. (8)

Furthermore, for r ≥ 0 Proposition A.3 gives that A = A† if and only if A
r,0

: Hr ⊆ H → H is
symmetric.

Proposition 3.8. Let A ∈ opr, r ≥ 0, be an elliptic and symmetric operator. Then A is self-adjoint with
domain Hr.

Proof. To prove that A is self-adjoint, we need to show that the Hermitian adjoint of the closed

operator A : Hr ⊆ H0 → H0, writing A∗0 :=
(

A
r,0)∗

,

A∗0 : dom(A∗0) ⊆ H0 → H0,

has domain dom(A∗0) = Hr. Recall that, by definition,

dom(A∗0) := {u ∈ H0 : ∃v ∈ H0 such that ∀φ ∈ Hr 〈u, Aφ〉H0 = 〈v, φ〉H0}.

If u, v ∈ H0 and φ ∈ Hr, then by (8) and Proposition A.3,

〈u, Aφ〉H0 = 〈A†u, φ〉(H−r,Hr)

= 〈Au, φ〉(H−r,Hr);

〈v, φ〉H0 = 〈v, φ〉(H−r,Hr).

Since Hr separates the points of H−r, we have that for u, v ∈ H0,

〈Au, φ〉(H−r,Hr) = 〈v, φ〉(H−r,Hr), ∀φ ∈ Hr,

if and only if
Au = v ∈ H−r.

Hence,

dom(A∗0) = {u ∈ H0 : ∃v ∈ H0 such that Au = v}
= {u ∈ H0 : Au ∈ H0}.

By elliptic regularity (Proposition 3.6) it follows that dom(A∗0) = Hr, completing the proof.
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3.2 Functional Calculus for Elliptic Operators

Proposition 3.9. Let A ∈ opr(Θ), r > 0 be elliptic and symmetric. Then 〈A〉 1
r extends to an invertible

positive self-adjoint operator on H, and

dom Θs = dom
(
〈A〉 1

r
)s

.

The norms ‖Θsξ‖H and ‖〈A〉 s
r ξ‖H are equivalent on this subspace of H. Therefore, Θ and 〈A〉 1

r define the
same Sobolev scale

Hs(Θ) = Hs
(
〈A〉 1

r
)
,

and we have
opt(Θ) = opt

(
〈A〉 1

r
)
.

Proof. The first statement follows from Proposition 3.8. For the remaining statements, it suffices
to prove that

(1 + A2)αΘ−2αr

extends to a bounded operator on H for all α ∈ R, as this would imply for ξ ∈ H∞,

‖〈A〉 s
r ξ‖H ≤ ‖(1 + A2)

s
2r Θ−s‖∞‖Θsξ‖H . ‖Θsξ‖H ,

and an analogous estimate in the other direction.
Let P be a parametrix for A, so that AP = 1 + R with R ∈ op−∞. Since

(1 + A2)P2 = P2 + A(1 + R)P = 1 + P2 + R + ARP

and P2 + R + ARP ∈ op−2r and similarly for (1 + A2)P2, it follows that the operator 1 + A2 is
also elliptic due to Corollary 3.4. Since A is self-adjoint with domain Hr, applying Proposition 3.2
gives that (1 + A2)−1 ∈ op−2r. We therefore have (1 + A2)k ∈ op2kr , k ∈ Z. This in turn gives that
H∞ ⊆ dom(1 + A2)z for any z ∈ C.

We use the Hadamard three-line theorem, so define the function

F(z) := 〈x, (1 + A2)mzΘ−2mzry〉H, z ∈ C,

where m ∈ Z and x, y ∈ H∞ are fixed. Let {en}n∈N ⊆ H∞ be an orthonormal basis of H, then

F(z) =
∞

∑
n=1

〈x, (1 + A2)mzen〉H〈en, Θ−2mzry〉H. (9)

Using the dominated convergence theorem, it can be seen that z 7→ 〈x, (1 + A2)mzen〉H and z 7→
〈en, Θ−2mzry〉H are continuous maps. Applying the Cauchy–Schwarz inequality to the series (9)
yields

∞

∑
n=1

|〈x, (1 + A2)mzen〉H||〈en, Θ−2mzry〉H| ≤ ‖(1 + A2)mzx‖H‖Θ−2mzry‖H,

which is uniformly bounded on compact subsets of C due to the continuity of the right-hand side.
We can therefore apply the dominated convergence theorem again to deduce that F(z) is a con-
tinuous function itself. Furthermore, this uniform boundedness yields through Fubini’s theorem
that if γ is a closed loop in C then

∫

γ
F(z) dz =

∞

∑
n=1

∫

γ
〈x, (1 + A2)mzen〉H〈en, Θ−2mzry〉H dz.
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Using Fubini’s theorem once more, we have that

∫

γ
F(z)dz =

∞

∑
n=1

∫

σ(1+A2)

∫

σ(Θ−2r)

∫

γ
(λµ)mzdz〈x, dE1+A2

en〉H〈en, dEΘ−2r
y〉H = 0,

so that we can conclude by Morera’s theorem that F(z) is holomorphic.
Since 1 + A2 and Θ are positive operators and

sup
x>0

|xit| = 1,

it follows from the Borel functional calculus that for s ∈ R,

|F(is)| = |〈(1 + A2)−imsx, Θ−2imsry〉H|
≤ ‖x‖H‖y‖H.

Likewise,

|F(1 + is)| = |〈(1 + A2)−imsx, (1 + A2)mΘ−2mrΘ−2imsry〉H|
≤ ‖(1 + A2)mΘ−2mr‖H→H‖x‖H‖y‖H ,

which we know to be finite since m is an integer.
The Hadamard three-line theorem (see e.g. [BL76, Lemma 1.1.2]) now gives that for α ∈ (0, 1),

|F(α)| ≤ max
s∈R

|F(α + is)|

≤
(

max
s∈R

|F(is)|
)(1−α)(

max
s∈R

|F(1 + is)|
)α

≤ ‖(1 + A2)mΘ−2mr‖α
H→H‖x‖H‖y‖H .

Hence, with α ∈ (0, 1) and m ∈ Z,

‖(1 + A2)mαΘ−2mαr‖H→H ≤ ‖(1 + A2)mΘ−2mr‖α
H→H,

which proves that (1 + A2)mαΘ−2mαr extends to a bounded operator on H for all m ∈ Z, α ∈
[0, 1].

Proof of Theorem 4. Let A ∈ opr(Θ), r > 0 be elliptic and symmetric. Using Proposition 3.9, we

replace Θ by 〈A〉 1
r so that A ∈ opr(〈A〉 1

r ) is elliptic and symmetric. By Proposition 3.8, the operator

A
r,0

: Hr(〈A〉 1
r ) ⊆ H → H

is self-adjoint; we denote its spectral measure by E. Then for f ∈ L
β
∞(E), using Borel functional

calculus to define f (A
r,0
), we have

‖〈A〉 s
r f (A

r,0
)〈A〉− s

r−β‖H→H = ‖ f (A
r,0
)〈A〉−β‖H→H = ‖ f‖

L
β
∞(E)

< ∞,

which shows that f (A) := f (A
r,0
)|H∞ ∈ oprβ(〈A〉 1

r ). Converting this estimate back into an esti-
mate on the spaces Hs(Θ) introduces the constant Cs,A.
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Theorem 4 has a converse in the following sense. If A ∈ opr, r > 0 is an arbitrary elliptic
symmetric operator and if f : R → C is such that f (A) ∈ opβr(Θ), then the proof of Proposition 3.9
gives that f (A)(1 + A2)−β/2 is a bounded operator on H. This happens if and only if f 〈x〉−β ∈
L0

∞(E) [Sch12, Theorem 5.9], i.e. f ∈ L
β
∞(E).

Corollary 3.10. If A ∈ opr, r > 0 is symmetric and elliptic and if f : R → C is a bounded Borel
measurable function, then for any t ∈ R we have

‖ f (tA)‖Hs→Hs ≤ Cs,A‖ f‖∞,

independent of t ∈ R.

Proof. Like in the proof Theorem 4, we have

‖ f (tA)‖Hs(〈A〉 1
r )→Hs(〈A〉 1

r )
= ‖ ft‖L0

∞(E) ≤ ‖ f‖∞,

where we wrote ft(x) := f (tx).

The functional calculus constructed in Theorem 4 can easily be extended to a larger class of
operators. For example, on Rd with Θ = (1 − ∆)1/2 we have that i d

dx is not elliptic, but it does
commute strongly with a symmetric elliptic operator. The following proposition shows that a
functional calculus for i d

dx does exist in op(Θ) for this reason.

Proposition 3.11. Let A be a self-adjoint operator on H with spectral measure E. If there exists an elliptic

symmetric operator H ∈ oph(Θ), h > 0 such that A strongly commutes with H
h,0

: Hh ⊆ H → H,
then for f ∈ L0

∞(E) we have that f (A) ∈ op0(Θ). If A ∈ opr itself for some r ∈ R, we have that

f (A) ∈ opβr(Θ) for f ∈ L
β
∞(E), β ≥ 0.

Proof. In light of Proposition 3.9, we can assume without loss of generality that H = Θ. If f ∈
L0

∞(E), then f (A) : H → H is a bounded operator, and for ξ ∈ H∞ we have

‖ f (A)ξ‖Hk = ‖Θk f (A)ξ‖H ≤ ‖ f (A)‖∞‖ξ‖Hk , k ∈ Z,

which shows that f (A) ∈ op0(Θ) through interpolation (Proposition 2.6). The second part of the
proposition is proved similarly, after the observation that the Hadamard three-line argument in
the proof of Proposition 3.9 goes through for A if m ∈ Z≥0, i.e. (1 + A2)αΘ−2αr is bounded for
α ≥ 0.

4 Divided differences

The condition that appears in Theorem 3 on the symbol φ : Rn+1 → C needs to be analysed more
closely in order to prepare this multiple operator integral construction for practical applications.
The main result of this section is Lemma 4.6, which gives that for f ∈ Tβ(R) the divided difference
f [n] has an integral representation satisfying the conditions of Theorem 3.

First of all, for functions φ : Rn+1 → C it is an equivalent condition to admit a representation

φ(λ0, . . . , λn) =
∫

Ω
a0(λ0, ω) · · · an(λn, ω)dν(ω)
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for a finite complex measure space (technically: of finite variation) (Ω, ν) and measurable func-
tions aj : R × Ω → C such (x, ω) 7→ aj(x, ω)〈x〉−β j is Ej × ν-a.e. bounded for β j ∈ R, or a
representation

φ(λ0, . . . , λn) =
∫

Σ
b0(λ0, σ) · · · bn(λn, σ)dµ(σ),

where Σ is a σ-finite measure space, bj : R × Ω → C measurable, and

∫

Σ
‖b0(·, σ)‖

L
β0
∞ (E0)

· · · ‖bn(·, σ)‖
L

βn
∞ (En)

d|µ|(σ) < ∞.

Namely, given the second representation, a representation of the first type can be obtained by
putting [ST19, p.48]

aj(λj, σ) :=
bj(λj, σ)

‖bj(·, σ)‖
L

β j
∞ (Ej)

, ν(σ) := ‖b0(·, σ)‖
L

β0
∞ (E0)

· · · ‖bn(·, σ)‖
L

βn
∞ (En)

µ(σ).

Mainly for notational purposes, we introduce the following definition. It is inspired by the
integral projective tensor product appearing in [Pel06], a precise study can be found in [Nik23].

Definition 4.1. Let Γ0, . . . , Γn be function spaces of bounded measurable functions R → R equipped with
(semi)norms ‖ · ‖Γi ,k. We define Γ0 ⊠i · · ·⊠i Γn as the set of functions φ : Rn+1 → C for which there exists
a decomposition

φ(λ0, . . . , λn) =
∫

Ω
a0(λ0, ω) · · · an(λn, ω)dν(ω) (10)

where (Ω, ν) is a σ-finite measure space, ai : R × Ω → C is measurable, ai(·, ω) ∈ Γi, the functions
ω 7→ ‖ai(·, ω)‖Γi ,k are measurable for each i and k, and

∫

Ω
‖a0(·, ω)‖Γ0 ,k0

· · · ‖an(·, ω)‖Γn ,kn
d|ν|(ω) < ∞. (11)

We define the seminorm
‖φ‖Γ0⊠i···⊠iΓn,k0,...,kn

to be the infimum of the quantity (11) over all representations (10).

Remark 4.2. We have that
Γ0 ⊗ · · · ⊗ Γn ⊆ Γ0 ⊠i · · ·⊠i Γn,

where ⊗ denotes the algebraic tensor product for topological vector spaces.

Note that due to Lemma 2.5, if a : R × Ω → C is measurable and a(·, ω) ∈ Sβ(R), we have

that ω 7→ ‖a(·, ω)‖Sβ(R),k is measurable, and the same claim holds for Tβ(R) and L
β
∞(E). Hence

the construction in Definition 4.1 can be applied without this extra assumption.

For L
β
∞(E) with E a spectral measure, this gives the integral projective tensor product

L
β0
∞ (E0)⊠i · · ·⊠i L

βn
∞ (En) = L

β0
∞ (E0)⊗̂i · · · ⊗̂iL

βn
∞ (En),

which appears in particular for β0 = · · · = βn = 0 in the works by Peller [Pel06, pp.6, 7].
We refrain from answering the question whether the space in Definition 4.1 is in general the

completion of the algebraic tensor product under the given seminorms.
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Remark 4.3. Observe that

Sβ0(R)⊠i · · ·⊠i Sβn(R) ⊆ L
β0
∞ (E0)⊗̂i · · · ⊗̂iL

βn
∞ (En)

no matter what spectral measures Ei are taken. By Theorem 3 we have a well-defined multiple operator
integral precisely for symbols in the latter space.

Proposition 4.4. If φ ∈ Sα0(R)⊠i · · ·⊠i Sαn(R) and ψ ∈ Sβ0(R)⊠i · · ·⊠i Sβn(R), then

Φ(λ0, . . . , λn) := φ(λ0, . . . , λn)ψ(λ0, . . . , λn) ∈ Sα0+β0(R)⊠i · · ·⊠i Sαn+βn(R).

An analogous statement holds for the spaces L
β
∞(E).

Proof. According to Definition 4.1, we can find σ-finite measure spaces (Ω, ν), (Σ, µ) and measur-
able functions ai : R × Ω → C, bi : R × Σ → C such that

φ(λ0, . . . , λn) =
∫

Ω
a0(λ0, ω) · · · an(λn, ω)dν(ω);

ψ(λ0, . . . , λn) =
∫

Σ
b0(λ0, σ) · · · bn(λn, σ)dµ(σ).

As observed above, the maps
ω 7→ ‖ai(·, ω)‖Sαi (R),k

are measurable, similarly for the functions bi.
Using Tonelli’s theorem,
∫

Ω×Σ

∣
∣a0(λ0, ω)b0(λ0, σ) · · · an(λn, ω)bn(λn, σ)

∣
∣d(ν × µ)(ω, σ)

≤ 〈λ0〉α0+β0 · · · 〈λn〉αn+βn

∫

Ω
‖a0(·, ω)‖Sα0 ,0 · · · ‖an(·, ω)‖Sαn ,0dν(ω)

×
∫

Σ
‖b0(·, σ)‖Sβ0 ,0 · · · ‖bn(·, σ)‖Sβn ,0dµ(σ) < ∞.

Hence, by Fubini’s theorem

Φ(λ0, . . . , λn) =
∫

Ω×Σ
a0(λ0, ω)b0(λ0, σ) · · · an(λn, ω)bn(λn, σ)d(ν × µ)(ω, σ).

The fact that Φ ∈ Sα0+β0(R)⊠i · · ·⊠i Sαn+βn(R) now follows from the computation

‖ak(·, ω)bk(·, σ)‖Sαk+βk ,m ≤
m

∑
j=0

(
m

j

)

‖ak(·, ω)‖Sαk ,j‖bk(·, σ)‖Sβk ,m−j.

We now use the construction of an almost analytic extension to provide an explicit integral
representation for f ∈ Tβ(R). The technique was introduced by Hörmander [Hör69; Hör70],
and subsequently used in various contexts by many authors. For detailed notes on the historical
origins, see [Hör69]. In Appendix B we use it to develop a functional calculus for op0(Θ), based
on the results of [Dav95b].

For the details of this construction we follow Davies [Dav95b][Dav95c, Section 2.2].
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Definition 4.5 ([Dav95b]). Let f ∈ CN(R), N ∈ N. We define an extension f̃ : C → C by

f̃ (x + iy) := τ(y/〈x〉)
N

∑
r=0

f (r)(x)
(iy)r

r!
,

where τ : R → R is a smooth bump function with τ(s) = 0 for |s| > 2, τ(s) = 1 for |s| < 1. If
f ∈ C∞

c (R), we have

f (x) = − 1

π

∫

C

(
∂ f̃

∂z
(z)

)

(z − x)−1dz, x ∈ R,

independent of the choice of τ and N. We refer to f̃ as an almost analytic extension of f .

Lemma 4.6. 1. Take n ∈ Z≥0, let α be some real number with −1 ≤ α ≤ n, and consider any collection
of real numbers −1 ≤ β0, . . . , βn ≤ 0 such that ∑ β j = α − n. Then

f ∈ Tα(R) ⇒ f [n] ∈ Sβ0(R)⊠i · · ·⊠i Sβn(R),

where for each k0, . . . , kn ≥ 0 we have

‖ f [n](λ0, . . . , λn)‖Sβ0 (R)⊠i···⊠iSβn (R),k0,...,kn
.

n+∑
n
j=0 k j+2

∑
r=0

‖ f‖Tα(R),r.

2. Let α ≤ n. Then

f ∈ Tα(R) ⇒ f [n] ∈ ∑
β0,...,βn≤0
∑ β j=α−n

Sβ0(R)⊠i · · ·⊠i Sβn(R).

For each component φ ∈ Sβ0(R)⊠i · · ·⊠i Sβn(R) in the (finite) decomposition, we have

‖φ‖Sβ0 (R)⊠i···⊠iS
βn (R),k0,...,kn

.

n+∑
n
j=0 k j+2

∑
r=0

‖ f‖Tα(R),r.

3. Let α ≥ n. Then

f ∈ Tα(R) ⇒ f [n] ∈ ∑
∑ β j=α−n

Sβ0(R)⊠i · · ·⊠i Sβn(R).

For each component φ ∈ Sβ0(R)⊠i · · ·⊠i Sβn(R) in the (finite) decomposition, we have

‖φ‖Sβ0 (R)⊠i···⊠iS
βn (R),k0,...,kn

.

n+∑
n
j=0 k j+2

∑
r=0

‖ f‖Tα(R),r.

Proof. 1. For g ∈ C∞
c (R) with almost analytic extension g̃, we have

g(x) = − 1

π

∫

C

∂g̃

∂z
(z − x)−1dz,
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and hence

g[n](λ0, . . . , λn) =
(−1)n

π

∫

C

∂g̃

∂z
(z − λ0)

−1 · · · (z − λn)
−1dz. (12)

Now take f ∈ Tα(R) with α ≤ n and with almost analytic extension f̃ . Directly from

Definition 4.5, writing σ(z) := τ( ℑ(z)
〈ℜ(z)〉), it follows that (cf. [Dav95a, Section 2.2])

∂ f̃

∂z
=

1

2

( N

∑
r=0

f (r)(ℜ(z)) (iℑ(z))
r

r!

)

(σx(z) + iσy(z)) +
1

2
f (N+1)(ℜ(z)) (iℑ(z))

N

n!
σ(z).

We define

U := {z ∈ C : 〈ℜ(z)〉 < |ℑ(z)| < 2〈ℜ(z)〉}, V := {z ∈ C : 0 ≤ |ℑ(z)| < 2〈ℜ(z)〉},

and note that the support of σ is contained in V, while the support of σx and σy are contained
in U. More precisely,

|σx(z) + iσy(z)| .
1

〈ℜ(z)〉χU(z).

Therefore we have the estimate [Dav95b, Lemma 1]

∫

C

∣
∣
∣
∣

∂ f̃

∂z

∣
∣
∣
∣
|z − λ0|−1 · · · |z − λn|−1dz

.
N

∑
r=0

∫

U
| f (r)(ℜ(z))||ℑ(z)|r−n−1〈ℜ(z)〉−1dz +

∫

V
| f (N+1)(ℜ(z))||ℑ(z)|N−n−1dz

.
N+1

∑
r=0

∫

R

| f (r)(x)|〈x〉r−n−1dx =
N+1

∑
r=0

‖ f‖Tn(R),r,

where the last estimate (integration over the imaginary direction) is justified when N ≥
n + 1.

Hence the integral

(−1)n

π

∫

C

∂ f̃

∂z
(z − λ0)

−1 · · · (z − λn)
−1dz

converges.

Since [Dav95b, Lemma 6] gives that C∞
c (R) is dense in Tα(R), the Lebesgue dominated

convergence theorem then gives that the identity (12) extends to all f ∈ Tα(R), α ≤ n, i.e.

f [n](λ0, . . . , λn) =
(−1)n

π

∫

C

∂ f̃

∂z
(z − λ0)

−1 · · · (z − λn)
−1dz.

In order to show that this is a decomposition as described in Definition 4.1, with aj(λj, z) =

(z − λj)
−1, we will now estimate the expressions

‖(z − ·)−1‖Sβ(R),k = sup
λ∈R

〈λ〉k−β

∣
∣
∣
∣

∂k

∂λk
(z − λ)−1

∣
∣
∣
∣

.

(

sup
λ∈R

〈λ〉−β|z − λ|−1

)

·
(

sup
λ∈R

〈λ〉k|z − λ|−k

)

.

(13)
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Note that, for λ ∈ R and z ∈ C \ R,

〈λ〉
|z − λ| =

|λ ± i|
|z − λ| ≤ 1 +

|z ± i|
|z − λ|

≤ 1 +
〈z〉

|ℑ(z)| ,
(14)

as min(|z + i|, |z − i|) ≤ 〈z〉. Next, we estimate

sup
λ∈R

〈λ〉−β|z − λ|−1

for −1 ≤ β ≤ 0. We estimate the supremum over λ > 1, |λ| ≤ 1 and λ < −1 separately.
First, for |λ| ≤ 1 we have 1 ≤ 〈λ〉 ≤ 21/2, and so

sup
|λ|≤1

〈λ〉−β|z − λ|−1 .
1

|ℑ(z)| .

For λ > 1, we have 〈λ〉 ≤ 21/2λ, so that

sup
λ>1

〈λ〉−β|z − λ|−1 . sup
λ>1−ℜ(z)

(λ +ℜ(z))−β

(
λ2 +ℑ(z)2

)1/2
.

Writing v = (λ,ℑ(z)) ∈ R2, then by using Cauchy–Schwarz we have

sup
λ>1−ℜ(z)

(λ +ℜ(z))−β

(
λ2 +ℑ(z)2

)1/2
= sup

λ>1−ℜ(x)

(v · (1, ℜ(z)
ℑ(z)

))−β

‖v‖

≤ sup
λ>1−ℜ(z)

‖(1,
ℜ(z)
ℑ(z)

)‖−β

‖v‖1+β

≤ |z|−β

|ℑ(z)| .

For λ < −1 we have a similar estimate, and hence combined we have

sup
λ∈R

〈λ〉−β|z − λ|−1 .
1

|ℑ(z)| max(1, |z|−β) ≤ 〈z〉−β

|ℑ(z)| . (15)

Combining (13), (14) and (15) we get an estimate

sup
λ∈R

〈λ〉k−β

∣
∣
∣
∣

∂k

∂λk
(z − λ)−1

∣
∣
∣
∣
.

〈z〉−β

|ℑ(z)|

(

1 +
〈z〉

|ℑ(z)|

)k

.

Let −1 ≤ β0, . . . , βn ≤ 0. Taking the inequality above and proceeding as before with N ≥
n + 1 + ∑

n
j=0 kj, we have

∫

C

∣
∣
∣
∣

∂ f̃

∂z

∣
∣
∣
∣

(

sup
λ0∈R

〈λ0〉k0−β0

∣
∣
∣
∣

∂k0

∂λk0
0

(z − λ0)
−1

∣
∣
∣
∣

)

· · ·
(

sup
λn∈R

〈λn〉kn−βn

∣
∣
∣
∣

∂kn

∂λkn
n

(z − λ0)
−1

∣
∣
∣
∣

)

dz

.
N+1

∑
r=0

∫

R

| f (r)(x)|〈x〉r−n−1−∑
n
j=0 β jdx < ∞.
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This converges in particular for ∑
n
j=0 β j = α − n. Since −n − 1 ≤ ∑

n
j=0 β j ≤ 0, this choice is

possible if −1 ≤ α ≤ n. We have therefore proved for −1 ≤ α ≤ n, and −1 ≤ β0, . . . , βn ≤ 0
such that ∑

n
j=0 β j = α − n, that

‖ f [n](λ0, . . . , λn)‖Sβ0 (R)⊠i···⊠iS
βn (R),k0,...,kn

=
∫

C

‖(z − ·)−1‖Sβ0 (R),k0
· · · ‖(z − ·)−1‖Sβn (R),kn

∣
∣
∣
∣

∂ f̃

∂z

∣
∣
∣
∣
dz

.

n+∑
n
j=0 k j+2

∑
r=0

‖ f‖Tn(R),r ≤
n+∑

n
j=0 k j+2

∑
r=0

‖ f‖Tα(R),r.

2. For f ∈ Tα(R), −1 ≤ α ≤ n, we have by the first part of the lemma that for each n ∈ N,

f [n] ∈ Sβ0(R)⊠i · · ·⊠i Sβn(R)

where each β j can be chosen to lie in the interval [−1, 0], and ∑ β j = α − n.

For f ∈ Tα(R) with α ≤ −1, we can write f = g · (x + i)−k where g ∈ Tβ(R), −1 ≤ β ≤ 0
and k ∈ N. The Leibniz rule for divided differences dictates

f [n](λ0, . . . , λn) =
n

∑
l=0

g[l](λ0, . . . , λl)
(
(x + i)−k

)[n−l]
(λl , . . . , λn).

From part 1 and the explicit form of the divided differences of
(
(x + i)−k

)[n]
we therefore

conclude that each term is an element of

∑
β0,...,βn≤0

∑ β j=α−k−n

Sβ0(R)⊠i · · ·⊠i Sβn(R),

with the required estimate of norms.

3. This follows analogously to assertion 2, by analysing
(

g(x + i)k
)[n]

for g ∈ Tα(R) with
−1 ≤ α ≤ 0.

Remark 4.7. The proof of Lemma 4.6 in fact shows that if f ∈ Cn+2(R) such that ‖ f‖Tβ(R),k < ∞ for
k = 0, . . . , n + 2, then given any spectral measures E0, . . . , En, we have

‖ f [n]‖
L

β0
∞ (E0)⊗̂i···⊗̂i L

βn
∞ (En)

≤ ‖ f [n]‖Sβ0 (R)⊠i···⊠iS
βn (R),0,...,0 ≤

n+2

∑
k=0

‖ f‖Tβ(R),k < ∞.

For n = 0, the space of functions that satisfy this condition closely resembles the space Fm(R) used
in [Car+16] in the context of double operator integrals.

Lemma 4.6 and Remark 4.7, combined with Theorem 3, finish the proof of Theorem 6.
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5 MOI Identities and Asymptotic Expansions

5.1 MOI Identities and Applications

The most important identities for our applications of our multiple operator integrals are the fol-
lowing. These are higher-order analogues of (3) and (4), seeing that f (H) = TH

f [0]
().

Proposition 5.1. Let a, X1, . . . , Xn ∈ op, let Hi ∈ ophi , hi > 0 be symmetric and elliptic and let f ∈
Tβ(R), β ∈ R. Then

TH0,...,Hn

f [n]
(X1, . . . , Xj, aXj+1, . . . , Xn)− TH0,...,Hn

f [n]
(X1, . . . , Xja, Xj+1, . . . , Xn) (16)

= T
H0,...,Hj,Hj,...,Hn

f [n+1] (X1, . . . , Xj, [Hj, a], Xj+1, . . . , Xn);

TH0,...,Hn

f [n]
(aX1, . . . , Xn)− aTH0,...,Hn

f [n]
(X1, . . . , Xn) = TH0,H0,H1,...,Hn

f [n+1] ([H0, a], X1, . . . , Xn); (17)

TH0,...,Hn

f [n]
(X1, . . . , Xn)a − TH0,...,Hn

f [n]
(X1, . . . , Xna) = TH0,...,Hn,Hn

f [n+1] (X1, . . . , Xn, [Hn, a]). (18)

Moreover, for A ∈ opa, a > 0, B ∈ opb, b > 0 symmetric and elliptic,

T
H0,...,Hj−1,A,Hj+1,...,Hn

f [n]
(X1, . . . , Xn)− T

H0,...,Hj−1,B,Hj+1,...,Hn

f [n]
(X1, . . . , Xn)

= T
H0,...,Hj−1,A,B,Hj+1,...,Hn

f [n+1] (X1, . . . , Xj, A − B, Xj+1, . . . , Xn).
(19)

Proof. Note that for f ∈ Tβ(R), the multiple operator integrals appearing above are well-defined
through Theorem 6.

We prove equation 16, the others follow analogously. Write

Fj(λ0, . . . , λn+1) := f [n](λ0, . . . , λj−1, λj+1, . . . λn+1);

Fj+1(λ0, . . . , λn+1) := f [n](λ0, . . . , λj, λj+2, . . . λn+1).

Observe that

Fj+1(λ0, . . . , λn+1)− Fj(λ0, . . . , λn+1) = (λj − λj+1) f [n+1](λ0, . . . , λn+1).

Hence,

T
H0,...,Hj,Hj,...,Hn

f [n+1] (X1, . . . , Xj, [Hj, a], Xj+1, . . . , Xn)

= T
H0,...,Hj,Hj,...,Hn

(λj−λj+1) f [n+1] (X1, . . . , Xj, a, Xj+1, . . . , Xn)

= T
H0,...,Hj,Hj,...,Hn

Fj+1
(X1, . . . , Xj, a, Xj+1, . . . , Xn)

− T
H0,...,Hj,Hj,...,Hn

Fj
(X1, . . . , Xj, a, Xj+1, . . . , Xn)

= TH0,...,Hn

f [n]
(X1, . . . , Xj, aXj+1, . . . , Xn)− TH0,...,Hn

f [n]
(X1, . . . , Xja, Xj+1, . . . , Xn).
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With these identities in hand, we can show that the MOI constructed in the previous section is
an element of OP(Θ) if all its components are and the symbol is a divided difference.

Proof of Theorem 8. Let Hi ∈ OPh, h > 0, be symmetric and elliptic and take f ∈ Tβ(R), β ∈ R. For
operators Xi ∈ OPri , r := ∑

n
i=1 ri, we have that

TH0,...,Hn

f [n]
(X1, . . . , Xn) ∈ oph(β−n)+r

due to Lemma 4.6. Now, taking n = 1 to ease notation, using Proposition 5.1 gives that

[Θ, TH0 ,H1

f [1]
(X1)] = TH0,H0,H1

f [2]
([Θ, H0], X1) + TH0,H1

f [1]
([Θ, X1]) + TH0,H1,H1

f [2]
(X1, [Θ, H1]).

As [Θ, Hi] ∈ oph and [Θ, X1] ∈ opr, Lemma 4.6 combined with Theorem 3 gives that

TH0,H0,H1

f [2]
([Θ, H0], X1), TH0,H1

f [1]
([Θ, X1]), TH0,H1,H1

f [2]
(X1, [Θ, H1]) ∈ oph(β−n)+r .

Higher commutators and n > 1 follow analogously. Hence

TH0,...,Hn

f [n]
(X1, . . . , Xn) ∈ OPh(β−n)+r .

In the setting that Θ−1 ∈ Ls, s > 0, it is immediate from Theorem 3 and Theorem 4 that for
H0, . . . , Hn ∈ oph, h > 0 symmetric and elliptic, and f ∈ Tβ(R), the multiple operator integral

TH0,...,Hn

f [n]
(X1, . . . , Xn) ∈ op(β−n)h+r (20)

can be considered to be a trace-class operator on H if β is small enough. Namely, we have

‖A‖1 ≤ ‖Θ−s‖1‖A‖H0→Hs .

For asymptotic expansions of trace formulas, it will be useful to make a more detailed analysis.

Proposition 5.2. Let Hi ∈ oph for a fixed h > 0 be symmetric and elliptic operators. If Xi ∈ opri ,
r := ∑

n
i=1 ri, f ∈ Tα(R) with α ≤ n, t ≤ 1, then

‖TtH0,...,tHn

f [n]
(X1, . . . , Xn)‖Hq+r+(α−n)h→Hq . tα−n, q ∈ R.

Rephrased, if f ∈ T
u−r

h +n, u ≤ r, then

‖TtH0,...,tHn

f [n]
(X1, . . . , Xn)‖Hq+u→Hq . t

u−r
h , q ∈ R.

Proof. Lemma 4.6 gives that

f [n] ∈ ∑
β0+···+βn=α−n

Sβ0(R)⊠i · · ·⊠i Sβn(R),

where each βi ≤ 0 since α ≤ n. Consider one of the summands, φ ∈ Sβ0(R)⊠i · · ·⊠i Sβn(R). Then

φ(λ0, . . . , λn) = (λ0 + i)β0 · · · (λn + i)βn · ψ(λ0, . . . , λn),
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for a function ψ ∈ S0(R)⊠i · · ·⊠i S0(R), and thus, by Remark 4.3 and Theorem 3,

TtH0,...,tHn
φ (X1, . . . , Xn)

= TtH0,...,tHn
ψ ((tH0 + i)β0 X1(tH1 + i)β1 , X2(tH2 + i)β2 , . . . , Xn(tHn + i)βn).

Corollary 3.10 and Theorem 3 give that

‖TtH0,...,tHn
ψ ((tH0 + i)β0 X1(tH1 + i)β1 , X2(tH2 + i)β2 , . . . , Xn(tHn + i)βn)‖Hq+r+(α−n)h→Hq

. ‖(tH0 + i)β0‖Hq0+β0h→Hq0 · · · ‖(tHn + i)βn‖Hqn+βnh→Hqn ,

for qi some real numbers. Theorem 4 gives that

‖(tHj + i)βi j‖Hqj+β jh→Hqj . sup
x∈R

|(tx + i)β j |〈x〉−β j . tβ j .

Therefore,

‖TtH0,...,tHn
φ (X1, X2, . . . , Xn)‖Hq+r+(α−n)h→Hq . tβ0+···+βk = tα−n.

5.2 Asymptotic Expansions

Through the identities proved in the previous section, the theory of multiple operator integrals
lends itself well for establishing asymptotic expansions of operators. As an immediate example,
we first prove a Taylor expansion for pseudodifferential operators, which is the first part of Theo-
rem 10.

Theorem 5.3. Let f ∈ Tβ(R), H ∈ oph, h > 0 elliptic and symmetric, and let V ∈ opr be symmetric. If
the order of the perturbation V is strictly smaller than that of H, i.e. r < h, we have

f (H + V) ∼
∞

∑
n=0

TH
f [n]

(V, . . . , V), (21)

in the sense that

f (H + V)−
N

∑
n=0

TH
f [n]

(V, . . . , V) ∈ opmN

with mN ↓ −∞.

Proof. Using the last part of Proposition 5.1 with A = H + V, B = H, we have

f (H + V)− f (H) = TH+V
f [0]

()− TH
f [0]
()

= TH+V,H
f [1]

(V).

Repeating the argument, we get

f (H + V)−
N

∑
n=0

TH
f [n]

(V, . . . , V) = TH+V,H,...,H

f [N+1] (V, . . . , V).
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Now, if h > r, Theorem 6 gives that

TH+V,H,...,H
f [N+1] (V, . . . , V) ∈ op(β−N−1)h+Nr,

with
(β − N − 1)h + Nr = N(r − h) + (β − 1)h ↓ −∞.

Note that, if H and V are commuting numbers, (21) recovers the classic Taylor expansion

formula f (H + V) ∼ ∑
∞
n=0

f (n)(H)
n! Vn. The noncommutative Taylor expansion (21) features promi-

nently in [Han06; NS22; Sui11; Skr18; Les17] for bounded operators V.
Each term in the Taylor expansion can itself be expanded as follows. Recall that we write

δH(X) := [H, X], δn
H(X) := δH(· · · δH(δH(X)) · · · ). The following proposition finishes the proof of

Theorem 10.

Proposition 5.4. Let Xi ∈ opri(Θ), H ∈ oph(Θ), h > 0 symmetric and elliptic, and f ∈ Tβ(R). Then

TH
f [n]

(X1, . . . , Xn) =
N

∑
m=0

∑
m1+···+mn=m

Cm1,...,mn

(n + m)!
δm1

H (X1) · · · δmn
H (Xn) f (n+m)(H)

+ Sn
N(X1, . . . , Xn),

where

Cm1,...,mn :=
n

∏
j=1

(
j + m1 + · · ·+ mj − 1

mj

)

and the remainder Sn
N(X1, . . . , Xn) is a sum of terms of the form

δm1
H (X1) · · · δmk

H (Xk)T
H
f [n+N+1](1, . . . , 1, δN+1−m1−···−mk

H (Xk+1), 1, . . . , 1, Xk+2, . . . , Xn).

If the commutators δk
H(Xj) have a lower order than the expected rj + kh, explicitly if

δk
H(Xj) ∈ opr j+k(h−ε)

for some ε > 0, then the above gives an asymptotic expansion

TH
f [n]

(X1, . . . , Xn) ∼
∞

∑
m=0

∑
m1+···+mn=m

Cm1,...,mn

(n + m)!
δm1

H (X1) · · · δmn
H (Xn) f (n+m)(H),

in the sense that the remainder term

Sn
N(X1, . . . , Xn) ∈ opmN

with mN = ∑j rj + (β − n)h − ε(N + 1) ↓ −∞.

Proof. As the proof is a lengthy combinatorial exercise, which consists of repeatedly applying
Proposition 5.1, we have elected to move the proof of this proposition to Appendix C.
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Corollary 5.5. Under the combined assumptions of Theorem 5.3 and Proposition 5.4, we get

f (H + V) ∼
∞

∑
n,m=0

∑
m1+···+mn=m

Cm1,...,mn

(n + m)!
δm1

H (V) · · · δmn
H (V) f (n+m)(H).

Proof. For N, M > 0, Theorem 5.3 and Proposition 5.4 give

f (H + V) =
N

∑
n=0

M

∑
m=0

∑
m1+···+mn=m

Cm1,...,mn

(n + m)!
δm1

H (V) · · · δmn
H (V) f (n+m)(H)

+ opN(r−h)+(β−1)h +
N

∑
n=0

opnr+(β−n)h−ε(M+1) .

As (N, M) → (∞, ∞), we see that the order of the remainder decreases to −∞.

A version of Proposition 5.4 for classical pseudodifferential operators (i.e., on a manifold) ap-
pears as [Pay07, Theorem 1]. It should also be noted that the combinatorial or algebraic manipula-
tions needed to prove Proposition 5.4 form a part of every proof of the local index formula, see for
example [CPRS06a, Lemma 6.11][CM95, Equation (71)][Hig04, Lemma 2.12]. Namely, the cocycle
that lies at the heart of the local index formula is the residue of the trace of an expansion of the
above kind.

This observation leads us naturally to the topic of asymptotic expansions of trace formulas. In
various contexts of noncommutative geometry and beyond, expansions are studied of the kind

Tr( f (tH + tV)) ∼
t↓0

∞

∑
k=0

cktrk , (22)

for an increasing sequence rk ↑ ∞ and constants ck ∈ C, which means that as t ↓ 0

Tr( f (tH + tV)) =
N

∑
k=0

cktrk + O(trN+1)

for every N ∈ R. Or, more generally (c.f. [EI18]),

Tr( f (tH + tV)) ∼
t↓0

∞

∑
k=0

ρk(t), (23)

where ρk(t) = O(trk) and

Tr( f (tH + tV)) =
N

∑
k=0

ρk(t) + O(trN+1).

We will target a specific open problem posed in some form by Eckstein and Iochum in [EI18].
Given a spectral triple (A,H, D) it is a common assumption to require the existence of an asymp-
totic expansion as t ↓ 0 of

Tr(ae−tD2
),

where a ∈ A. It is currently not clear whether the existence of asymptotic expansions of

Tr(ae−t(D+V)2
)

can be deduced for suitable perturbations V from this, and whether it could be enough for Tr(e−tD2
)

to admit an asymptotic expansion.
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Theorem 5.6. [EI18, Theorem 3.2] For a bounded operator a and invertible positive operator D such that
D−1 ∈ Ls, s > 0, the existence of an asymptotic expansion

Tr(ae−tD2
) ∼

t↓0

∞

∑
k=0

ρk(t),

where

ρk(t) := ∑
z∈Xk

( d

∑
n=0

cn,k logn t

)

t−z,

with cn,k ∈ C and for suitable sets Xk ⊂ C (for details, see [EI18, Theorem 3.2]), implies the existence of a
meromorphic continuation of

ζD2,a(s) := Tr(a|D|−2s)

to the complex plane, with poles of order at most d + 1 located at points in
⋃∞

k=0 Xk ⊂ C.

We first show that in general the asymptotic expansion of Tr(e−tD2
) provides no control over

the expansions of Tr(ae−tD2
).

Example 5.7. Let A = ℓ∞(Z≥1), H = ℓ2(Z≥1) where A is represented on H by pointwise multiplication,
and let D be the diagonal operator on H given by

Den = nen, n ≥ 1.

This is a spectral triple for trivial reasons: A acts on H by bounded operators, and [D, a] = 0 for all a ∈ A.
Despite being atypical, (A,H, D) satisfies most of the assumptions commonly made in the literature in
terms of smoothness or summability. The algebra A is not separable, but all of the following arguments can
be performed in a separable (even finite dimensional) subalgebra of A.

It is a classical result that we have the asymptotic expansion

Tr(e−tD2
) =

∞

∑
n=1

e−tn2 ∼
t↓0

√
π

2
t−

1
2 − 1

2
,

see for example [Gil04, Lemma 3.1.3]. Nonetheless, the functions Tr(a|D|−2s) for a ∈ A are very badly
behaved. For example, let

a :=
∞

∑
n=2

1

log n
en ∈ A,

so that

ζa,D2(s) = Tr(aD−2s) =
∞

∑
n=2

1

log n
n−2s, ℜ(s) > 1

2
,

which is holomorphic on ℜ(s) > 1
2 . Now,

d

ds
ζa,D2(s) = −2

∞

∑
n=2

n−2s

= 2 − 2ζ(2s), ℜ(s) > 1

2
,
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where ζ is the Riemann zeta function which has a simple pole at 1. Therefore, ζa,D2(s) + log(2s − 1) is
the antiderivative of an entire function, which implies that ζa,D2(s) = − log(2s − 1) + f (s) where f (s)
is entire [Rud87, Theorem 10.14]. We conclude that ζa,D2 does not admit a meromorphic extension to

the complex plane, and thus Tr(ae−tD2
) does not have an asymptotic expansion as t ↓ 0 of the type in

Theorem 5.6.
An even more pathological example is

b :=
∞

∑
n=2

Λ(n)

log(n)
en

where Λ is the von Mangoldt function which satisfies

Λ(n) :=

{

log(p) if n = pk for p prime;

0 otherwise.

A classical formula asserts that [Tit86, p.4]

ζb,D(s) = Tr(b|D|−s) =
∞

∑
n=2

Λ(n)

log(n)
n−s = log ζ(s), ℜ(s) > 1

which is badly behaved at every zero of ζ and at s = 1.

To study the asymptotic expansion of expressions like

Tr(ae−t(D+V)2
),

we will use a modified version of Theorem 5.3 and Proposition 5.4. For this purpose, we first
analyse the remainder in the Taylor expansion in Theorem 5.3 more precisely.

Proposition 5.8. Let Θ−1 ∈ Ls, s > 0, f ∈ Tβ(R), H ∈ oph, h > 0 elliptic and symmetric and V ∈ opr

symmetric. Let h > r ≥ 0 and β < − s
h . For every N ∈ N, we have as t ↓ 0,

Tr( f (tH + tV)) =
N

∑
n=0

tn Tr(TtH
f [n]

(V, . . . , V)) + O(t(N+1)(1− r
h )− s

h ).

Proof. The proof of Theorem 5.3 gives that

f (tH + tV) =
N

∑
n=0

TtH
f [n]

(tV, . . . , tV) + TtH+tV,tH,...,tH

f [N+1] (tV, . . . , tV).

The condition β < − s
h assures that all terms on the left and right-hand side are trace-class (cf.

(20)). Furthermore, we have f ∈ Tβ(R) ⊆ T(N+1)(1− r
h )− s

h (R) so that Proposition 5.2 provides that

‖TtH+tV,tH,...,tH

f [N+1] (tV, . . . , tV)‖1

. tN+1‖TtH+tV,tH,...,tH

f [N+1] (V, . . . , V)‖H−s→H0

. t(N+1)(1− r
h )− s

h .
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This proposition makes it clear that to determine the coefficients of asymptotic expansions of
the type (22) or (23), it suffices to study the asymptotic expansions of the multiple operator integral

Tr(TtH
f [n]

(V, . . . , V)),

which we do with Proposition 5.4.

Proposition 5.9. Let Θ−1 ∈ Ls, s > 0, f ∈ Tβ(R), H ∈ oph, h > 0 symmetric and elliptic, V ∈ opr

symmetric. If h > r ≥ 0, β ≤ − s
h , and δn

H(V) ∈ opr+n(h−ε), then Tr( f (tH + tV)) admits an asymptotic
expansion as t ↓ 0 of type (23) given by

Tr( f (tH + tV)) =
N

∑
n=0

N

∑
m=0

∑
m1+···+mn=m

tn+m Cm1,...,mn

(n + m)!
Tr
(
δm1

H (V) · · · δmn
H (V) f (n+m)(tH)

)
+O(tmN),

where mN := (N + 1)min
(

ε
h , (1 − r

h )
)
− s

h , so that mN ↑ ∞ as N → ∞.

Proof. Combining Propositions 5.8 and 5.4, we have that

Tr( f (tH + tV)) =
N

∑
n=0

N

∑
m=0

tn+m ∑
m1+···+mn=m

Cm1,...,mn

(n + m)!
Tr
(
δm1

H (V) · · · δmn
H (V) f (n+m)(tH)

)

+
N

∑
n=0

tn Tr(Sn
N,t(V, . . . , V)) +O(t(N+1)(1− r

h )− s
h ),

where Sn
N,t(V, . . . , V) is a sum of terms of the form

tN+1δm1
H (V) · · · δmk

H (V)TtH
f [n+N+1](1, . . . , 1, δN+1−m1−···−mk

H (V), 1, . . . , 1, V, . . . , V).

We then estimate
∥
∥tN+1δm1

H (V) · · · δ
mk
H (V)TtH

f [n+N+1](1, . . . , 1, δ
N+1−m1−···−mk
H (V), 1, . . . , 1, V, . . . , V)

∥
∥

1

. tN+1
∥
∥δm1

H (V) · · · δmk
H (V)TtH

f [n+N+1](1, . . . , 1, δN+1−m1−···−mk
H (V), 1, . . . , 1, V, . . . , V)

∥
∥
H−s→H0

≤ tN+1
∥
∥δm1

H (V) · · · δ
mk
H (V)

∥
∥
Hkr+(m1+···+mk)(h−ε)→H0

×
∥
∥TtH

f [n+N+1](1, . . . , 1, δN+1−m1−···−mk
H (V), 1, . . . , 1, V, . . . , V)

∥
∥
H−s→Hkr+(m1+···+mk)(h−ε).

Applying Proposition 5.2 then provides that

‖Sn
N,t(V, . . . , V)‖1 . tN+1− s+kr+(m1+···+mk)(h−ε)

h − (n−k)r+(N+1−m1−···−mk)(h−ε)
h

= t−
s+nr

h +(N+1) ε
h ,

and hence

N

∑
n=0

tn Tr(Sn
N,t(V, . . . , V)) .

N

∑
n=0

tn(1− r
h )+(N+1) ε

h− s
h .

Defining

mN := (N + 1)min

(
ε

h
,
(
1 − r

h

)
)

− s

h

concludes the proof.
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Proof of Theorem 12. Given a regular s-summable spectral triple (A,H, D), write Θ := (1 + D2)1/2.
Let V, P ∈ B, V self-adjoint and bounded, where B is the algebra generated by A and D. If
f ∈ Tβ(R) with β < −s, Proposition 5.9 immediately gives that

Tr( f (tD+ tV)) =
N

∑
n=0

N

∑
m=0

∑
m1+···+mn=m

tn+m Cm1,...,mn

(n + m)!
Tr
(
δm1

H (V) · · · δmn
H (V) f (n+m)(tD)

)
+O(tN+1−s).

Regarding the expansion of Tr(Pe−t(D+V)2
) we have that D2 ∈ OP2(Θ), A ∈ OP1(Θ) since

(A,H, D) is regular. As [D2, A] = [Θ2, A] = Θ[Θ, A] + [Θ, A]Θ, we have that A(m) ∈ OP1+m(Θ).
Furthermore, B ⊆ op(Θ). The proof of this corollary is then the same as the proof of Proposi-
tion 5.9. Filling in

mN = (N + 1)min

(
ε

h
,
(
1 − r

h

)
)

− s

h
=

N + 1 − s

2

gives the order of the error term.
For the expansion of Tr(Pe−t|D+V|), while |D| ∈ OP1(Θ) due to Theorem 4, to conclude some-

thing similar for |D + V| we have to do more work. Note that D has discrete spectrum since
(1 + D2)−1/2 ∈ Ls. If V ∈ OP0(Θ) is self-adjoint, then D + V has real discrete spectrum too.
Hence we can modify the function x 7→ |x| slightly on a small neighbourhood around x = 0 to get
a smooth function f which has the property that f (x) = |x| on σ(D + V) ∪ σ(D), and f ∈ S1(R)
since the second and higher derivatives of f are all compactly supported. Using Theorem 8 and
the observation that S1(R) ⊆ T1+ε(R) for all ε > 0, we have

|D + V| ∈ OP1+ε(Θ), |D + V| − |D| = TD+V,D
f [1]

(V) ∈ OPε(Θ).

Therefore, we get

Tr(Pe−t|D+V|)

=
N

∑
n=0

N

∑
m=0

∑
m1+···+mn=m

(−t)n+m Cm1,...,mn

(n + m)!
Tr(Pδm1

|D|(B) · · · δmn

|D|(B) exp(−t|D|)) + O(t(N+1)(1−ε)−s),

where B := |D + V| − |D| and ε > 0 can be chosen arbitrarily small.

Apart from providing a pertubative expansion of the spectral action, Theorem 12 shows that if
for all P ∈ B we have an expansion

Tr(Pe−tD2
) ∼

t↓0

∞

∑
k=0

ck(P)trk (24)

for constants ck(P) ∈ C, then there exist constants ck(P, V) ∈ C such that

Tr(Pe−t(D+V)2
) ∼

t↓0

∞

∑
k=0

ck(P, V)trk .

Similarly, if each Tr(Pe−tD2
) admits an asymptotic expansions of the type in Theorem 5.6, then

Tr(Pe−t(D+V)2
) does too.
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Remark 5.10. Theorem 12 can be modified to work for non-unital spectral triples. Given a spectral triple
(A,H, D) with non-unital algebra A writing Θ = (1 + D2)1/2, if one assumes instead of Θ−1 ∈ Ls that
there exists p ≥ 1 such that aΘ−s ∈ L1 for all a ∈ A ∪ [D,A] and s > p as is proposed in [CGRS14],
then we also have a · op−s ∈ L1 for s > p. It follows that as t ↓ 0

Tr(a f (tD+ tV)) =
N

∑
n=0

N

∑
m=0

tn+m ∑
m1+···+mn=m

Cm1,...,mn

(n + m)!
Tr
(
aδm1

H (V) · · · δmn
H (V) f (n+m)(tD)

)
+O(tN+1−p)

for a ∈ A∪ [D,A], V ∈ B bounded and self-adjoint, and f ∈ Tβ(R), β < −p.

In [EI18, Chapter 5] the question is asked when, for a spectral triple (A,H, D), the existence
of an asymptotic expansion of Tr(e−t|D|) implies the existence of an expansion of Tr(e−t|D+V|)
for a suitable perturbation V. Theorem 12 compared with Example 5.7 suggests that this is not
generally possible. We illustrate this with the following example.

Example 5.11. Let us revisit Example 5.7 where (A,H, D) = (ℓ∞(Z≥1), ℓ2(Z≥1), D), and D is defined
by

Den = nen, n ≥ 1.

We take as before

a :=
∞

∑
n=2

1

log n
en.

Noting that |D + a| − |D| = a, we can apply Theorem 12 to get (in this situation we can choose ε = 0)

Tr(e−t|D+a|) = Tr(e−tD)− t Tr(ae−tD) + O(t).

Taking the Mellin transform we get for ℜ(s) > 1 (see [EI18, Proposition 2.10])

Tr(|D + a|−s) =
1

Γ(s)

∫ ∞

0
ts−1 Tr(e−t|D+a|) dt

=
1

Γ(s)

∫ 1

0
ts−1 Tr(e−t|D+a|) dt +

1

Γ(s)

∫ ∞

1
ts−1 Tr(e−t|D+a|) dt.

Since
Tr(e−t|D+a|)) ≤ Tr(e−tD) = (et − 1)−1 ≤ 2e−t, t ≥ 1,

we have that

s 7→ 1

Γ(s)

∫ ∞

1
ts−1 Tr(e−t|D+a|) ds

is holomorphic. It follows that

Tr(|D + a|−s) =
1

Γ(s)

∫ 1

0
ts−1 Tr(e−t|D+a|) dt + holoC(s)

=
1

Γ(s)

∫ 1

0
ts−1 Tr(e−tD)− t Tr(ae−tD)dt + holoℜ(s)>−1(s)

= ζ0,D(s)− sζa,D(s + 1) + holoℜ(s)>−1(s).
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Since s 7→ ζa,D(s + 1) does not extend holomorphically to any punctured neighbourhood of s = 0 as the
computations in Example 5.7 show, we conclude that ζa,D(s) = Tr(|D + a|−s) does not admit a meromor-
phic extension to the entire complex plane. By Theorem 5.6,

Tr(e−t|D+a|)

does not admit an asymptotic expansion of the type listed in the theorem.

We conclude by remarking that the existence of an asymptotic expansion of Tr(Qe−tD2
) for Q ∈

B of the type in Theorem 5.6 is guaranteed for commutative spectral triples [GS95, Theorem 2.7],
and by the same theorem also for almost commutative spectral triples [Sui15, Chapter 8].

38



Appendix A Adjoints

In this appendix we discuss various ways of defining the adjoint in opr(Θ).

Definition A.1. Let A ∈ opr(Θ) so that A extends to a bounded operator

A : Hs+r → Hs

for all s ∈ R.

1. The adjoint of A as an endomorphism of the topological vector space H∞ we denote

A† : H−∞ → H−∞

defined by the identity

〈Au, v〉(H∞,H−∞) = 〈u, A†v〉(H∞,H−∞), u ∈ H∞, v ∈ H−∞.

2. In similar fashion we denote the adjoint

A′s : H−s → H−s−r

defined by the relevant identity

〈Au, v〉(Hs,H−s) = 〈u, A′sv〉(Hs+r,H−s−r), u ∈ Hs+r, v ∈ H−s.

3. We define the Hermitian adjoint

A♭s : Hs → Hs+r

via the identity

〈Au, v〉Hs = 〈u, A♭sv〉Hs+r , u ∈ Hs+r, v ∈ Hs.

4. In case r ≥ 0, the map
A : Hs+r ⊆ Hs → Hs

is an unbounded operator on the Hilbert space Hs, so we define another Hermitian adjoint

A∗s : Ds → Hs,

with domain
Ds := {u ∈ Hs | ∃v ∈ Hs∀φ ∈ Hs+r : 〈u, Tφ〉Hs = 〈v, φ〉Hs},

such that
〈Au, v〉Hs = 〈u, A∗sv〉Hs , u ∈ Hs+r, v ∈ Ds.

These adjoints are related in the following way.

Proposition A.2. Let A ∈ opr(Θ). Then, for all s ∈ R,

1. A′s = A†
∣
∣
H−s ;

2. A♭s = Θ−2s−2r A†Θ2s
∣
∣
Hs .
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If r ≥ 0,

3. A∗s = Θ−2s A†Θ2s
∣
∣
Ds

.

Proof. 1. Take u ∈ H∞ ⊆ Hs+r and v ∈ H−s ⊆ H−∞. Then

〈Au, v〉(Hs,H−s) = 〈u, A′sv〉(Hs+r,H−s−r)

= 〈u, A′sv〉(H∞,H−∞).

We also have

〈Au, v〉(Hs,H−s) = 〈Au, v〉(H∞,H−∞)

= 〈u, A†v〉(H∞,H−∞).

Hence it follows that
A′sv = A†v ∈ H−∞, v ∈ H−s.

2. Take u ∈ H∞, v ∈ Hs. Then on the one hand,

〈Au, v〉Hs = 〈Au, Θ2sv〉(H∞,H−∞)

= 〈u, A†Θ2sv〉(H∞,H−∞),

and on the other hand

〈Au, v〉Hs = 〈u, A♭sv〉Hs+r

= 〈u, Θ2s+2r A♭sv〉(H∞,H−∞).

We therefore find
A♭s = Θ−2s−2r A†Θ2s

∣
∣
Hs .

3. Take u ∈ H∞, v ∈ Ds ⊆ Hs ⊆ H−∞. Then

〈Au, v〉Hs = 〈Au, Θ2sv〉(H∞,H−∞)

= 〈u, A†Θ2sv〉(H∞,H−∞),

and

〈Au, v〉Hs = 〈u, A∗sv〉Hs

= 〈u, Θ2s A∗sv〉(H∞,H−∞).

Hence
A∗s = Θ−2s A†Θ2s

∣
∣
Ds

.

An important takeaway from this proposition is that if A : H∞ → H∞, we have a priori that

A† : H−∞ → H−∞,

but if A ∈ opr we have in fact that A† ∈ opr (or, more precisely, A†
∣
∣
H∞ ∈ opr).

It is now also clear that the Hermitian adjoints A♭s and A∗s in general cannot be regarded as
operators in op(Θ) as the operators A♭s and A♭t do not agree on the intersection Hs ∩Ht for s 6= t,
and the same holds for A∗s .
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Proposition A.3. If A ∈ opr, r ≥ 0, then

A : Hr ⊆ H0 → H0

is symmetric if and only if A = A†.

Proof. Suppose that A = A†. Let u ∈ H∞, v ∈ Hr. Then

〈Au, v〉H0 = 〈Au, v〉(H∞,H−∞)

= 〈u, A†v〉(H∞,H−∞)

= 〈u, Av〉H0 .

By density of H∞ ⊆ Hr, the above equality holds for u ∈ Hr as well, and hence A : Hr ⊆ H0 → H0

is symmetric.
On the other hand, if A : Hr ⊆ H0 → H0 is symmetric, then for u, v ∈ H∞,

〈u, A†v〉(H∞,H−∞) = 〈Au, v〉H0

= 〈u, Av〉H0

= 〈u, Av〉(H∞,H−∞),

showing that A†v = Av ∈ H∞ which implies that A = A† ∈ opr.

Appendix B Functional Calculus for op0(Θ)

In Section 3 we proved that symmetric elliptic operators in opr for r > 0 admit a functional calcu-
lus. The approach of that section does not apply for the case r = 0. To illustrate how different the
zero-order case is, consider the situation where Θ = (1 + ∆)1/2 on L2(M) where M is a compact
subset of Rd. We have that for φ : M → R, the multiplication operator

Mφ : L2(M) → L2(M)

ξ 7→ φ · ξ,

where φ · ξ(x) = φ(x)ξ(x), can only be in op(Θ) if φ is smooth. For smooth φ we have that
Mφ ∈ op0(Θ). If f (Mφ) ∈ op(Θ) for all Mφ ∈ op0(Θ), then the identity

f (Mφ) = M f ◦φ

shows that the function f has to be smooth itself and no functional calculus with general functions

in L
β
∞(E) is possible.
For op0(Θ) we therefore use a different strategy altogether. An approach by Davies [Dav95c;

Dav95b] on the construction of a functional calculus using almost analytic extensions directly ap-
plies. Using almost analytic extensions to obtain a functional calculus for pseudodifferential oper-
ators has precedent in the works of, amongst others, Hörmander [Hör69], Helffer–Sjöstrand [HS89],
Dimassi–Sjöstrand [DS99, Chapter 8], and Bony [Bon13].
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Definition B.1 ([Dav95b]). Let f ∈ C∞
c (R). We define an extension f̃ : C → C by

f̃ (x + iy) := τ(y/〈x〉)
N

∑
k=0

f (k)(x)
(iy)k

k!
,

where N ≥ 1 and τ : R → R is a smooth bump function with τ(s) = 0 for |s| > 2, τ(s) = 1 for |s| < 1.
Then we have

f (x) = − 1

π

∫

C

(
∂ f̃

∂z
(z)

)

(z − x)−1dz, x ∈ R,

independent of the choice of τ and N. We refer to f̃ as an almost analytic extension of f .

Theorem B.2 ([Dav95b]). Let f ∈ C∞
c (R) with almost analytic extension f̃ as in Definition B.1, so that

f (x) = − 1

π

∫

C

(
∂ f̃

∂z
(z)

)

(z − x)−1dz, x ∈ R.

For any closed, densely defined operator H with σ(H) ⊆ R, if for some α ∈ R≥0 we have the estimate

‖(z − H)−1‖ ≤ C
1

|ℑ(z)|

( 〈z〉
|ℑ(z)|

)α

, z ∈ C ⊆ R,

then we have that

f (H) := − 1

π

∫

C

∂ f̃

∂z
(z − H)−1dz

defines a bounded operator on H independent of the choice of N > α and τ in the construction of the
extension f̃ , with

‖ f (H)‖∞ ≤
N+1

∑
k=0

‖ f‖T0(R),k.

The integral should be interpreted as a B(H)-valued Bochner integral. In case H is self-adjoint, this agrees
with the continuous functional calculus.

We thank Dmitriy Zanin for providing a key step in the following proof, which is an adaptation
of an argument by Beals [Bea77, Lemma 3.1].

Proposition B.3. Let X ∈ opr(Θ) be such that [Θ, X] ∈ opr. If the extension

X : Hs0+r → Hs0

has a bounded inverse
X−1 : Hs0 → Hs0+r

for one particular s0 ∈ R, then X−1
∣
∣
H∞ ∈ op−r. We have XX−1|H∞ = X−1X|H∞ = 1H∞ . In particular,

if X ∈ opr and [Θ, X] ∈ opr with r ≥ 0, then we have as (unbounded) operators

σ(X : Hs0+r ⊆ Hs0 → Hs0) = σ(X : Hs+r ⊆ Hs → Hs)

for all s ∈ R, where σ denotes the spectrum of the operator.
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Proof. Since opr = op0 ·Θr , it suffices to prove the proposition for r = 0.
Suppose that X ∈ op0 is a bijection on Hs0 → Hs0 and write X−1 : Hs0 → Hs0 . Then X restricts

to a necessarily injective map Hs0+1 → Hs0+1. We now prove that X : Hs0+1 → Hs0+1 is also
surjective.

We follow [Bea77, Lemma 3.1], filling in some omitted details. Take v ∈ Hs0+1, then there
exists u ∈ Hs0 with Xu = v. Let ε > 0, then Θ

1+εΘ
∈ op0, and

Θ

1 + εΘ
u =

Θ

1 + εΘ
X−1v

= X−1 Θ

1 + εΘ
v + X−1

[
Θ

1 + εΘ
, X

]

X−1v.

Now, the Hs0 norm of the right-hand side is bounded independent of ε:

∥
∥
∥
∥

Θ

1 + εΘ

∥
∥
∥
∥
Hs0+1→Hs0

≤ ‖Θ‖Hs0+1→Hs0 ;

∥
∥
∥
∥

[
Θ

1 + εΘ
, X

]∥
∥
∥
∥
Hs0→Hs0

= ‖(1 + εΘ)−1[Θ, X](1 + εΘ)−1‖Hs0→Hs0 ≤ ‖[Θ, X]‖Hs0 →Hs0 .

This implies that u ∈ Hs0+1, a fact that can be quickly verified with the spectral theorem and
Fatou’s lemma. Therefore,

X : Hs0+1 → Hs0+1

is a bijection. By induction and interpolation (Proposition 2.6), the same assertion holds for each
Hs, s ≥ s0.

Finally, it is a basic fact that the adjoint of a bijective operator is bijective, i.e.

X′s0 = X†|H−s0 : H−s0 → H−s0

is a bijection. Since
[Θ, X†] = −[Θ, X]† ∈ op0,

we can apply the same arguments as above to deduce that

X† : H−s → H−s

is a bijection for all −s ≥ −s0. This implies that

X = X†† : Hs → Hs

is a bijection for all s ≤ s0.

This following type of estimate on the resolvent also appears in Lp-boundedness problems, see
[Dav95a; Dav95b; JN94].

Lemma B.4. Let A ∈ op0 be such that [Θ, A] ∈ op0 and A
0,0

: H → H is self-adjoint. Then for all
s ∈ R, there is a constant Cs > 0 such that

‖(z − A)−1‖Hs→Hs ≤ Cs
1

|ℑ(z)|

( 〈z〉
|ℑ(z)|

)2|s|−1

, z ∈ C \ R.
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Proof. The proof is by induction and interpolation (Proposition 2.6). For s = 0, the estimate holds

by self-adjointness of A
0,0

. Note that (z − A)−1 ∈ op0 due to Proposition B.3.
Suppose the inequality is proved for a fixed s ∈ R≥0. Then for z ∈ C \ R,

‖(z − A)−1‖Hs+1→Hs+1

= ‖Θ(z − A)−1Θ−1‖Hs→Hs

≤ ‖(z − A)−1‖Hs→Hs + ‖(z − A)−1[Θ, A](z − A)−1Θ−1‖Hs→Hs

≤ ‖(z − A)−1‖Hs→Hs

(

1 + ‖[Θ, A](i + A)−1‖Hs→Hs‖(i + A)(z − A)−1‖Hs→Hs‖Θ−1‖Hs→Hs

)

.

Note that (i + A)−1 ∈ op0 by Proposition B.3, so that for some constant Bs > 0,

‖[Θ, A](i + A)−1‖Hs→Hs‖Θ−1‖Hs→Hs ≤ Bs.

Using the resolvent identity, we have

(i + A)(z − A)−1 = (i + z)(z − A)−1 − 1

and therefore

‖(i + A)(z − A)−1‖Hs→Hs ≤ 1 + |z + i|‖(z − A)−1‖Hs→Hs .

This yields

‖(z − A)−1‖Hs+1→Hs+1 ≤ ‖(z − A)−1‖Hs→Hs(1 + Bs)

+ |z + i|Bs‖(z − A)−1‖2
Hs→Hs

≤ (1 + Bs)‖(z − A)−1‖Hs→Hs · (1 + |z + i|‖(z − A)−1‖Hs→Hs).

This estimate also holds with |z − i| on the right-hand side, and min(|z + i|, |z − i|) ≤ 〈z〉, so that

‖(z − A)−1‖Hs+1→Hs+1 ≤ (1 + Bs)‖(z − A)−1‖Hs→Hs · (1 + 〈z〉‖(z − A)−1‖Hs→Hs),

from which the claimed estimate follows. Induction and interpolation now provide the estimate
for all s ≥ 0.

The case s ≤ 0 is proved in the same manner, using induction in the negative direction.
Namely, the norm

‖(z − A)−1‖Hs−1→Hs−1 = ‖Θ−1(z − A)−1Θ‖Hs→Hs

can be estimated as before.

Proposition B.5. Let A ∈ op0 be such that [Θ, A] ∈ op0 and A
0,0

: H → H is self-adjoint. If f ∈
C∞(R), then f (A) ∈ op0 with

‖ f (A)‖Hs→Hs ≤
⌈2|s|⌉+1

∑
k=0

‖ f‖T0(R),k.
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Proof. Without loss of generality, we assume that f ∈ C∞
c (R). As A ∈ op0, it extends to a bounded

operator

A
s,s

: Hs → Hs, s ∈ R.

Furthermore, by Proposition 3.2, we have

(A − z)−1 ∈ op0, z ∈ C \ R.

Theorem B.2 and Lemma B.4 combined give that

f (A
s,s
) : Hs → Hs, s ∈ R,

is a bounded operator with the norm bound as claimed. By construction, for ξ ∈ H∞ we have that

f (A
s,s
)ξ =

∫

C

∂ f̃

∂z
(A

s,s − z)−1ξdz ∈ Hs,

as an Hs-valued Bochner integral. It is clear that

(A
s,s − z)−1

∣
∣
H∞ = (A − z)−1,

and therefore these arguments show that for ξ ∈ H∞ the integral

∫

C

∂ f̃

∂z
(A − z)−1ξdz

can be evaluated as a Bochner integral in each Sobolev space Hs. Hence

ξ 7→
∫

C

∂ f̃

∂z
(A − z)−1ξdz

forms a bounded linear map on H∞; denote this operator by f (A) : H∞ → H∞. Then since f (A)

agrees with f (A
s,s
) on H∞, we must have

f (A)
s,s

= f (A
s,s
),

and thus we have f (A) ∈ op0.

This functional calculus can be used to construct multiple operator integrals, similarly to The-
orem 3.

Theorem B.6. Let H0, . . . , Hn, [Θ, H0], . . . , [Θ, Hn] ∈ op0(Θ) be such that each Hi
0,0

is self-adjoint. For
φ ∈ T0(R)⊠i · · ·⊠i T0(R) (see Definition 4.1) with corresponding representation

φ(λ0, . . . , λn) =
∫

Ω
a0(λ0, ω) · · · an(λn, ω)dν(ω),

the integral

TH0,...,Hn
φ (X1, . . . , Xn)ψ :=

∫

Ω
a0(H0, ω)X1a1(H1, ω) · · · Xnan(Hn, ω)ψ dν(ω), ψ ∈ H∞

for X1, . . . , Xn ∈ op, converges as a Bochner integral in Hs for every s ∈ R, and defines an n-multilinear

map TH0,...,Hn
φ : opr1 × · · · × oprn → op∑j r j .
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Proof. Recall that by definition of T0(R)⊠i · · ·⊠i T0(R) we have for all k0, . . . , kn ≥ 0

∫

Ω
‖a0(·, ω)‖T0(R),k0

· · · ‖an(·, ω)‖T0(R),kn
d|ν|(ω) < ∞.

The proof of the theorem is then identical to the proof of Theorem 3, using that

‖aj(Hj, ω)‖Hs→Hs ≤
⌈2|s|⌉+1

∑
k=0

‖aj(·, ω)‖T0(R),k

instead of
‖aj(Hj, ω)‖Hs+kj→Hs ≤ Cs,Hj

‖aj(·, ω)‖
L

β j
∞ (Ej)

.

Due to Lemma 4.6, the divided difference f [n] for f ∈ Tα(R) with α < n is in particular a
permitted symbol.

One may wonder how the condition A, [Θ, A] ∈ opr compares to the condition of A being el-
liptic with r > 0. The following consequence of Proposition B.3 shows that, under the assumption
that A is self-adjoint with domain Hr, ellipticity is a weaker condition.

Corollary B.7. Let A ∈ opr(Θ), r > 0, be such that

A : Hr ⊆ H0 → H0

has a non-empty resolvent set (for example if A is self-adjoint with domain Hr), and suppose that [Θ, A] ∈
opr as well. Then A is elliptic.

Proof. By assumption, there exists z ∈ C such that

z − A : Hr ⊆ H0 → H0

is invertible, and because [Θ, A] ∈ opr it follows that (z − A)−1 ∈ op−r by Proposition B.3. Now,

A(z − A)−1 = −1 + z(z − A)−1.

In other words, −(z− A)−1 is an inverse of A modulo op−r. Corollary 3.4 gives that A elliptic.

Appendix C Combinatorial Computations

This appendix is dedicated to proving Proposition 5.4. The computations are standard, cf. [CPRS06a,
Lemma 6.11][CM95, Equation (71)][Hig04, Lemma 2.12] – the novelty is that they can be per-
formed in the very general context of (unbounded) MOIs.

Definition C.1. The multiset coefficient
(( n

k

))
for n, k ∈ Z≥0 is defined as

((n

k

))

:=

(
n + k − 1

k

)

.
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Lemma C.2. For f ∈ Tβ(R), H ∈ oph, h > 0 symmetric and elliptic, Xi ∈ opri(Θ), we have

TH
f [n+j](1, . . . , 1

︸ ︷︷ ︸

j

, X1, . . . , Xn)

=
N

∑
m=0

((
m + 1

j

))

δm
H(X1)T

H
f [n+j+m](1, . . . , 1

︸ ︷︷ ︸

j+1+m

, X2, . . . , Xn) + Rn
j,N(X1, . . . , Xn),

where

Rn
j,N(X1, . . . , Xn) :=

j

∑
l=0

((
N + 1

l

))

TH
f [n+j+N+1](1, . . . , 1

︸ ︷︷ ︸

j−l

, δN+1
H (X1), 1, . . . , 1

︸ ︷︷ ︸

N+1+l

, X2, . . . , Xn).

Proof. Multiset coefficients have the property that

j

∑
l=0

((m

l

))

=

((
m + 1

j

))

.

The assertion of the lemma follows by induction on N. For N = 0,

TH
f [n+j](1, . . . , 1

︸ ︷︷ ︸

j

, X1, . . . , Xn)

= X1TH
f [n+j](1, . . . , 1

︸ ︷︷ ︸

j+1

, X2, . . . , Xn) +
j

∑
l=0

TH
f [n+j+1](1, . . . , 1

︸ ︷︷ ︸

j−l

, δH(X1), 1, . . . , 1
︸ ︷︷ ︸

1+l

, X2, . . . , Xn)

by applying Proposition 5.1 j + 1 times on X1.
Suppose that the assertion holds for N − 1. Then

TH
f [n+j](1, . . . , 1

︸ ︷︷ ︸

j

, X1, . . . , Xn)

=
N−1

∑
m=0

((
m + 1

j

))

δm
H(X1)T

H
f [n+j+m](1, . . . , 1

︸ ︷︷ ︸

j+1+m

, X2, . . . , Xn)

+
j

∑
l=0

((
N

l

))

TH
f [n+j+N](1, . . . , 1

︸ ︷︷ ︸

j−l

, δN
H(X1), 1, . . . , 1

︸ ︷︷ ︸

N+l

, X2, . . . , Xn)

=∗
N−1

∑
m=0

((
m + 1

j

))

δm
H(X1)T

H
f [n+j+m](1, . . . , 1

︸ ︷︷ ︸

j+1+m

, X2, . . . , Xn)

+
j

∑
l=0

((
N

l

))

δN
H(X1)T

H
f [n+j+N](1, . . . , 1

︸ ︷︷ ︸

N+1+j

, X2, . . . , Xn)

+
j

∑
l=0

((
N

l

)) j−l

∑
k=0

TH
f [n+j+N+1](1, . . . , 1

︸ ︷︷ ︸

j−l−k

, δN+1
H (X1), 1, . . . , 1

︸ ︷︷ ︸

N+1+l+k

, X2, . . . , Xn),
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where in the step marked with ∗ we applied Proposition 5.1 j − l times on δN
H(X1). Continuing on,

TH
f [n+j](1, . . . , 1

︸ ︷︷ ︸

j

, X1, . . . , Xn)

=
N−1

∑
m=0

((
m + 1

j

))

δm
H(X1)T

H
f [n+j+m](1, . . . , 1

︸ ︷︷ ︸

j+1+m

, X2, . . . , Xn)

+

((
N + 1

j

))

δN
H(X1)T

H
f [n+j+N](1, . . . , 1

︸ ︷︷ ︸

N+1+j

, X2, . . . , Xn)

+
j

∑
l=0

j−l

∑
k=0

((
N

l

))

TH
f [n+j+N+1](1, . . . , 1

︸ ︷︷ ︸

j−l−k

, δN+1
H (X1), 1, . . . , 1

︸ ︷︷ ︸

N+1+l+k

, X2, . . . , Xn).

In the last sum, relabel r := k + l, so that

TH
f [n+j](1, . . . , 1

︸ ︷︷ ︸

j

, X1, . . . , Xn)

=
N

∑
m=0

((
m + 1

j

))

δm
H(X1)T

H
f [n+j+m](1, . . . , 1

︸ ︷︷ ︸

j+1+m

, X2, . . . , Xn)

+
j

∑
r=0

r

∑
l=0

((
N

l

))

TH
f [n+j+N+1](1, . . . , 1

︸ ︷︷ ︸

j−r

, δN+1
H (X1), 1, . . . , 1

︸ ︷︷ ︸

N+1+r

, X2, . . . , Xn)

=
N

∑
m=0

((
m + 1

j

))

δm
H(X1)T

H
f [n+j+m](1, . . . , 1

︸ ︷︷ ︸

j+1+m

, X2, . . . , Xn)

+
j

∑
r=0

((
N + 1

r

))

TH
f [n+j+N+1](1, . . . , 1

︸ ︷︷ ︸

j−r

, δN+1
H (X1), 1, . . . , 1

︸ ︷︷ ︸

N+1+r

, X2, . . . , Xn).

This concludes the induction step.

Proof of Proposition 5.4. Apply Lemma C.2 first to the first entry of TH
f [n]

(X1, . . . , Xn),

TH
f [n]

(X1, . . . , Xn) =
N

∑
m1=0

((
m1 + 1

0

))

δm1
H (X1)T

H
f [n+m1]

(1, . . . , 1
︸ ︷︷ ︸

m1+1

, X2, . . . , Xn) + Rn
0,N(X1, . . . , Xn).

Apply Lemma C.2 once more, expanding up to order N − m1 instead of N.

TH
f [n]

(X1, . . . , Xn)

=
N

∑
m1=0

N−m1

∑
m2=0

((
m1 + 1

0

))((
m2 + 1

m1 + 1

))

δm1
H (X1)δ

m2
H (X2)T

H
f [n+m1+m2]

(1, . . . , 1
︸ ︷︷ ︸

2+m1+m2

, X3, . . . , Xn)

+
N

∑
m1=0

((
m1 + 1

0

))

δm1
H (X1)Rn−1

1+m1,N−m1
(X2, . . . , Xn) + Rn

0,N(X1, . . . , Xn).
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Repeating gives the formula

TH
f [n]

(X1, . . . , Xn)

=
N

∑
m=0

∑
m1+···+mn=m

n

∏
j=1

((
mj + 1

j − 1 + m1 + · · ·+ mj−1

))

δm1
H (X1) · · · δmn

H (Xn)T
H
f [n+m](1, . . . , 1

︸ ︷︷ ︸

n+m

)

+ Sn
N(X1, . . . Xn),

where

Sn
N(X1, . . . Xn) :=

n−1

∑
k=0

∑
m1+···+mk≤N

k

∏
j=1

((
mj + 1

j − 1 + m2 + · · ·+ mj−1

))

× δm1
H (X1) · · · δmk

H (Xk)Rn−k
k+m1+···+mk,N−m1−···−mk

(Xk+1, . . . , Xn).

The observation that
((n

k

))

=

((
k + 1

n − 1

))

,

and the definition
((n

k

))

=

(
n + k − 1

k

)

,

finishes the proof of the proposition.
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