
ar
X

iv
:2

40
4.

16
32

1v
1

 [
m

at
h.

C
T

]
 2

5
A

pr
 2

02
4

Pattern runs on matter: The free monad monad as a module

over the cofree comonad comonad

Sophie Libkind and David I. Spivak

Interviews run on people, programs run on operating systems, voting schemes run on voters,
games run on players. Each of these is an example of the abstraction pattern runs on matter.
Pattern determines the decision tree that governs how a situation can unfold, while matter
responds with decisions at each juncture.

In this article, we will give a straightforward and concrete construction of the free monad
monad for (Poly, ⊳,y), the category of polynomial functors with the substitution monoidal
product. Although the free monad has been well-studied in other contexts, the construction
we give is streamlined and explicitly illustrates how the free monad represents terminating
decision trees. We will also explore the naturally arising interaction between the free monad
and cofree comonad. Again, while the interaction itself is known, the perspective we take is
the free monad as a module over the cofree comonad. Lastly, we will give four applications of
the module action to interviews, computer programs, voting, and games. In each example, we
will see how the free monad represents pattern, the cofree comonad represents matter, and the
module action represents runs on.

1 Introduction

The etymology of matter and pattern are "mother" and "father"; this pair of terms offers a very
basic sense in which to carve up the world. Like two parents, matter and pattern represent a
fundamental dichotomy: matter is the pure material, unconcerned with our ideas about it; pattern
is pure structure, unconcerned with what substantiates it. And yet one may have an intuitive sense
that pattern "runs on"—must be instantiated in—matter. In this paper, we show that this idea
matches both our intuition and the mathematics of a module structure by which free monads are
a module over cofree comonads.

Intuitively, interviews, programs, voting schemes, and games represent patterns. But what is
an interview without a person to be interviewed; what is a program without a operating system to
run it on; what is a voting scheme without voters to do the voting; what is a game without players
to play it? In each case, the pattern runs on a material substrate.

In this paper we give an account for this intuition in terms of free monads m and cofree
comonads c on polynomial functors. We show that for any ?, @ : Poly, there is a natural map

Ξ?,@ : m? ⊗ c@ →m?⊗@ . (1)

In fact, this map gives m the structure of a c-module, in a precise sense; see Section 3.2.
Consider the behavior of a Moore machine, which transforms lists of �-inputs into lists of

�-outputs for sets �,�. This behavior is determined by an element 1 : y → c�y� of the terminal

coalgebra on the polynomial @ ≔ �y�. But how does one apply this behavior to a list of �’s? The
latter is a map ℓ : y →m�y. To actually apply the behavior 1 to the list ℓ , we use an obvious map
! : �y⊗ �y� → �y and the module structure (1) to obtain a list of �’s.

y � y⊗ y
ℓ⊗1
−−→m�y ⊗ c�y�

Ξ
�y,�y�

−−−−−→m�y⊗�y�
m!
−−→m�y (2)

http://arxiv.org/abs/2404.16321v1

2 Pattern runs on matter

Whereas patterns start and end, matter is never destroyed. One can think of m? as the type
of terminating programs and of c@ as the type of operating systems or online algorithms. This
intuition is captured by the fact that elements of the free monadm? are "well-founded trees" [GK12;
AGM01]—in the case ? is finitary, a wellfounded tree is one with finite height—whereas elements
of the cofree comonad c@ are generally non-wellfounded, e.g. infinite in height even for finitary
@. The module map Ξ?,@ pairs the wellfounded tree with the non-wellfounded tree, following the
shape of the wellfounded one; for example the list of �’s in (2) will have exactly the same length as
the list of �’s.

Related work. A construction of the free monad for much more general (than polynomial)
endofunctors was given by Kelly in [Kel80]. The treatment was greatly simplified by Shulman and
others in [nLa24c]. The case of polynomial endofunctors is more restrictive, and as such has a far
more straightforward construction.

A monad-comonad interaction law, again in more general settings, was described in [KRU20].
This paper structures interaction laws in an interesting and useful but somehow ad hoc way, as a
category whose objects are triples (),�, 5), where) is a monad, � is a comonad, and 5 :) ⊗�→ id
is a map satisfying certain natural conditions, and whose morphisms are maps) →)′ and �′→ �
satisfying certain constraints. It should also be noted that this paper includes no proofs.

Contributions.

1. Simple concrete constructions of both free monads and cofree comonads in (Poly, ⊳,y).
2. A proof that the free monad is a module over the cofree comonad.
3. Four applications of this module, each having the form pattern runs on matter.

For these, see Definition 2.2 and Proposition 3.1; Theorem 3.4; and Section 4, respectively. We also
give a precise definition of the notion of "dual" functor, defined in [KRU20], and generalize it to be
functorial in a monad C; see (5).

Notation. We often denote the identity on an object G by the object name itself rather than idG.
We denote the cardinality of a set - by #- . If ! ⊣ ' is an adjunction, we denote it

C D
!

⇒

'

so that the 2-cell shown indicates the direction of both the unit C→ '◦! and the counit !◦'→D.

Acknowledgements. The authors thanks Harrison Grodin and Brandon Shapiro for many useful
conversations. This material is based upon work supported by the Air Force Office of Scientific
Research under award numbers FA9550-20-1-0348 and FA9550-23-1-0376.

1.1 Preliminaries

Although we will assume basic familiarity with the category Poly of univariate polynomial functors
on Set and natural transformations between them, we will begin by clarifying notation. We write
a polynomial functor ? : Poly as ? =

∑

%:?(1)y
?[%] where ?(1) are the positions of ? and ?[%] are the

directions at the position %. With this notation, a map) : ? → @ in Poly consists of
• A function on positions)(1) : ?(1) → @(1).
• For each position % : ?(1), a function backwards on directions)#

%
: @[)1(%)] → ?[%].

S. Libkind and D. I. Spivak 3

There are many monoidal products in Poly [NS22], however in this article we focus on the Dirichlet
and substitution products. The substitution product has unit y and is defined by

? ⊳ @ =
∑

%:?(1)

∏

?[%]

∑

&:@(1)

∏

@[&]

y

Using the distributive law, a position in ? ⊳ @ is a position % in ? and for every direction in ?[%]
a position in @. It will be useful to consider the corolla forest view on polynomials and the ⊳-
monoidal product, since these will be the building blocks of the decision trees represented by the
free monad monad.

Consider ? = y3 +y2. We can notate ? using a corolla forest in which each position % : ?(1) is a
tree with ?[%]-many branches. The root of each tree is labeled by its corresponding position and
branches correspond to directions.

1 2

Likewise, the polynomial @ = 2y4 +y2 +1 is notated by the corolla forest:

1 2 3 4

Then the positions of ? ⊳ @ can be represented by trees of height 2, whose building blocks are
the trees corresponding to the positions of ? and @. In particular, a position of ? ⊳ @ is a position of
? and for each branch, a position of @. The directions are the number of dangling leaves. Here are
three examples of positions in ? ⊳ @ with eight, eight, and two directions respectively.

1

1 3 3

1

1 4 2

2

3 4

2 The free monad monad

For a polynomial ?, we will define the free monad m? through transfinite induction by defining
polynomials ?(
) for each ordinal
 and inclusions ?(
) → ?(�) for ordinals
 < �.

• Base case: Define ?(0) ≔ y.
• For successor ordinals
+1: Define ?(
+1)≔ y+? ⊳?(
). For the inclusions define �(0) : y→ y+?

to be the inclusion; note that it is cartesian. Then, given �(
), define �(
+1) to be

?(
+1) = y+ ? ⊳ ?(
)
y+?⊳�(
)
−−−−−−→ y+ ? ⊳ ?(
+1) = ?(
+2).

which is also cartesian.
• For limit ordinals
: Define ?(
) ≔ colim
′<
 ?(
′). For each
′ <
, let �(
′) : ?(
′) → ?(
) be

the natural inclusion. These are cartesian by Proposition A.7. Lastly, we define the inclusion
�(
) : ?(
) → ?(
+1) to be induced by the cocone of maps which are defined for
′ <
 by

?(
′)

�(
′)
−−→ ?(
′+1) = y+ ? ⊳ ?(
′)

y+?⊳�(
′)
−−−−−−→ y+ ? ⊳ ?(
) = ?(
+1).

Remark 2.1. By construction each �(
) is cartesian. ♦

4 Pattern runs on matter

For ease of notation, we will also use �(
) : ?(
) → ?(�) to represent the composite of inclusions for
any pair of ordinals
 < �. We will also define �(
) : ? ⊳ ?(
) → ?(
+1) to be the coproduct inclusion.

Definition 2.2. If ? is �-small, then define m? ≔ ?(�). ♦

We will show in Theorem 2.10 that m? is the free monad on ?. Therefore, m? is unique and
hence well-defined.

Think of the positions of m? as decision trees whose building blocks are the positions of ?. For
instance, suppose that a position % : ?(1) is a question and the directions ?[%] are possible answers
to question %. Then y is a unique question with a unique answer, which we think of as "no further
questions". Then, consider the positions of m? that factor through ?(
). For example, the positions
of ?(2) = y+? ⊳(y+?) is either (1) no further questions or (2) a question and for each possible answer
either no further questions or another question. Therefore ?(2) represents interviews with at most
two questions, and in general for finite 8, ?(8) represents interviews with at most 8 questions.

Example 2.3. For finitary ?, the positions of m? are ?-trees with finite height and whose directions
are the dangling leaves. ♦

Example 2.4. A finitey-tree is determined by its height and has one dangling leaf; thus,my �Ny. ♦

2.1 Monad structure on m?

Let Mod(Poly) denote the category of monoids in (Poly,y, ⊳). Note that when viewed as endofunc-
tors on Set, a ⊳-monoid is in fact a monad on Set. Therefore we refer to the objects of Mod(Poly)

as ⊳-monoids, polynomial monads, or simply monads.
Next we will give a ⊳-monoid structure on m? . The unit � : y→m? is defined to be the inclusion

�(0) : y= ?(0) →m?. The multiplication is more complicated so we begin with the following Lemma.

Lemma 2.5. For ordinals
,� there exist maps �(
,�) : ?(
) ⊳ ?(�) → ?(
+�) such that for all
′ <
 and
�′ < � the following diagram commutes

?(
′) ⊳ ?(�′) ?(
′+�′)

?(
) ⊳ ?(�) ?(
+�)�(
 ,�)

�(
′,�′)

�(
′)⊳�(�′) �(
′+�′) (3)

Proof. We define the maps �(
,�) transinductively on
.
For
 = 0, �(
,�) is the identity on ?(�).
For successor ordinals
+1, suppose we have already defined �(
,�). Note that

?(
+1) ⊳ ?(�) = (y+ ? ⊳ ?(
)) ⊳ ?(�) = ?(�)+ ? ⊳ ?(
) ⊳ ?(�).

So we define �(
+1,�) to be the copairing of the inclusion �(�) : ?(�) → ?(
+�) with the map

? ⊳ ?(
) ⊳ ?(�)
?⊳�(
 ,�)
−−−−−→ ? ⊳ ?(
+�)

�(
+�)
−−−−→ ?(
+�+1).

That the diagram in (3) commutes for
′ =
+1 can be shown inductively on
.
Next suppose that
 is a limit ordinal and suppose we have defined �(
′,�) : ?(
′) ⊳ ?(�) → ?(
′+�)

for
′ <
. Then we define �(
,�) to be the composite

?(
) ⊳ ?(�) =
(

colim

′<

?(
′)

)

⊳ ?(�) � colim

′<

(?(
′) ⊳ ?(�)) → colim

′<

?(
′+�) → ?(
+�).

The second isomorphism follows from Proposition A.8. That these maps make the diagram in (3)
commute is immediate. �

S. Libkind and D. I. Spivak 5

This Lemma implies that for ordinals
,� < � the maps

?(
) ⊳ ?(�)
�(
 ,�)
−−−→ ?(
+�) →m?

form a cocone into m? . Define the multiplication � : m? ⊳m? →m? using the universal property:

m? ⊳m? =

(

colim

<�

?(
)

)

⊳

(

colim
�<�

?(�)

)

� colim

<�

colim
�<�

(?(
) ⊳ ?(�)) →m? .

The second isomorphism follows from Proposition A.3 and Proposition A.8.

From this definition and Lemma (2.5), the following Lemma is immediate.

Lemma 2.6. Let ? be �-small. Then for all
,� < �, the following diagram commutes.

?(
) ⊳ ?(�) ?(
+�)

m? ⊳m? m?

�(
+�)

�

�(
 ,�)

�(
)⊳�(�)

As a predecessor to proving the associativity law for (m? ,�,�) as a ⊳-monoid, we present the
following variant of Lemma 2.5 whose proof appears in Appendix B.

Lemma 2.7. For ordinals
,�,�, the following diagram commutes:

?(
) ⊳ ?(�) ⊳ ?(�) ?(
) ⊳ ?(�+�)

?(
+�) ⊳ ?(�) ?(
+�+�)

�(
 ,�)⊳?(�)

?(
)⊳�(� ,�)

�(
 ,�+�)

�(
+� ,�)

Proposition 2.8. For every polynomial ? : Poly, there is a ⊳-monoid structure on m? , for which the unit
and multiplication � : y→m? and � : m? ⊳m? →m? are defined as above.

Proof. First we show the left unit law. Since y ⊳m? is isomorphic to colim�<�(y ⊳ ?(�)), the left unit
law follows from Lemma 2.6 with
 = 0. Likewise, for the right unit law.

Second we show associativity. Due to the isomorphismm?⊳m? ⊳m? � colim
,�,�<�
(

?(
) ⊳ ?(�) ⊳ ?(�)
)

,
it suffices to show that for
,�,� < �, the outer diagram in the following commutes.

?(
) ⊳ ?(�) ⊳ ?(�) ?(
) ⊳ ?(�+�) m? ⊳m?

?(
+�) ⊳ ?(�) ?(
+�+�)

m? ⊳m? m?

�(
 ,�)⊳?(�)

?(
)⊳�(� ,�)

�(
 ,�+�)

�(
+� ,�)

�(
+�+�)

�

�

�(
+�)⊳�(�)

�(
)⊳�(�+�)

The upper left-hand square commutes by Lemma 2.7 and the other squares commute by Lemma 2.6.
�

6 Pattern runs on matter

2.2 The monad m? is free

Now that we have verified thatm? is indeed a monad, we want to justify calling it the free monad by
giving a left adjoint m− : Poly → Mod(Poly) to the forgetful functor * : Mod(Poly) → Poly which
takes a ⊳-monoid (@,�@ ,�@) to its carrier @.

We begin by defining the action of m− on morphisms. Let 5 : ? → @ in Poly. We will define
m 5 : m? → m@ by inductively defining morphisms 5(
) : ?(
) → @(
) such that for all
 < � the
following diagram commutes:

?(
) ?(�)

@(
) @(�)

5(
) 5(�)

�(
)

�(
)

(4)

Define 5(0) : ?(0) → @(0) to be the identity on y. For a successor ordinal
+ 1, suppose that we
have already defined 5(
) : ?(
) → @(
). Then we define 5(
+1) : ?(
+1) → @(
+1) to be

y+ ? ⊳ ?(
)
y+ 5 ⊳ 5(
)
−−−−−−→ y+ @ ⊳ @(
).

To show that the diagram in Equation (4) commutes for successor ordinals, it suffices to show that
for all
, the diagram with � =
+1 commutes. By induction this is immediate by the definitions
of �(
+1) and 5(
+1).

Suppose that
 is a limit ordinal and that we have defined 5(
′) : ?(
′) → @(
′) for all
′ <
. For
each
′ <
 we have maps

?(
′)

5(
′)
−−−→ @(
′)

�(
′)
−−→ @(
).

Since the diagram in Equation (4) commutes for all pairs of ordinals less than
, these maps form
a cocone into @(
). So, by the universal property of the colimit, ?(
) = colim
′<
 ?(
′), there is an
induced map 5(
) : ?(
) → @(
). That the diagram in Equation (4) commutes when � is a limit ordinal
follows from the uniqueness of the universal map.

Let � be such that both ? and @ are �-small. Then we define m 5 ≔ 5(�). We defer the proof that
m 5 is a map of ⊳-monoids to Appendix B.

Proposition 2.9. For 5 : ? → @ in Poly, the polynomial map m 5 : m? →m@ is a map of ⊳-monoids.

It is straightforward to show by transfinite induction that the action of m− on morphisms is
functorial. Therefore, Proposition 2.8 and Proposition 2.9 define a functor m− : Poly→ Mod(Poly).

Theorem 2.10. There is an adjunction

Poly Mod(Poly)
m−

⇒

*

.

Therefore m? is the free monad on the polynomial ? and m− is the free monad monad. We
defer the proof of Theorem 2.10 and its requisite Lemmas to Appendix B.1.

3 Interactions between free monad and cofree comonad

3.1 The cofree comonad comonad

It is a beautiful fact that in Poly the ⊳-comonoids are categories and ⊳-comonoid maps are co-

functors. Thus, we use Cat♯ to denote the category of ⊳-comonoids and their maps. Dual to

S. Libkind and D. I. Spivak 7

the construction of the free monad monad in Section 2, here we define the cofree comonad and
show that it is right adjoint to the forgetful functor * : Cat♯ → Poly given by *(2, &, �) ≔ 2. In
Appendix C we prove the statements presented in this Section.

Proposition 3.1. There is a functor c− : Poly → Poly such that c? has the structure of a ⊳-comonoid for
each ? : Poly,

c? → y and c? → c? ⊳ c? .

For a polynomial functor @ : Poly, the positions of the cofree comonad are @-behavior trees.
These are defined coinductively as a position & : @(1) and a map from directions of @[&] to @-
behavior trees.

Theorem 3.2. There is an adjunction

Cat♯ Poly
*

⇒

c−

.

Hence c@ is the cofree comonad on the polynomial @ and c− is the cofree comonad comonad.

3.2 The module structure m? ⊗ c@ →m?⊗@

For polynomials ? and @ consider the map

? ⊗ c@ → ? ⊗ @ →m?⊗@

where the first map is induced by the counit of c@ and the second map is the unit of m?⊗@ . This
composite induces a map of polynomials ? → [c@ ,m?⊗@]. By duoidality of ⊗ and ⊳, the internal
hom [c@ ,m?⊗@] is a ⊳-monoid as well. Therefore, by the adjunction in Theorem 2.10 the map of
polynomials ? → [c@ ,m?⊗@] induces a map of ⊳-monoids m? → [c@ ,m?⊗@], which is equivalent to a
polynomial map

Ξ?,@ : m? ⊗ c@ →m?⊗@ .

This map is the free monad-comonad interaction law described in [KRU20, Section 3.3]. In
Appendix D we prove the statements presented in this Section.

Proposition 3.3. The maps Ξ?,@ are natural in ? and @.

Note that c is lax monoidal (see Proposition C.1)

c? ⊗ c@ → c?⊗@ and y→ cy

so in this sense we would say "matter can also take the place of pattern."
Recall from [nLa24b] the notion of a module over a monoidal functor.

Theorem 3.4. There is a left-module over c− : (Poly,⊗,y) → (Poly,⊗,y) consisting of:
• Poly as a left module category over (Poly,⊗,y).
• The functor m− : Poly → Poly.
• The natural transformation Ξ : m− ⊗ c− ⇒m−⊗−.

4 Applications

In this Section, we will give four applications of the module structure introduced in Section 3. Each
consists of:

• A pattern of type ?, represented by a map into m? .
• Matter of type @, represented by a map into c@ .
• A runs on map ? ⊗ @ → A.

Then the composite m? ⊗ c@ →m?⊗@ →mA represents the interaction pattern runs on matter.

8 Pattern runs on matter

4.1 Interviews run on people

As in Section 2, suppose that the positions of ? are questions and the directions are possible answers
to each question. For example consider the polynomial, ? = {Tea?}y{yes,no}+{Kind?}y{green,black,herbal}

which we can view as the corolla forest:

Tea?

yes no

Kind?

green black herbal

Essentially, ? consists of the questions:

• "Do you want tea?", with possible answers "yes" or "no".
• "What kind of tea do you like?", with possible answers "green", "black", or "herbal".

Consider the pattern y→m? which selects the following interview:

Tea?

Kind? Tea?

Kind?

The polynomial [?,y] =
(

∏

%:?(1) ?[%]
)

y?(1) is the universal answerer for the polynomial ?. Its

positions are a choice of answer for each question in ?(1) and its directions are the questions ?(1).
A person is a map y → c[?,y]. In other words, a person is a behavior tree in which a node is an
answer for each question and a branch is one such question. Each answer may depend on the
sequence of questions asked so far.

Note that [?,y] is what is referred to in [KRU20, Section 2.5] as duals. We will see in Section 4.4
that it is also interesting to consider generalizations of this duality to [?, C] for any polynomial
monad C. Indeed, for any monad C, there is a map

m? ⊗ c[?,C] →mC → C (5)

The evaluation map ? ⊗ [?,y] → y describes how to run a question on a universal answerer.
Given an interview and a person we get the composite

y→m? ⊗ c[?,y] →m?⊗[?,y] →my =Ny,

which sends the single position of y to the number of questions asked when the interview is run
on the person. For example, consider the person who would always respond that he does not want
tea and he likes herbal tea. Running the tea interview on this person will cause two questions:
"Tea?" then "Tea?". Conversely, consider the person who would at first respond that she does not
want tea and that she likes black tea. Then after the first question, she would respond that she
does want tea and she likes black tea. Running the tea interview on this person will cause three
questions: "Tea?", "Tea?", then "Kind?".

4.2 Programs run on operating systems

Consider the following program.

S. Libkind and D. I. Spivak 9

def guessing_game(max_guesses, goal):

if max_guesses==0:

return False

guess=read()

if guess==goal:

return True

return guessing_game(max_guesses-1, goal)

We represent the argument/return type with the polynomial A =
∑

<:N,,:Ny
Bool where < rep-

resents the variable max_guesses and , represents the variable goal. We represent the effect
type that reads in natural numbers with the polynomial ? = yN. Finally, we will represent this
program with a map A →m? that we define inductively using the decomposition A =

∑

<:N A< with

A< =
∑

,:Ny
Bool. We start by defining the following maps:

• Define a map A0 → y. Each position of A0 is sent to the single position of y. The single
direction of y is sent to False : Bool.

• Define a map A<+1 → ? ⊳ (y+ A<). On positions, for each position , : A<+1(1), we need a
function from N to the positions of y+ A<. In particular, we send , to the map sending ,′ : N
to y if , = ,′ and to the position , : A<(1) otherwise. Then on directions, if , = ,′, the single
direction of y is sent to True : Bool and if , ≠ ,′, then we use the identity on directions.

Now we will define maps A< → m? inductively using the isomorphism m? � y+ ? ⊳m? and the

inclusion �(0) : y→m? . As a base case, we have the composite A0 → y
�(0)
−−→ m? .Given A< →m? , we

define

A<+1 → ? ⊳ (y+m?)
?⊳(�(0) ,m?)
−−−−−−−→ ? ⊳m? →m? .

A operating system with effects in [?,y] � Ny is a map y→ c[?,y] � (Ny)N. It consists of a stream of
natural numbers, which are the responses it will give to the read() effect.

Using the interaction Ξ?,[?,y] and the evaluation map ? ⊗ [?,y]→ y, we get the composite

A � A ⊗ y→m? ⊗ c[?,y] →m?⊗[?,y] →my � Ny,

which expresses how the program runs on the chosen operating system. On positions it maps
(< : N,, : N) to the minimum of < and the number of responses the operating system takes to
guess the goal ,. On directions, it maps the single direction to True if the goal was guessed in at
most < guesses and to False otherwise.

4.3 Voting schemes run on voters

For a finite set of candidates - , consider the polynomial ? =
∑

�⊆- y�. The positions of ? are
ballots and the directions are winners. A voting scheme with " voters is a map ? → m⊗

" ?

where
⊗

0 ? ≔ y and
⊗

"+1 ? ≔ ? ⊗
⊗

" ?. On positions, a subset of candidates � ⊆ - maps to a
terminating decision tree in which each node is a personalized ballot given to each of the " voters
and each branch corresponds to the tuple of each voter’s selection. On directions, each leaf of this
decision tree maps to an overall winner.

Exhaustive run-off is a voting scheme in which each voter selects their preference from the
� candidates, and then the candidates with the fewest number of votes are eliminated. If only a
single candidate remains, then they are elected the winner. Otherwise, another round of voting
proceeds with the remaining candidates. This voting scheme can be encoded into a polynomial
map ? → m⊗

" ? . As in Section 4.2 we define the map inductively. Consider the decomposition

? =
∑#-

==0 ?= where ?= =
∑

�⊆-,#�== y
�. Then consider the following maps:

10 Pattern runs on matter

• Note that ?0 = 1 is isomorphic to
⊗

" ?0 =
⊗

" 1. There is an inclusion of ?0 into ? and
hence a map ?0 �

⊗

" ?0 →
⊗

" ?.
• There is a unique map ?1 → y.
• Define ?=+1 →

(⊗

" ?
)

⊳
(
∑=

:=0 ?:
)

as follows. On positions � ⊆ - maps to the product
∏

"� :
∏

" ?(1) and the map
∏

" �→
∑=

:=0 ?:(1) defined by

(01, · · · , 0") ↦→ �′
≔ � \argmin#(01 ,··· ,0=)

where #(01 ,··· ,0=) : �→N counts the number of votes for each candidate and so argmin#(01 ,··· ,0=)

is the set of candidates with the fewest votes. On directions, it is the inclusion �′ → �.
Now, we define ? →m⊗

" ? inductively as follows. As base cases we have the composites

?0 = 1 =

⊗

"

1 →
⊗

"

? →m⊗

" ? and ?1 → y→m⊗

" ? .

Given a maps ?: →m⊗

" ? for : < =+1, we define

?=+1 →

(

⊗

"

?

)

⊳

(

=
∑

:=0

?:

)

→m⊗

" ? ⊳

(

=
∑

:=0

m⊗

" ?

)

→m⊗

" ? ⊳m
⊗

" ?

�
−→m⊗

" ? .

A voter selects a candidate from every subset of candidates. Such a voter is represented by
a polynomial map y → [?,y]. Running " elections on " voters is represented by the compos-
ite

(⊗

" ?
)

⊗
(⊗

"[?,y]
)

�

⊗

"(? ⊗ [?,y]) →
⊗

" y = y. Therefore, given " voters, we get a
composite

? →m⊗

" ? ⊗

(

⊗

"

[?,y]

)

→m⊗

" ? ⊗ c⊗
" [?,y] →my =Ny.

On positions it maps a set of candidates � ⊆ - to the number of run-offs required to elect a
candidate. On directions, it maps the single direction of y to the winner.

It is tempting to expect that the maps ? → m⊗

" ? define an operad enriched in the Kleisli
category Poly

m
in the sense of [SS22]. However exhaustive run-off is gerrymander-able meaning

that the division of voters into districts can affect the end-result of the election. This observation
suggests the following definition of gerrymandering.

Definition 4.1. A voting scheme ?→m⊗

" ? can be gerrymandered if and only if it does not extend
to an operad enriched in Poly

m
. ♦

4.4 Games run on players

For a game such as tic-tac-toe, let ? be the polynomial whose positions are game states and whose
directions are next possible moves. Then we can represent the game play as a position in m? . In
the game tic-tac-toe, a game state is a placement of ×’s and ©’s on a 3×3 grid. In other words, it
is a map 1 : 9 → {×,©,−} where − represents an open grid position. For < = 1, . . . ,9, let �< be the
set of valid board states with < open positions. Assuming that × always plays first, these are

�< ≔ {1 : 9 → {×,©,−} | #(1−1(−)) = <,#(1−1(©)) ≤ #(1−1(×)) ≤ #(1−1(©))+1}.

If there are an odd number of open positions, then it is ×’s turn. Otherwise, it is ©’s turn.
Given a board state 1 : �< , the next possible moves are the open positions 1−1(−). Therefore,

the polynomial ?× =
∑

1:�1+�3+···+�9
y1

−1(−) represents the board states and next possible moves for×.

S. Libkind and D. I. Spivak 11

Likewise the polynomial ?© =
∑

1:�2+�4+···+�8
y1

−1(−) represents the board states and next possible
moves for ©.

Consider the polynomial ? = ?× ⊳ (y+ ?©). This polynomial represents an × move followed by
either game over or an © move. There exists a polynomial map) : y{×,©,−} →m? which selects the
decision-tree in m? corresponding to the rules of tic-tac-toe, and maps directions to the winner of
a completed game or − if the game is tied. We will define the map) inductively. For < = 1, · · · ,9,
let A< = �<y

{×,©,−}.
• Define A1 → y, as follows. Given a board 1 : �1 with a single open position, send the single

direction in y to either the winner or to − if the game is tied.
• Define A<+1 → ?© ⊳ (y+ A<) for odd <, and define A<+1 → ?× ⊳ (y+ A<) for even <, as follows.

On positions send a board state 1 : �<+1 to itself in ?©(1) (resp. ?×(1)). Then for each valid
move < : 1−1(−) let 1′ : �< be the updated board state. If 1′ contains a winner, then send <
to y and send the single direction of y to the winner. Otherwise, send < to 1′ : A<(1) and let
the map on directions be the identity.

Using these maps, we can inductively define maps A< →m? for odd < as follows. As a base case
we have the composite A1 → y→m? . Given a map A< →m? , we have the composite

A<+2 → ?× ⊳ (y+ ?© ⊳ (y+ A<)) → ?× ⊳ (y+ ?© ⊳ (y+m?)) → ?× ⊳ (y+ ?© ⊳m?)

→ ?× ⊳ (y+ ?©) ⊳m? = ? ⊳m? →m? .

The second to last map is induced by the composite

y+ ?© ⊳m? = y ⊳y+ ?© ⊳m? → y ⊳m? + ?© ⊳m? → (y+ ?©) ⊳m? .

Below is the image of a board state in A3(1) under the map A3 →m? . From left to right the directions
are sent to ©, −, −, −, and ×, as these are the win/loss/tie results of the games as shown.

× © ×

© © ×

× © ×

© © ×

×

× © ×

© © ×

× ©

× © ×

© © ×

× ©

× © ×

© © ×

×

× © ×

© © ×

© ×

× © ×

© © ×

× ©

× © ×

© © ×

×

Define) to be the map A9 = y{×,©,−} →m?.
Let (C ,�,�) be a ⊳-monad. A polynomial map !× : y → [?×, C] represents an × player and a

polynomial map !© : y→ [?© , C] represents an © player. If C is the trivial monad y, then for each
board state, the player’s next move is deterministic. If C is the lottery monad lott=

∑

":N

∑

%:Δ" y" ,
then the players’ next moves are stochastic.

By duoidality we have

? ⊗ [?×, C] ⊗ [?© , C]→ ? ⊗ [?×, C] ⊗ [y+ ?© , C]→ (?G ⊗ [?G , C]) ⊳ ((y+ ?©) ⊗ [y+ ?© , C]) → C ⊳ C → C

12 Pattern runs on matter

where the first map is induced by the monoidal unit of C. Given an × player and an © player, we

have a map y{×,©,−}
� y{×,©,−} ⊗y⊗y

)⊗!⊗!
−−−−→m? ⊗ cy ⊗ cy. Then, the game play is represented by the

composite

y{×,©,−} →m? ⊗ cy ⊗ cy

m?⊗c!×⊗c!©

−−−−−−−−−−→m? ⊗ c[?× ,C] ⊗ c[?© ,C] →m?⊗[?× ,C]⊗[?© ,C] →mC → C (6)

which maps directions in C to winners of completed games.
We can promote this setup to players which learn, in other words players whose strategy

dynamically changes after each completed game. A dynamic × player consists of a set of states (×
and a polynomial map (×y

(× → y{×,©,−} ⊗ c[?× ,C]. Likewise for a dynamic © player. Such a player
consists of the following:

• For each state, a behavior tree describing the player’s strategy.
• For a winner or tied game and each finite path of the behavior tree, a new state.

Creating maps like ! is the subject of reinforcement learning [SB18]. As a typical such algorithm,
take (× to be the set of functions that assign a score in N to each move (direction in ?×). Let
(×y

(× → y{×,©,−} ⊗ c[?× ,lott] be defined as follows:
• On positions, it takes a score for each move and assigns a (stochastic) strategy which selects

moves based on their relative scores.
• On directions, note that a direction of c[?× ,lott] contains a finite number of moves played by ×

in the game. If the winner is ×, then we add 1 to the score for each played move. Otherwise,
we keep the original scores.

Using the copy-on-directions map y{×,©,−} ⊗ y{×,©,−} → y{×,©,−}, we have the composite

(×y
(× ⊗ (©y

(© → y{×,©,−} ⊗ y{×,©,−} ⊗ c[?× ,C] ⊗ c[?© ,C]

→ y{×,©,−} ⊗ c[?× ,C] ⊗ c[?© ,C]
)
−→m? ⊗ c[?× ,C] ⊗ c[?© ,C] → C.

This map takes a state for each player, runs the game using each player’s strategy, and returns an
updated state for each player based on the winner and the player’s strategy.

5 Conclusion

In this paper, we constructed the free monad m? and cofree comonad c@ on arbitrary polynomial
functors ?, @ : Poly, and defined a module structure m? ⊗ c@ → c?⊗@ . We also gave a series of
examples to explain how this models the intuition "pattern runs on matter."

From here, it is not hard to show thatm and c respectively extend to a monad and a comonad on
Org, the double category which serves as the base of enrichment for dynamic categorical structures
for deep learning, prediction markets, etc., as defined in [SS22]. We (or others) may show in future
work that for any polynomial monad C, there is a functor [−, C] : Org

op
m → Orgc from opposite of

the m-Kleisli category to the c-coKleisli category. The latter offers the ability for different machines
to operate at different rates in wiring diagrams, and the former offers the ability to call multiple
subprocesses before returning, though we have not found compelling examples of either; this again
is future work.

The constructions in this paper should generalize straightforwardly to free monads and cofree
comonads for familial functors between copresheaf categories, as in [Web07; LSS23]. One should
check that there is again a module structure of the same form in that setting.

S. Libkind and D. I. Spivak 13

References

[AGM01] Samson Abramsky, Dov M Gabbay, and Thomas SE Maibaum. Handbook of Logic in
Computer Science: Volume 5. Algebraic and Logical Structures. OUP Oxford, 2001 (cit. on
p. 2).

[AR94] Jiri Adamek and Jiri Rosicky. Locally presentable and accessible categories. London Math-
ematical Society Lecture Note Series 189. Cambridge University Press, 1994 (cit. on
p. 16).

[GK12] Nicola Gambino and Joachim Kock. “Polynomial functors and polynomial monads”. In:
Mathematical Proceedings of the Cambridge Philosophical Society 154.1 (Sept. 2012), pp. 153–
192 (cit. on p. 2).

[Kel80] G Max Kelly. “A unified treatment of transfinite constructions for free algebras, free
monoids, colimits, associated sheaves, and so on”. In: Bulletin of the Australian Mathe-
matical Society 22.1 (1980), pp. 1–83 (cit. on p. 2).

[KRU20] Shin-ya Katsumata, Exequiel Rivas, and Tarmo Uustalu. “Interaction Laws of Monads
and Comonads”. In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science. LICS ’20. Saarbrücken, Germany: Association for Computing Ma-
chinery, 2020, pp. 604–618 (cit. on pp. 2, 7, 8).

[LSS23] Owen Lynch, Brandon T. Shapiro, and David I. Spivak. All Concepts are Cat#. 2023.
arXiv: 2305.02571 [math.CT] (cit. on p. 12).

[nLa24a] nLab authors. Exact square.https://ncatlab.org/nlab/show/exact+square. Revision 17.
Mar. 2024 (cit. on p. 15).

[nLa24b] nLab authors. Module over a monoidal functor.https://ncatlab.org/nlab/show/module+over+a+monoi
Revision 4. Mar. 2024 (cit. on p. 7).

[nLa24c] nLab authors. Transfinite construction of free algebras.https://ncatlab.org/nlab/show/transfinite+co
Revision 13. Mar. 2024 (cit. on p. 2).

[NS22] Nelson Niu and David I. Spivak. Polynomial functors: a general theory of interaction. In
preparation. 2022 (cit. on p. 3).

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018 (cit. on p. 12).

[SS22] Brandon T. Shapiro and David I. Spivak. “Dynamic categories, dynamic operads: From
deep learning to prediction markets”. In: Electronic Proceedings in Theoretical Computer
Science (2022) (cit. on pp. 10, 12).

[Web07] Mark Weber. “Familial 2-Functors and Parametric Right Adjoints”. In: Theory and Ap-
plications of Categories 18 (2007), Paper No. 22, 665–732 (cit. on p. 12).

A Distributing colimits over ⊳

In general, colimits do not distribute over the subsitution product ⊳. However, in this section we
give hypotheses under which the natural maps

colim
9∈J

(? ⊳ @ 9) → ? ⊳ (colim
9∈J

@ 9) and colim
9∈J

(? 9 ⊳ @) → (colim
9∈J

? 9) ⊳ @

are in fact isomorphisms.

https://arxiv.org/abs/2305.02571
https://ncatlab.org/nlab/show/exact+square
https://ncatlab.org/nlab/revision/exact+square/17
https://ncatlab.org/nlab/show/module+over+a+monoidal+functor
https://ncatlab.org/nlab/revision/module+over+a+monoidal+functor/4
https://ncatlab.org/nlab/show/transfinite+construction+of+free+algebras
https://ncatlab.org/nlab/revision/transfinite+construction+of+free+algebras/13

14 Pattern runs on matter

A.1 Right distribution

We begin with hypotheses under which colimits right distribute over ⊳.

Definition A.1. For an ordinal �, a polynomial ? is called �-small if for all �-filtered categories J
and all diagrams & : J→ Set

? ⊳

(

colim
9 : J

& 9

)

= colim
9 : J

(

? ⊳& 9

)

. ♦

Remark A.2. A polynomial ? : Poly is �-small if and only if all of its direction-sets have cardinality
less than �. It is called finitary if and only if it is $-small. ♦

Proposition A.3. If a polynomial ? is�-small, then for all�-filtered categoriesJ and diagrams @ : J→Poly

? ⊳

(

colim
9 : J

@ 9

)

= colim
9 : J

(

? ⊳ @ 9
)

.

Proof. That this map is an isomorphism on positions follows directly from the definition of �-small.
That this map is an isomorphism on directions follows from the definition of colimits in Poly and
the fact that connected limits preserve coproducts. �

A.2 Left distribution

Next we consider hypotheses under which colimits left distribute over ⊳. A map) : ? → @ in Poly

is cartesian if for every position % : ?(1), the map on directions)#
%

is an isomorphism (equivalently,
when all)’s naturality squares are pullbacks). Let PolyCart be subcategory of Poly consisting of
cartesian maps. If) is cartesian, then so is ? ⊳) and ?+) for any ? : Poly.

First we give a series of Lemmas which allow us to prove Proposition A.8.

Lemma A.4. A polynomial map ?→ @ is an isomorphism if and only if for all sets - , the induced function
? ⊳- → @ ⊳- is a bĳection.

Proof. This is just a restatement of the fact that Ext : Poly → SetSet is fully faithful; indeed,
Ext(?)(-) � ? ⊳- . �

The coproduct completion ΣC of a category C has as objects pairs ((,�) where (: Set and
� : (→ C is a discrete diagram, and it has as morphisms lax triangles

(1 (2

C

5

�1 �2

5 ♭

A diagram I → ΣC consists of a pair ((,�), where (: I → Set is a diagram and � : El(→ C is a
functor from the category of elements of (to C.

Lemma A.5. Let C be a category and let ΣC be its coproduct completion. If C has I-shaped colimits, then
so does ΣC, and they are computed as follows.

Given a diagram ((,�) : I→ ΣC, consider the Kan extension

El(C

�0(El()

�

Lan

S. Libkind and D. I. Spivak 15

where �0 : Cat → Set is the connected components reflection. Then the colimit is given by

colim((,�) � (�0(El(),Lan). (7)

For each element B0 : �0(El(), its image object Lan(B0) : ObC is given by the colimit over all (8 , B8) ↦→ B of
�(B8).

Proof. First consider the case C = 1, so that ΣC � Set. We need to check that for any (: I → Set,
there is a bĳection

colim(� �0(El(). (8)

This follows from the fact that the inclusion of diagrams of sets into diagrams of categories is a left
adjoint, the Grothendieck construction taking diagrams of categories to categories is a left adjoint,
and �0 taking categories to sets is a left adjoint.

Given) : Set, a discrete diagram � :) → C, and diagrams ((8 , �8) → (),�), coherently over
8 : I, one obtains a diagram as left, which factors uniquely as right:

El()

C
� �

El(�0(El())

C
�

Lan

�

This gives (7). For the last statement, note that since 1 → �0(El() is a map of sets, the pullback of
categories

• El(

1 �0(El()

y

B0

is also a comma square. Hence it is exact in the sense of [nLa24a], completing the proof. �

Lemma A.5 provides a formula for computing colimits in Poly, since Poly � ΣSetop is the
coproduct completion of Setop. Namely, the position-set of the colimit of ? : I→ Poly is given by
the colimit colim8 ?8(1) of the position-sets, and the directions at a position % : colim8 ?8(1) are given
by the limit (taken in Set, i.e. the colimit taken in Setop) of the associated connected diagram E% of
direction sets.

E% El?(1) Setop

1 colim8 ?8(1)

?[−]

%

Lan

y

Proposition A.6. The inclusion PolyCart → Poly reflects all colimits.

Proof. Suppose given a category �, a functor ? : � → PolyCart, a polynomial ? : Poly, and cartesian
maps !8 : ?8 → ? forming a cone. Suppose further that in Poly it is a colimit cone. To see that it
is a colimit cone in PolyCart we need only check that for any @ and cone #8 : ?8 → @ in PolyCart,
the induced map # : ? → @ in Poly is in fact in PolyCart, i.e. for any position % : ?(1), the induced

function #♯
%

: @[!(%)] → ?[%] is bĳective.
By Lemma A.5, the position-set of a colimit is the colimit of the position-sets for any diagram

of polynomials, meaning there exists some 8 : � and %8 : ?8(1) representing %, i.e. with !8(%8) = %.
Since ?8 → ? is cartesian, we have a commuting triangle of functions @[!(%)] → ?[%] → ?8[%8] of
which two are bĳections; it follows that the required one is as well. �

16 Pattern runs on matter

Proposition A.7. The inclusion PolyCart → Poly creates coproducts and filtered colimits. Moreover, the
composite

PolyCart → Poly
Ext
−−→ SetSet

creates coproducts and filtered colimits.

Proof. The functor Ext : Poly → SetSet is fully faithful and hence reflects all colimits; by Proposi-
tion A.6, PolyCart → Poly does too. It suffices to show that PolyCart has coproducts and filtered
colimits, because and that the two functors PolyCart → Poly and PolyCart → SetSet preserve them.

Coproduct inclusions of polynomials are cartesian, so the coproduct cone exists in PolyCart,
and hence it is a coproduct. Since Ext preserves coproducts, this concludes the case for coproducts.

By [AR94], a category has (resp. a functor preserves) all filtered colimits iff it has (resp. pre-
serves) all directed colimits, so let I be a directed category and ? : I→ PolyCart a directed sequence
of polynomials and cartesian maps. Then the induced map I→ Poly has a colimit, say ?, and it is
easy to check that all the structure maps ?8 → ? are cartesian. Hence ? � colim8 ?8 is a colimit in
PolyCart, and it is preserved by the inclusion.

It remains to check that ? is a colimit in SetSet. That is, we need to check that for any - : Set,
the function

∑

%:�0(El?)

colim
4:E%

-?[4] −→
∑

%:�0(El?)

- lim4 :E%
?[4]

is a bĳection. Choose any %; it suffices to show that colim4:E% -
?[4] → - lim4 :E%

?[4] is a bĳection. But
E% is filtered and for any 4 → 4′ in E%, the map ?[4′] → ?[4] is a bĳection. Hence we can pick any
object 4′ : E%, replace all ?4 with ?4′, and have an isomorphic diagram. Now the colimit and limit
are both constant, meaning that both sides of the desired map are isomorphic to -?[4′], and hence
to each other. �

Proposition A.8. For any polynomial @, filtered category I, and diagram ? : I → PolyCart, the natural
map

colim
8:�

(?8 ⊳ @) → (colim
8:�

?8) ⊳ @

is an isomorphism in Poly.

Proof. By Lemma A.4 it suffices to show that the function colim8:�(?8 ⊳ @)⊳- →(colim8:� ?8)⊳ @ ⊳- is
a bĳection for any - : Set. This is just two uses of Proposition A.7:

colim
8:�

(?8 ⊳ @) ⊳- � colim
8:�

(?8 ⊳ @ ⊳-) � (colim
8:�

?8) ⊳ @ ⊳-. �

B Proofs for the free monad monad

Lemma 2.7. For ordinals
,�,�, the following diagram commutes:

?(
) ⊳ ?(�) ⊳ ?(�) ?(
) ⊳ ?(�+�)

?(
+�) ⊳ ?(�) ?(
+�+�)

�(
 ,�)⊳?(�)

?(
)⊳�(� ,�)

�(
 ,�+�)

�(
+� ,�)

S. Libkind and D. I. Spivak 17

Proof. We prove this lemma by transfinite induction on
. First, for
 = 0 the result is immediate.

Next, suppose that the result holds for
, and we will show that it holds for the successor
ordinal
+ 1. By definition of ?(
+1), it suffices to show that the outer square in the following
diagram commutes.

?(�) ⊳ ?(�)+ ? ⊳ ?(
) ⊳ ?(�) ⊳ ?(�) ?(�+�)+ ? ⊳ ?(
) ⊳ ?(�+�)

?(�) ⊳ ?(�)+ ? ⊳ ?(
+�) ⊳ ?(�) ?(�+�)+ ?(
+�+�)

?(
+�+1) ⊳ ?(�) ?(
+�+�+1)

�(� ,�)+?⊳?(
)⊳�(� ,�)

?(�)⊳?(�)+?⊳�(
 ,�)⊳?(�)

(�(�)⊳?(�) ,�(
+�)⊳?(�))

?(�+�)+?⊳�(
 ,�+�)

(�(�+�),�(
+�+�))

�(� ,�)+?(
)�(
+� ,�)

�(
+�+1,�)

The top square commutes by the induction hypothesis. To check that the bottom squares
commute, it suffices to show that the following diagrams commute as well.

?(�) ⊳ ?(�) ?(�+�)

?(
+�+1) ⊳ ?(�) ?(
+�+�+1)

�(� ,�)

�(
+�+1,�)

�(�)⊳?(�) �(�+�) and

? ⊳ ?(
+�) ⊳ ?(�) ? ⊳ ?(
+�+�)

?(
+�+1) ⊳ ?(�) ?(
+�+�+1)

?⊳�(
+� ,�)

�(
+�+1,�)

�(
+�+�)�(
+�)⊳?(�)

The diagram on the left commutes by Equation (3). The diagram on the right commutes by the
inductive definition of �(
+�+1,�).

Finally, suppose that
 is a limit ordinal and suppose that the diagram commutes for all
′ <
.
Recall that ?(
) = colim
′<
 ?(
′). So it suffices to show that the outer diagram in the following
diagram commutes.

?(
′) ⊳ ?(�) ⊳ ?(�) ?(
′) ⊳ ?(�+�)
(

colim
′<
 ?(
′)

)

⊳ ?(�+�)

?(
′+�) ⊳ ?(�) ?(
′+�+�)

(

colim
′<
 ?(
′+�)
)

⊳ ?(�) colim
′<
 ?(
′+�+�)�(
+� ,�)

�(
 ,�+�)�(
′+� ,�)

�(
′,�+�)�(
′,�)⊳?(�)

?(
′)⊳�(� ,�)

The upper left square commutes by the induction hypothesis and the remaining diagrams commute
by the definition of � for limit ordinals. �

Proposition 2.9. For 5 : ? → @ in Poly, the polynomial map m 5 : m? →m@ is a map of ⊳-monoids.

18 Pattern runs on matter

Proof. To show that m 5 respects the identity it suffices to show that the outer diagram in the
following commutes:

y ?(0) m?

@(0) m@

y

5(0)y

�(0)

�(0)

m 5

The left triangle commutes because each map is the identity on y. The square commutes as it is
the diagram in Equation (4).

To show that m 5 respects multiplication, it suffices to show that the following diagram com-
mutes for all
 and �.

?(
) ⊳ ?(�) ?(
+�)

@(
) ⊳ @(�) @(
+�)

�(
 ,�)

�(
 ,�)

5(
+�)5(
)⊳ 5(�)

We show this by induction on
. For
 = 0 this diagram commutes because the horizontal maps
are the identity and the vertical maps are 5(�). Suppose that the diagram commutes for
. Then for
the successor ordinal
+ 1, following the definitions of �(
+1,�) and 5(
+1,�) we want to show that
the following diagram commutes.

?(�)+ ? ⊳ ?(
) ⊳ ?(�) ?(
+�+1)

@(�)+ @ ⊳ @(
) ⊳ @(�) @(
+�+1)

(�(�),(?⊳�(
 ,�))#�(
+�))

(�(�),(?⊳�(
 ,�))#�(
+�))

5(
+�+1)5(�)+ 5 ⊳ 5(
)⊳ 5(�)

The diagram commutes on the first term of the coproduct because the diagram in Equation (4)
commutes with the pair � <
+ �. To show that the diagram commutes on the second term, it
suffices to show that the outer diagram in the following commutes.

? ⊳ ?(
) ⊳ ?(�) ? ⊳ ?(
+�) ?(
+�+1)

@ ⊳ @(
) ⊳ @(�) @ ⊳ @(
+�) @(
+�+1)

5 ⊳ 5(
)⊳ 5(�)

?⊳�(
 ,�)

@⊳�(
 ,�)

5 ⊳ 5(
+�) 5(
+�+1)

�(
+�)

�(
+�)

The left-hand square commutes by the induction hypothesis and the right-hand square commutes
by definition of 5(
+�+1). �

B.1 Proof of Theorem 2.10

The trickiest part of proving the adjunction in Theorem 2.10 is defining the co-unit so we do it
separately in the following series of Lemmas.

Lemma B.1. Let (@,�@ ,�@) be a ⊳-monoid. For each ordinal
, there exist a cocone of maps

&(
) : @(
) → @.

S. Libkind and D. I. Spivak 19

Proof. We will define the cocone of maps &(
) inductively. First, define &(0) : @(0) = y→ @ to be the
unit �@ .

Next, suppose that we have a cocone of maps &(
′) : @(
′) → @ for all
′ <
. If
 is a limit ordinal
then we define &(
) : @(
) → @ to be the universal map induced by the cocone. If
+1 is a successor
ordinal, then we define &(
+1) to be the composite

@(
+1) = y+ @ ⊳ @(
)
�@+@⊳&(
)
−−−−−−−→ @+ @ ⊳ @

(1,�@)
−−−−→ @.

To show that these maps form a cocone, it suffices to show that the following diagram commutes
for all
′ <
.

@(
′)

@(
) @

&(
′)

&(
)

�(
′)

If
 is a limit ordinal, then this is immediate. Otherwise,
 is a successor ordinal, say
 = �+1.
It suffices to show that the following diagram commutes.

@(�)

@(�+1) @

&(�)

&(�+1)

�(�)

Consider the following three cases.

• Suppose that � = 0, then it is immediate that the desired diagram commutes as we see below.

@(0) = y

@(1) = y+ @ ⊳y @+ @ @

�(0)

(1,1)�@+�@◦(@⊳�@)

�@

• Next suppose that � is a successor ordinal. In particular � = �+1. To show that

@(�+1)

@(�+2) @

�(�+1)
&(�+1)

&(�+2)

commutes, it suffices to show that

y+ @ ⊳ @(�)

y+ @ ⊳ @(�+1) @+ @ ⊳ @�@+@⊳&(�+1)

y+@⊳�(�)
�@+@⊳&(�)

commutes. This is immediate from the induction hypothesis.

20 Pattern runs on matter

• Finally, suppose that � is a limit ordinal. Then we want to show that the outer diagram in
the following commutes.

@(�′)

@(�′+1) = y+ @ ⊳ @(�′)

y+ @ ⊳ @(�) @+ @ ⊳ @ @

�(�′)

y+@⊳�(�′)

(1,�@)

&(�′)

�@+@⊳&(�)

&(�′+1)
�@+@⊳&(�′)

The top and bottom triangles commute by the induction hypothesis and the middle triangle
commutes by definition of &(�′+1).

�

Lemma B.2. For all ordinals
,� the following diagram commutes.

@(
) ⊳ @(�) @(
+�)

@ ⊳ @ @�@

&(
+�)&(
)⊳&(�)

�(
 ,�)

Proof. We induct on
. Suppose that for all
′ <
 the diagram commutes. Consider the following
cases.

• For
 = 0, we have that

y ⊳ @(�) @(�)

@ ⊳ @ @�@

1@(�)

�@⊳&(�) &(�)

commutes by the unit law of the monoid (@,�@ ,�@).
• Suppose that
 is a successor ordinal, say
 =
′+ 1. We must show that the following

diagram commutes.

y ⊳ @(�)+ @ ⊳ @(
′) ⊳ @(�) @(
′+�+1)

@ ⊳ @ @

(�⊳&(�),(�@◦(@⊳&(
′)))⊳&(�))

(�� ,�(
′+�)◦(@⊳�(
′,�)))

&(
′+�+1)

�@

We will show that the diagram commutes on each component of the coproduct indepen-

S. Libkind and D. I. Spivak 21

dently. For the first term observe that

y ⊳ @(�) @(�) @(
′+�+1)

@ ⊳ @ @

�⊳&(�)

1@(�) ��

&(�)

�@

&(
′+�+1)

commutes because of the unit law of the monoid (@,�@ ,�@) and because the maps &(�) form
a cocone.
For the second term consider the following diagram.

@ ⊳ @(
′) ⊳ @(�) @ ⊳ @(
′+�) @(
′+�+1)

@ ⊳ @ ⊳ @ @ ⊳ @

@ ⊳ @ @

@⊳&(
′)⊳&(�)

�@⊳@

@⊳�@

�@

�@

@⊳�(
′,�)

@⊳&(
′+�)

�(
′+�)

&(
′+�+1)

The upper left square commutes by the induction hypothesis. The bottom square com-
mutes by associativity of �@, and the right-most square commutes by definition of &(
′+�+1).
Therefore the outer square commutes as desired.

• Suppose that
 is a limit ordinal. Recall that

@(
) ⊳ @(�) � colim

′<

@(
′+�).

The composite &(
+�) ◦�(
,�) is induced by the cocone defined for
′ <
 by

@(
′) ⊳ @(�)
�(
′,�)
−−−−→ @(
′+�)

�(
′+�)
−−−−→ @(
+�)

&(
+�)
−−−−→ @

while the composite �@ ◦ (&(
) ⊳ &(�)) is induced by the cocone defined for
′ <
 by

@(
′) ⊳ @(�)
&(
′)⊳&(�)
−−−−−−→ @ ⊳ @

�@

−→ @.

For each
′ <
 these composites are identical by the induction hypothesis. Therefore by
uniqueness of the induced maps

&(
+�) ◦�(
,�) = �@ ◦ (&(
) ⊳ &(�))

as desired.
�

Theorem 2.10. There is an adjunction

Poly Mod(Poly)
m−

⇒

*

.

22 Pattern runs on matter

Proof. For ? : Poly define the unit of the adjunction, �? : ? →m?, to be the composite

?
�(0)
−−→ ?(1)

�(1)
−−→m? .

For 5 : ? → @ in Poly, consider the following diagram.

? y+ ? = ?(1) m?

@ y+ @ = @(1) m@

5 y+ 5= 5(1)

�(0)

�(0)

m 5

�(1)

�(1)

The square on the left commutes by definition of 5(1) while the square on the right commutes by
the commuting diagram in Equation (4). Therefore, the outer square commutes and � is natural.

For the ⊳-monoid (@,�@ ,�@), we define the counit of the adjunction &@ : (m@ ,�,�) → (@,�@ ,�@)

to be &(�) : m@ → @ for � such that @ is �-small. The map &@ preserves the unit because the maps
&(
) form a cocone. That &@ preserves multiplication is a direct result of Lemma B.2. Therefore &@
is indeed a map of ⊳-monoids.

Next we want to show that & is natural. Let 5 : (?,�? ,�?) → (@,�@ ,�@) in Mod(Poly). It suffices
to show for all
 the following diagram commutes.

?(
) @(
)

? @

&(
) &(
)

5(
)

5

We show this by induction on
. For
 = 0, 5(
) is the identity on y and the diagram commutes
because 5 preserves the unit.

Suppose that the diagram commutes for all
′ <
. If
 is a successor ordinal — say
 =
′+1
— then we want to show that the following diagram commutes.

y+ ? ⊳ ?(
′) y+ @ ⊳ @(
′)

? @

y+ 5 ⊳ 5(
′)

5
(�? ,�?◦(?⊳&(
′))) (�@ ,�@◦(@⊳&(
′)))

It commutes on the first term of the coproduct, again because 5 preserves the unit. To show
that it commutes on the second term, we want to show that the outer diagram in the following
commutes.

? ⊳ ?(
′) @ ⊳ @(
′)

? ⊳ ? @ ⊳ @

? @

5 ⊳ 5(
′)

?⊳&(
′) @⊳&(
′)

5 ⊳ 5

�? �@

5

The top square commutes by the induction hypothesis and the bottom square commutes because
5 preserves multiplication.

S. Libkind and D. I. Spivak 23

If
 is a limit ordinal, consider the cocones

?(
′)

5(
′)
−−−→ @(
′)

&(
′)
−−−→ @ and ?(
′)

&(
′)
−−−→ ?

5
−→ @.

By uniqueness, the cocone on the left induces the map ?(
)
5(
)
−−→ @(
)

&(
)
−−→ @. Also by uniqueness, the

cocone on the right induces the map ?(
)
&(
)
−−→ ?

5
−→ @. Furthermore, these cocones are identical by

the induction hypothesis and so their induced maps are equal, as desired.

Finally, to show that the unit and counit form an adjunction we must show that for a polynomial
?

m?

�m?

−−→mm?

&m?

−−→m?

is the identity and that for a ⊳-monoid (@,�@ ,�@)

@
�@
−→m@

&@
−→ @

is the identity as well. It suffices to show the second as the first follows with @ = m?.

Since the diagrams below commutes, it suffices to show that &(1) ◦�(0) is the identity. This is
immediate from the definition of &(1) and the unit law for (@,�@ ,�@).

@ @(1) m@ @
&@�(1)�(0)

&(1)

�

C Proofs for the cofree comonad monad

Proposition 3.1. There is a functor c− : Poly → Poly such that c? has the structure of a ⊳-comonoid for
each ? : Poly,

c? → y and c? → c? ⊳ c? .

Proof. Given a polynomial ?, define polynomials ?(8) for 8 ∈ N by

?(0) ≔ y and ?(1+8) ≔ y×
(

? ⊳ ?(8)
)

There is a projection map �(0) : ?(1) → ?(0), and if �(8) : ?(1+8) → ?(8) has been defined, then we can
define �(1+8)

≔ y×(? ⊳�(8)). Now define the polynomial

c? ≔ lim
(

· · ·
�(2)

−−→ ?(2)
�(1)

−−→ ?(1)
�(0)

−−→ ?(0)
)

(9)

and we note that this construction ? ↦→ c? is natural in ? : Poly.

This polynomial comes equipped with a counit & : c? → y = ?(0) given by the projection. We
next construct the comultiplication � : c? → c? ⊳ c?. Since ⊳ commutes with connected limits, we
have

c? ⊳ c? =

(

lim
81

?(81)
)

⊳

(

lim
82

?(82)
)

� lim
81 ,82

(

?(81) ⊳ ?(82)
)

24 Pattern runs on matter

To obtain the comultiplication lim8 ?
(8) → lim81 ,82(?

(81) ⊳ ?(82)), it suffices to produce a natural choice
of polynomial map !81 ,82 : ?(81+82) → ?(81) ⊳ ?(82) for any 81, 82 : N. When 81 = 0 or 82 = 0, we use the
unit identity for ⊳. By induction, assume given !81 ,1+82 ; we construct !1+81 ,1+82 as follows:

?(1+81+1+82) = y×
(

? ⊳ ?(81+1+82)
)

→ y×
(

? ⊳ ?(81) ⊳ ?(1+82)
)

(10)

→
(

y× ? ⊳ ?(81)
)

⊳ ?(1+82) (11)

= ?(1+81) ⊳ ?(1+82)

where (10) is !81 ,1+82 and it remains to construct (11). Since − ⊳ @ preserves products for any @,
constructing (11) is equivalent to constructing two maps

y×
(

? ⊳ ?(81) ⊳ ?(1+82)
))(81 ,82)

−−−−→ ?(1+82) and y×
(

? ⊳ ?(81) ⊳ ?(1+82)
)

→ ? ⊳ ?(81) ⊳ ?(1+82).

For the latter we use the second projection. The former,)(81 ,82) : ?(1+81+1+82) → ?(1+82), is the more
interesting one; for it we also use projections ?(81) → ?(0) = y and �(82) : ?(82+1) → ?(82) to obtain:

y×
(

? ⊳ ?(81) ⊳ ?(1+82)
)

→ y×
(

? ⊳y ⊳ ?(82)
)

� ?(1+82)

We leave the naturality of this to the reader.

It remains to check that & and � satisfy unitality and coassociativity. The base cases above imply
unitality. Proving coassociativity amounts to proving that the following diagram commutes:

?(1+81+1+82+1+83) ?(1+82+1+83)

?(1+83) ?(1+83)

)(81 ,82+1+83)

)(81+1+82 ,83))(82 ,83)

This can be shown by induction on 83. �

Proposition C.1. There is a monoidal structure on c : Poly → Poly

y→ cy and c? ⊗ c@ → c?⊗@ .

Proof. The polynomial cy � yN has a unique position, and this defines the first map. However,
it is conceptually cleaner to realize that comonads are closed under ⊗ by duoidality, and hence
both y and c? ⊗ c@ carry comonad structures. Thus the desired maps are induced by the obvious
polynomial maps y � y and c? ⊗ c@ → ? ⊗ @. It is straightforward to check that these are unital and
associative. �

Theorem 3.2. There is an adjunction

Cat♯ Poly
*

⇒

c−

.

S. Libkind and D. I. Spivak 25

Proof. We will abuse notation and denote the comonoid (2, &, �) : Cat♯ simply by its carrier 2. We
first provide the counit and unit of the desired adjunction. The counit

&? : c? → ?

is given by composing the projection map c? → ?(1) from construction (9) with the projection

?(1) � y× ? → ?. Since c2 is defined as a limit, the unit

�2 : 29 c2

will be given by defining maps �(8) : 2 → 2(8) commuting with the projections �(8) : 2(1+8) → 2(8), for
each 8 : N, and then showing that the resulting polynomial map �2 is indeed a cofunctor. Noting
that 2(0) = y, we define

�(0) ≔ &

Given �(8) : 2 → 2(8), we define �(1+8) as the composite

2
(&,�)
−−−→ y×(2 ⊳ 2)

y×(2⊳�(8))
−−−−−−−→ y×

(

2 ⊳ 2(8)
)

= 2(1+8).

Clearly, we have �(0) = �(0) ◦�(1). It is easy to check that if �(8) = �(8) ◦�(1+8) then �(1+8) = �(1+8) ◦�(2+8).
Thus we have constructed a polynomial map � : 2 → c2 . It clearly commutes with the counit, so it
suffices to show that � commutes with the comultiplication, which amounts to showing that the
following diagram commutes

2 2 ⊳ 2
(

y×(2 ⊳ 2)
)

⊳
(

y×(2 ⊳ 2)
)

y×(2 ⊳ 2) y×(2 ⊳ 2(81+1+82))
(

y×(2 ⊳ 2(81))
)

⊳
(

y×(2 ⊳ 2(82))
)

�

(&,�)

(&,�)⊳(&,�)

(y×2⊳�(81))⊳(y×2⊳�(82))

y×2⊳�(81+1+82) !1+81 ,1+82

for all 81, 82 : N, where !1+81 ,1+82 is the map constructed in Equation (10) and Equation (11). Com-
mutativity follows from the counitality and coassociativity of the comonoid 2.

The triangle identities are straightforward as well. Indeed, for any comonoid 2 : Cat♯, the

composite 2
*◦�2
−−−→ c2

&*2
−−→ 2 is equal to the composite of 2

(&,2)
−−−→ 2(1) = y× 2, with the projection

2(1) → 2, the result of which is the identity. Finally, for any polynomial ? : Poly, the composite

c?

�c?
−−→ cc?

c&?
−−→ c? is given by taking a limit of maps of the form

c?
(&,�)
−−−→ y×(c? ⊳ c?)

y×(c?⊳�(8))
−−−−−−−→ y×(c? ⊳ c

(8)
?)

y×(&?⊳&
(8)
?)

−−−−−−−→ y×(? ⊳ ?(8))

Each one is in fact the projection c? → ?(8+1), so the resulting map is the identity on c? , completing
the proof. �

D Proofs for the module structure m? ⊗ c@ →m?⊗@

Proposition 3.3. The maps Ξ?,@ are natural in ? and @.

26 Pattern runs on matter

Proof. To show that # is natural in ?, it suffices to show that for a maps ? → ?′ and @ → @′ in Poly

the following diagram commutes:

? [c@ ,m?⊗@]

?′ [c@′ ,m?′⊗@′]

This follows immediately from the commutativity of the following diagram.

? ⊗ c@ ? ⊗ @ m?⊗@

?′⊗ c@′ ?′⊗ @′ m?′⊗@′

Note that the square on the left commutes by naturality of the counit of the adjunction in The-
orem 3.2. The square on the right commutes by naturality of unit of the adjunction in Theo-
rem 2.10. �

Theorem 3.4. There is a left-module over c− : (Poly,⊗,y) → (Poly,⊗,y) consisting of:
• Poly as a left module category over (Poly,⊗,y).
• The functor m− : Poly → Poly.
• The natural transformation Ξ : m− ⊗ c− ⇒m−⊗−.

Proof. We must show that two diagrams commute. First, we will show that the following diagram
commutes.

y⊗mA mA

cy ⊗mA my⊗A

�

Ξy,A

�

It suffices to show that the diagram below commutes:

y⊗ A A mA

cy ⊗ A y⊗ A my⊗A

The square on the left commutes because y → cy → y is the identity. The square on the right
commutes by the naturality of the unit of the adjunction in Theorem 2.10.

Next we must show that the following diagram commutes.

c? ⊗ c@ ⊗mA c? ⊗m@⊗A

c?⊗@ ⊗mA m?⊗@⊗A

It suffices to show that the following diagram commutes.

c? ⊗ c@ ⊗ A c? ⊗ @ ⊗ A c? ⊗m@⊗A

c?⊗@ ⊗ A ? ⊗ @ ⊗ A m?⊗@⊗A

Ξ?,@⊗A

S. Libkind and D. I. Spivak 27

The square on the left commutes by definition of the laxator of c− while the square on the right
commutes by definition of Ξ?,@⊗A . �

	Introduction
	Preliminaries

	The free monad monad
	Monad structure on mp
	The monad mp is free

	Interactions between free monad and cofree comonad
	The cofree comonad comonad
	The module structure mp cq mp q

	Applications
	Interviews run on people
	Programs run on operating systems
	Voting schemes run on voters
	Games run on players

	Conclusion
	Distributing colimits over
	Right distribution
	Left distribution

	Proofs for the free monad monad
	Proof of Theorem 2.10

	Proofs for the cofree comonad monad
	Proofs for the module structure mp cq mp q

