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BOUNDS ON THE DIMENSION OF LINEAL EXTENSIONS

RYAN E. G. BUSHLING AND JACOB B. FIEDLER

Abstract. Let E ⊆ Rn be a union of line segments and F ⊆ Rn the set obtained from

E by extending each line segment in E to a full line. Keleti’s line segment extension

conjecture posits that the Hausdorff dimension of F should equal that of E. Working

in R2, we use effective methods to prove a strong packing dimension variant of this

conjecture, from which the generalized Kakeya conjecture for packing dimension imme-

diately follows. This is followed by several doubling estimates in higher dimensions and

connections to related problems.

1. Introduction and main results

Let E =
⋃ I, where I is a family of line segments in Rn, n ≥ 2. Throughout, I is assumed

to be maximal in the sense that, if I is a line segment and I ⊆ ⋃ I, then I ∈ I—a

hypothesis that results in no loss of generality in what follows. Denoting by A(n, 1) the

affine Grassmannian of lines in Rn, we define the lineal extension of E to be the set

L(E) formed from E by extending each I ∈ I to the unique line ℓI ⊂ Rn containing I:

L(E) :=
⋃

I∈I
ℓI =

⋃

{

ℓ ∈ A(n, 1): E ∩ ℓ contains a line segment
}

.

With this setup, Keleti [10] proposed the following conjecture. Let dimH denote Hausdorff

dimension.

Conjecture 1 (Line segment extension conjecture). Let E ⊆ Rn be a union of line

segments and L(E) its lineal extension. Then dimH L(E) = dimH E.

Conjecture 1 is open in dimensions n ≥ 3 but is known for n = 2.

Theorem 1.1 (Keleti [10]). If E ⊆ R2 is a union of line segments, then dimH L(E) =

dimH E.

This article concerns variants and extensions of this problem, emphasizing the planar case.

1.1. Line segment extension in R
2. We begin by introducing some notation. Let dimP

denote packing dimension.
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Definition 1.1. For s ∈ (0, 1] and E ⊆ Rn a union of subsets of lines with (packing or

Hausdorff) dimension at least s, let

LH
s (E) :=

⋃

{

ℓ ∈ A(n, 1): dimH(ℓ ∩ E) ≥ s
}

and

LP
s (E) :=

⋃

{

ℓ ∈ A(n, 1): dimP(ℓ ∩ E) ≥ s
}

be, respectively, the s-Hausdorff extension and s-packing extension of E.1 In the

extreme case s = 0 we let

L0(E) :=
⋃

{

ℓ ∈ A(n, 1): #(ℓ ∩ E) ≥ 2
}

,

which we call the two-point extension of E.

Our first result—a generalization of Theorem 1.1—pertains to the lineal extension of Fursten-

berg sets.

Proposition 1.2. Let s ∈ [0, 1] and let E ⊆ R2 be a union of (at least) s-Hausdorff-

dimensional subsets of lines. Then dimH(L
H
s (E)) ≤ dimH E + 2− 2s. In particular, if E is

a union of line segments and L(E) is its lineal extension, then dimH L(E) = dimH E.

Keleti’s proof of Theorem 1.1 combines Marstrand’s slicing theorem and the “Fubini inequal-

ity” for Hausdorff measures in a simple and elegant argument, whereas we prove Proposition

1.2 by effective methods that, in particular, hinges on a result [15] of N. Lutz and Stull (The-

orem 3.3 below). We remark here that this is in fact implied by the Furstenberg set bound

[16] of Molter and Rela; cf. §2 below.

One motivation for Proposition 1.2 is that the proof is morally similar to (but much simpler

than) that of our main result.

Theorem 1.3. If E ⊆ R2 is a union of 1-Hausdorff-dimensional subsets of lines, then

dimP(L
H
1 (E)) = dimP E. In particular, if E is a union of line segments and L(E) is its

lineal extension, then dimP L(E) = dimP E.

This theorem follows from a different effective analogue that cannot be proved directly

from the aforementioned Lutz–Stull result. The bulk of the proof in §4 is establishing this

analogue, which involves a sort of multiscale application of the ideas underlying [15].

A strong “generalized Kakeya conjecture” for packing dimension (see §2.1) follows readily

from the final step of the proof of Theorem 1.3. Let Pn−1 := Sn−1/{±1} be the set of

directions of lines in Rn.

1Alternatively, in the above definitions, we could drop the requirement that E be the union of certain

subsets of lines and instead write LH
s (E) :=

⋃
{

ℓ ∈ A(n, 1) : dimH(E ∩ ℓ) ≥ s
}

∪ E, and likewise for

packing dimension. One could partition E into (1) the set of points covered by lines intersecting E in sets

of Hausdorff dimension at least s and (2) the remainder of E; calling the first of these Elines, it is easy to

see that LH
s (E)=LH

s (Elines)∪E. The same holds for packing dimension. Morally speaking, then, the actual

definitions we use encompasses all of the interesting features of the problem.
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Corollary 1.4. Let E ⊆ R2 and let D ⊆ P1 be the set of directions of lines intersecting E

in a set of Hausdorff dimension 1. If D 6= ∅, then

dimP D + 1 ≤ dimP E. (1)

1.2. Line segment extension in Rn and elementary Besicovitch set estimates.

Partial results in higher dimensions, including some (non-)doubling bounds on the dimension

of lineal extensions, follow from more rudimentary “two-part code” arguments in the spirit

of [1] Theorem 1.2.

Proposition 1.5. If E ⊆ Rn is a union of line segments, then

dimH L(E) ≤ dimH E + dimP E − 1 and dimP L(E) ≤ 2 dimP E − 1. (2)

Such results are connected to the Kakeya conjecture via the following theorem. Call a subset

of Rn (not necessarily Borel) a Besicovitch set if it contains a unit line segment in every

direction.

Theorem 1.6 (Keleti [10]).

a. If the line segment extension conjecture holds in Rn for some n ≥ 2, then every

Besicovitch set in Rn has Hausdorff dimension at least n− 1.

b. If the line segment extension conjecture holds in Rn for all n ≥ 2, then, for every

n ≥ 2, every Besicovitch set in Rn has packing dimension n.

While Theorem 1.6 assumes the full strength of Conjecture 1, with a small modification of

the final step in Keleti’s proof—to which the reader is referred—one obtains the following

generalization.

Lemma 1.7. Suppose there is a function g : [0, n]2 → [0, n] such that the following holds:

If E is a union of line segments in Rn, then g(dimH E, dimP E) ≥ dimH L(E).

Then g(dimH K, dimPK) ≥ n− 1 for every Besicovitch set K ⊆ Rn.

As an immediate consequence of this lemma and Proposition 1.5, we obtain an elementary

estimate on the dimension of Besicovitch sets in Rn. (See also §2 for implications for the

generalized Kakeya conjecture.)

Corollary 1.8. If K ⊆ Rn is a Besicovitch set, then

dimH K + dimPK ≥ n.

This is of course far from state-of-the-art, but the implication of Kakeya inequalities from

line segment extension inequalities has something of a practical importance that we describe

below.
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2. Background on the line segment extension conjecture and its relatives

2.1. History and context. Keleti [10] introduced the line segment extension problem as

a natural follow-up to the constructions of Nikodym [17] and Larman [12] showing that

a union of closed line segments in Rn can have positive Lebesgue measure even when the

union of the corresponding open line segments is Lebesgue-null.

In this same vein, Falconer and Mattila [5] introduced a “hyperplane extension problem,”

which they treated as a slicing problem with a dual projection problem that is amenable to

a Marstrand-type exceptional set estimate. The planar case of their Theorem 3.2 weakens

the hypothesis in Theorem 1.1 that E contains many line segments to the hypothesis that

it contains many positive-measure subsets of lines, which Proposition 1.2 further weakens

to s-dimensional subsets of lines (possibly of Hs-measure 0). Another consequence of [5]

is an equation for the dimension of a family of hyperplanes in terms of that of its union.

Héra, Keleti, and Máthé [8] pursued this direction in arbitrary dimension and codimension,

bounding the dimension of families Λ ⊆ A(n, k) from above in terms of the dimension of

any set giving large slices to
⋃

Λ.

Redirecting attention back to the connection between the line segment extension problem

and the Kakeya problem, Keleti and Máthé [11] showed that Theorem 1.6 has a strong

converse.

Theorem 2.1 (Keleti–Máthé [11]). If the Kakeya conjecture is true in Rn, then the

line segment extension conjecture is true in Rn.

This they established as a corollary to the equivalence of the Kakeya conjecture with the

generalized Kakeya conjecture.

Conjecture 2 (Generalized Kakeya conjecture). Let E ⊆ Rn and let D ⊆ Pn−1 be

the set of directions in which E contains a line segment. If D 6= ∅, then

dimH D + 1 ≤ dimH E.

In particular, this conjecture is true in R2 but open in all higher dimensions. Unlike Con-

jecture 2, the generalized Kakeya conjecture for packing dimension does not seem to readily

imply the packing dimension analogue of Conjecture 1. On the Hausdorff side this impli-

cation follows from Marstrand’s slicing theorem, of which the packing dimension analogue

is considerably weaker (cf. [4]). In fact, without additional hypotheses, replacing Hausdorff

dimension with packing dimension in the proof of Conjecture 1 from Conjecture 2 only gives

the trivial lower bound dimPE ≥ 1. It is furthermore not obvious to us that the argument

used to establish the equivalence between Kakeya and generalized Kakeya in [11] easily

adapts to packing dimension, and for these reasons it seems surprising that both Theorem

1.3 and Corollary 1.4 fall out of a single proof.

On a different note, it should also be remarked here that the implication in Theorem 2.1

is not quantitative, in the sense that absolute lower bounds on the size of Besicovitch sets
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(or of unions of line segments more generally) do not translate into progress toward the line

segment extension conjecture. This stands in contrast to Lemma 1.7, according to which

partial results on the line segment conjecture do make headway on the Kakeya problem. In

fact, the equivalence between the Kakeya and generalized Kakeya conjectures proved in [11]

is also quantitative:

Theorem 2.2 (Keleti–Máthé [11]). Let E ⊆ Rn and let ∅ 6= D ⊆ Pn−1 be the set of

directions in which E contains a line segment. Then there exists a compact Besicovitch set

K ⊂ Rn with

dimH K ≤ n− 1 + dimH E − dimH D.

Our method gives such inequalities of generalized Kakeya type for packing and mixed

Hausdorff-packing dimensions directly, without reference to a general result analogous to

Theorem 2.2; see the remarks following the proof of Proposition 1.5 in §5.

2.2. Proposition 1.2 and the Furstenberg set conjecture. We take a moment to

expound on the relationship between Proposition 1.2 and the Furstenberg set conjecture.

Call a set E ⊆ R2 an (s, t)-Furstenberg set if there exists a t-Hausdorff-dimensional set

Λ ⊆ A(2, 1) such that

E =
⋃

ℓ∈Λ

(E ∩ ℓ), where dimH(E ∩ ℓ) ≥ s ∀ℓ ∈ Λ.

A special case of the aforementioned [5] Theorem 3.2 gives dimH LH
s (E) = t, which in

conjunction with Proposition 1.2 entails

t ≤ dimH E + 2− 2s, i.e., 2s+ t− 2 ≤ dimH E.

When E is Borel, this is essentially a consequence of the Furstenberg set bound of Molter

and Rela [16], and running the argument in reverse in turn yields Proposition 1.2 for Borel

sets from the Furstenberg set estimate.2

More recently, Ren and Wang fully resolved the Furstenberg set conjecture in the plane.

Theorem 2.3 (Ren–Wang [21]). If E ⊆ R2 is a Borel (s, t)-Furstenberg set, then

dimH E ≥ min

{

s+ t,
3s+ t

2
, s+ 1

}

.

A corollary, then, is a sharpening of Proposition 1.2 for Borel sets.

Corollary 2.4. Let s ∈ [0, 1] and let E ⊆ R2 be a union of (at least) s-dimensional subsets

of lines. If E is Borel, then

dimH(L
H
s (E)) ≤ max

{

dimH E + 1− s, 2 dimH E + 1− 3s, 2− s
}

.

2The authors thank Tamás Keleti and Josh Zahl for sharing this observation.
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The maximum here is attained according to the numerical relationship between dimH(L
H
s (E))

and s, and in fact the final step in the proof of Proposition 1.2 shows that

dimH(L
H
s (E)) ≤ dimH E + 1− s when s ≥ dimH(L

H
s (E)),

recovering the corresponding case of Corollary 2.4.

Regardless of its comparative strength in view of other Furstenberg set bounds, one reason

for including Proposition 1.2 is that the setup for its proof mirrors that of Theorem 1.3.

3. Preliminaries on effective methods

3.1. Basic definitions. The main goal of this section is to collect in one place several tools

which we use repeatedly in the remainder of the paper, especially for the benefit of readers

less familiar with Kolmogorov complexity. We operate in the algorithmic framework laid

out in [14], which we briefly recall here to establish terminology and notation. Let {0, 1}∗
be the collection of all finite strings over {0, 1}, including the empty string ∅. Fixing some

prefix-free universal oracle Turing machine U , we define for each pair σ, τ ∈ {0, 1}∗ the

Kolmogorov complexity of σ given τ to be the minimal length of a program that, when

given to U as an input with side information τ , returns σ as the output:

K(σ |τ) := min
{

|π| ∈ N : π ∈ {0, 1}∗, U(π, τ) = σ
}

.

When τ = ∅, we write K(σ) := K(σ |∅) and simply call this quantity the Kolmogorov

complexity of σ.

Identifying the family of all rational vectors with {0, 1}∗ via some effective encoding
⋃

n∈N Qn

→֒ {0, 1}∗, we may extend these definitions from strings to real vectors as follows. Let

x ∈ Rn, y ∈ Rm, and r, s ∈ N. We call

Kr(x) := min
p∈B(x,2−r)∩Qn

K(p)

the Kolmogorov complexity of x to precision r and

Kr,s(x|y) := max
q∈B(y,2−s)∩Qm

(

min
p∈B(x,2−r)∩Qn

K(p |q)
)

the Kolmogorov complexity of x to precision r given y to precision s. When s = r

we simply write Kr(x|y) := Kr,r(x|y), and when y = x we write Kr,s(x|x) := Kr,s(x).

The “universality” of U refers to the fact that, for every prefix-free oracle Turing machine

M , there exists a program πM ∈ {0, 1}∗ such that

U(πM , σ) = M(σ) ∀σ ∈ {0, 1}∗.
The length of the shortest such πM is called the machine constant of M . When it is more

awkward to work with U(πM , · ) than it is to work with M directly, we opt for the latter

and then add the machine constant to the length of the shortest σ such that M(σ) = τ

when computing the Kolmogorov complexity of τ .

By allowing a machine access to an oracle A ⊆ {0, 1}∗, we can relativize the above definitions

to A, in which case we embellish the symbols U , K, and M with a superscript A. An oracle
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represents extra information that an oracle Turing machine is allowed to use in computations.

Access to an oracle can never make a computation meaningfully harder, as a machine can

always “ignore” the oracle if its information is irrelevant. In particular, if A and B are

oracles, then

KA,B
r (x) ≤ KA

r (x) +O(log r)

for all x ∈ Rn.

Using some standard encoding, we can consider points in Rn as oracles. Intuitively, condi-

tional access to a point up to a certain precision should be no more useful than oracle access

to all of the information in that point, and this is made precise by the inequality

KA,x
r (y) ≤ KA

r (y |x) +O(log r).

3.2. Some useful results. One key property of Kolmogorov complexity is symmetry of

information. The following quantitative form will see repeated use in this paper.

Lemma 3.1 (Symmetry of information [15]). For all A ⊆ {0, 1}∗, x ∈ Rn, y ∈ Rm,

and r, s ∈ N with r ≥ s:

a.
∣

∣KA
r (x|y) +KA

r (y)−KA
r (x, y)

∣

∣ ≤ O(log r) +O(log log ‖y‖).
b.

∣

∣KA
r,s(x) +KA

s (x) −KA
r (x)

∣

∣ ≤ O(log r) +O(log log ‖x‖).

In practice, the norms of the points we work with are fixed and independent of the level of

precision, so we frequently use these facts in the (relativized) forms

KA
r (x, y) ≈ KA

r (x|y) +KA
r (y) and KA

r (y) ≈ KA
r,s(y) +KA

s (y),

where both equalities hold up to a logarithmic term in r. The latter of these is particularly

useful as a tool to bound the complexity of y at a given precision: its repeated use allows

us to partition the interval [1, r] into smaller intervals on which the complexity function of

y may have more desirable properties.

We add to this another result for understanding how complexity varies with precision. Case

and J. Lutz [2] showed that, for any A ⊆ {0, 1}∗, r, s ∈ N, and x ∈ Rn,

KA
r (x) ≤ KA

r+s(x) ≤ KA
r (x) + ns+O(log(s+ r)).

This bound captures two essential features of the Kolmogorov complexity of points: it is

non-decreasing, and its growth rate is essentially bounded by n on sufficiently long intervals.

Ultimately, we study the Kolmogorov complexity of points in x ∈ Rn to bound their asymp-

totic information density. Given an oracle A ⊆ {0, 1}∗, we call

dimA(x) := lim inf
r→∞

KA
r (x)

r
and DimA(x) := lim sup

r→∞

KA
r (x)

r

the effective Hausdorff dimension and the effective packing dimension of x rel-

ative to A, respectively. The utility of effective dimensions in geometric measure theory

stems from the following theorem of J. Lutz and N. Lutz.
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Theorem 3.2 (Point-to-set principle [14]). For every set E ⊆ Rn,

dimH E = min
A⊆{0,1}∗

sup
x∈E

dimA(x) and dimPE = min
A⊆{0,1}∗

sup
x∈E

DimA(x).

We frequently use the following immediate consequence of this theorem: given some E ⊆ Rn,

for any oracle A and ε > 0, there exists some x ∈ E such that dimA(x) > dimH E − ε, and

likewise for packing dimension.

Turning our attention to the effective dimension of points on lines, we note the following

observation of N. Lutz and Stull: for any A ⊆ {0, 1}∗ and any x, a, b ∈ R,

KA
r (x, ax + b) ≤ KA

r (x, a, b) +Ox,a,b(log r). (3)

This is because, for every large enough precision r, a Turing machine given x, a, b at precision

r can perform a very accurate calculation of ax+ b at precision r. A main theme of [15] is

how close this upper bound is to being a lower bound for the points on a line, the answer

to which is expressed in the following theorem.

Theorem 3.3 (N. Lutz–Stull [15]). For all a, b, x ∈ R and A ⊆ {0, 1}∗,
dimA(x|a, b) + min

{

dimA(a, b), dima,b(x)
}

≤ dimA(x, ax + b).

This is the key ingredient in our proof of Proposition 1.2. However, as the effective packing

dimension analogue of this statement is false,3 the proof of Theorem 1.3 will require a

different strategy.

4. Line segment extension in the plane

4.1. The Hausdorff dimension bound for s-Hausdorff extensions. We begin this

section by using Theorem 3.3 of [15] to prove a bound on the Hausdorff dimension of line

segment extensions in the plane. This proof takes Lutz and Stull’s result as a black box and

illustrates the connection between effective and classical theorems in this setting, which we

will need to prove Theorem 1.3.

Proposition 1.2, Restated. Let s ∈ [0, 1] and let E ⊆ R2 be a union of (at least) s-

Hausdorff-dimensional subsets of lines. Then dimH(L
H
s (E)) ≤ dimH E+2−2s. In particular,

if E is a union of line segments and L(E) is its lineal extension, then dimH L(E) = dimH E.

Proof. Write

E =
⋃

ℓ∈Λ

Eℓ,

where Λ ⊆ A(2, 1) is the family of lines ℓ such that dimH Eℓ ≥ s and Eℓ := ℓ ∩ E. By the

point-to-set principle,

dimH E = min
A⊆{0,1}∗

sup
z∈E

dimA(z) = min
A⊆{0,1}∗

sup
ℓ∈Λ

sup
z∈Eℓ

dimA(z)

3The authors appreciate Stull informing us of this in private communication.
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and

dimH LH
s (E) = min

A⊆{0,1}∗

sup
z∈LH

s
(E)

dimA(z) = min
A⊆{0,1}∗

sup
ℓ∈Λ

sup
z∈ℓ

dimA(z).

Comparing the right-hand sides of these equations, we see it suffices to show that

sup
z∈ℓ

dimA(z) ≤ sup
z∈Eℓ

dimA(z) + 2− 2s (4)

for every oracle A ⊆ {0, 1}∗ and every line ℓ ∈ Λ. Taking such an A and ℓ, we interchange

the x- and y-coordinates if necessary so that ℓ is not vertical and we let (a, b) be the slope-

intercept pair of ℓ. As was observed in the previous section, for each x ∈ R and each

precision r,

KA
r (x, ax+ b) ≤ KA

r (x, a, b) + o(r) ≤ r +KA
r (a, b) + o(r).

Hence dimA(x, ax + b) ≤ min {1 + dimA(a, b), 2} and, consequently,

sup
z∈ℓ

dimA(z) ≤ min {1 + dimA(a, b), 2}. (5)

Now, let S be the projection of Eℓ onto the x-axis. Then dimH(S) ≥ s, so by the point-to-set

principle, for every ε > 0, there exists xε ∈ S such that dimA,a,b(xε) ≥ s − ε. Applying

Theorem 3.3, we have

dimA(xε, axε + b) ≥ dimA(xε |a, b) + min {dimA(a, b), dima,b(xε)}
≥ dimA,a,b(xε) + min {dimA(a, b), dimA,a,b(xε)}
≥ s− ε+min {dimA(a, b), s− ε}.

Letting ε go to zero gives

sup
z∈Eℓ

dimA(z) ≥ min {s+ dimA(a, b), 2s}. (6)

The difference in the minima is largest when dimA(a, b) ≥ 1, which gives the desired bound.

�

4.2. The packing dimension bound for 1-Hausdorff extensions. Now we turn our

attention to the packing dimension version of the line segment extension problem. The key

issue is that we do not have an analogue of Lutz and Stull’s bound for effective packing

dimension. In fact, the statement obtained by replacing effective Hausdorff dimension with

effective packing dimension in Theorem 3.3 is simply not true.

Essentially, the inequality fails because a high packing dimension for the pair (a, b) can

be the result of KA
r (a, b) growing relatively slowly in r up to some level of precision, and

then significantly more quickly up to a higher level of precision. At a key technical step

in the proof, the complexity function of (a, b) needs to have certain properties, which can

be guaranteed by reducing its complexity up to precision r via an oracle D. This “wastes”

complexity growth of (x, a, b) that we would like to transfer to (x, ax+b), but since effective

Hausdorff dimension only reflects a lower bound on the asymptotic complexity growth, D

does not reduce the complexity of (x, ax + b) unacceptably in comparison to the effective

Hausdorff dimension of (a, b). Effective packing dimension, however, reflects an upper bound
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on asymptotic complexity growth, which dashes any hope for the analogous packing inequal-

ity. We will proceed without proving an explicit lower bound on the packing dimension of

arbitrary points on a line, but will still show that for x of essentially maximal complexity

at certain precisions, (x, ax+ b) also has essentially maximal complexity. This will imply (a

somewhat stronger version of) the line segment extension conjecture for packing dimension

in the plane.

Theorem 1.3, Restated. If E ⊆ R2 is a union of 1-Hausdorff-dimensional subsets of

lines, then dimP(L
H
1 (E)) = dimPE. In particular, if E is a union of line segments and

L(E) is its lineal extension, then dimP L(E) = dimPE.

The proof will proceed in four main steps. We need to establish a variant of Theorem 3.3

that bounds the complexity growth of (x, ax+b) on certain intervals of precision, as opposed

to the entirety of [1, r]. We will need to consider two kinds of intervals, first teal intervals

and then yellow intervals, named as in [22]. The third step is the construction of a certain

partition of [1, r] into yellow and teal intervals. Finally, we prove that for partitions of this

form and certain choices of x, the lower bound arising from the partition essentially matches

an upper bound at all sufficiently large precisions.

Before we begin, we will need several lemmas, including the following slight modification of

Lemma 3.1 in [15].

Lemma 4.1. Suppose x, a, b ∈ R, B ⊆ {0, 1}∗, r, t ∈ N, δ ∈ R+, and ε, η ∈ Q+ satisfy

r > log(2|a|+ |x|+ 5) + 1, t < r, and the following:

(1) KB
r,t(a, b) ≤ (η + ε)(r − t).

(2) For every (u, v) ∈ B
(

(a, b), 2−t
)

such that ux+ v = ax+ b,

KB
r,t(u, v) ≥ (η − ε)(r − t) + δ(r − s)

where s = − log |(a, b)− (u, v)| ∈ (t, r].

Then

KB
r,t(x, ax+ b) ≥ KB

r,t(x, a, b)−
4ε

δ
(r − t)−KB(ε)−KB(η) −O(log r).

We note that the implicit constant may depend on x, a, and b, but these will be fixed in

each application. The alteration as compared to [15] is the introduction of the precision t,

which enables us to apply this lemma not only on intervals [1, r] but to the elements of a

partition. This kind of lemma is often referred to as an “enumeration” lemma, as its proof

depends on enumerating many short strings to find one that gives an output with the desired

properties; enumeration lemmas are key technical elements of many proofs using effective

methods because they give us conditions under which a desired lower bound holds. In the

proof of our main theorem, showing that the two conditions are satisfied is a significant

element in proving the desired bounds on yellow and teal intervals. We prove the lemma

for completeness.



BOUNDS ON THE DIMENSION OF LINEAL EXTENSIONS 11

Proof. Let x, a, b, B, r, t, δ, ε, and η be as above. We first prove that it suffices to show

that

KB
r,t(x, u, v |x, a, b) ≤ KB

r,t(x, ax+ b |a, b, x) +KB(η) +KB(ε) +O(log r). (7)

whenever (u, v) satisfies KB
r,t(u, v) ≤ (η + ε)(r − t) and condition (2) of the lemma. The

second condition gives that (u, v) is distance not more than 2−t from (a, b), so

KB
r,t(x, u, v |x, a, b) = KB

r,t(x, u, v).

Because (x, a, b) contains at least as much information as (x, ax+ b) at precision t, we also

have that

KB
r,t(x, ax+ b |a, b, x) ≤ KB

r,t(x, ax+ b) +O(log r).

Applying these two facts to (7) yields

KB
r,t(x, u, v) ≤ KB

r,t(x, ax+ b) +KB(η) +KB(ε) +O(log r). (8)

We see that (x, a, b) and (x, u, v) differ in two coordinates and completely agree up to

precision t, so by the definition of s,

KB
r,t(x, u, v) ≥ KB

r,t(x, a, b)− 2(r − s)−O(log r). (9)

Our extra condition on (u, v) and the second condition of the lemma immediately imply

(η + ε)(r − t) ≥ KB
r,t(u, v) ≥ (η − ε)(r − t) + δ(r − s), so

2ε

δ
(r − t) ≥ (r − s).

This in conjunction with (9) entails

KB
r,t(x, u, v) ≥ KB

r,t(x, a, b)−
4ε

δ
(r − t)−O(log r),

and combining this with (8) gives the desired bound.

We now direct our attention to proving (7). Let M be an oracle Turing machine that does

the following given access to B and inputs (w1, w2, w3) ∈ Q3, π = π1π2π3π4π5 ∈ {0, 1}∗
such that

UB(π2) = s1 ∈ N, UB(π3) = s2 ∈ N, UB(π4) = ζ ∈ Q, UB(π5) = ι ∈ Q.

First, MB computes UB(π1, (w1, w2, w3)) = (q1, q2). For every program σ ∈ {0, 1}∗ with

length less than or equal to (ζ+ι)(s2−s1), it simulates UB(σ, (w2, w3)) = (p1, p2) in parallel.

If one of the simulations halts with (p1, p2) ∈ B
(

(w2, w3), 2
−s1

)

such that |p1q1 + p2 − q2| <
2−s2(|p1| + |q1| + 3), then M halts with output (q1, p1, p2). Let cM be a constant for this

machine.

Now let π1, π2, π3, π4, and π5 testify to

KB
r,t(x, ax + b |x, a, b), KB(t), KB(r), KB(η), and KB(ε),

respectively, and let w1, w2, w3 be the K-minimizing rationals at precision t for x, a, b. Then

UB(π1, (w1, w2, w3)) gives (x, ax + b) to precision r. By our hypothesis that KB
r,t(a, b) ≤

(η + ε)(r − t), there is a string σ of length at most (η + ε)(r − t) such that UB(σ, (w2, w3))

gives (a, b) to precision r. Thus, M(π, (w1, w2, w3)) halts by the same geometric argument
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as in [15], and the output (q1, p1, p2) lies in B
(

(x, u, v), 2γ+1−r
)

for some γ depending only

on |x| and |a|. Absorbing γ into the error term gives

KB
r,t(x, u, v |x, a, b) ≤ |π|+ cM +O(log r)

≤ KB
r,t(x, ax + b |x, a, b) +KB(t) +KB(r) +KB(η) +KB(ε) +O(log r)

≤ KB
r,t(x, ax + b |x, a, b) +KB(η) +KB(ε) +O(log r).

Finally observe that the string σ which computes (u, v) given access to its first t bits has

length, by assumption, no greater than (η + ε)(r − t). Hence KB
r,t(u, v) ≤ (η + ε)(r − t),

which in conjunction with the above inequality completes the proof. �

We also make use of Lemmas 3.2 and 3.3 from [15], stated in the form we will need.4

Lemma 4.2. Let x, a, b ∈ R. For all (u, v) ∈ B
(

(a, b), 2−t
)

such that ux+ v = ax+ b and

for all r ≥ s := − log |(a, b)− (u, v)|,
KA

r (u, v) ≥ KA
s (a, b) +KA

r−s,r(x|a, b)−O(log r).

Lemma 4.3. Let A ⊆ {0, 1}∗, r ∈ N, z ∈ Rn, and γ ∈ Q+. There is an oracle D =

D(A, n, r, z, γ) satisfying the following:

(1) For every natural number t ≤ r,

KA,D
t (z) = min{γr,KA

t (z)}+O(log r).

(2) For every m, t ∈ N and y ∈ Rm,

KA,D
t,r (y |z) = KA

t,r(y |z) +O(log r) and KA,D,z
t (y) = KA,z

t (y) +O(log r).

(3) If B ⊆ {0, 1}∗ satisfies KA,B
r (z) ≥ KA

r (z)−O(log r)

KA,B,D
r (z) ≥ KA,D

r (z)−O(log r).

(4) For every m, t ∈ N, u ∈ Rn, and w ∈ Rm,

KA
r (u |w) ≤ KA,D

r (u |w) +KA
r (z)− γr.

Lemma 4.2 is the key geometric observation of Lutz and Stull, and it formalizes the statement

that lines passing through the same point are either almost parallel (in which case they

contain much of the same information), or they are transverse enough their approximations

together determine the x-coordinate of the intersection to a high precision.

Lemma 4.3 is common in effective arguments. Although it is lengthy to state, the idea is

rather simple: if you want to lower the complexity of a point z at some precision r, look back

to find a precision s < r at which the complexity of z is what you want it to be at precision

r. Then, let D encode all of the new information in z from s to r. Property 1 says this oracle

accomplishes the goal of lowering the complexity. By contrast, the remaining properties tell

us that D is not too helpful, that is, D does not undesirably lower the complexity of other

objects. Specifically D is not any more helpful in any calculation than knowing z up to

4Lemmas 3.2 and 3.3 are used in a relativized form in [15], so we state them in this way. The third and

fourth properties in Lemma 4.3, which appear in the proof of [15] Lemma 3.3, can also be found in [22].
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precision r (Property 2), it does not magically become more useful when combined with

other unhelpful oracles for z (Property 3), and it does not reduce the complexity of any

object more than it reduces the complexity of z at precision r (Property 4).

Proof of Theorem 1.3. By the same application of the point-to-set principle used in

Proposition 1.2, it suffices to show that for any planar line ℓ with slope-intercept pair (a, b)

and for any oracle A ⊆ {0, 1}∗, if dimA,a,b(xε) ≥ 1− ε
2 for a collection of xε, then

lim
ε→0

DimA(xε, axε + b) = sup
z∈ℓ

DimA(z). (10)

With this aim in mind, let a, b ∈ R and A ⊆ {0, 1}∗ be given. Although KA
s (a, b) is a

function defined on the natural numbers, for the purposes of our partitioning argument it is

simpler to extend to all reals ≥ 1 by linear interpolation. For ease of notation, we continue

to use KA
s (a, b) to denote this extended function. Let ε ∈ (0, 1) ∩ Q and assume x ∈ R is

such that dimA,a,b(x) ≥ 1 − ε
2 . In the following, we will always assume r is large enough

that for s > log r, (1− ε)s ≤ KA,a,b
s (x) ≤ (1 + ε)s.

Lower bound on teal intervals: Call an interval [t, r] of precisions teal if

KA
s (a, b) ≥ KA

r (a, b)− (r − s) ∀s ∈ [t, r].

We want to prove a lower bound on the complexity growth of (x, ax + b) on such intervals

by applying Lemma 4.1. If possible,5 pick η to be an element of the finite set { i
2m : m =

2− ⌈log ε⌉ and 0 ≤ i ≤ 2m} such that

KA
r,t(a, b)

r − t
− 2

√
ε < η <

KA
r,t(a, b)

r − t
−√

ε.

Using Lemma 4.3, let D = D(A, 2, r, (a, b),KA
t (a, b) + ⌊η(r − t)⌋). In particular, observe

that D lowers the complexity of KA
r (a, b) by at most 2

√
ε(r − t) + O(log r). Thus, with

this choice of η, it is immediate that relative to (A,D) and for sufficiently large r, the first

condition of Lemma 4.1 is satisfied.

Now we show the second is also satisfied. For (u, v) ∈ B2−t(a, b), by symmetry of informa-

tion, Lemma 4.2, and the second property of D, we have

KA,D
r,t (u, v) ≥ KA,D

r (u, v)−KA,D
t (u, v)−O(log r)

≥ KA,D
s (a, b) +KA,D

r−s,r(x|a, b)−KA,D
t (u, v)−O(log r)

= KA,D
s (a, b) +KA,D

r−s,r(x|a, b)−KA,D
t (a, b)−O(log r)

≥ KA,D
s,t (a, b) +KA,D

r−s,r(x|a, b)−O(log r)

≥ KA,D
s,t (a, b) +KA

r−s,r(x|a, b)−O(log r)

≥ KA,D
s,t (a, b) +KA,a,b

r−s (x)−O(log r).

Because of how we choose D, our teal condition KA
s (a, b) ≥ KA

r (a, b) − (r − s) implies a

slightly stronger teal condition for KA,D
s (a, b). Up to a log term, D lowers the complexity

5If the average growth of KA
r,t(a, b) is smaller than, say, 2

√
ε, just set η = 0. We’ll get the trivial bound

of 0 for the growth on this interval with this choice of ε, but in practice, we will pick up any actual growth

as we pass through with smaller and smaller ε.
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of KA,D
r (a, b) by at least

√
ε(r − t). Hence, instead of drawing a line of slope 1 intersecting

the complexity function at r (the teal condition), we can draw a line of slope (1−√
ε) and

KA,D
s (a, b) will still be above it on [t, r]. More concretely, KA,D

s (a, b) ≥ KA,D
r (a, b) − (1 −√

ε(r − s) − O(log r), since, up to a log term, D reduces the complexity of (a, b) (relative

to A) more at precision r than any precision s < r. By two applications of symmetry of

information, this in turn implies KA,D
s,t (a, b) ≥ KA,D

r,t (a, b)−(1−√
ε)(r−s)−O(log r). Hence,

KA,D
r,t (u, v) ≥ KA,D

r,t (a, b)− (1−√
ε)(r − s) +KA,a,b

r−s (x)−O(log r).

Now by our assumption on x, either r − s ≤ log(r) or KA,a,b
r−s (x) ≥ (1− ε)(r − s) holds. In

both cases, we have

KA,D
r,t (u, v) ≥ KA,D

r,t (a, b)− (1 −√
ε)(r − s) + (1− ε)(r − s)−O(log r)

= KA,D
r,t (a, b)− (ε−√

ε)(r − s)−O(log r)

≥ η(r − t)− (ε−√
ε)(r − s)−O(log r)

= (η − ε+ ε)(r − t)− (ε−√
ε)(r − s)−O(log r)

≥ (η − ε)(r − t)− (ε− ε−√
ε)(r − s)−O(log r)

≥ (η − ε)(r − t) +
√
ε(r − s)−O(log r).

Thus, for sufficiently large r, we have

KA,D
r,t (u, v) ≥ (η − ε)(r − t) +

√
ε

2
(r − s).

This is precisely the second condition of Lemma 4.1 with δ =
√
ε

2 . Both conditions of Lemma

4.1 are satisfied, hence applying it without any additional oracle, we obtain

KA,D
r,t (x, ax + b) ≥ KA,D

r,t (x, a, b)− 8
√
ε(r − t)−K(ε)−K(η)−O(log r). (11)

In practice, we will keep the same choice of ε throughout a partitioning argument even as r

goes to infinity, and we chose η from a fixed set that depends only on ε. Thus, we can treat

the complexity of these terms as constant in r. Furthermore, removing an oracle can only

increase complexity, up to a log term, so

KA
r,t(x, ax + b) ≥ KA,D

r,t (x, a, b)− 8
√
ε(r − t)−O(log r). (12)

Now, applying symmetry of information and the properties of D to KA,D
r,t (x, a, b), we obtain

KA,D
r,t (x, a, b) ≥ KA,D

r (x, a, b)−KA,D
t (x, a, b)−O(log r)

≥ KA,D
r (x|a, b) +KA,D

r (a, b)−KA,D
t (x|a, b)−KA,D

t (a, b)−O(log r)

≥ KA,D,a,b
r (x) +KA,D

r (a, b)−KA,D,a,b
t (x)−KA,D

t (a, b)−O(log r)

≥ KA,a,b
r (x) +KA,D

r (a, b)−KA,a,b
t (x) −KA,D

t (a, b)−O(log r)

≥ KA,a,b
r (x) +KA,D

r,t (a, b)−KA,a,b
t (x) −O(log r).

Recalling the definition of D, we have

KA,D
r,t (x, a, b) ≥ KA,a,b

r (x)−KA,a,b
t (x) +KA

r,t(a, b)− 2
√
ε(r − t)−O(log r).
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Finally, we need a lower bound on the growth KA,a,b
r (x) − KA,a,b

t (x). If t < log r, then

KA,a,b
r (x) −KA,a,b

t (x) ≥ (1 − ε)r −O(log r), which is better than the bound we get below.

Otherwise, recall the upper bound KA,a,b
t (x) ≤ (1 + ε)t. If t is too close to r, we cannot

usefully combine this upper bound with the lower bound KA,a,b
t (x) ≥ (1− ε)t. But, in this

case, the interval [t, r] will be too short to affect the sum of elements in the partition very

much. So, we assume t < (1−√
ε)r. Then

KA,a,b
r (x) −KA,a,b

t (x)

r − t
≥ (1− ε)r − (1 + ε)t

r − t

≥ (1− ε)r − (1 + ε)(1−√
ε)r

r − (1−√
ε)r

= 1− 2
√
ε+ ε

≥ 1− 2
√
ε.

Hence

KA,D
r,t (x, a, b) ≥ (1− 2

√
ε)(r − t) +KA

r,t(a, b)− 2
√
ε(r − t)−O(log r)

≥ (1− 4
√
ε)(r − t) +KA

r,t(a, b)−O(log r).

Combining this with inequality (12) when r is sufficiently large gives

KA
r,t(x, ax+ b) ≥ (1− 13

√
ε)(r − t) +KA

r,t(a, b) (13)

or, in the case that t ≥ (1−√
ε)r,

KA
r,t(x, ax+ b) ≥ KA

r,t(a, b)− 13
√
ε(r − t). (14)

Lower bound on yellow intervals: Having done the teal case, the yellow case is straight-

forward. We call an interval [t, r] yellow if

KA
s (a, b) ≥ KA

t (a, b) + (s− t) ∀s ∈ [t, r].

In comparison with the previous case, the complexity function on teal intervals lies above

the line of slope 1 passing through the right endpoint, while the complexity function on

yellow intervals lies above the line of slope 1 passing through the left endpoint. It is an easy

observation that, using an oracle D, we can reduce the complexity of KA
r (a, b) so that the

teal property KA,D
s (a, b) ≥ KA,D

r (a, b) − (r − s) − O(log r) holds on [t, r], and the average

growth rate of KA,D
s (a, b) on [t, r] is only slightly smaller than 1. To be concrete, we pick

D as follows.

Let η to be an element of the finite set
{

i
2m : m = 2− ⌈log ε⌉ and 0 ≤ i ≤ 2m

}

such that

1− 2
√
ε < η < 1−√

ε.

Using Lemma 4.3, let D = D(A, 2, r, (a, b),KA
t (a, b) + ⌊η(r − t)⌋). Thus, with this choice

of η, it is immediate that relative to (A,D) and for sufficiently large r, the first condi-

tion of Lemma 4.1 is satisfied. If we defined D̃ = D(A, 2, r, (a, b),KA
t (a, b) + 1(r − t)),

the teal property would hold relative to (A, D̃). Comparatively, the oracle D further re-

duces KA
r (a, b) by at least

√
ε(r − t), hence, as in the previous case, we have KA,D

s,t (a, b) ≥
KA,D

r,t (a, b)− (1 −√
ε)(r − s)− O(log r). Since we have the (1 −√

ε)-teal property relative
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Figure 1. Several illustrations of the behavior of yellow and teal intervals.

(i) A typical teal interval. (ii) A typical yellow interval. (iii) A yellow

interval becomes a teal interval with average growth rate close to 1 upon

the addition of a well-chosen oracle D. (iv) The union of a yellow interval

(interval [t1, t2]) followed by a teal interval (interval [t2, r]) is either a single

yellow or a single teal interval, in this case teal.

to (A,D), we omit the verification of the second condition, as it becomes identical to the

teal case. Now, applying Lemma 4.1, we have

KA
r,t(x, ax+ b) ≥ KA,D

r,t (x, ax + b)

≥ KA,D
r,t (x, a, b)− 8

√
ε(r − t)−K(ε)−K(η)−O(log r)

≥ KA,D
r,t (x, a, b)− 8

√
ε(r − t)−O(log r).

As in the previous case,

KA,D
r,t (x, a, b) ≥ KA,a,b

r (x) −KA,a,b
t (x) +KA,D

r,t (a, b)−O(log r).

D was chosen such that the average growth rate on [t, r] is at least 1 − 2
√
ε, and the same

bound on the complexity growth of x as in the previous case holds, hence, if t < (1−√
ε)r,
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then

KA,D
r,t (x, a, b) ≥ KA,a,b

r (x) −KA,a,b
t (x) + (1− 2

√
ε)(r − t)−O(log r)

≥ (2− 4
√
ε)(r − t)−O(log r).

Combining this with our main inequality when r is sufficiently large gives

KA
r,t(x, ax+ b) ≥ (2− 13

√
ε)(r − t); (15)

or, in the case that t ≥ (1−√
ε)r,

KA
r,t(x, ax+ b) ≥ (1− 13

√
ε)(r − t). (16)

Partitioning [1, r]: Our aim is now to construct, given A ⊆ {0, 1}∗, a, b ∈ R, and r

sufficiently large, a partition P of [1, r] having (at least) one of the following forms:

(1) Pr consists of one element [1, r], which is teal,

(2) Pr consists of one element [1, r], which is yellow, or

(3) Pr consists of two elements, [1, cr] and [cr, r], where [1, cr] is teal and [cr, r] is yellow.

Note that the partition does not depend on x. We use a strategy similar to [22]. The

difference is that we have no restriction on the maximum length of our intervals in our

partition. Start with the partition [1, 2], [2, 3], . . . , [r−1, r]. The slopes are constant between

consecutive integers, so every element is either teal or yellow. It is easy to observe that the

union of yellow intervals is yellow, and the union of teal intervals is teal, so first, combine

all adjacent yellow and teal intervals. Similarly, the union of a yellow interval followed by a

teal interval is either yellow or teal, so next combine every yellow-teal pair. Repeat the first

and second step in order until neither step changes the partition, then output the current

partition as Pr.

This process halts, since r is a finite number and each step can only increase the length of

intervals. The halting condition implies Pr contains no yellow-yellow, teal-teal, or yellow-

teal pairs. Check that every three element partition contains one of these pairs; thus Pr

has at most two elements. But, the only valid pair is teal-yellow. So, Pr is either a teal

interval followed by a yellow interval, or consists of only one element, which validates the

construction.

For convenience, we will always consider Pr to be {[1, cr], [cr, r]} by the convention that if

Pr is of form one then cr = r, and if Pr is of form two then 1 = cr.

Essentially tight bounds via Pr: Now, we want to upper bound KA
r (x, ax+ b) for any

given x ∈ R. We use two facts. The first is that on any interval, KA
r,t(x, ax+b) is essentially

upper bounded by 2(r− t). The second, as we have used a few times, is that KA
r (x, ax+ b)

is essentially upper bounded by KA
r (x, a, b), since precision r approximations of x, a, and b

are enough to compute ax + b to a similar precision.6 We want to use the first bound on

yellow intervals and the second on teal intervals.

6It is not true that KA
r,t(x, ax+ b) ≤ KA

r,t(x, a, b), since x, a, and b could all be independently random on

[1, t] and then consist only of 0s on [t, r]; in this case, the complexity keeps growing for (x, ax+b). Informally

this is because the product of a up to precision t and x up to precision t can have length 2t. This would
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More formally, assume x is such that

DimA(x, ax+ b) ≥ sup
z∈ℓ

DimA(z)− ε.

Clearly (x, ax+ b) ∈ R2, so for sufficiently large r we have

KA
r,t(x, ax+ b) ≤ 2(r − t) + o(r) ≤ (2 + ε)(r − t). (17)

At the same time, also for sufficiently large r,

KA
r (x, ax+ b) ≤ KA

r (x, a, b) + o(r) ≤ KA
r (x, a, b) + εr. (18)

Now, assume r is large enough that the above bounds hold for any s > log r. We use the

partition Pr, applying (18) on the interval [1, cr] and (17) on [cr, r]. This gives

KA
r (x, ax+ b) ≤ KA

1,cr(x, ax+ b) +KA
cr,r

(x, ax+ b) +O(log r)

≤ KA
cr
(x, a, b) + εcr + 2(r − cr) + ε(r − cr) +O(log r)

≤ KA
cr
(x, a, b) + 2(r − cr) + 2εr

≤ cr +KA
cr
(a, b) + 2(r − cr) + 3εr.

Now, we lower bound the complexity of xε, where xε satisfies the hypothesis of the yellow

and teal results, namely that for sufficiently large r, s > log r implies (1−ε)s ≤ KA,a,b
s (x) ≤

(1+ ε)s. We use the fact that Pr (and hence cr) only depended on A, a, b, and r, and apply

the yellow and teal interval lower bounds.

KA
r (xε, axε + b) ≥ KA

cr
(xε, axε + b) +KA

r,cr
(xε, axε + b)−O(log r)

≥ (1 − 13
√
ε)cr +KA

cr
(a, b) + (2− 13

√
ε)(r − cr) + 2

√
εr −O(log r)

≥ cr +KA
cr
(a, b) + 2(r − cr)− 28

√
εr −O(log r)

≥ cr +KA
cr
(a, b) + 2(r − cr)− 29

√
εr,

where the extra 2
√
εr came from possibly discarding one of the intervals if it is too short

to apply our yellow and teal bounds. Combining this lower bound with the previous upper

bound gives that, for all sufficiently large r,

KA
r (x, ax + b)−KA

r (xε, axε + b) ≤ 32
√
εr.

Hence,

DimA(x, ax+ b)−DimA(xε, axε + b) ≤ 32
√
ε.

Finally, by our choice of x, this gives

DimA(xε, axε + b) ≥ sup
z∈ℓ

DimA(z)− 33
√
ε. (19)

We could pick ε to be arbitrarily small, so this completes the proof. �

Using one of the last inequalities of the above proof, we establish a slight strengthening of

the generalized Kakeya conjecture for packing dimension in the plane. Specifically, we show

present a problem for the proof, if we did not have from the previous step that the partition cannot be a

yellow and then teal interval.
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Corollary 1.4, Restated. Let E ⊆ R2 and let D ⊆ Pn−1 be the set of directions of lines

intersecting E in a set of Hausdorff dimension 1. If D 6= ∅, then

dimP D + 1 ≤ dimP E.

Proof. Let Λ = {ℓ ∈ A(2, 1) : dimH(E ∩ ℓ) = 1}, let Fℓ denote the orthogonal projection of

E ∩ ℓ onto the x-axis, and let A be a packing oracle for both E and D. Identifying D with

the det of slopes of lines in Λ, we see by the point-to-set principle that the desired inequality

(1) is equivalent to

sup
a∈D

DimA(a) + 1 ≤ sup
ℓ∈Λ

sup
x∈Fℓ

DimA(x, ax+ b).

So it suffices to show that for every a, b ∈ R, A ⊆ N, and S ⊆ R of Hausdorff dimension 1,

DimA(a) + 1 ≤ sup
x∈S

DimA(x, ax+ b).

By the point-to-set principle, this follows if for any xε ∈ R such that dimA,a,b(xε) > 1− ε
2 ,

DimA(a) + 1 ≤ lim
ε→0

DimA(xε, axε + b).

In the last section of the proof of the main theorem, we obtained the bound

KA
r (xε, axε + b) ≥ cr +KA

cr
(a, b) + 2(r − cr)− 29

√
εr. (20)

Assuming r is sufficiently large, this implies

KA
r (xε, axε + b) ≥ cr +KA

cr
(a, b) + 2(r − cr)− 29

√
εr

≥ cr +KA
cr
(a) + 2(r − cr)− 30

√
εr

≥ cr +KA
cr
(a) + (r − cr) +KA

r,cr
(a)− 31

√
εr

≥ cr +KA
r (a) + (r − cr)− 32

√
εr

= r +KA
r (a)− 32

√
εr.

This holds at every sufficiently large precision r, so dividing by r and taking the limit

superior on both sides completes the proof. �

4.3. Packing extensions. In comparison with 1-Hausdorff extensions, which do not in-

crease either the Hausdorff or packing dimension of E ⊆ R2, the 1-packing extensions

behave much more poorly. It is clear that the 1 packing extension can increase the Haus-

dorff dimension of set; just let E be a Hausdorff dimension 0, packing dimension 1 subset

of a line. Similarly, the 1-packing extension can maximally increase the packing dimension

of some sets E, illustrated in the following example.

Example 4.1 (LP

1
(E) can increase the packing dimension). Let ri be a rapidly

increasing sequence. Define

X =
{

x = 0.x1x2x3 · · · ∈ [0, 1] : j ∈ [r2i−1, r2i) for some i ∈ N ⇒ xj = 0
}

and

S = {a = 0.a1a2a3 · · · ∈ [0, 1] : j ∈ [r2i, r2i+1) for some i ∈ N ⇒ aj = 0
}

.
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Note that X and S both have packing dimension 1. Further define

E = {(x, ax) ∈ R2 : x ∈ X, a ∈ S}.
Clearly E has packing dimension at least 1. We get equality using the point to set principle.

For any A ⊆ {0, 1}∗, x ∈ X , and a ∈ S,

KA
r (x, ax) ≤ Kr(x, ax) +O(log r)

≤ Kr(x, a) +O(log r)

≤ Kr(x + a) +O(log r)

≤ r +O(log r),

where the second-to-last inequality holds because x and a can only have nonzero digits on

disjoint sets of precisions, so their sum is enough to compute both of them. Taking the limit

superior, the effective packing dimension of any point is no more than 1, so dimP E = 1.

Since E was defined to be a collection of packing dimension 1 subsets of lines with slope a,

{(x, ax) ∈ R2 : x ∈ R, a ∈ S} ⊆ LP
1 (E).

Let A be a packing oracle for LP
1 (E). Let a ∈ S be such that, removing the intervals

[r2i, r2i+1 − 1] from its binary expansion and letting ã denote the remaining string, ã is

random relative to A. Finally, let x be random relative to (a,A). Let ε > 0 be given.

By the condition on a, for sufficiently large i, adding an oracle D makes [r2i, r2i+1] a teal

interval with average loss less than ε, hence

KA
r2i+1

(x, ax) ≥ KA
r2i+1,r2i

(x, ax)−O(log r2i+1)

≥ KA,D
r2i+1,r2i

(x, ax)−O(log r2i+1)

≥ KA
r2i+1,r2i

(x, a)− ε(r2i+1 − r2i)−O(log r2i+1)

≥ KA
r2i+1,r2i

(x, a)− εr2i+1 − o(r2i+1)

≥ KA
r2i+1

(x, a)− εr2i+1 − o(r2i+1)

≥ KA
r2i+1

(x) +KA
r2i+1

(a)− εr2i+1 − o(r2i+1)

≥ r2i+1 + r2i+1 − εr2i+1 − o(r2i+1)

≥ 2r2i+1 − 2εr2i+1.

Taking the limit superior and letting ε go to zero shows that dimP(L
P
1 (E)) = 2.

These examples illustrate the lack of nontrivial bounds on the increase of Hausdorff and

packing dimension for 1-packing extensions in the plane. More generally, for s > 0 and

E ⊆ R2 we could ask for upper bounds on

dimH(LP
s (E)) − dimH(E) and dimP(L

P
s (E)) − dimP(E).

Slightly modifying the above examples shows that the upper bound is at least 1 in both

cases, but would not be surprised by better examples.7 We note a related problem, dimension

estimates for the exceptional sets of orthogonal directions. For Hausdorff dimension in the

plane, this was solved in [21], and is indeed closely connected to the Furstenberg set problem

7We consider the extreme case of “two-point” extensions in the next section.
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and thus to line segment extension. Analogous to the worse behavior of s-packing extensions,

attempting to bound the packing dimension of exceptional sets or modifying the definition

of exceptional sets using packing dimension results in a rather different problem; see [9], [4]

and [18].

5. Extension in higher dimensions and related problems

Given a point z on a line, there are two degrees of freedom in choosing collinear points x, y

such that x + t(y − x) = z for some t ∈ R. To prove Proposition 1.5, we choose x and y

such that (along with another condition) x’s first coordinate encodes the largest possible

quantity of information about y. We justify the possibility of such an encoding as a lemma.

Lemma 5.1. For all y ∈ Rn, A ⊆ {0, 1}∗, and ε > 0, there exists a dense set of points

x ∈ R such that, for all sufficiently large r (depending on x),

KA
r (y |x) ≤ max

{

KA
r (y)− (1 − ε)r, εr

}

. (21)

The idea of the proof is simple; build the point x ∈ R such that successive segments of its

binary expansion are strings that aid in the computation of successive segments of y.

Proof. Given a rational 0 < δ < 1, we build a point xδ ∈ R as follows. For each i ∈ N, let

[ri, ri+1] be an interval of length ⌈(1 + δ)i⌉, where r0 = 1. Let σi denote a string testifying

to KA
ri,ri+1

(y) and let x ∈ [0, 1] be the real number with binary expansion 0.σ0σ1 . . . .

Let π = π1π2π3, where UA(π2) is a finite list of positive integer lengths l0, . . . , lm. Given a

side information string τ , define an oracle Turing machine M that computes MA(π |τ) as

follows. The machineM first calculates UA(τ) = q ∈ Q and determines the successive strings

q0, . . . , qj of lengths l0, . . . , lj formed from the binary digits of q. It then iteratively computes

UA(q1) = p1, U
A(q2, p1) = p2, . . . , U

A(qj , pj−1) = pj and returns MA(π |τ) = UA(π1, pj)

as the output. Let cM be a constant for this machine.

Now let r ∈ N be sufficiently large and let t = rk be the lesser of (1) the largest precision

ri as defined above such that KA
ri
(y) ≤ r and (2) the smallest precision ri such that ri ≥ r.

(This r can be assumed to be large enough that KA
r1
(y) ≤ r.) If there is no largest such ri

in (1), we consider this term to be ∞ and default to the ri given by (2). As {ri}i∈N is an

increasing sequence tending to infinity, such an ri clearly exists.

Let π1 testify to KA
r,t(y), let π2 testify to KA

(

KA
r0
(y),KA

r1,r0
(y), . . . ,KA

rk,rk−1
(y)

)

, and let

τ testify to KA
r (xδ). It is easy to check that, on these inputs, M outputs a precision r

estimate of y; from the definition of x, the qi are precisely the strings that give the additional

information in y from precision ri to precision ri+1. Hence

KA
r (y |xδ) ≤ KA

r,t(y) +KA
(

KA
r0
(y),KA

r1,r0
(y), . . . ,KA

rk,rk−1
(y)

)

+ cM

≤ KA
r,t(y) +O(k log r),
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where the second inequality follows from the fact that each complexity in the list is some

integer between 0 and r. Since k ≤ O(log r) by the definition of t,

KA
r (y |xδ) ≤ KA

r,t(y) +O((log r)2).

Now consider the two cases for the choice of t. If t > r, then KA
r,t(y) ≤ O(log r) and for

sufficiently large r

KA
r (y |xδ) ≤ O((log r)2) < 3nδr. (22)

For the case that t < r, let s be the smallest integer precision such that KA
s (y) ≥ r. Then

t ≤ s, so

KA
r (y |xδ) ≤ KA

r,s(y) +KA
s,t(y) +O((log r)2)

≤ KA
r (y)−KA

s (y) +KA
s,t(y) +O((log r)2)

≤ KA
r (y)− r +KA

s,t(y) +O((log r)2)

≤ KA
r (y)− r + n(s− t) +O((log r)2)

by the choice of t and s, s < rk+1. Hence,

KA
r (y |xδ) ≤ KA

r (y)− r + n(rk+1 − rk) +O((log r)2)

≤ KA
r (y)− r + 2nδrk+1 +O((log r)2)

≤ KA
r (y)− r + 2nδr +O((log r)2).

So, for all r sufficiently large that nδr dominates the O((log r)2) term, we have

KA
r (y |xδ) ≤ KA

r (y)− r + 3nδr. (23)

Picking δ < ε
3n and combining (22) and (23) gives the existence of one x satisfying (21).

Appending the digits of x to any dyadic number (which are dense) gives the same property

for sufficiently large r, completing the proof. �

For simplicity and considering how it is used below, we stated the lemma for x ∈ R, but an

almost identical proof allows one to encode information about y ∈ Rn within x ∈ Rm.

Proposition 1.5, Restated. If E ⊆ Rn is a union of line segments, then

dimH L(E) ≤ dimH E + dimP E − 1 and dimP L(E) ≤ 2 dimP E − 1.

Proof. Let A ⊆ {0, 1}∗ be both a Hausdorff oracle and a packing oracle for E and let ε > 0.

Given a point z ∈ Rn, we construct a machine M that operates as follows. Take any y ∈ Rn

such that [2cy1] = [2cz1] for some c ∈ N, where [ · ] denotes the fractional part of a real

number; that is, the first coordinates of y and z agree from the cth binary digit onwards.

Next, let x ∈ Rn with x1 6= y1 and let

t =
z1 − x1

y1 − x1
.

We form a program π = π1π2π3π4, where UA(π1) = p is a precision r + s approximation of

x, UA(π2 |π1) = q is a precision r + s approximation of y, and UA(π3 |π1, π2, π4) = u is a

precision r + s approximation of t, where UA(π4) = ⌈2cz1⌉ and s ∈ N is large enough that

p+u(q−p) ∈ B(z, 2−r). (Note that s depends only on |z1−x1| and |z1− y1|. In particular,
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it does not depend on r.) With this data, MA(π) computes p+ u(q− p) by computing p, q,

and u as just described.

Now let z ∈ ℓI ⊆ F and let y ∈ I be a point such that, up to a permutation of the axes,

[2cy1] = [2cz1] for some c ∈ N. Next, let x ∈ I be a point with x1 6= y1 such that x1 assists

in the computation of y as in Lemma 5.1, i.e., such that

KA
r (y |x1) ≤ max

{

KA
r (y)− (1 − ε)r, εr

}

for all sufficiently large r. Up to a loss of O(log r), the same inequality holds with x in place

of x1, the other n− 1 coordinates of x being ignored in the computation of y. Finally, let t

be as before, and let π1, π2, π3, and π4 witness KA
r+s(x), K

A
r+s(y |x), KA

r+s

(

t |x, y, ⌈2cz1⌉
)

,

and KA
(

⌈2cz1⌉
)

, respectively. Since t is computable from x, y, and ⌈2cz1⌉, we have

KA
r+s

(

t |x, y, ⌈2cz1⌉
)

= o(r + s) = o(r).

Hence, by the design of M , the choice of x, and symmetry of information, the following

holds for all large r ∈ N:

KA
r (z) ≤ |π1π2π3π4|+ cM

≤ KA
r+s(x) +KA

r+s(y |x) +KA
r+s

(

t |x, y, ⌈2cz1⌉
)

+KA
(

⌈2cz1⌉
)

+ cM

≤ KA
r+s(x) +KA

r+s(y |x) + o(r)

≤ KA
r (x) +KA

r (y |x) + 2sn+ o(r)

≤ KA
r (x) + max

{

KA
r (y)− (1 − ε)r, εr

}

+ o(r).

Dividing through by r and taking the limit inferior as r → ∞ gives

dimA(z) ≤ dimA(x) + max
{

DimA(y)− (1− ε), ε
}

≤ dimH E + dimP E − (1− ε),

where we have chosen the first alternative in the maximum because dimP E ≥ 1. Taking the

supremum over all z ∈ F gives the first inequality in (2) modulo an ǫ, which we let decrease

to 0. To obtain the second inequality in (2), we simply take the limit superior instead of

the limit inferior. �

On some level, the argument is morally similar to that of [6] Theorem 6, which leverages

the dimension inequalities for product sets. Their Kakeya set estimate

dimH K + dimPK ≥ n+ 1

improves on Corollary 1.8 by +1, but this is to be expected, as they prove their estimate

directly rather than by way of line segment extension.

By taking the oracle A in the proof of Proposition 1.5 to encode the set D ⊆ Pn−1 of

directions of the segments in I and then computing z using x, x−y
|x−y| and t, one can modify

the conclusions of Proposition 1.5 to

dimH L(E) ≤ min
{

dimH E + dimPD, dimH D + dimP E
}

and

dimP L(E) ≤ dimP E + dimP D.



24 RYAN E. G. BUSHLING AND JACOB B. FIEDLER

As suggested, instead of bounding the complexity of z in terms of the complexities of x, y,

and t, one bounds this in terms of the complexities of x, x−y
|x−y| and t, although this renders

Lemma 5.1 inapplicable as stated—hence the disappearance of the −1 terms. Bounding the

dimension of D in terms of the dimension of E is the generalized Kakeya problem, so in

practice these inequalities are no more useful than those in (2). Playing with the choices of

x and y in the proof likewise allows one to derive similar inequalities that, in the absence

of specific information about E, do not lead to more profound information about L(E).

In this vein, at the cost of control over the base point x and the scalar t, one can turn the

inequality for line segment extensions into an inequality for “two-point extensions” (recall

Definition 1.1).

Proposition 5.2. If E ⊆ Rn, then

dimH L0(E) ≤ dimH E + dimP E + 1 and dimP L0(E) ≤ 2 dimPE + 1. (24)

Proof. The proof is the same in spirit as that of Proposition 1.5, but forgoing the encodings

greatly simplifies the matter. Let z ∈ L0(E), so that z = x+ ty for some x, y ∈ E and some

t ∈ R. Taking the limit inferior of both sides of

KA
r (z) ≤ KA

r (x) +KA
r (y) +KA

r (t) + o(r) ≤ KA
r (x) +KA

r (y) + r + o(r)

gives the first inequality and taking the limit superior gives the second. �

Example 5.1 (Sharpness of Proposition 5.2). The inequalities in (24) are sharp in

R2. Let Cα ⊂ [0, 1] be the middle-α Cantor set, α ∈
(

1
2 , 1

)

, so that

s := dimH Cα = dimPCα =
log 2

log 1
2 (1− 2α)

∈
(

0, 12
)

.

Then H2s(Cα × Cα) > 0, so by Marstrand’s projection theorem, dimH(tCα − Cα) = 2s for

L1-a.e. t ∈ R. In fact, by Proposition 1.3 of [19], it is also the case that dimP(tCα−Cα) = 2s

for a.e. t ∈ R, so we fix a t satisfying both these equations and let

E := ({0} × Cα) ∪ ({1} × tCα).

Then the set of slopes of lines in L0(E) is simply (tCα − Cα) ∪ {∞}, and in particular the

set D ⊂ P1 of directions in which L0(E) contains a line has both Hausdorff and packing

dimension 2s. By the generalized Kakeya conjecture in the plane (cf. Conjecture 2 and

Theorem 2.2 above),

dimP L0(E) ≥ dimH L0(E) ≥ dimH D + 1 = 2s+ 1

= dimH E + dimP E + 1 = 2 dimP E + 1.

Hence, both inequalities in (24) hold with equality. Taking an intersection of the exceptional

sets in [19] Proposition 1.3 shows that our argument similarly works when α = 1
2 (although

tCα−Cα may have zero 1-dimensional packingmeasure), yielding the extreme case dimH E =

dimP E = 1
2 . In the other extreme, any two-point set poses a sharp example for dimH E =

dimP E = 0.
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Interestingly, dimPE cannot be replaced with dimH E in the first inequality of Proposition

5.2. In fact, no nontrivial inequality bounding the Hausdorff dimension of the two-point

extension of a set is possible solely in terms of the Hausdorff dimension of the original set.

Example 5.2 (Failure of dimH L0(E) ≤ 2dimH E+1). Through a simple argument

(in the spirit of [3] Example 7.8, [7], or the construction in [1] Theorem 1.4) we observe that

the analogous bound for the Hausdorff dimension of two-point extensions severely fails. Let

E = {x ∈ Rn : dim(x) = 0}. It is immediate by the point-to-set principle that this set has

Hausdorff dimension 0 (although this also follows from a simpler counting argument; see

[13] Theorem 3.3.1). Its two-point extension is

L0(E) = {x+ t(y − x) ∈ Rn : dim(x) = 0, dim(y) = 0, t ∈ R}
⊇ {2y − x ∈ Rn : dim(x) = 0, dim(y) = 0},

and since scaling a vector by a nonzero rational does not change its pointwise dimension, it

follows that

L0(E) ⊇ {x+ y ∈ Rn : dim(x) = 0, dim(y) = 0}.
Now observe that any z ∈ Rn can be written as the sum of two Hausdorff dimension-0 points.

We illustrate for z ∈ [0, 1] with binary representation 0.z1z2z3 . . . . Let x = 0.x1x2x3 . . . ,

where xi = zi when there exists even j ∈ N such that j! ≤ i < (j+1)! and xi = 0 otherwise.

If y = z − x, then x and y both consist of alternating blocks of zeros which rapidly increase

in length; hence, they both have effective Hausdorff dimension 0. Repeating the same

construction in each coordinate gives the result in Rn. Consequently, L0(E) = Rn, so

dimH L0(E) = n but dimH E = 0.

This also poses a counterexample to any sort of “reverse continuum Beck’s theorem”; see

[20] Corollary 1.5.
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