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Abstract

We investigate the evaluation of conjunctive queries over static and dynamic relations. While static
relations are given as input and do not change, dynamic relations are subject to inserts and deletes.

We characterise syntactically three classes of queries that admit constant update time and constant
enumeration delay. We call such queries tractable. Depending on the class, the preprocessing time is
linear, polynomial, or exponential (under data complexity, so the query size is constant).

To decide whether a query is tractable, it does not suffice to analyse separately the sub-query over the
static relations and the sub-query over the dynamic relations. Instead, we need to take the interaction
between the static and the dynamic relations into account. Even when the sub-query over the dynamic
relations is not tractable, the overall query can become tractable if the dynamic relations are sufficiently
constrained by the static ones.

Acknowledgements. The authors would like to acknowledge the UZH Global Strategy and Partnerships
Funding Scheme and EPSRC grant EP/T022124/1.

1 Introduction

Incremental view maintenance, also known as fully dynamic query evaluation, is a fundamental task in
data management, e.g., [21, 13, 10, 15, 28, 18, 29, 9]. A natural question is to understand which queries
are tractable, i.e., which queries admit constant time per single-tuple update (insert or delete) and also
constant delay for the enumeration of the result tuples. The problem setting also allows for some one-off
preprocessing phase to construct a data structure that supports the updates and the enumeration. Prior
work [4] showed that the q-hierarchical queries are the conjunctive queries that are tractable; this already
holds even if we only allow for linear time preprocessing. All other queries cannot admit both constant update
time and constant enumeration delay, even when we allow arbitrary time for preprocessing. If we only allow
inserts (and no deletes), then every free-connex α-acyclic conjunctive query becomes tractable [29, 20]. The
tractable queries with free access patterns, where the free variables are partitioned into input and output,
naturally extend the q-hierarchical queries, which are queries without input variables [17]. Further works
investigated classes of intractable queries for which the update time and enumeration delay are shown to
be not constant yet worst-case optimal, e.g., triangle queries [14, 15] and hierarchical queries with arbitrary
free variables [16, 19]. Further works consider restrictions to the data or to the update sequence: Intractable
queries become tractable when the update sequence has a small enclosureness parameter [29] or when the
database satisfies functional dependencies [18], bounded degrees [5], or more general integrity constraints [6].

All aforementioned works consider the all-dynamic setting, where all relations are updateable. In this
work, we extend the tractability frontier by considering a mixed setting, where the input database can have
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Clin O(N)

Cpoly O(Nw)

Cexp EXPTIME

Conjunctive Queries −

Figure 1: Classes Clin ⊂ Cpoly ⊂ Cexp of tractable queries over static and dynamic relations and the corre-
sponding preprocessing time (data complexity). N is the current database size and w is the preprocessing
width. The solid (red) border around the class Clin states that there is a dichotomy between the queries
inside and outside the class. The dashed (blue) border around a class states that no dichotomy is known for
queries inside and outside the class.

both dynamic relations, which are subject to change, and static relations, which do not change. The mixed
setting appears naturally in real-world applications at RelationalAI (personal communication). For instance,
in the retailer domain, the Inventory and Sales relations are updated very frequently, whereas the Stores
and Demographics relations are updated very infrequently and can be considered static for a large time
period. We show that by differentiating between static and dynamic relations, we can design efficient query
maintenance strategies tailored to the mixed setting.

Main Contributions

We characterise syntactically three classes of tractable conjunctive queries depending on their preprocessing
time, cf. Figure 1: Clin ⊂ Cpoly ⊂ Cexp. These classes are defined in Section 4.

The class Clin defines the tractable queries with linear time preprocessing:

Theorem 1. Let a CQ Q and a database of size N .

• If Q is in Clin, then it can be evaluated with O(N) preprocessing time, O(1) update time, and O(1)
enumeration delay.

• If Q is not in Clin and has no self-joins, then it cannot be evaluated with O(N) preprocessing time,
O(1) update time, and O(1) enumeration delay, unless the Online Matrix-Vector Multiplication or the
Boolean Matrix-Matrix Multiplication conjecture fail.

The upper bound in Theorem 1 relies on a rewriting of a given query using multiple strata of views,
where the views are defined by projecting or joining input relations or other views (Section 3). We call
such rewritings safe if the views can be maintained in constant time under single-tuple updates to the input
relations and support constant-delay enumeration of the query result. We show that every Clin query has a
safe rewriting and the views can be computed in linear time (Section 5). The lower bound in Theorem 1 relies
on two widely used conjectures: the Online Matrix-Vector Multiplication [12] and the Boolean Matrix-Matrix
Multiplication [3]. The proof of the lower bound is outlined in Section 7.

Example 2. Let the query Q1(A,B,C) = Rd(A,D), Sd(A,B), T s(B,C) in Figure 2. The dynamic relations
R and S are adorned with the superscript d, while the static relation T is adorned with s. The query is
not tractable in the all-dynamic setting (as it is not q-hierarchical, cf. Section 2), yet it is in Clin, so it is
tractable and uses linear time preprocessing.
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Q1 ∈ Clin Q2 ∈ Cpoly Q3 ∈ Cexp Q4 6∈ Cexp Q5 /∈ Cexp Q6 /∈ Cexp

Q1(A,B,C) = Rd(A,D), Sd(A,B), T s(B,C) Q2(A,C,D) = Rd(A,D), Ss(A,B), T s(B,C), Ud(D)

Q3(A,B) = Rd(A), Ss(A,B), T d(B) Q4(A,B,C) = Rd(A,B), Sd(A,C), T s(B,C)

Q5(B,C) = Rd(A,B), Sd(A,C), T s(B,C) Q6(A,B) = Rd(A), Sd(A,B), T d(B,C), Us(C)

Figure 2: Examples of queries inside and outside our tractability classes. The static and dynamic relations
are adorned with the superscripts s and respectively d. In the hypergraphs, there is one node per variable
and one hyperedge per relation. Underlined variables are free. Solid (red) hyperedges denote the dynamic
relations, the dotted (blue) hyperedges denote the static relations.

In the all-static setting, Clin becomes the class of free-connex α-acyclic queries, which are those conjunc-
tive queries that admit constant enumeration delay after linear time preprocessing [3]. In the all-dynamic
setting, Clin becomes the class of q-hierarchical queries, which are those conjunctive queries that admit
constant enumeration delay and constant update time after linear time preprocessing. Every query in Clin
is free-connex α-acyclic and its dynamic sub-query, which is obtained by removing the static relations, is
q-hierarchical. Yet the queries in Clin need to satisfy further syntactic constraints on the connections between
their static and dynamic relations: For instance, Q3 and Q4 from Figure 2 are not in Clin even though they
are free-connex α-acyclic and their dynamic sub-queries are q-hierarchical.

Queries in Cpoly \ Clin are tractable but require super-linear time preprocessing that depends on a new
width measure w, which we call the preprocessing width of the query:

Theorem 3. Every query in Cpoly can be evaluated with O(Nw) preprocessing time, O(1) update time, and
O(1) enumeration delay, where N is the database size and w is the preprocessing width of the query.

Like the queries in Clin, every query in Cpoly also admits a safe rewriting (Section 5).

Example 4. The query Q2(A,C,D) = Rd(A,D), Ss(A,B), T s(B,C), Ud(D) from Figure 2 is contained in
Cpoly \ Clin: It is tractable but requires quadratic time preprocessing. The quadratic blowup is due to the
creation of a view that joins the static relations S and T on the bound variable B.

The preprocessing width is not captured by previous width notions, such as the fractional hypertree
width (fhtw) of the static sub-query or of the entire query [22]. Let us take the free-connex α-acyclic
query Q7(A,B,C) = Rs(A,B), Ss(B,C), T s(A,C), Ud(A,B,C), whose fhtw is 1. For its static sub-query,
which is the triangle join, fhtw is 3/2. The preprocessing width is 1, so Q7 is in Clin. The triangle join
Q8(A,C) = Rs(A,B), Ss(B,C), T d(A,C) has fhtw = 3/2 and its static sub-query has fhtw = 2. The
preprocessing width is 2: We need to materialize the view V s(A,C) = Rs(A,B), Ss(B,C), which is the
static sub-query. We may reduce the preprocessing width to 3/2 for the static sub-query by also joining with
the dynamic relation T d(A,C), yet the modified view becomes dynamic and needs to be maintained under
updates to T . However, this maintenance cannot be achieved with constant update time, while allowing for
constant enumeration delay [15].

The class Cexp characterises tractable queries that can use exponential time preprocessing:

Theorem 5. Every query in Cexp can be evaluated with 2p · p2 time preprocessing, O(1) update time, and

O(1) enumeration delay, where N is the database size, p = O(Nρ∗(stat(Q))), stat(Q) is the static sub-query
of Q, and ρ∗ is the fractional edge cover number.
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The class Cexp is merely of theoretical interest since it comes with preprocessing time that is exponential in
the size of the input database. The reason for this high preprocessing time is to ensure constant enumeration
delay; if we would allow the enumeration delay to become linear, then the preprocessing time would collapse
to linear for the acyclic queries in Cexp. We use the fractional edge cover number as it characterises the
worst-case optimal size of the static sub-query result as a function of the size N of the input relations [2].

Example 6. The query Q3(A,B) = Rd(A), Ss(A,B), T d(B) from Figure 2 is in Cexp \ Cpoly. The possible
results of Q3 are completely predetermined by its static sub-query: They are the subsets of the materialized
static sub-query, while the updates to the dynamic relations only act as selectors in this powerset. Such
queries require exponential time preprocessing as there are 2N many possible subsets of the relation Ss of
size N . Its dynamic sub-query, i.e., the sub-query over the dynamic relations, is q-hierarchical. Its static
sub-query, i.e., the sub-query over the static relation, is trivially free-connex α-acyclic. This means that,
when taken in isolation, the dynamic sub-query can be evaluated with constant update time and enumeration
delay after linear time preprocessing, while the static sub-query can be evaluated with constant enumeration
delay after linear time preprocessing. Yet Q3 is not in Clin: It does not admit constant update time and
enumeration delay after linear time preprocessing. The queries Q4, Q5, and Q6 from Figure 2 are not in
Cexp: Their dynamic sub-queries are not covered by the static sub-queries. They are discussed in Section 8.

Queries in Cexp \Cpoly may not admit safe rewritings that rely solely on joins and projections. Take again
Q3(A,B) = Rd(A), Ss(A,B), T d(B) from Figure 2. There is no safe rewriting of this query that solely relies
on projections and joins. Any rewriting that supports constant-delay enumeration of the query result must
contain a view that either joins: (i) Rd and Ss; (ii) Ss and T d; or (iii) Rd and T d. None of these views can
be maintained with constant update time. Consider the view V (A,B) = Rd(A), Ss(A,B). An insert of a
value a to R requires to iterate over all B-values paired with a in Ss in order to propagate the change to the
view V . The number of such B-values can be linear, which implies that the update time is linear. Section 6
gives our evaluation strategy for queries in Cexp.

2 Preliminaries

We use N to denote the set of natural numbers including 0. For n ∈ N, we define [n] = {1, 2, . . . , n}. In case
n = 0, we have [n] = ∅.

Databases with Static and Dynamic Relations A schema is a tuple of variables. We treat schemas
and sets of variables interchangeably, assuming a fixed ordering of variables. The domain of a variable X
is denoted by Dom(X). A value tuple t over schema X = (X1, . . . , Xn) is an element from Dom(X) =
Dom(X1)× · · · × Dom(Xn). A relation over schema X is a finite set of value tuples over the same schema.
The size |R| of a relation R is the number of its tuples. The relation R is called dynamic if it is subject to
changes; otherwise, it is called static. To emphasize that R is static or dynamic, we write Rs or respectively
Rd. A database is a finite set of relations. The size of a database is the sum of the sizes of its relations.

Conjunctive Queries A conjunctive query (CQ) is of the form

Q(X) = Rd
1(X1), . . . , R

d
k(Xk), S

s
1(Y1) . . . , S

s
ℓ (Yℓ)

where each Rd
i (Xi) is a dynamic atom; each Ss

j (Yj) is a static atom; vars(Q) =
⋃

i∈[k] Xi ∪
⋃

j∈[ℓ] Yj is the

set of variables of Q; free(Q) = X ⊆ vars(Q) is the set of free variables, while all others are bound variables;
atoms(Q) is the set of all atoms of Q; atoms(X) is the set of the atoms containing the variable X in their
schema. The static (dynamic) sub-query stat(Q) (dyn(Q)) is obtained from Q by omitting all dynamic
(static) atoms and their variables. We say that Q is without self-joins if every relation symbol appears
in at most one atom. We visualise queries as hypergraphs where nodes are query variables (free variables
are underlined), solid red hyperedges represent dynamic atoms, and dotted blue hyperedges represent static
atoms.
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Example 7. Consider the query Q2(A,C,D) = Rd(A,D), Ss(A,B), T s(B,C), Ud(D) and its hypergraph
from Figure 2. Its static and dynamic sub-queries are Qs(A,C) = Ss(A,B), T s(B,C) and respectively
Qd(A,D) = Rd(A,D), Ud(D).

A CQ is (α)-acyclic if we can construct a tree, called join tree, such that: (1) the nodes of the tree are the
atoms of the query, and (2) for each variable, it holds: if the variable appears in two atoms, then it appears
in all atoms on the unique path between the two atoms in the tree [8]. A CQ is called free-connex acyclic if
it is acyclic and stays acyclic after adding a new atom whose schema consists of the free variables [7].

A CQ is hierarchical if for any two variables X and Y , it holds atoms(X) ⊆ atoms(Y ), atoms(Y ) ⊆
atoms(X), or atoms(X) ∩ atoms(Y ) = ∅ [27]. A hierarchical query is q-hierarchical if for any two variables
X and Y with atoms(X) ⊃ atoms(Y ), it holds: if Y is free, then X is free [4].

A path in a query Q is a sequence X1, . . . , Xn of non-repeating variables from Q such that each two
adjacent variables Xi and Xi+1 are contained in an atom from Q, ∀i ∈ [n − 1]. We sometimes see a path
as the set of its variables. Two variables X1 and Xn are connected if there is a path X1, . . . , Xn. An atom
R(Y ) and a variable Xn are connected if there is a path X1, . . . , Xn for some variable X1 ∈ Y . Two atoms,
R(Y ) and S(Z), are connected if there are X1 ∈ Y and Xn ∈ Z such that X1 and Xn are connected. A set
C of atoms in Q is called a connected component of Q if any two atoms in C are connected and this does not
hold for any superset of C.

Example 8. The query Q1(A,B,C) = Rd(A,D), Sd(A,B), T s(B,C) has the path D,A,B,C that connects
(i) the variables D and C and (ii) the atoms Rd(A,D) and T s(B,C).

Dynamic Query Evaluation The problem of dynamic query evaluation is as follows: In a database
containing both static and dynamic relations, when presented with a query, our goal is to maintain the
query result under updates to the dynamic relations and to allow for the enumeration of tuples in the query
result following an update.

A single-tuple update to a relation R is an insert or a delete of a tuple to R. We denote an insert of t by
+t and its delete by −t. In this paper, we consider set semantics: A tuple is either in or not in the database;
the results of this paper can be generalised to bag semantics, or Z-sets, where tuples are associated with
(positive or negative) multiplicities.

Following prior work, e.g., [4, 15, 18], we decompose the time complexity of dynamic query evaluation
into preprocessing time, update time, and enumeration delay. The preprocessing time is the time to compute
a data structure that represents the query result before receiving any update. The update time is the time
to update the data structure under an insert or delete of a single tuple to the database. The enumeration
delay is the maximum of three times: the time between the start of the enumeration process and outputting
the first tuple, the time between outputting any two consecutive tuples, and the time between outputting
the last tuple and the end of the enumeration process [11].

Computation Model and Data Complexity We use the RAM model of computation where database
schemas and data values are of constant size. To address the elements in a set of N values, where N is the
input size, we need an index of constant size. Looking up the value in the set at a given index takes constant
time. We further assume that each relation R over schema X is implemented by a data structure of size
O(|R|) that can: (1) look up, insert, and delete entries in constant time, and (2) enumerate all stored entries
in R with constant delay. For a schema S ⊂ X, we use an index data structure that for any t ∈ Dom(S) can:
(3) enumerate all tuples in σS=tR with constant delay, and (4) insert and delete index entries in constant
time. All aforementioned lookup times, update times, and enumeration delays are amortised.

We report time complexities as functions of the database size N at the update time and using data
complexity (the query is fixed and has constant size). Constant update time and constant delay therefore
mean that they do not depend on the database size.

Due to space constraints, Appendix A introduces the fractional edge cover number ρ∗Q(S) of a variable set
S, the Online Matrix-Vector Multiplication (OMv), Online Vector-Matrix-Vector Multiplication (OuMv),
and the Boolean Matrix-Multiplication (BMM) conjectures.
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VRSTU (A,B,C,D)

Ud(D) VRST (A,B,C,D)

Rd(A,D) VST (A,B,C)

Ss(A,B) T s(B,C)

VRSTU (A,C,D)

Ud(D) VRST (A,C,D)

Rd(A,D) V ′
ST (A,C)

VST (A,B,C)

Ss(A,B) T s(B,C)

VRSTU (D)

V ′
RST (D)Ud(D)

VRST (A,D)

Rd(A,D) V ′′
ST (A)

V ′
ST (A,C)

VST (A,B,C)

Ss(A,B) T s(B,C)

Figure 3: Three rewritings of the query Q2(A,C,D) = Rd(A,D), Ss(A,B), T s(B,C), Ud(D) from Figure 2.
The first two rewritings are not safe, while the last one is safe.

3 Safe Query Rewriting

A rewriting of a query is a project-join plan for the query. In the context of dynamic query evaluation, query
rewritings have been previously used under the term view trees due to their natural tree-shaped graphical
depiction [19, 18]. In this paper, we introduce a special type of query rewritings called safe, which ensures
tractable evaluation.

A rewriting of a CQ Q using views (rewriting of Q in short) is a forest T = {Ti}i∈[n] of trees Ti where
the leaves are the atoms of Q and each inner node is a view V such that:

• If V has a single child, then V results from its child by projecting away some variables; we call V a
projection view.

• If V has several children, then V is the join of its children; we call V a join view.

A view V is dynamic if the subtree rooted at V contains a dynamic atom. For convenience, we also refer to
the atoms in a rewriting as views.

Example 9. Figure 3 gives three (out of many possible) rewritings of the query Q2(A,C,D) = Rd(A,D),
Ss(A,B), T s(B,C), Ud(D) from Figure 2. Each rewriting is depicted as a tree. In all rewritings, the view
VST is static, while the view VRST is dynamic since it contains the dynamic relation Rd in its subtree.

Next, we define safe query rewritings, which have four properties. The two correctness properties ensure
that the views correctly encode the query result as a factorised representation [25]. The update property
guarantees that the dynamic views can be maintained in constant time under single-tuple updates to any
dynamic relation. The enumeration property ensures that the tuples in the query result can be listed from
the views with constant delay.

Definition 10 (Safe Query Rewriting). A rewriting T = {Ti}i∈[n] is safe for a CQ Q if:

Correctness (1) For each connected component C of Q, there is a tree Ti that contains all atoms in C.
(2) For any projection view V ′(Y ) with child view V (X), it holds that each atom of Q containing a
variable from X \ Y is contained only in the subtree rooted at V .

Update The schema of each dynamic view covers the schema of each of its sibling views.

Enumeration Each tree Ti has a subtree T ′
i containing the root of Ti such that:

⋃

i∈[n]

vars(T ′
i ) = free(Q),

6



where vars(T ′
i ) is the set of variables of the views in the subtree T ′

i .

The computation time for a query rewriting is the time to materialise all its views.

Proposition 11. Let a CQ Q and a database of size N . If Q has a safe rewriting with f(N) computation
time for some function f , then Q can be evaluated with f(N) preprocessing time, O(1) update time, and
O(1) enumeration delay.

Example 12. The first rewriting in Figure 3 is not safe: It violates the enumeration property because the
root view VRSTU contains the bound variable B, thus there is no guarantee of reporting distinct (A,C,D)-
values with constant delay, as per our computational model. One possibility is to project away B before
starting the enumeration but this requires time linear in the size of VRSTU . The rewriting also violates the
update property: for instance, the schema of the dynamic view Rd(A,D) does not cover the schema of its
sibling VST (A,B,C), thus computing the change in VRST for an update to Rd requires iterating over linearly
many (B,C)-values from VST that are paired with the A-value from the update.

The second rewriting is also not safe: It satisfies the enumeration property as the root view encodes the
query result but fails on the update property for both dynamic atoms.

The third rewriting is safe and admits O(1) update time and O(1) enumeration delay, per Proposition 11.
We next show how to handle updates and enumerate from this rewriting.

We can propagate an update to Rd or Ud to their ancestor views in constant time. Consider an insert
of a new tuple (a, d) to relation Rd. To compute the change in VRST , we check if a exists in V ′′

ST via a
constant-time lookup. If not, we stop as no further propagation is needed; otherwise, we insert (a, d) into
VRST in constant time. We maintain V ′

RST by inserting d into that view. We compute the change in the
root VRSTU by checking if d exists in Ud via a constant-time lookup, and if so, we insert d into the root.
Propagating an insert to Ud requires a lookup in V ′

RST and a insert into VRSTU , both in constant time.
Deletes to Rd and Ud are handled analogously. Thus, updates in this rewriting take constant time.

We can enumerate the distinct tuples in the query result using three nested for-loops. The first loop iterates
over the D-values in VRSTU ; the second loop iterates over the A-values in VRST paired with a D-value from
the first loop; and the third loop iterates over the C-values in V ′

ST paired with an A-value from the second
loop. Hence, each distinct output tuple can be constructed in constant time.

The time to compute the view VST is quadratic because in the worst case each A-value in Ss is paired
with each C-value in T s. All other views in the rewriting are either projection views or semi-joins of one
child view with another child view. Thus, the overall computation time for the rewriting is O(N2), where N
is the database size.

4 New Query Classes

In this section we introduce the query classes Clin, Cpoly, and Cexp. We first define two syntactic properties
that underlie the classes Clin and Cpoly and ensure that any query in these two classes has a safe rewriting
using views. The class Cexp contains queries that do not satisfy these properties.

A query has safe atom-to-atom paths if any path P connecting two dynamic atoms goes through a variable
that is common to the two atoms:

Definition 13 (Safe Atom-to-Atom Paths). A query has safe atom-to-atom paths if for every path P

connecting two dynamic atoms R(X) and S(Y ), it holds X ∩ Y ∩ P 6= ∅.

Example 14. The queries Q3(A,B,C) = Rd(A), Ss(A,B), T d(B) and Q4(A,B,C) = Rd(A,B), Sd(A,C), T s(B,C)
from Figure 2 do not have safe atom-to-atom paths. The path A,B connects the two dynamic atoms Rd(A)
and T d(B) in Q3, which do not share any variable. The path B,C connects the two dynamic atoms Rd(A,B)
and Sd(A,C) in Q4 but does not go through their only common variable A.

A query has safe atom-to-variable paths if any path P connecting a dynamic atom with a free variable
goes through a free variable of the atom:

7



Definition 15 (Safe Atom-to-Variable Paths). A query Q has safe atom-to-variable paths if for every path
P connecting a dynamic atom R(X) with a free variable, it holds X ∩ free(Q) ∩P 6= ∅.

Example 16. The query Q5(B,C) = Rd(A,B), Sd(A,C), T s(B,C) from Figure 2 does not have safe atom-
to-variable paths since the path A,B connects the dynamic atom Sd(A,C) with the free variable B but does
not go through C, which is the free variable of Sd(A,C).

A query has safe paths if it has safe atom-to-atom paths and safe atom-to-variable paths. We can check
efficiently whether a query has safe paths:

Proposition 17. For any CQ Q with n variables and m atoms, it can be decided in O(n2 ·m2) time whether
Q has safe paths.

Safe paths ensure that the dynamic sub-query is q-hierarchical:

Proposition 18. • Any CQ without static relations is q-hierarchical if and only if it has safe paths.

• The dynamic sub-query of any CQ with safe paths is q-hierarchical.

In Section 5, we show that every query with safe paths admits a safe rewriting, that is, it can be rewritten
into a forest of views that support constant update time and constant enumeration delay. To obtain linear
preprocessing time, we further require that the query is free-connex α-acyclic.

Definition 19 (Clin). A CQ is in Clin if it is free-connex α-acyclic and has safe paths.

For the class Cpoly, we skip the condition that the query is free-connex acyclic.

Definition 20 (Cpoly). A CQ is in Cpoly if it has safe paths.

Example 21. Consider the queries from Figure 2. The query Q1 is in Clin since it is free-connex α-acyclic
and has safe paths. The query Q2 has safe paths but is not free-connex since adding its head atom Q2(A,C,D)
to its body yields a cyclic query. Hence, Q2 is in Cpoly. The queries Q3-Q6 are not in Cpoly since they have
no safe paths.

The class Cexp requires that dynamic atoms are covered by static atoms in case the safe path property is
violated:

Definition 22. A CQ is in Cexp if it has safe paths or every variable contained in a dynamic atom is also
contained in a static atom.

Example 23. The query Q3 does not have safe atom-to-atom paths but is in Cexp since the two dynamic
atoms are covered by a static atom. The queries Q4-Q6 are not contained in Cexp because they have variables
in dynamic atoms that are not covered by static atoms.

5 Evaluation of Queries in Clin and Cpoly

We describe our evaluation strategy for queries in the class Cpoly, which includes the class Clin. In Section 5.1,
we introduce variable orders, which guide the construction of safe rewritings for such queries. We also define
the preprocessing width of a query based on its variable orders. We show that for queries in Clin, the
preprocessing width is 1. In Section 5.2, we show how we can construct a safe rewriting for queries in Cpoly
following variable orders in time that is given by their preprocessing width. This proves the complexity
upper bounds in Theorems 1 and 3.
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A

B C

D

A

B C

DRd(A,B) Sd(A,C)

Y s(A,D) Zs(C,D)

depω(A) = ∅

depω(B) = depω(C) = {A}

depω(D) = {A,C}

VA(A)

V ′
B(A) V ′

C(A)

VC(A,C)Rd(A,B)

Sd(A,C)V ′
D(A,C)

VD(A,C,D)

Y s(A,D) Zs(C,D)

Figure 4: (left to right) The hypergraph of Q(A,B) = Rd(A,B), Sd(A,C), Y s(A,D), Zs(C,D), a VO ω for
Q, and the view tree for Q constructed by the procedure Rewrite(ω) from Figure 8. Dynamic views are in
red, static views are in blue. The query Q has safe paths and the preprocessing width of 2, thus Q ∈ Cpoly.

5.1 Variable Orders

We say that two variables in a query are dependent if they appear in the same atom. A variable order (VO)
for a query Q in Cpoly is a forest ω = {ωi}i∈[n] of trees ωi such that: (1) The nodes of ω are the variables
in Q; (2) the variables of each atom in Q lie on a root-to-leaf path in ω [26, 25]. We denote by vars(ω) the
set of variables in ω and by ωX the subtree of ω rooted at X . We associate each VO ω with a dependency
function depω that maps each variable X in ω to the subset of its ancestors on which the variables in ωX

depend on: depω(X) = {Y |Y is an ancestor of X and ∃Z ∈ ωX s.t. Y depends on Z}.
An extended VO results from a VO ω by adding the atoms in Q as new leaves: Each atom becomes

the child of the lowest variable in ω that is contained in the schema of the atom. A VO is canonical if the
variables of each atom are the inner nodes of a root-to-leaf path in the extended VO. It is called free-top if no
bound variable is on top of a free variable. Every q-hierarchical query admits a free-top canonical VO [19].
We say that the dynamic part of a VO ω = {ωi}i∈[n] is canonical if each tree ωi has a connected subtree ω′

i

including the root such that {ω′
i}i∈[n] is a canonical VO for dyn(Q).

Example 24. Consider the query Q from Figure 4. The query has safe paths but is not free-connex α-
acyclic, thus Q ∈ Cpoly. The dynamic subquery dyn(Q) is q-hierarchical, per Proposition 18. The figure
shows an extended free-top VO for the query where the dynamic part consisting of the variables A, B, and
C is canonical.

We can generalise the above example to all queries in Cpoly:

Proposition 25. Any query in Cpoly has a free-top VO whose dynamic part is canonical.

In the following, we use VO to refer to an extended free-top VO whose dynamic part is q-hierarchical.
Next, we define the preprocessing width w of VOs and queries in Cpoly. For a variable X in a VO, QX denotes
the query that joins all atoms in the subtree of the VO rooted at X :

w(ω) = max
X∈vars(ω)

ρ∗QX
({X} ∪ depω(X))

w(Q) = min
ω∈VO(Q)

w(ω)

The preprocessing width of any query in Clin is 1:

Proposition 26. For any query Q in Clin, it holds w(Q) = 1.

Example 27. Figure 4 shows the dependency set for each variable in the VO ω. We have depω(D) = {A,C}
and ρ∗QD

({A,C,D}) = 2 since we need two atoms to cover these variables. For all other sets, the fractional
edge cover number is 1. Hence, the preprocessing width of the overall query is 2.
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Rewrite(VO ω) : rewriting using views

switch ω:

{ωi}i∈[n] 1 return {Rewrite(ωi) }i∈[n]

R(Y ) 2 return R(Y )

X

ω1 . . . ωk

3 if k = 1 and ω1 is atom R(Y ) return R(Y )

4 let Ti = Rewrite(ωi) with root view Vi(Si), ∀i ∈ [k]

5 let S = {X} ∪ depω(X)

6 let VX(S) = join of V1(S1), . . . , Vk(Sk), and V ′
X(S \ {X}) = VX(S)

7 return



















































VX(S)

T1
. . . Tk

if depω(X) = ∅

V ′
X(S \ {X})

VX(S)

T1
. . . Tk

otherwise

Figure 5: Rewriting a query using views following its VO ω.

5.2 Safe Rewriting of Queries in Cpoly

We show that every query in Cpoly has a safe rewriting using views. The time to compute the views is O(Nw),
where N is the database size and w is the preprocessing width of the query.

Prior work uses view trees following variable orders to evaluate queries in the all-dynamic setting [17, 1,
18]. We adapt the view tree construction to the setting over static and dynamic relations and show that for
queries in Cpoly, the resulting view trees are safe rewritings.

Given a VO ω for a query Q in Cpoly, the procedure Rewrite in Figure 5 rewrites Q into a forest of
views following ω. It proceeds recursively on the structure of ω. If ω consists of a set of trees, it creates a
view tree for each tree in ω (Line 1). If ω is a single tree with root X , it proceeds as follows. If X is an
atom or its only child is an atom, it returns the atom (Lines 2-3). Otherwise, it creates a join view VX that
joins the created child views and puts on top a projection view V ′

X that projects away X , unless X has no
ancestor (Lines 5-7).

Example 28. Figure 4 shows the view tree constructed by the procedure Rewrite following the VO ω
depicted in the figure. Observe that we obtain the view tree from the VO by replacing each variable X
either by a single projection view V ′

X(depω(X)) or by a join view VX({X}∪ depω(X)) and a projection view
V ′
X(depω(X)) on top.

We can verify that the view tree satisfies all four properties of safe rewritings as specified in Definition 10.
The schema of each dynamic view in the view tree covers the schema of each of its siblings; for instance,
the schema of the view V ′

B(A) covers the schema of the sibling view V ′
C(A). The views VA(A) and Rd(A,B)

encode the query result.
The time to compute the view VD(A,C,D) is quadratic in the database size. All other views compute semi-

joins or project away a variable in linear time. Thus, the computation time for this rewriting is quadratic.
From Proposition 11 follows that this query admits constant update time and constant enumeration delay
after quadratic preprocessing time.

The procedure Rewrite outputs a safe rewriting. The computation time of the rewriting is given by
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the preprocessing width of Q.

Proposition 29. For any query Q in Cpoly, VO ω for Q, and database of size N , Rewrite(ω) is a safe
rewriting for Q with O(Nw) computation time, where N is the database size and w is the preprocessing width
of Q.

6 Evaluation of Queries in Cexp

In this section, we first exemplify our evaluation strategy for one simple query in Cexp and then describe it
for arbitrary queries in Cexp.

Consider the query Q3(A,B) = Rd(A), Ss(A,B), T d(B) from Figure 2. It does not admit a safe rewriting,
thus the evaluation strategy described in Section 5 cannot achieve constant update and constant enumeration
delay. At a first glance, Q3 does not seem tractable as a single-tuple update can lead to linearly many changes
to the query result. For example, an insert +a to Rd may be paired with linearly many B-values in Ss. Yet
if we allow for more preprocessing time, we can resolve this difficulty by precomputing the effect of each
possible update and store it in a transition system that allows us to efficiently fetch the updated query result
after each single-tuple update.

A transition system is a tuple (S, sinit,U , δ), where S is a set of states, sinit ∈ S is the initial state, U is
a set of single-tuple updates, and δ : S × U → S is a function that maps a state and a single-tuple update
to another state. In our context, each state corresponds to a database instance and the materialised query
result over that database; since the static relations do not change and are the same across all states, we only
record in the states the content of the dynamic relations and the query result. Each transition corresponds
to a single-tuple update to a dynamic relation. In the preprocessing step, we build such a transition system.
For each update, we use the transition system to move from the current state to another state. To enumerate
the query result, we enumerate the tuples in the current state. We next show our evaluation strategy for
query Q3.

Example 30. We create one state for each possible snapshot of the dynamic relations Rd and T d, that is,
for every combination of the possible A-values in Rd and B-values in T d. We then build the transitions
between these states that correspond to the insertions and deletions of A- and B-values. Even though the
domain of Rd and T d can be unbounded, the result of Q3 is nevertheless guarded by the static relation Ss.
This means that only the A- and B-values from Ss can appear in the query result. Therefore, we can restrict
the domain of the variables in the dynamic relations Rd and T d to the A-values and B-values from Ss.

Let A = πAS
s and B = πBS

s. For each pair α ⊆ A and β ⊆ B, we create a state (α, β) and the
corresponding query result for Rd = α and T d = β. That is, the state (α, β) has the result Q3(A,B) =
α(A), Ss(A,B), β(B). The transition system has the states S = {(α, β) | α ⊆ A, β ⊆ B}. The initial state
sinit = (α0, β0) is the state corresponding to the input database with α0 = Rd ∩ A and β0 = T d ∩ B. Each
transition corresponds to an insertion +a (deletion −a) of an A-value a ∈ A to (from) Rd or the insertion +b
(deletion −b) of a B-value b ∈ B to (from) T d. Consider a state (α, β) ∈ S. For each a ∈ A\α, we create the
transition δ((α, β),+a) = (α ∪ {a}, β). For each a ∈ α, we create the transition δ((α, β),−a) = (α \ {a}, β).
We ignore transitions from a state to itself without loss of generality. We create similar transitions for
inserting and deleting B-values.

Figure 6 shows an input database (left) and the transition system built for query Q3 on the input database
(right). The A- and B-values in Ss are A = {a1} and B = {b1, b2}, respectively. The transition system
contains eight states (boxes), one for each combination of the subsets α ⊆ A and β ⊆ B. Each state (α, β)
defines the result of Q3 for Rd = α and T d = β. Since the input dynamic relations are Rd = {a1} and
T d = {b3}, the initial state has α = {a1} and β = ∅, since b3 /∈ B and does not match any transition.

The input database contains O(N) A-value and B-values, so the transition system contains 2O(N) states.
The query result at any state is a subset of Ss and can be computed in O(N) time. The number of transitions
from any state is bounded by twice the number of distinct A-values and B-values, which is O(N). For each
transition, we take O(N) time to find the landing state (α, β) of size O(N) among exponentially many such
pairs. Overall, it takes O(N2) time to build the index to allow transitions from each state. Once built, we
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Figure 6: Left: Input database with two dynamic relations Rd(A) and T d(B) and one static relation Ss(A,B).
Right: The transition system built from the input database and query Q3. Each state (box) corresponds
to a pair of subsets α and β of A-values and B-values in Ss (first two columns), and the corresponding
materialized result of Q3 if Rd and T d contain the values in α and β (third column). Each transition (arrow)
corresponds to an insertion +a (deletion −a) of an A-value a to (from) Rd or to insertion +b (deletion −b)
of a B-value b to (from) T d. The initial state has α = {a1} and β = ∅ (blue incoming arrow).

can move between states in constant time. Overall, we can create each state and its transitions in O(N2)
time. The general case is detailed in Appendix E.

The preprocessing time is given by the number of states times the creation time per state, so O(2N ·N2).
The update time is constant since for each single-tuple update to the dynamic relation, we find in constant
time the corresponding transition and move to the target state or ignore the update if it does not match any
transition. We enumerate the tuples in the current state trivially with constant delay, as the query result is
already materialised.

We generalize the evaluation strategy from Example 30 to arbitrary queries in Cexp. The transition system

can be built in time O(2p · p2), where p = O(Nρ∗(stat(Q))), as stated in Theorem 5. Finding the initial state
takes time O(N).

Consider a query Q in Cexp. Let k be the number of dynamic relations in Q. We create one state for each
possible snapshot of the dynamic relations. Since Q is in Cexp, every variable in a dynamic atom Rd(X ) also
occurs in a static atom. Similar to Example 30, we restrict the possible values for X in Rd to the projection
of the result of the static sub-query stat(Q) of Q onto X . Let us denote this projection by ARd . Similarly,
we create the sets ARd

1
, . . . ,ARd

k
for all dynamic relations Rd

1, . . . , R
d
k. The size of each such set is upper

bounded by the size of the result of the static sub-query, which is O(Nρ∗(stat(Q))).
The transition system has the states S = {(α1, . . . , αk) | α1 ⊆ ARd

1
, . . . , αk ⊆ ARd

k
}, i.e., we create a state

for each combination of the subsets of ARd
1
, . . . ,ARd

k
. The overall number of states is (2O(Nρ∗(stat(Q))))k =

2O(k·Nρ∗(stat(Q))).
Consider an arbitrary state (α1, . . . , αk) ∈ S. We materialise the corresponding query result, that is, the

result of Q where Rd
i = αi, for i ∈ [k]. The size of the result is bounded by O(Nρ∗(stat(Q))), and thus can be

computed in O(Nρ∗(stat(Q))) time.
We next build the transitions for each state. Consider a dynamic relation Rd

i . For each a ∈ ARd
i
\αi, we

create a transition δ((α1, . . . , αk),+a) = (α1, . . . , αi∪{a}, . . . , αk) that moves to the state where a is included,
and conversely, for each a ∈ αi, we create a transition δ((α1, . . . , αk),−a) = (α1, . . . , αi \ {a}, . . . , αk) that
moves to the state where a is removed. The state has O(Nρ∗(stat(Q))) transitions per dynamic relation.
Appendix E explains how to build an index for these transitions in O(N2ρ∗(stat(Q))) time, which allows us to
move from the current state to another state for an update in constant time. We build the transitions and
compute the index for all k dynamic relations. Overall, we can create the state in O(k ·N2ρ∗(stat(Q))) time.

Building the transition system takes time proportional to the number of states times the time to build
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one state: O(2k·N
ρ∗(stat(Q))

· k · N2ρ∗(stat(Q))) in total. We simplify it to 2p · p2, where p = O(Nρ∗(stat(Q))).
This matches the complexity in Theorem 5.

7 Lower Bound for Queries Outside Clin

In this section, we outline the proof of the lower bound result in Theorem 1. It consists of two parts.
In the first part, we give lower bounds on the evaluation complexity of the simple queries QRST () =
Rd(A), Ss(A,B), T d(B) and QST (A) = Ss(A,B), T d(B). None of these queries is contained in Clin: the
first one does not have safe atom-to-atom paths and the second one does not have safe atom-to-variable
paths. In the second part, the argument is as follows. Consider a query Q /∈ Clin that has no self-joins. By
definition of Clin, this means that (1) Q is not free-connex acyclic, or (2) it does not have safe atom-to-atom
paths, or (3) it does not have safe atom-to-variable paths. In case Q is not free-connex acyclic, we cannot
achieve constant-delay enumeration of the result after linear preprocessing time (even without processing
any update), unless the BMM conjecture fails [3]. If Q does not have atom-to-atom or atom-to-variable
paths, we reduce the evaluation of QRST or respectively QST to the evaluation of Q, which transfers the
lower bound for these queries to Q. The latter reduction is standard (see, e.g., [4]). In the following, we
outline the lower bound proofs for QRST and QST and defer the details to Appendix F.

The lower bound for QRST is conditioned on the OuMv conjecture, which is implied by the OMv con-
jecture [12]:

Proposition 31. The CQ QRST () = Rd(A), Ss(A,B), T d(B) cannot be evaluated with O(N3/2−γ) prepro-
cessing time, O(N1/2−γ) update time, and O(N1/2−γ) enumeration delay for any γ > 0, where N is the
database size, unless the OuMv conjecture fails.

Proof Sketch. Prior work reduces the OuMv problem to the evaluation of the variant of QRST where all
relations are dynamic [4]. The reduction starts with an empty database and encodes the matrix of the
OuMv problem into the relation S using updates. In our case, it is not possible to do this encoding using
updates, since the relation is static. Instead, we do the encoding before the preprocessing stage of the
evaluation algorithm for QRST .

We explain the reduction in more detail. Assume that there is an algorithm A that evaluates QRST

with O(N1/2−γ) update time and enumeration delay after O(N3/2−γ) preprocessing time, for some γ > 0.
Consider an n× n matrix M and n pairs (ur, vr) of n-dimensional vectors that serve as input to the OuMv
problem. We first encode M into the relation S in time O(n2), which leads to a database of size O(n2).
Then, in each round r ∈ [n], we encode the vectors ur and vr into R and respectively T using O(n)
updates and trigger the enumeration procedure of A to obtain from QRST the result of urMvr. This takes
O(n(n2)1/2−γ) = O(n2−2γ) time. After n rounds, we use overall O(n3−2γ) time. This means that we solve
the OuMv problem in sub-cubic time, which contradicts the conjecture.

The reduction of the OMv problem to the evaluation of the query QST (A) = Ss(A,B), T d(B) is similar
to the above reduction. We encode the matrix M into the relation S before the preprocessing stage and
encode each incoming vector vr into T using updates.

8 Outlook: Tractability Beyond Cexp

This work explores the tractability of conjunctive queries over static and dynamic relations. The largest
class of tractable queries put forward is Cexp. Yet a characterisation of all tractable queries remains open.
In the following, we discuss the evaluation of some queries outside the class Cexp.

Let a query Q. The reduced dynamic sub-query of Q is Q without its static atoms and the variables
in these static atoms. An immediate observation is that queries whose reduced dynamic sub-query is not
q-hierarchical are not tractable. This is implied by the intractability of non-q-hierarchical queries in the all-
dynamic setting [4]. One example query whose reduced sub-query is not q-hierarchical is the query Q6(A,B)
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= Rd(A), Sd(A,B), T d(B,C), Us(C) from Figure 2. A question is whether the queries, whose reduced
dynamic sub-queries are q-hierarchical, are tractable. We discuss next two such queries that are not in Cexp:
Q4(A,B,C) = Rd(A,B), Sd(A,C), T s(B,C) and Q5(B,C) = Rd(A,B), Sd(A,C), T s(B,C) from Figure 2.

The evaluation strategy illustrated in Example 30 can be easily extended to Q4. We create the same
transition system as in Example 30 and assign each A-value a that is common to Rd and Sd to the state
that stores the (B,C)-values paired with a in the result. Any update to Rd or Sd changes the assignment
of at most one A-value. At any time, we can enumerate the query result by iterating over the A-values and
enumerating for each of them the tuples in their corresponding state.

The query Q5(B,C) differs from Q4 in that the variable A is bound. The above approach for Q4 does not
allow for constant-delay enumeration of the result of Q5 since distinct A-values might be assigned to distinct
states that share (B,C)-tuples. Filtering out duplicates can however incur a non-constant enumeration delay.
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A Further Preliminaries

We recall some notions that were omitted in Section 2. We start with well-known width measure for queries.

Definition 32 (Fractional Edge Cover [2]). Given a CQ Q and F ⊆ vars(Q), a fractional edge cover of F
is a solution λ = (λR(X ))R(X )∈atoms(Q) to the following linear program:

minimize
∑

R(X )∈atoms(Q)

λR(X )

subject to
∑

R(X )∈atoms(Q) s.t. X∈X

λR(X ) ≥ 1 for all X ∈ F and

λR(X ) ∈ [0, 1] for all R(X ) ∈ atoms(Q)
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The optimal objective value of the above program is called the fractional edge cover number of the variable
set F and is denoted as ρ∗Q(F). If Q is clear from the context, we omit the index Q and write ρ∗(F). When
all Q’s variables are considered, namely F = vars(Q), we write ρ∗(Q). For a database of size N , the result
of a query Q without bound variables can be computed in time O(Nρ∗(Q)) [23].

Definition 33 (Tree Decomposition). A tree decomposition of a CQ Q is a pair (T , χ), where T is a tree
with vertices V (T ) and χ : V (T ) → 2vars(Q) maps each node t of the tree T to a subset χ(t) of variables of
Q such that the following properties hold:

1. for every atom R(X) ∈ atoms(Q), the schema X is a subset of χ(t) for some t ∈ V (T ),

2. for every variable X ∈ vars(Q), the set {t|X ∈ χ(t)} is a non-empty connected subtree of T . The sets
χ(t) are called the bags of the tree decomposition.

A tree decomposition is free-connex if it has a connected sub-tree such that the union of the bags of this
sub-tree are the free variables. We use TD(Q) to denote the set of free-connex tree decompositions of Q.

Definition 34 (Fractional Hypertree Width). Given a CQ Q and a free-connex tree decomposition (T , χ)
of Q, the fractional hypertree width of (T , χ) and of Q are defined as follows:

w(T , χ) = max
t∈V (T )

ρ∗Q(χ(t))

w(Q) = min
(T ,χ)∈TD(Q)

w(T , χ)

Next, we overview the widely believed complexity-theoretic conjectures.

Definition 35 (Boolean Matrix Multiplication (BMM) Problem [3]). Given two n× n Boolean matrices A
and B, represented as lists of their non-zero entries, the task is to output the product AB.

Conjecture 36 (BMM conjecture [3]). The BMM problem cannot be solved in time m1+o(1), where m is
the number of non-zero entries in A, B and AB.

Definition 37 (Online Matrix-Vector Multiplication (OMv) Problem [12]). We are given an n× n Boolean
matrix M and receive n Boolean column vectors v1, . . . , vn of size n, one by one. After seeing each vector
vi, the task is to output the product Mvi before seeing the next vector.

Conjecture 38 (OMv Conjecture [12]). For any constant γ > 0, there is no algorithm that solves the OMv
problem in time O(n3−γ).

Definition 39 (Online Vector-Matrix-Vector Multiplication (OuMv) Problem [12]). We are given an n× n
Boolean matrix M and receive n pairs of Boolean column vectors (u1, v1), . . . , (un, vn) of size n, one by one.
After seeing each pair of vectors (ui, vi), the task is to output the product uiMvi before seeing the next pair.

The following OuMv conjecture is implied by the OMv conjecture.

Conjecture 40 (OuMv Conjecture [12]). For any constant γ > 0, there is no algorithm that solves OuMv
problem in time O(n3−γ).

B Missing Details in Section 3

B.1 Proof of Proposition 11

Proposition 11 Let a CQ Q and a database of size N . If Q has a safe rewriting with f(N) computation
time for some function f , then Q can be evaluated with f(N) preprocessing time, O(1) update time, and
O(1) enumeration delay.
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Let T be a safe rewriting for Q. The preprocessing time is the computation time of T .
To enumerate the result of Q, we nest the enumeration procedures for the connected components of Q,

concatenating their output tuples. For each connected component C, the enumeration procedure traverses
the tree T ∈ T containing all atoms from C in a top-down manner. The enumeration property of T guarantees
that there exists a subtree T ′ of T having the same root as T that covers exactly the free variables of C.

We enumerate the result of C by traversing the subtree T ′ in preorder. At each view V (X), we fix the
values of variables in X \ Y , where Y is the set of variables of the ancestor views of V . We retrieve in
constant time a tuple of values over X \ Y from V for the given Y -value. After visiting all views once,
we construct the first complete output tuple for C and report it. We continue iterating over the remaining
distinct values over X \ Y in the last visited view V , reporting new tuples with constant delay. After
exhausting all values from V , we backtrack and repeat the enumeration procedure for the next Y -value.
The enumeration stops once all views from the subtree T ′ are exhausted. Given that all views are calibrated
bottom-up but the enumeration proceeds top-down, the procedure only visits those tuples that appear in
the output, thus ensuring constant enumeration delay.

We propagate a constant-sized update through a tree in a bottom-up manner, maintaining each view on
the path from the affected relation to the root. From the update property of the safe rewriting T , computing
the delta of any join view involves only constant-time lookups in the sibling views of the child carrying the
update. The size of the delta also remains constant. Computing the delta of a projection view also requires
a constant-time projection of its incoming update. Since an update to one relation affects one tree of T ,
propagating an update through T takes constant time.

C Missing Details in Section 4

C.1 Proof of Proposition 17

Proposition 17. For any CQ with n variables and m atoms, it can be decided in O(n2 ·m2) time whether
Q has safe paths.

A CQ Q has safe atom-to-atom paths if every path between any two dynamic atoms includes at least
one of their common variables. For each pair (R(X), S(Y )) of dynamic atoms of Q, we first construct the
Gaifman graph of the hypergraph of Q without the common variables C = X∩Y . The graph contains O(n)
nodes and O(n2) edges. We next choose any x ∈ X \C and y ∈ Y \C and check if x is reachable from y
using the Breadth-First Search algorithm in O(n2) time; if so, Q has unsafe atom-to-atom paths. We repeat
this procedure for every pair of dynamic atoms, which gives the total cost of O(n2 ·m2).

A CQ Q has safe atom-to-variable paths if every path between a dynamic atom and a free variable
includes at least one free variable from that atom. For each dynamic atom R(X), we construct the Gaifman
graph Q without the free variables from R(X). For each atom containing a free variable y, we choose any
x ∈ X \ free(Q) and check if x is reachable from y in the graph; if so, Q has unsafe atom-to-variable paths.
The total time is O(n2 ·m2).

C.2 Proof of Proposition 18

Proposition 18.

• Any CQ without static relations is q-hierarchical if and only if it has safe paths.

• The dynamic sub-query of any CQ with safe paths is q-hierarchical.

We start with the proof of the second statement in Proposition 18. Consider a CQ Q with safe paths.
We denote by dynAtoms(X) the set of dynamic atoms that contain a variable X . Assume for the sake of
contradiction that dyn(Q) is not hierarchical. This means that Q contains two variables X and Y such that
atoms(X) 6⊆ atoms(Y ), atoms(Y ) 6⊆ atoms(X), and atoms(X) ∩ atoms(Y ) 6= ∅. This implies that Q has
three dynamic atoms Rd(X), Sd(Y ), and T d(Z) such that X ∈ X, X ∈ Y , X /∈ Z, Y ∈ Z, Y ∈ Y , and
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Y /∈ X. The path P = (X,Y ) connects the two dynamic atoms Rd(X) and T d(Z) such that P ∩X∩Z = ∅.
This means that Q does not have safe atom-to-atom paths, which is a contradiction.

Assume now that dyn(Q) is hierarchical, but not q-hierarchical. This implies that Q contains two dynamic
atom Rd(X) and Sd(Y ), a bound variable X with X ∈ X and X ∈ Y , and a free variable Y with Y ∈ Y

and Y /∈ X. The path P = (X,Y ) connects the the dynamic atoms Rd(X) with the free variable Y such
that P ∩ free(Q) ∩X = ∅. This means that Q does not have safe atom-to-variable paths, which is again a
contradiction.

Next, we prove the first statement in Proposition 18. The "⇐"-direction follows directly from the second
statement. It remains to show the "⇒"-direction. Consider a q-hierarchical CQ Q without static atoms.

We first show that Q has safe atom-to-atom paths. Consider a path P that connects two atoms Rd(X)
and Sd(Y ). It follows from the structural properties of q-hierarchical queries that P must contain a variable
X that is contained in X and in Y . Hence, P ∩X ∩Y 6= ∅. This mean that Q has safe atom-to-atom paths.

Now, we show that Q has safe atom-to-variable paths. Let P be a path that connects an atom Rd(X)
with a free variable Y . Without loss of generality, assume that Y is not included in X. Otherwise, P ∩
free(Q) ∩X 6= ∅ and the property holds. Let X ∈ X be the starting point of P in Rd(X). The structural
properties of hierarchical queries imply that atoms(X) ⊃ atoms(Y ). Since Y is free, X must be free. This
implies however that P ∩ free(Q) ∩X 6= ∅. This means that Q has safe atom-to-variable paths.

D Missing Details in Section 5

We introduce two notions that will be useful for the proofs in the following sections: static parts of queries
and VOs with neck.

A static part of a query Q is constructed as follows. Without loss of generality, assume that Q does not
have repeating relation symbols. In case a relation symbol R appears k > 1 times in the query, we can create
k copies of R in the database and refer to each copy by a distinct relation name. We call an atom R(X ′)
the reduced version of a static atom R(X) in Q if X ′ results from X by skipping variables that appear in
dynamic atoms of Q. Let Q′ result from stat(Q) by replacing all atoms with their reduced versions. Consider
a connected component C of Q′. Let A be the set of all static atoms in Q whose reduced versions are in C.
Let Y be the set of variables that appear in the atoms in A and in dyn(Q) and F the free variables of Q
that appear in the atoms in A. We call Qp(F ) = (R(Z))R(Z)∈A a static part of Q with intersection set Y .

Example 41. Figure 7 (top) shows a Cpoly-query Q, its dynamic sub-query dyn(Q), and the static parts of
Q with their intersection sets below. For instance, the third static part Qp(C) = R(G,C), S(G,F ) in the
figure has the intersection set {C,F}.

An important observation, which will be used in the following proofs, is that the intersection set of each
static part is covered by a single dynamic atom:

Proposition 42. For any query Q in Cpoly and any static part Qp of Q with intersection set Y , there is a
single dynamic atom Rd(X) in Q such that Y ⊆ X.

Proof. For the sake of contradiction, assume that we need least two distinct dynamic atoms Rd
1(X1) and

Rd
2(X2) from Q to cover the variables in Y . This means that there are variables X1 ∈ X1 and X2 ∈ X2

such that X1 /∈ X1 ∩X2 and X2 /∈ X1 ∩X2. By construction of Qp and its intersection set, there must be a
path P in Q of the form (X1 = Y1, . . . , Yn = X2), where all variables Yi with i ∈ {2, . . . , n− 1} appear only
in static atoms. Hence, none of the variables Yi with i ∈ {2, . . . , n − 1} can be included in the intersection
X1 ∩X2. Since X1 and X2 are not included in X1 ∩X2 either, it holds P ∩X1 ∩X2 = ∅. This means that
Q does not have safe atom-to-atom paths. Thus, Q is not in Cpoly, which is a contradiction.

Given a VO ω and a subset N of its variables, we say that ω has neck N if its upper part is a path
consisting of the variables in N . More formally, there is an ordering X1, . . . , Xn of the variables in N such
that X1 is the root of ω and for each i ∈ [n− 1], Xi+1 is the only child of Xi.
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Figure 7: (top) Query Q, its dynamic sub-query dyn(Q), and its static parts with the intersection sets.
(bottom) Free-top VO for Q, free-top canonical VO for dyn(Q), and free-top VOs with neck Y for each
static part with intersection set Y . For simplicity, the atoms in the VOs are omitted.

Example 43. Figure 7 (bottom right) shows for each static part with intersection set Y , a VO with neck Y .
For simplicity, we omit the atoms in the VOs. In each VO, the intersection variables form a path and are
on top of all the other variables. For instance, the VO for the third static part Qp(C) = R(G,C), S(G,F )
has the intersection variables C and F above G.

D.1 Proof of Proposition 25

Proposition 25. Any query in Cpoly has a free-top VO whose dynamic part is canonical.

Given a query Q in Cpoly, we show how to construct a free-top VO for Q whose dynamic part is q-
hierarchical. The high-level idea of the construction is as follows. By Proposition 18, the dynamic sub-query
dyn(Q) of Q is q-hierarchical, hence, it admits a canonical VO. First, we construct a canonical VO ωd for
dyn(Q). Then, we split the static sub-query stat(Q) into several parts for which we create free-top VOs.
Finally, we combine ωd with the VOs for the static parts and show that the resulting structure is a free-top
VO for Q.

We first show that for any static part Qp of Q with intersection set Y , we can construct a free-top VO
with neck Y .

Example 44. Figure 7 shows under each static part of the query Q with intersection set Y , a free-top VO
with neck Y for the static part. Observe that in the VO for the third static part Qp(C) = R(G,C), S(G,F ),
the free variable C is on top of F and G, and the intersection variables C and F are on top of G.

First, we show:

Proposition 45. Let Q be a CQ in Cpoly and Qp a static part of Q with intersection set Y . If free(Qp)\Y 6=
∅, then all variables in Y are free.

Proof. For the sake of contradiction, assume that Y contains a bound variable Y and Qp has a free variable
X that is not contained in Y . By Proposition 42, Y is included in a dynamic atom R(X) of Q. Since Y is
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createVO(Cpoly-query Q) : free-top VO for Q with canonical dynamic part

1 let ωd be the canonical VO for dyn(Q)

2 let Q1, . . . , Qn be the static parts of Q with intersection sets Y1, . . . ,Yn

3 let ω = ωd

4 foreach i ∈ [n]

5 let ωi be a VO for Qi with neck Yi

6 add ωi to ω

7 return ω

Figure 8: Given a Cpoly-query Q, constructing a free-top VO whose dynamic part is canonical.

the intersection set of Qp, the variable X cannot be covered by any dynamic atom of Q. This means that Q
contains a path P of the form Y = X1, . . . , Xn = X that connects R(X) with the free variable X such that
free(Q) ∩X ∩ P = ∅. This implies that Q does not have safe atom-to-variable paths. Hence, Q cannot be
in Cpoly, which is a contradiction.

Using Proposition 45, we show:

Proposition 46. Let Q be a CQ in Cpoly and Qp a static part of Q with intersection set Y . There is a
free-top VO for Qp with neck Y .

Proof. It follows from Proposition 45 that all free variables in Qp are in Y . Hence, we can construct the
following free-top VO ω for Q with neck Y . We construct a path N out of the variables in Y such that the
free variables in Y are on top of all other variables in Y . This path becomes the neck of ω. In the rest of
ω, we again make sure that the free variables are on top of the other variables. Observe that this is always
possible, since in the worst case, ω is path, in which case the variables can be ordered arbitrarily.

We describe now how to construct from the free-top VOs for the static parts of Q, a free-top VO ω for the
overall query such that the dynamic part of ω is canonical. The construction is described by the procedure
createVO in Figure 8. The procedure first constructs a canonical VO ωd for dyn(Q). The existence of
such a canonical VO is guaranteed by the fact that dyn(Q) is q-hierarchical (Proposition 18). Then, for each
static part Qi with intersection set Yi, it constructs a free-top VO ωi with neck Yi. The existence of such a
VO is guaranteed by Proposition 46. We obtain the final VO by attaching the VOs for the static parts to
ωd. We explain next how a VO ωi for a static part is attached to ωd.

By Proposition 42, the neck of ωi is included in a single atom of dyn(Q). Hence, all neck variables are
on a root-to-leaf path of ωd. If Yi is empty, we add ωi as a separate tree to ω. Otherwise, let X be the
lowest variable in ωi that is contained in Yi and let Y be the lowest variable in ωd that is contained in Yi.
We make the child trees of X to child trees of Y .

Example 47. Figure 7 shows under the query Q the free-top VO obtained by putting together the canonical
VO for dyn(Q) and the free-top VOs for the static parts.

It remains to show:

Proposition 48. For any query Q in Cpoly, createVO(Q) is a free-top VO for Q whose dynamic part is
canonical.

Proof. Consider a query Q in Cpoly with static parts Q1, . . . , Qn and corresponding intersection sets Y1, . . . ,Yn

and let ω = createV O(Q). Let ωd be the canonical variable order of dyn(Q) and ω1, . . . , ωn the free-top
VOs of the static parts Q1, . . . , Qn with necks Y1, . . . ,Yn, as guaranteed by Proposition 46.

We show that the variables of any atom R(X) of Q is on a root-to-leaf path of ω. The atom R(X) must
be in dyn(Q) or in a static part Qi. In the former case, the variables in X lie on a root-to-leaf path in ωd.
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In the latter case, they lie on a root-to-leaf-path of ωi. In both cases, they must lie on a root-to-leaf path in
ω, since ωd and ωi are subtrees in ω.

For the sake of contradiction, assume that ω contains a bound variable Y above a free variable X . Since
ωd and ω1, . . . , ωn are free-top, it must hold Y ∈ vars(ωd), X /∈ vars(ωd) and X ∈ vars(ωi), for some i ∈ [n].
Let R(X) be a dynamic atom with Y ∈ X. It follows from the construction of ω that there is a path P

from Y to X such that X ∩ free(Q) ∩P = ∅. This implies that Q does not have have safe atom-to-variable
paths. Hence, Q is not a query from the class Cpoly, which is a contradiction.

Finally, by construction, the dynamic part ωd of ω is canonical.

D.2 Proof of Proposition 26

Proposition 26. For any query Q in Clin, it holds w(Q) = 1.

Consider a query Q in Clin. We will show that we can construct for Q a free-top VO ω with preprocessing
width 1 such that the dynamic part of ω is canonical. First, we will construct for every static part Qp of Q
with intersection set Y , a free-top VO with neck Y and preprocessing width 1. Then, we use the procedure
createVO from Figure 8 to build a free-top VO for Q with preprocessing width 1, whose dynamic part is
canonical.

Constructing VOs for Static Parts Consider a static part Qp of Q with intersection set Y . We explain
how to construct for Qp a free-top VO with neck Y and preprocessing width 1. By definition, Q is free-
connex acyclic. It follows from prior work that a query is free-connex acyclic if and only if it has a free-top
VO ω that has preprocessing width 1 but whose dynamic part is not necessarily canonical [26]. Let Q′ and
Q′

p be the queries obtained from Q and respectively Qp by adding a fresh atom R(Y ). The query Q′ must
be free-connex acyclic either. Hence, it has a free-top VO ω with preprocessing width 1. We start with
such a VO ω for Q′ and eliminate one-by-one all variables that do not appear in Q′

p. When removing a
variable X with parent variable Y , the children of X become the children of Y . If a removed variable X
does not have a parent, the child trees of X become independent trees. Observe that after all variables that
are not contained in Q′

p are removed, we are left with a valid free-top VO for Q′
p whose preprocessing width

is 1. Hence, it is free-connex acyclic. This means that it has a free-connex tree decomposition where each
bag is covered by single atom [3]. We root the tree decomposition at the bag that contains R(Y ). This
decomposition can be transformed into a free-top VO of width 1 following a construction in prior work [26].
The construction proceeds top-down and an leaves the variables of each bag on a root-to-leaf path. hence,
the resulting VO has neck Y .

Constructing a VO for Q Let Q1, . . . , Qn be the static parts of Q with intersection sets Y1, . . .Yn. For
each i ∈ [n], let Q′

i be the extension of Qi by a fresh atom Ri(Yi). The purpose of using Ri(Yi) in the
query Qi is to guarantee that in any VO for Qi, the variables in Yi are on a root-to-leaf path. Let ωd be
the canonical VO of dyn(Q) and ω1, . . . ωn the free-top VOs for Q′

1, . . . , Q
′
n constructed as described above.

We use the procedure createVO in Figure 8 to combine the VO ωd with the VOs ω1, . . . , ωn. The same
arguments as in the proof of Proposition 48 imply that we obtain a valid free-top VO ω for Q whose dynamic
part is canonical. It remains to explain that the preprocessing width of ω is 1. Consider a variable X that
is contained in a dynamic atom. Since the dynamic part of ω is canonical, all ancestor variables of X are
contained in each dynamic atom below X . This implies ρ∗QX

({X} ∪ depω(X)) = 1. Consider now a variable
X that does not appear in dyn(Q) in some static part Qi. Since ωi has preprocessing width 1, it holds
ρ∗QX

({X}∪depωi
(X)) = 1 within ωi. Since all variables that depend on X must be included in Qi, we obtain

ρ∗QX
({X} ∪ depω(X)) = 1 within ω. Overall, we derive that the preprocessing width of ω and, hence, of Q

is 1.
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D.3 Proof of Proposition 29

Proposition 29. For any query Q in Cpoly, VO ω for Q, and database of size N , Rewrite(ω) is a safe
rewriting for Q with O(Nw) computation time, where w is the preprocessing width of Q.

Given a query Q in Cpoly, a VO ω for Q, and database of size N , let T = Rewrite(ω). We show that
T satisfies all properties for safe rewritings, as specified in Definition 10.

We first show that the correctness properties for safe rewritings hold. By the definition of VOs, the
variables of each atom must be on a root-to-leaf path and each atom is placed under its lowest variable in
the VO. This implies that for each connected component C of Q, all atoms in C must be in a single tree of T
(first correctness property). Since all atoms containing a variable X must be below X in the VO, all atoms
that contain X must be in the subtree rooted at a projection view VX (second correctness property).

Now we show that the update property holds for T . By definition, the dynamic part of ω is canonical.
Hence, the schema of each dynamic atom covers all ancestor variables. This implies that also each dynamic
view V contains in its schema all its ancestor variables. Consider a dynamic view VX and its sibling view VY .
By construction, we need to consider two cases. In the first case, VY is an atom. In this case, the schema
of VY is included in its ancestor variables. Hence, VX covers the schema of VY . In the second case, VY is
a projection view at some variable Y that does not include Y . In this case, the view VY can only contain
variables that are ancestors of VX . Hence also in this case, VX covers all variables of VY .

The enumeration property follows simply from the fact that the T follows a free-top VO.
It remains to show that all views can be computed in O(Nw) time. The proof follows closely prior work

using view trees [17]. Let T be a tree in T . We show by induction on the structure of T that every view in
T can be computed in O(Nw) time.

Base Case: The base case states that each leaf atom can be computed in O(Nw), which is obviously true.

Induction Step: Consider a projection view a V ′
X(dep(X)) in T . Such a view results from its single child

view by projecting away X . By induction hypothesis, the view VX can be computed in O(Nw) time. Hence,
it is of size O(Nw). The view V ′

X can be constructed from VX by a single scan, which takes O(Nw) time.
Consider now a join view VX({X} ∪ dep(X)) in T . Let V1(S1), . . . , Vk(Sk) be the child views of VX . By

induction hypothesis, each child view can be computed in O(Nw) time. By construction of T , any variable
that appears in at least two of the child views must be contained in the schema of VX . This mean that
variables that do not appear in {X}∪dep(X) cannot be join variables among the child views of VX . In each
child view we project away all non-join variables that do not appear in {X} ∪ dep(X), using O(Nw) time.
Let V ′

1(S
′
1), . . . , V

′
k(S

′
k) be the resulting child views. Using a worst-case optimal join algorithm [24], we then

compute the view VX from its child views in O(|VX |) time. The size of VX is upper-bounded by O(Np)
where p = ρ∗QX

({X} ∪ dep(X)) and QX is the query that joins all atoms in the subtree rooted at VX . Since
p ≤ w, the view VX can be computed in O(Nw) time.

E Missing Details in Section 6

In Section 6, we described how to evaluate a Cexp-query using a transition system. We explain here how

to build in O(N2ρ∗(stat(Q))) time an index that allows us to move from the current state in the transition
system to another state for a single-tuple update in constant time.

We first describe how to build an index that allows fast lookups of a state in the transition system for a
given snapshot of the dynamic relations. Consider a dynamic relation Rd in Q. As we discussed in Section 6,
we restrict the domain of Rd to those values appearing in the static relations in Q, which is denoted by
ARd . The size of ARd is O(Nρ∗(stat(Q))). We index the values in ARd from 0 to |ARd | − 1. Each instance
of Rd is a subset of the set {0, . . . , |ARd | − 1}. We could represent this using a bitset that needs log |ARd |
bits, where each bit represents whether the corresponding tuple is in the instance of Rd. In other words, we
encode each instance of Rd as a bitset, i.e., an integer in {0, . . . , 2|ARd | − 1}. For a state (α1, . . . , αk), where
αi is an instance of the dynamic relation Rd

i , we encode (α1, . . . , αk) as a tuple (i1, . . . , ik), where ij is the
bitset that represents αj . It takes O(Nρ∗(stat(Q))) time to encode a state.
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We create an index T that is a k-dimensional tensor, where each dimension corresponds to the bitsets
representing the instances of a dynamic relation. The entry T (i1, . . . , ik) with the indices (i1, . . . , ik) is a
pointer pointing to the state that corresponds to the instances of the dynamic relations represented by the

bitsets (i1, . . . , ik). Each dimension has 2O(Nρ∗(stat(Q))) entries. For a given bitset, we can look it up in the cor-

responding dimension in log 2O(Nρ∗(stat(Q))) time, which is O(Nρ∗(stat(Q))). Therefore, for a tuple (i1, . . . , ik)
of bitsets, we can look up the corresponding pointer in T in O(Nρ∗(stat(Q))) time. In the preprocessing step,
we create all states without transitions as described in Section 6, and then we fill in the entries of T .

We now create the transitions between the states. Consider a state (α1, . . . , αk) and an insertion of a
tuple a ∈ ARd

i
\ αi to a dynamic relation Rd

i . We want to move to the state that contains additionally a,

i.e., (α1, . . . , αi ∪ {a}, . . . , αk). We encode (α1, . . . , αk) as a tuple (i1, . . . , ik) of bitsets in O(Nρ∗(stat(Q)))
time and look up the pointer p = T (i1, . . . , ik) to this state from the tensor in O(Nρ∗(stat(Q))) time. We
then create the transition: δ((α1, . . . , αk),+a) = p. We do the same for the deletion of a tuple a ∈ αi,
i.e., δ((α1, . . . , αk),−a) = p′, where p′ = T (i1, . . . , ik), and then the similar process for the other dynamic
relations. Overall, within one state, there can be O(Nρ∗(stat(Q))) transitions, so we spend O(Nρ∗(stat(Q))) ·
O(Nρ∗(stat(Q))) = O(N2ρ∗(stat(Q))) time to find all pointers for the transitions in the state.

To allow for moving from one state to another state for a single-tuple update in constant time, we build
a hash table that maps each value a ∈ ARd

i
to the corresponding pointer to the next state. The size of the

hash table is O(Nρ∗(stat(Q))), and we can build it in O(Nρ∗(stat(Q))) time.
Overall, we can build the index for the transitions in O(N2ρ∗(stat(Q))) time.

F Missing Details in Section 7

We prove the lower bound in Theorem 1, which states:

Proposition 49. Any Q /∈ Clin without self-joins cannot be evaluated with O(N) preprocessing time, O(1)
update time, and O(1) enumeration delay, where N is the database size, unless the OMv or the BMM
conjecture fails.

We first show a lower bound for the simple queries QRST () = Rd(A), Ss(A,B), T d(B) and QST (A) =
Ss(A,B), T d(B), which are both not included in Clin.

F.1 Lower Bound for QRST

The lower bound for the query QRST () = Rd(A), Ss(A,B), T d(B) relies on the OuMv conjecture, which is
implied by the OMv conjecture [12]:

Proposition 31. The CQ QRST () = Rd(A), Ss(A,B), T d(B) cannot be evaluated with O(N3/2−γ)
preprocessing time, O(N1/2−γ) update time, and O(N1/2−γ) enumeration delay for any γ > 0, where N is
the database size, unless the OuMv conjecture fails.

Assume that we have an Algorithm A that maintains the query QRST with O(N3/2−γ) preprocessing
time, O(N1/2−γ) update time, and O(N1/2−γ) enumeration delay for some γ > 0. We show that we can
use the Algorithm A to solve the OuMv problem given by Definition 39 in subcubic time, which contradicts
Conjecture 40.

Considering an n-by-n matrix M and n pairs of vectors (u1, v1), . . . , (un, vn) that serve as the input to
the OuMv problem, we construct an Algorithm B that uses the static relation Ss(A,B) to encode M and
the two dynamic relations Rd(A) and T d(B) to encode the vector pairs (ur, vr)r∈[n]. Next, we explain the
encoding in detail.

Algorithm B starts with the empty relations Rd(A), Ss(A,B) and T d(B). First, it populates relation
Ss(A,B) such that (i, j) ∈ Ss(A,B) if and only if M(i, j) = 1. After the initial population, the static
relation Ss(A,B) does not accept any update. The two dynamic relations, Rd(A) and T d(B), are empty
before the first vector pair is given. Then, it executes the preprocessing mechanism of Algorithm A. In
round 1, Algorithm B receives the vector pair (u1, v1) and updates Rd(A) and T d(B) so that i ∈ R(A) if
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and only if u1[i] = 1 and i ∈ T (B) if and only if v1[i] = 1. We observe that uT
1 Mv1 = 1 if and only if the

(Boolean) result of QRST is true. Algorithm B triggers the enumeration mechanism of A and outputs 1 if
the result of QRST is true. Otherwise, it outputs 0. In each round, this procedure is repeated.

We analyse the overall time used by Algorithm B. Given that M is an n × n matrix M , the size and
construction time of relation Ss are both O(n2). It results in a database D of size |D| = O(n2). The
preprocessing time is

O((n2)3/2−γ) = O(n3−2γ)

In each round r ∈ [n], Algorithm B executes at most 4n updates to Rd(A) and T d(B) and enumerates the
first result of QRST . Since the database size remains O(n2), the time to update the relations is

O(2n · (n2)0.5−γ) = O(n2−2γ)

It is sufficient to enumerate the first result tuple to check if QRST is empty. The time to check emptiness is,

O((n2)0.5−γ) = O(n1−2γ)

Hence, for n rounds, the overall time is O(n3−2γ). We conclude that the overall time Algorithm B takes to
solve the OuMv problem is O(n3−2γ), thus contradicting Conjecture 40 which rules out sub-cubic solutions
for the OuMv problem.

F.2 Lower Bound for the Query QST

Proposition 50. The CQ QST (A) = Ss(A,B), T d(B) cannot be evaluated with O(N3/2−γ) preprocessing
time, O(N1/2−γ) update time, and O(N1/2−γ) enumeration delay for any γ > 0, where N is the database
size, unless the OMv conjecture fails.

The proof is similar to that of Proposition 31. The main difference is the direct reduction from the OMv
problem given by Definition 37.

Assume there is an Algorithm A that maintains the query QST with O(N3/2−γ) preprocessing time,
O(N1/2−γ) update time, and O(N1/2−γ) enumeration delay for some γ > 0, We show that the existence of
Algorithm A contradicts Conjecture 38.

We construct an Algorithm B that uses the static relation Ss(A,B) to encode the n-by-n matrix M and a
dynamic relation T d(B) to encode each vector vr∈[n], where M and vr∈[n] are the input to the OMv problem.

Algorithm B first populates relation Ss to reflect the non-empty entries in M . Similar to the proof
of Proposition 31, Algorithm B executes the preprocessing mechanism of Algorithm A in the beginning
and O(n) updates to T d(B) when a vector vr∈[n] arrives. To obtain the result of Mvr∈[n], Algorithm B
enumerates the result of QST .

The static relation Ss dominates the size of the database |D| = O(n2). The preprocessing time of
Algorithm B is,

O((n2)1.5−γ) = O(n3−2γ)

The total update and enumeration time over n rounds is,

O(n · n · (n2)0.5−γ) = O(n3−2γ)

The subcubic processing time contradicts Conjecture 38.

F.3 Proof of Proposition 49

Consider a CQ Q /∈ Clin. By definition of the class Clin, one of the following cases holds: (1) Q is not free-
connex acyclic, or (2) Q does not have safe atom-to-atom paths, or (3) Q does not have safe atom-to-variable
paths. If Case (1) holds, then Q does not admit constant-delay enumeration after liner time preprocessing
even without executing any updates [3]. In the sequel we show how we can reduce the the evaluation of one
of the queries QRST and QST if Case (2) or Case (3) holds for Q. This reduction transfers the lower bound
for QRST and QST to Q.
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Violation of the Atom-to-Atom Path Property Consider a CQ Q that does not have safe atom-to-
atom paths. This means that the query contains at least one path P of the form X1, . . . , Xn that connects
two dynamic atoms R̂d(A) and T̂ d(B) such that P ∩A ∩B = ∅. This implies n ≥ 2. The path connecting
the two dynamic atoms is illustrated in Figure 9.

X1
. . .

..
.

Xn
. . .

..
.

X2
. . . Xn−1

R̂d(A) T̂ d(B)

Figure 9: Illustration of a path in a query that does not have safe atom-to-atom paths.

The idea of the reduction of the evaluation of the query QRST to the evaluation of the query Q is as
follows. We use the relations on the path P to encode the static relation Ss and use the dynamic relations R̂d

and T̂ d to encode the dynamic relations Rd and T d in Q. In particular, we use the variables X1, . . . , Xn−1 to
simulate the variable A and the variable Xn to simulate the variable B in QRST . This means, the variables
X1, . . . , Xn are assigned the same values. All other variables in Q are assigned a fixed dummy value.

In the preprocessing stage, we construct the relations constituting the path P such that the above
encoding is satisfied. Each update to Rd or T d is translated into an update to R̂d or respectively T̂ d.
Observe that the property P ∩ A ∩ B = ∅ ensures that the simulations of the variables A and B do not
interfere with each other. Each enumeration request to QRST is translated into an enumeration request to
Q. The answer of QRST is true if and only if the result of Q is non-empty.

Violation of the Atom-to-Variable Property Assume that the query Q does not have safe atom-
to-variable paths. This means that the query contains a path P of the form X1, . . . , Xn that connects a
dynamic atom T̂ d(B) with the free variable X1 such that P ∩B ∩ free(Q) = ∅. The path in Q is illustrated
in Figure 10.

X1. . .

..
.

Xn
. . .

..
.

X2
. . . Xn−1

T̂ d(B)

Figure 10: Illustration of a path in a query that does not have safe atom-to-variable paths.

The idea of the reduction is similar to the previous case. We use the relations constituting the path
to encode the static relation S and use the dynamic relation T̂ d to simulate the dynamic relation T d In
particular, we use the variables X2, . . . , Xn to simulate the variable B in QST and use the free variable X1

to simulate the free variable A in QST .
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