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Abstract

We classify connected étale algebras A’s in multiplicity-free modular fusion cate-
gories B’s with rank(B) < 9. We also identify categories Ba’s of right A-modules.
The results have physical applications in constraining renormalization group flows. As
demonstration, we study massive renormalization group flows from non-unitary mini-
mal models to predict ground state degeneracies and prove spontaneous B-symmetry
breaking.

1 Introduction

Throughout the paper, C denotes a fusion category over the field C of complex numbers
(see [I] for definitions). Its rank and simple objects are denoted rank(C) and ¢;’s with
i=1,2,...,rank(C), respectively. When a fusion category admits a braiding ¢, the braided
fusion category (BFC) and its simple objects are denoted B and b;’s, respectively. A BFC
with non-degenerate braiding ¢ is called modular or modular fusion category (MFC). In a
BFC, we can define an étale algebra A € B. (The definitions are collected in section [2.1])
The goal of this paper is to classify connected étale algebras in multiplicity-free MFCs up to
rank nine. Our main results are summarized as the



Theorem. Connected étale algebras in multiplicity-free modular fusion categories up to

rank nine are given by

Rank ‘ B Results Completely anisotropic?
6 su(6); ~ Vecy g 21 3] Yes
Veci/l2Z X Ising e.g. [B] Yes
su(3)s ~ Fib X VecZ [4) 3] Yes
TriCritlsing B3] Yes
su(2)5 = Vecy, 1, B psu(2)s [6] 3] Yes
50(5)2 171 81 9] 2] 3] No
Fib X psu(2); e.g. [3 Yes
psu(2)11 eg B Yes
7 su(7); ~ Vec%/7Z [2], Table |2 Yes
su(2)g [6], Table Yes
50(7)2 [71 18119 2], Table No
psu(2)13 Table |§| Yes
8 Vecs jopxz 2mx2,/22, Veci/l2Z X ToricCode Table [6 No (16 with d, h in M)/ Yes (the other 24)
Ve oyz/4z, Table Yes
su(8)1 == Vecy g, [7] 18] @], Table No
, . _ [Fib B Vecg ), K Vecy |y, Table [9] {No (16 with d, h in (2.29))/ Yes (the other 64)
Fib X VeCZ/2Z><Z/QZ = . . . .
Fib X ToricCode Table No (16 with d, h in (2.31))/ Yes (the other 24)
Fib & Vecy 47 Table |11 Yes
Vecy ly, B Fib & Fib Table [T2 No (16 with d, h in / Yes (the other 64)
50(9)2 [7) 8 @] 2], Table No
Rep(D(Ds3)) Table (14 No
su(2)7 [6], Table |15 Yes
Fib K Fib X Fib [10], Table [T6 No (16 with d, 7 in (2.38[2.39))/ Yes (the other 24)
Fib X psu(2); Table (17 Yes
psu(2)15 Table [T8] Yes
9 su(9); ~ Vec%/gZ [7) 81 @], Table Igl No
Vec%/SZ X Vec%/SZ Table |20 No (two with the 1st )/ Yes (the other two)
Vecy, 5, B Ising Table 21 Yes
Ising X Ising Table [22 No
Vecé/3Z X psu(2)s Table 23 Yes
Ising X psu(2); Table 24 Yes
so(11), [7) 8] 9] 2], Table [25 No
su(2)s [7) 8] 6] @], Table No
psu(2)s X psu(2)s Table [27 No (six with d, h in )/ Yes (the other 36)
psu(2)17 Table [28 Yes

Table 1: Connected étale algebras in multiplicity-free MFC B up to rank nine

Remark. For a reader’s convenience, we also included known results [3] at rank six.

Remark. Some MFCs are realized by rational conformal field theories (RCFTs) such
as Wess-Zumino-Witten (WZW) models or minimal models. In those cases, we collectively



denote the MFCs sharing the same fusion ring by the realization, e.g., su(2)g or Ising. Other
MFCs are realized by subcategories of simple objects invariant under centers. We denote
the MFCs by the realizations with p in their head, e.g., psu(2);3. Note that this is not a
‘gauging’ of their centers. For instance, the Z /27 center symmetry of su(2);3 is anomalous,
and cannot be gauged. (Mathematically, this means there is no Z /27 algebra.)

Remark. MFCs up to rank five have been classified in [I1, 12, [13]. Classification of
larger MFCs is not complete yet. Results we know are limited to multiplicity-free ones up
to rank nine [14] [15], summarized in AnyonWiki [16]. We study these MFCs; there are four
rank seven, 12 rank eight, and 10 rank nine multiplicity-free fusion rings.

Remark. The classification problem was initiated in [9] [I7], but some results had been
known before these works. Especially when MFCs admit realizations by WZW models, some
classification results are known. (In this context, an MFC describing g, WZW model is
denoted C(g, k), and connected étale algebras in it are called quantum subgroups [1§]. In
another context, say, [19], connected étale algebras are also called condensable or normal
algebras.) For example, connected étale algebras were classified in [6] (for §1u(2)), in [4] (for
s1(3)g), in [20] (for su(4);), and many more in [2]. Connected étale algebras in (pre-)MFCs
up to rank five have been classified in [21], 22, 23]. When available, our results are consis-
tent with them; C(Aq,1),C(A1,6),C(A;1,7) are known to be completely anisotropic. Also,
Fib X Fib X Fib is known to be completely anisotropic when braiding structures of all factors
are the same, while it can admit nontrivial connected étale algebras when two factors have
the opposite braidings. Examples with nontrivial quantum subgroups are also consistent.
The MFCs C(Bs,2),C(Bs5,2),C(A1,8) are known to have two quantum subgroups 1,1 & X
where X is a Z/27Z simple object in each MFC. The nontrivial connected étale algebras give
conformal embeddings §0(7); C 1(7)1,80(11)s C su(11)1, ()1 x 51(2)s C (f,)1, respectively.
The MFC C(By,2) has 1,16 X and exoticE] quantum subgroups 16 2, 10X ®27, 14 Z@VEI
The nontrivial connected étale algebras give §0(9)s C $1(9)1,50(9)2 C 50(16)1,50(9)2 C (e3)1,
and another §0(9)y C (¢3)1, respectively.

Remark. Connected étale algebras have also been studied in physics. For example, in
the context of anyon condensation [24] 25 26], physically natural conditions demand con-
densing object A be connected étale [27].

Remark. Algebras in symmetry categories have another aspect; they give anomaly-free
subsymmetries [28], 29 B0]. Therefore, these results also classify certain symmetries which
can be gauged.

LA quantum subgroup which is not a direct sum of invertible simple objects was called exotic in [2].
2We thank Terry Gannon for teaching us this fact.



2 Classification

In this section, we classify connected étale algebras in multiplicity-free MFCs up to rank
nine. Before we study the problem, we first collect relevant definitions in section and
explain our classification method in section [2.2]

2.1 Definitions

Let C be a fusion category over C, i.e., a finite C-linear semisimple abelian rigid monoidal
category with bilinear monoidal product ® and simple unit object 1. The monoidal product
of C is specified by fusion matrices (N;); = Nijk with N-coefficients

rank(C)

cl®cj_ @

We denote the fusion ring of C as K(C). On the other hand, we denote a fusion category
with a fusion ring K as C(K). Since the entries of fusion matrices are non-negative, we can
apply the Perron-Frobenius theorem to obtain the largest eigenvalue FPdime(c;) called the
Frobenius-Perron dimension of a simple object ¢; | The Frobenius-Perron dimension of the

category C is defined as
rank(C)

FPdim(C) := ) (FPdime(c;)). (2.1)
i=1
In a spherical fusion category (including MFCs), one can also define quantum dimension d;
of ¢; by the quantum (or categorical) trace

d; := tr(ae;),

where a : ide = (—)** is a pivotal structure. Its multiplication rules are the same as the

fusion rules
rank(C

Z (2.2)

When various fusion categories are involved, in order to avoid confusion, we denote a quantum
dimension of ¢; € C as d¢(¢;). The squared sum of quantum dimensions define the categorical

(or global) dimension
rank(C)

Z d2. (2.3)

3We add ambient categories in the subscript because the Frobenius-Perron dimension of a given object
depend on the ambient categories.




Note that there are two D(C)’s, one positive and one negative, for each categorical dimension.
A fusion category is called pseudo-unitary if D?(C) = FPdim(C) and unitary if V¢; € C, d; =
FPdime(¢;).
An MFC B has additional structure, braiding c. It is a natural isomorphism between two
bifunctors
-1 —R—=—-Q— (2.4)

subject to hexagon axioms. More concretely, for b0 € B (not necessarily simple), it is a
family of natural isomorphisms

~

Cb,blib®b/:>b/®b.

A fusion category with a braiding is called braided fusion category (BFC). A BFC is a pair
(B, ¢c) of a fusion category B and a braiding ¢, but we often write B. For a BFC B = (B, ¢),
there exists another BFC B with the reverse (or opposite) braiding é&,, = cb_,}b. The BFC

B = (B, ¢) is called reverse BFC. The structure is specified by conformal dimensions h;’s of
b;’s. For instance, the double braiding of two simple objects b;,b; € B is given by

rank(B 2mhk

Z it o2mi(hith; “omithriy (ks (2.5)

where idj, is the identity morphism at by € B. (A BFC B is called symmetric if Vb, b' € B,
Cy b Cop = idpgry.) Its quantum trace defines (unnormalized) S-matrix

_ rank(B) 27r7,hk
Si,j = tr(cbjybi * Cp;, b Z Nl] 27” hith; )d (26)
A normalized S-matrix is defined by
g. .
S, = 2.7

An MFC is defined as a spherical BFC (called pre-modular fusion category, pre-MFC) with
non-degenerate S-matrix. It squares to charge conjugation matrix

S%=C.
The charge conjugation matrix is defined by
Cij=0ij (bf =0j),

where b € B is the dual of b; € B. It obeys



where the RHS is the complex conjugate of gm Another modular matrix 7" is also defined
with conformal dimensions A
T;’j = BQMhi(SZ'J‘. (28)

The two modular matrices define an additive central charge ¢(8) mod 8 by
(ST)? = e2micB)/8g2, (2.9)

Given a BFC, we can define commutative algebras. An algebra in a fusion category C
is a triple (A, p,n) of an object A € C, multiplication morphism p: A ® A — A, and unit
morphism 7 : 1 — A subject to associativity and unit axioms. (We abuse the notation and
an algebra is often denoted by A.) A category C4 of right A-modules consists of pairs (m, p)
of an object m € C and morphism p : m ® A — m subject to consistency conditions. A
category 4C of left A-modules are defined analogously. (We also abuse the notation and an
A-module is often denoted by m.) An algebra A € C is called separable if C4 is semisimple.
An algebra A in a BFC with braiding c is called commutative if

[ Caa= [ (2.10)

A commutative separable algebra is called étale. Any étale algebra decomposes to a direct
sum of connected ones [9]. Here, an algebra A in a fusion category C is called connected if
dim¢ C(1,A) = 1. A connected étale algebra A € B is called Lagrangian if (FPdimg(A))? =
FPdim(B). An example of a connected étale algebra is the unit object A = 1 € B giving
B4 ~ B. The connected étale algebra always exists, and is thus called trivial. A BFC is
called completely anisotropic if it has no nontrivial connected étale algebra.

The category of right A-modules has an important subcategory BY C Ba. It consists of
dyslectic (or local) modules [31] (m,p) € Ba obeying

P Cam* Cm.A =D (2.11)

(In the context of anyon condensation [24] 25 26], B, BY are called broken and deconfined
phase, respectively.) The latter, the category B4 of right A-modules, is a left B-module
category. Here, for a fusion category C, a left C-module category (or module category over
C) [32] is a quadruple (M,>, m, 1) of a category M, an action (or module product) bifunctor
>:Cx M — M, and natural isomorphisms m__ _ : (= ® —)>— = — > (— > —) and
[:1>M ~ M called module associativity constraint and unit constraint, respectively. They
are subject to associativity and unit axioms. Let M, 5 be C-module categories. The category
M >~ MM, is called a direct sum of the module categories M 5. A C-module category is
called indecomposable if it is not equivalent to a direct sum of nontrivial module categories.
In our setup, the categories M ~ B, (and also BY) are fusion categories with monoidal
products ® A.E] Then, the action of (left) B-module categories forms non-negative integer

4For an explanation, see the footnote 2 of [22].



matrix representations (NIM-reps). Here is the reason. For any b € B,m € M, b>m is
an object of M. Hence, it can be decomposed to a direct sum of simple objects in M with
N-coefficients. The natural numbers assemble to r x r-matrices where r = rank(M). The
NIM-rep is called r-dimensional.

2.2 Method

In this section, we explain our classification method. It is based on [21], 22], but developed
further.

Let B be an MFC and A € B a connected étale algebra. The category BY of dyslectic
right A-modules is modular [31 [6] obeying [6], O]

. FPdim(B)
FPdim(BY) = : ,
(Ba) (FPdimp(A))? (2.12)
e27ric(BOA)/8 — 2mic(B)/8
Since we have [33], (1]
Ve e C, FPdime(c) > 1, (2.13)
we obtain an inequality
1 < (FPdimg(A))* < FPdim(B). (2.14)
In addition, since A consists of simple objects of B, its general form is given by
rank(B)
A= @ b (215)
i=1

where n; € N counts the number of b; in A. As the direct sum is defined as (co)limit, the
object is equipped with product projections p; : A — b; and coproduct injections ¢; : b; — A.
Its Frobenius-Perron dimension is given by the linear sum of those of simple objects:

rank(B)
FPdimg(A) = ) n;FPdimg(b;). (2.16)

=1

In classifying connected algebras, we can set n; = 1 for b; = 1 at the outset. Thus, for a
given MFC B, we solve (2.14) with an ansatz

bi¥1

or
FPdimp(A) = 1+ Y n;FPdimg(b;).
b1

7



As aresult, we get a set of natural numbers n;’s. Each element gives a candidate for A. Then,
for each candidate, we check whether it satisfies the axioms of connected étale algebra. Our
strategy here is to check various necessary conditions to reduce the number of candidates. In
particular, we check the commutativity . In checking this axiom, it turns out useful to
study a necessary condition

H-CaA-Caa= M. (2.17)

If A satisfies , then by substituting the RHS in the LHS, we obtain the necessary
condition. Since the condition is written in terms of double braiding, we can use the formula
(2.5). Here, the double braiding of the direct sum ([2.15)) is computed by chasing commuting
diagrams [21]:
rank(B)
CaA-Cap™ Z nin; (L @ L) - Co, b, * Coip; * (Pi @ j). (2.18)
ij=1
(The morphisms ¢, p are coproduct injection and product projection, respectively, introduced
below ) If there exists a term with nontrivial phase in , it means the candidate is
non-commutative, and it is ruled out. In particular, if a simple object b; € B has 1 € b;®b; and
e~4mhi £ 1 b; cannot enter a commutative algebra. Thus, we can set n; = 0 for such simple
objects at the outset. We will see the necessary condition is strong enough to rule out
most of the simple objects. For the remaining candidates which pass the necessary condition,
we check other necessary conditions such as an existence of MFC with the Frobenius-Perron
dimension ([2.12)) which matches the additive central charges. For a handful final candidates
passing all necessary conditions, we check axioms of an algebra and directly compute the
braiding [21]
rank(B)
can Y mni(y @) -, - (i ©p)) (2.19)
ij=1
to check . Here, some facts save us from tedious computations.

Lemma 1. Let (C,®,a, 1,1) be a monoidal category, (C',®, a, 1,1) withC' C C a monoidal
subcategory, and (A, u,n) an algebra in (C',®,«,1,t). The algebra in the monoidal subcate-
gory C' is also an algebra in the larger monoidal category C.

Proof. By definition, the algebra obeys associativity
po (idy @ ) - oy gq = p- (p & id)),
and unit
idy Uy =p- (& idy), idy-rly=p-(id, @ n)
axioms where quantities with primes belong to C’. Here, note that the monoidal subcate-
gory has the same structure as the larger monoidal category by definition [I]. (We already



used this fact in the statement.) Furthermore, by uniqueness of identity morphisms (up to
isomorphism), we have

idy 2 idy.

Since left and right unit constraints l4, 74 are defined with oy 1 4, @4.1,1,¢,1d4, they are also
isomorphic on A:
l/A = lA, 7”14 = TA.

The axioms of the algebra (A, i, n) now reduce to
po(ida @ p) - aaaa=p- (p®ida), ida-la=p-(M®ida), ida-ra=p-(ida ®@n).

This is nothing but the definition of (A, i, n) being an algebra in the larger monoidal category
(C,®,a,1,0). O

Remark. Physically, this means anomaly-free symmetries in C’ remain anomaly-free in
a larger symmetry C O C’, as physicists know.

Furthermore, commutative algebras in braided fusion subcategory remain commutative
in a larger BFC. This follows from the definition of braided fusion subcategory. Let (B, )
be a braided fusion subcategory of a larger BFC (B, ¢). Then, the braidings are equivalent
on B’. Namely, Vb,b' € B’, we have

/
Cb,b’ = Coly -

Therefore, a commutative algebra (A, y,m) in a BFC (B', ') obeying - ¢y 4 = pt is a com-
mutative algebra in a larger BFC (B, ¢):

/
JLrCAA= [ Cyp = [

Sometimes, a direct check of commutativity axiom is difficult especially when braidings c, 5,
are not known. In those cases, we indirectly find connected étale algebras manipulating the
following fact:

Lemma 2. [29, 30] The operations (not all) B — BY are composable, associative, and
invertible.

Remark. Note that not all operations are composable. For example, an operation
B — Vectc given by a Lagrangian algebra (if exists) cannot be composed with other opera-
tions. Therefore, the operations and their compositions fail to form a group.

How do we use this fact? Let A € B and A’ € BY be connected étale algebras. The
second algebra gives another MFC (B%)%,. We get a sequence B — BY — (B%)%,. Since
the two operations can be composed, we learn there should exist a connected étale algebra



A € B giving BY =~ (B%)% . Since Bj has smaller Frobenius-Perron dimension (hence usually
smaller rank) than B thanks to (2.12)), this can reduce the classification problem in larger
MFC B to that in smaller MFC BY. For an example of this lemma in action, see section
247

Another fact we use is the

Lemma 3. [9, 34] Let B be a modular fusion category. The modular fusion categorgﬂ
BX B has a Lagrangian algebra A € BX B.

Even when we cannot check axioms directly, this fact helps us to ensure an existence of
connected étale algebra. See section for our use of this lemma. We manipulate all these
facts at our disposal.

In order to discuss (physical) applications of classification results, we also identify cate-
gories BY, B4 of right A-modules. We do this in two steps. First, we identify the category BY
of dyslectic right A-modules, and next we identify B4 which contains BY as a subcategory.
In identifying BY, the following fact turns out useful; the MFCs B and BY have the same
topological twists [37]

0
B . BY
627rzhb — ethb (220)

Y

where h¥ is the conformal dimension of b € B and hfg‘ is that of b € BY. Physically, this
means anyon condensation preserves conformal dimensions (mod 1) of deconfined particles.
We see this usually fixes B9 uniquely.

When the category of dyslectic right A-modules is specified, the category B, of right
A-modules is highly constrained. The remaining contributions to the Frobenius-Perron di-
mensions come from confined particles. This sets an upper bound on rank(5,). Furthermore,
we can get all candidate simple objects as follows. The free module functor

FA2:—®AZB—)BA (221)

gives objects of B4. The functor is surjective (or dominant) [9]. Namely, Vm € B4, 3b € B
such that m is a subobject of b&® A. Since B4 is a fusion category in our setup, Vb € B, b® A €
B4 can be decomposed as a direct sum of simple objects of B, (definition of semisimplicity).
All possible sets of simple objects are given by consistent collection of some of them. Some
consistencies are correct Frobenius-Perron dimensions and closedness under actions b; ® —
or monoidal products ® 4.

Given simple objects of B4, we identify the category by computing monoidal products ® 4
as follows. The free module functor satisfies two nice properties: 1) F4 is a tensor functor,
and 2) it admits the forgetful functor U : B4 — B as a right adjoint [32]f]

Vb e B, Vm € Ba, Ba(Fa(b),m) = B(b,U(m)). (2.22)

This special MFC is equivalent to the Drinfeld center (or quantum double) Z(B) [35} [36].
6This second property is sometimes called the Frobenius reciprocity (see, say, [19]).

10



The first property in particular implies preservation of Frobenius-Perron dimensions

Vb e B, FPdimg(b) = FPdimg, (Fa(b)), (2.23)
and

Vb, b € B, FA(b) XA FA(b/) gFA(b@b/).

When b ® b is a (finite) direct sum, we can distribute using the biexactness of monoidal
product
(b1 Bby® - Bb) QA (L RA) B (@A) B - D (b, ®A).

With these facts, we can compute monoidal products ® 4 to identify B4. In addition, we can
compute quantum dimensions. A right A-module m € B4 has [0]

dBA (m) = (2.24)

Before we start classifying connected étale algebras, let us see how our method works in a
simple example. We take a symmetric pre-MFC Rep(S3) as our ambient category B. (Note
that this is not modular, but most of our classification method except still works here.)
The pre-MFCs have three simple objects {1, X, Y’} obeying monoidal products

®|1]X Y
111X Y
X 1 Y
Y leXaY

They have
FPdimg(1) =1 = FPdimg(X), FPdimg(Y) = 2,

and
FPdim(B) = 6.

It is known [19, 22] that the pre-MFCs with (hx, hy) = (0,0) mod 1 have a connected étale
algebra A = 1@ Y giving Bs =~ Vecy ;. Let us see how our classification method reproduces
this result.

Calculating b; ® A, we get

IAZAZ1aY, XQA2XQY, YRAX(1aY)® (XaY).

11



The result tells us Ba has two invertible simple objectd|
1Y, XaY.

In B4, they both have Frobenius-Perron dimensions one because FPdimp(1) = 1 = FPdimg(X)
and the free module functor Fy := — ® A preserves Frobenius-Perron dimensions. On the
other hand, for a generic BFC B and a connected étale algebra A € B, we have the formula
6], 33, 9]

) FPdim(B)
FPd A)= ———. 2.2
m5(4) = Fpdim(B,) (2.25)
In our current example, this imposes
. FPdim(B)
FPd =—" =2
m(B4) = Fpdimp(A)

Therefore, no other simple objects can appear. We can identify B4 ~ {1®Y, X @ Y'}. While
we know rank two fusion category with Frobenius-Perron dimension two should be Vecy 7,
let us check this fact by computing monoidal products ®4. First, we know [I] A is the
monoidal unit of ®4. Namely, Vm € By, m®4 A =2 m =2 A ®4 m. Thus, we only have to
compute (X @Y)®4 (X ®Y). We have

(XDY)R4 (X DY) = Fa(X) ®4 Fa(X)
= Fa(X ®X)
~ 1) 218 Y.

Therefore, the two right A-modules
mq = 1 @ YV, Mo = X @ Y

obey monoidal products

showing B4 ~ Vecy /oz- Below, we apply this method to classify connected étale algebras in
MFCs.

"Logically, F4(Y) =Y ® A can be simple. Let us rule out this possibility. Since F4 preserves Frobenius-
Perron dimensions, we have FPdimg, (Fa(Y)) = 2. If this is simple, it contributes 22 = 4 to FPdim(Ba),
which is a contradiction because it exceeds FPdim(B,4) = 2 we get below. Hence, F4(Y) =Y ® A should be
a direct sum of two simple objects with Frobenius-Perron dimensions one.

12



2.3 Rank seven
2.3.1 B~ su(7) ~ Vec%/7Z
The MFCs have seven simple objects {1, X,Y, Z, U, V, W} obeying monoidal products

1| X |\Y | Z2|U |V |W
1/ 1|\ X |\ Y| Z|U |V |W
X wil1|v, Z|Y |U
Y ViU | WwW,| Z|X
Z X| 1 |W]Y "~
U Y | X |V
V Ul 1
w A

Thus, they have
FPdimp(1) = FPdimg(X) = FPdimg(Y) = FPdimg(Z) = FPdimg(U) = FPdimg(V) = FPdimg(W) = 1,

and
FPdim(B) = 7.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijkdk.
There is only one solution

(an de dZa dU7 dV7 dW) = (17 17 ]-a ]-7 17 1)
Thus, all MFCs are unitary. The only categorical dimension is
D*(B) =1.

They have conformal dimensions’|

(hx,hy,hz,hy,hv,hw) = (=, =, =, =, =, =), (2, =y =, =y = = mod 1).

8Naively, one also finds

112244 224411 553366, ,6605533
hx,hy,hz, hy, hyv,hw) =(=, =, =y =, =, =), (=, =, =, =y == ) (v o= =y =, = ) (5 =y = =s = = d1).
(Xv Y, "z, 1ItUu, Itv, W) (777a7a7»7a7)7(7a777,77777)3(7,7777777;,7)7(7777737)777) (mo )
However, they do not give new conformal dimensions because these are related to those in the main text by
permutations (XUWY ZV) of simple objects.

13



The S-matrices are given by
1 1 1 1 1 1 1

6:|2271'i/7 eiQﬂ'i/? 6i67ri/7 6:|:67ri/7 6i47m'/7 6:|:47ri/7
6i27ri/7 6$27ri/7 6$67ri/7 6i6ﬂ"£/7 6$4ﬂ"£/7 6i47r'i/7
6i67ri/7 6$6ﬂ"£/7 6$4ﬂ"£/7 6i4ﬂ"£/7 6i2ﬂ"£/7 6$27r'i/7
6$67ri/7 ei6m’/7 6i4ﬂ"£/7 6$4m’/7 6$2ﬂ"£/7 6i27r'i/7
+4rmi/7 6$47ri/7 eiQm’/? 6$27m'/7 6i67r'i/7 €$6m’/7
£2mi/T  F6mi/T  E6mi/T

e
oFAmI/T  oEAmi/T  F2mi/T

G T W VA G U W

(& €

(All signs are correlated. In other words, one S-matrix is given by choosing upper signs in
all elements, and the other S-matrix is its complex conjugate.) They have additive central

charges
) =2 (1st h),
C(B)_{+2 (nd ), (04E

There are
1(quantum dimension) x 2(conformal dimensions) x 2(categorical dimensions) = 4

MFCs, and all of them are unitary. We study connected étale algebras in all four MFCs
simultaneously.
The most general form of a connected algebra is given by

AZ1Dnx X dnyY &nyzZ @ngU & nyV & nyW
with n; € N. It has

FPdimg(A) =1+ nx +ny +ngz + ny +ny + nw.
For this to obey , the natural numbers n;’s can only take seven values

(nXa nhy,nz,ny, Ny, nW) :<07 07 07 07 07 0)7 (17 07 07 07 07 0)7 (07 ]-7 07 07 07 0)7 (07 07 17 07 07 O>7
(0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1).

The first solution is nothing but the trivial connected étale algebra A = 1 giving BY ~ B ~
B. The other six solutions do not give connected étale algebras because they fail to satisfy
the necessary condition ([2.17)).

We conclude

Connected étale algebra A | B4 | rank(B,) | Lagrangian?
1 B 7 ] No '

Table 2: Connected étale algebras in rank seven MFC B ~ Vec% /7%

That is, all the four MFCs B ~ Vec,, /72’ are completely anisotropic.
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2.3.2 B~su(2)
The MFCs have seven simple objects {1, X, Y, Z, U, V, W} obeying monoidal products

® | 1]X Y Z U V w

1 111X Y Z U V w

X 1 A Y V U w

Y leV | XaeU| ZaoW Yow UaV

A 1oV YoWw ZoW UaoV

U leUV | XUV YeZoW
V leUaV YeZOW
w leXaoUsV

Thus, they have

FPdimp(1) = 1 = FPdimg(X), FPdimg(Y) = \/2 + V2 = FPdimg(Z),
FPdimg(U) = 1 + v2 = FPdimg(V), FPdimg(W) =\/4 + 2/2,

and
FPdim(B) = 8(2 + V2) ~ 27.3.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 2221 Nijk dp.
There are four (nonzero) solutions

(dy,dy,dy, dy,dy,dw) :(1,\/2—\/5,\/2—\/5,1—\/5,1—\/5,—\/4—2\/5),
(1,—\/2—f,—\/2—\/§,1—\/§,1—\/§, 4—2v/2),
(1,—\/2+\/§,—\/2+\/§,1+\/§,1+ﬁ,— 4+ 2v2),
(1,\/2+\/§,\/2+\/§,1+\/§,1+\/§,\/4+2¢§)

with categorical dimensions
D*(B) =8(2 — V2)(~ 4.7), 8(2+V?2),

respectively for each pair. Only the last quantum dimensions give unitary MFCs. Each pair
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has eight conformal dimensions:

(thhY7hZ7hU,hv,hw) ( _____

2’

19 91313

32’

327474327

27327327474
115 15 3 1

Gmmrrn b nrr
(117171321)(1232331
2732732747473277°2732732747 4’
(125251329)<1313131
2732732747473277°2732732747 4’
for the first and second quantum dimensions, and
13 33115 ,1 5 5 13
(haxhyshzhoshv hw) =55 5 2w Gy v

111 11 3 1 23

1131313

32324432”533511

533537

119 19 31 31

327474327
12727317

wrr 9

2’

for the third and fourth quantum dimensions. The S-matrices are given by

1 dx
dxy 1
| dy —dy
S=\|d; —dg
dy  dy
dv dv
dw —dw

There are

32’

132’

dy
—dy
dw
—dy
+dy
Fdy
0

dz
—dy
—dy
dyy
+dy
Fdz
0

1212113

27327327474
129291 3

dy dy  dw

dy dy —dw
:i:dy :de 0
:]:dz :FdZ 0
1 -1 +dy

32)

11
32)
19
32)
27
32)

25

32
1

392)
Fol
=)

25);

17
32

(mod 1)

(mod 1)

4(quantum dimensions) x 8(conformal dimensions) x 2(categorical dimensions) = 64

MFCs, among which those 16 with the last quantum dimensions give unitary MFCs.

classify connected étale algebras in all 64 MFCs simultaneously.

An ansatz

A%’1EBnXX@nyY@nZZ@nUU@nVVGBnWW

with n; € N has

We

FPdimg(A) = 1 +nx +\/2+ V2(ny +nz) + (1 + V2)(ny + nv) + V4 + 2v2nyy.
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For this to obey (2.14)), the natural numbers can take only 20 values

(nx, ny, nz, n, v, nw) =(0,0,0,0,0,0), (1,0,0,0,0,0), (2,0,0,0,0,0), (3,0,0,0,0,0),
(4,0,0,0,0,0),(2,1,0,0,0,0),(2,0,1,0,0,0), (1,1,0,0,0,0),
(1,0,1,0,0,0),(1,0,0,1,0,0),(1,0,0,0,1,0),(1,0,0,0,0, 1),
(0,1,0,0,0,0),(0,2,0,0,0,0), (0,1,1,0,0,0), (0,0,1,0,0,0),

( ) ( ) ( ) ( )

0,0,2,0,0,0),(0,0,0,1,0,0),(0,0,0,0,1,0),(0,0,0,0,0,1).

The first is nothing but the trivial connected étale algebra A = 1 giving BY ~ By ~ B.
Those with X do not give commutative algebra because X has (dy,hx) = (1, 3) (mod 1 for
h) and cx x = —id; [22]. The others also fail to be commutative because they contain simple
object(s) b; 2 1 with nontrivial conformal dimensions.

We conclude

Connected étale algebra A | B4 | rank(B,) | Lagrangian?
i B 7 | No

Table 3: Connected étale algebras in rank seven MFC B ~ su(2)g

That is, all the 64 MFCs B ~ su(2)g’s are completely anisotropic.

2.3.3 B~ s0(7);
The MFCs have seven simple objects {1, X,Y, Z, U, V, W} obeying monoidal products

®|1]X Y Z U V w

1 111X Y Z U V w

X 1 Y A U w V

Y leXaU ZoU Y®Z VeoWw VeWw

A le XY YoU VoW VoW

U leX®Z VoW VoW

V leYoZoU | XoYRZOU
w leYoZoU

Thus, they have

FPdimp(1) = 1 = FPdimg(X), FPdimg(Y) = FPdimg(Z) = FPdimg(U) = 2,
FPdimp(V) =V7 = FPdimg(W),
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and
FPdim(B) = 28.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = Zzzl Nijk dy.
There are two (nonzero) solutions

(dX7 dYa dZ7 dU’ dV? dW) = (17 27 27 27 _ﬁa _\/?)7 <1a 27 27 27 ﬁ7 \/?)

Only the second quantum dimensions give unitary MFCs. They both have the categorical
dimension

D?*(B) = 28.

They have four conformal dimensiond’]
(hX7hY7h27hU7h’V7hW) - (O ________ sy =y = )s\Us oy oy oy Ty = 07 ————— ) (mOd ].)

The S-matrices are given by

1 1 2 2 2 dy dw
1 1 2 2 2 —dy —dw

N 2 2 s s s 0 0

S=1 2 2 s s s 0 0
2 2 s s & 0 0
dV —dV 0 0 0 :tdv :FdW

with
s:—4sinl7r—4, s’:4sin1—z, s":—4cosg,

or their permutations (ss’s”). They have additive central charges

]2 (1st&2nd h),
(B) = {—2 (rdath ), 048

There are
2(quantum dimensions) x 4(conformal dimensions) x 2(categorical dimensions) = 16

MFCs, among which those eight with the second quantum dimensions give unitary MFCs.
We study connected étale algebras in all 16 MFCs simultaneously.

9Naively, one finds 24 conformal dimensions, but the others are equivalent to the four in the main text
by permutation (VW) or (Y ZU) of simple objects. For example, one also finds (hx, hy, hz, hu, hy, hw) =
(0, %, %, %, g, %) (mod 1) is consistent, but it is the same as our first conformal dimension under a permutation
(VW).

18



We work with an ansatz
AZ1Dnx X dnyY &nygZ &ngU & nyV & nyW
with n; € N. It has
FPdimg(A) = 1+ nx + 2(ny +nz +ny) + V7 (ny + nw).
For this to obey , the natural numbers can take only 24 values

(nx,ny,nz,nu, nv,nw) =(0,0,0,0,0,0), (1,0,0,0,0,0),(2,0,0,0,0,0), (3,0,0,0,0,0),
(4,0,0,0,0,0),(2,1,0,0,0,0),(2,0,1,0,0,0), (2,0,0,1,0,0),
(1,1,0,0,0,0),(1,0,1,0,0,0),(1,0,0,1,0,0),(1,0,0,0,1,0
(1,0,0,0,0,1),(0,1,0,0,0,0), (0,2,0,0,0,0),(0,1,1,0,0,0
(0,1,0,1,0,0),(0,0,1,0,0,0),(0,0,2,0,0,0), (0,0,1,1,0,0),
( ) ( ) (

0,0,0,1,0,0),(0,0,0,2,0,0), (0,0,0,0,1,0),(0,0,0,0,0, 1).

9 )

) ( )
) ( )
) ( ),
) ( )
) ( )
) ( )

The first is nothing but the trivial connected étale algebra A = 1 giving BY ~ B4 ~ B. Next,
the 19 candidates with Y, Z, U, V, W have nontrivial conformal dimensions, and they fail to
be commutative. Thus, we are left with those four with only X’s:

ny =1,2,3, 4.

All but the first solution is ruled out by studying Frobenius-Perron dimension. The latter
three have FPdimg(A) = 3,4, 5, and demand FPdim(BY) = 2978, E, g—?. However, there is no
MFC with such Frobenius-Perron dimensions. Thus, the candidates are ruled out. We are
left with just A= 16 X.

The candidate is indeed a commutative algebra by the lemma 1 and cx x = td; because
X has (dx,hx) = (1,0) [22]. Furthermore, it turns out to be separable, hence connected
étale. Let us check this fact by identifying B 4.

It has FPdimg(A) = 2, and demands
FPdim(BY) =7, FPdim(B,) = 14.

We can identify the MFC as
BY ~ Vecs, /72

from its Frobenius-Perron dimension. Taking the invariance of topological twists (2.20]) into
account, we see central charges are also matched. What is a fusion category B4 containing
the rank seven MFC Vec;, /727 It turns out that the category of right A-modules is

B, ~ TY(Z/7Z),
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a 7Z/77 Tambara-Yamagami category [38]. One of the easiest ways to see this fact is to
perform anyon condensation. It ‘identifies’” 1 and X, and hence V and W. The other
invariant simple objects Y, Z U ‘split’ into two each. As a result, we get seven invertible
objects. The deconfined seven particles have the same conformal dimensions (mod 1) as
simple objects in Vecy, 7z MFCs. Thus, they form BY ~ Vec, s7z- The category By of right

A-modules have one additional non-invertible simple object with quantum dimension ++/7.
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This is nothing but a Z/7Z Tambara-Yamagami category.m Note that this example has

rank(B4) > rank(B).

10More rigorously, we have to find NIM-reps. Indeed, we find an eight-dimensional NIM-rep

01 100 000 0 00O1 1 00O
100 00 100 00001 010
100 0 0010 0001 0100
ny = 1s = nx, Ny — 000011 00 — 101 0 0 0O00O0
’ 0001 0 010}’ 1 1.0 000 0 0}’
01 01 0 0 0O 001 00010
0 01 01 00O 01 00 01 00
0 00O O0OO0O0 2 0 000 0 O0O0 2
000O0O0OT1T1O0O0 0 00O OO0 O01
0011 00O00 00000 OO 01
01 001 000 00000 OO 01
— 01 00 0O0T10 - 000000O01|_ -
00100100}’ 0 00O OO0 O01 '
10 001 000 0000 O0OO0OO01
10 01 00 00O 0000 O0OO0OO 01
000 O0O0O0OTO0 2 111 1 1110
Denoting a basis of B4 by {m1,ma, ms, mag, ms, me, mz, mg}, we obtain a multiplication table
bj X \ my mo ms my ms meg mry mg
1, X my mo ms my ms meg mr mg
Y Mo @ms | M Dmg | M Dmy | msDmg | Mg Dmy | Ma @ my | Mg Dms 2mg
Z mya@ms | ms ©@mz | mye@meg | My Dmg | M1 D my | Mg Dmy | ma D mg 2mg
U MegD My | M3Dmy | MaDms | MaDmy | MsDmg | My Dms | My DMy 2msg
V.W ms ms ms ms ms ms ms @;:1 m;

From the multiplication rules, in this basis, we can identify

m 216X, me=Y Zmg,

m4gzgm57

me = U = my,

mg =V e W.

In the category of right A-modules (or broken phase) B4, they have quantum dimensions (2.24)

dB, (ml) =dg, (m2) =dg, (m3) =dg, (m4) =dg, (m5) =dg, (mG) =dg, (m7) =1,

dBA(mg) = iﬁ.

Furthermore, employing the free module functor F4 (2.21)), one can compute monoidal products ® 4:

7
mj®Amg%m8%“mg®Amj (j:1,2,...,7), m8®Am8§@mj.
j=1

This shows Ba ~ TY(Z/7Z).
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While B4 consists of objects of B and the former has Frobenius-Perron dimension no larger
than the latter, in general, the former can have larger rank as in this example.
We conclude

Connected étale algebra A | Ba | rank(BB4) | Lagrangian?
1 B 7 No
1o X TY(Z/7Z) 8 No

Table 4: Connected étale algebras in rank seven MFC B =~ s0(7)2

All the 16 MFCs B ~ so(7)s’s fail to be completely anisotropic.

2.3.4 B~ psu(2)3

The MFCs have seven simple objects {1, X,Y, Z, U, V, W} obeying monoidal products

® X Y Z U v w

1 X Y Z U Vv W

X 1Y | Xe&eZ YoU ZdV UeWw VeWw

Y leYaoU X®ZV YoUoW ZoVoWw UoVow

VA loYoUoOW XeoZoVoW YeUsoVoW ZoUsVoWw

U leYoUadVaeW XezZoUsVoW YoZoUdVOW

% loYoZoUdVoOW XoYoZoUosoVoW
w loeXeoYoZoUdVaoOW

Thus, they have

FPdimgs(1) = 1, FPdims(X) =2, FPdims(Y) = 2, FPdims(Z) = 2,
S 15 n s sin {5

sin 22 sin 7 sin 7T

FPdims(U) = —2, FPdimp(V) = —2, FPdimp(W) = —2,

m 15 S 15 sin 5

d
" . 15
FPdim(B) = PR 86.8.

15

Their quantum dimensions are solutions of the same multiplication rules d;d; = 22:1 Nijkdk.
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There are four (nonzero) solutions

o T i 67 s 2 . bm i 3T s Am
(d do do dvr dv.d ) _<SIIl 15 _sm 15 _SlIl 15 S1n 15 S1n 5 _Sll’l 15 )
X, wy,uz, gy, by, Wy ) — Ea i T . Ea) )
COS 30 COS 30 COS 30 COS 30 COS 30 COS 30
s T i 3T T s BT 1, 67 s 27
(_sm 5 Sin 15 Sin 15 _sm 15 Sin 15 _sm 15 )
T T T T ) T Tm /)
COS 30 COS 30 COS 30 COS 30 COS 30 COS 30
s Am i 67 ta AT s b ta 3T s T
B Sin 15 Sin 15 Sin 15 Sin 15 Sin 15 Sin 15 )
117> 117> 117> 117> 117> 117w />
COS 30 COS 30 COS 30 COS 30 COS 30 COS 30
2 oS

: I P DT iy 6T iy T
S 15 S 15 S 15 S 15 S11 15 S 15 )

T i T i T T oain T oy
Sl 15 S 15 S 15 S 15 S 15 S 15

(

(

with categorical dimensions
15 15 15 15

————(~22.7)

2 1177( A s 2
4 cos® 5 4sin” %
respectively. Each quantum dimension has two conformal dimensions

Ist quantum dimension)

Sl G2 Sl Zl=
o o o O
[SHISCRSH TN T[N T

T U1 Ot ot
Slv Gls slh SR

U Ul O Ot
LI LN WM W
Ul Ul otk ot

2nd quantum dimension),

(hx,hy,hz, hy,hy, hw) = (mod 1)

3rd quantum dimension

o o o o

Utl= U1 Ot Ot

o~ o~~~

(
(
(
(

WIN Wl Wl wIiN
[SHIZNGHI SRG TGN
S— N N N
S N N N

o~ o~~~

),
)

4th quantum dimension

The S-matrices are given by

1 dx dy dzy dy dy dwy
dx —dz dy —dw dy —dy 1
dy dy dy dy 0 —dy -—dy
S=1dy; —dw dy 1 —dy dy —dx
dU dU 0 —dU —dU 0 dU
dy —dy —dy dy 0 —dy dy
dyw 1 —dy —dx dy dy —dgz

There are
4(quantum dimensions) x 2(conformal dimensions) x 2(categorical dimensions) = 16

MFCs, among which those four with the last quantum dimensions give unitary MFCs. We
study connected étale algebras in all 16 MFCs simultaneously.
An ansatz
A 1@nXX®nyY@nzZ@nUU@nVV@nWW
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with n; € N has

21 c 37 s 4Am s T s 67 s 0T

= Sin - Sin —— sin -+ s -+ sin ——

: 15 15 15 15 15 15
FPdimp(A) =14+ —2nx + —=2ny + —=nz + —=ny + ——=ny + —=>nw.

S1n 15 S1n 15 S1n 15 S1n 15 S1n 15 S1n 15

For this to obey ([2.14]), the natural number can take only 27 values

(nx,ny,nz,ny,ny, nw) =(0,0,0,0,0,0), (1,0,0,0,0,0), (2,0,0,0,0,0),
(3,0,0,0,0,0), (4,0,0,0,0,0),(2,1,0,0,0,0),
(2,0,1,0,0,0),(2,0,0,1,0,0), (1,1,0,0,0,0),
(1,2,0,0,0,0),(1,0,1,0,0,0),(1,0,0,1,0,0),
(1,0,0,0,1,0),(1,0,0,0,0,1),(0,1,0,0,0,0),
(0,2,0,0,0,0),(0,1,1,0,0,0), (0,1,0,1,0,0),
(0,1,0,0,1,0),(0,1,0,0,0,1), (0,0, 1,0,0,0),
(0,0,2,0,0,0), (0,0,1,1,0,0),(0,0,1,0,1,0),
(0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1).

The first is nothing but the trivial connected étale algebra A = 1 giving B ~ By ~ B.
Others with nontrivial simple objects b; 2 Z have nontrivial conformal dimensions, and do
not give commutative algebras. Since Z has trivial conformal dimension hz; = 0 mod 1, it
can give commutative algebra. However, those with Z’s are also ruled out as follows. Apart
from the trivial one, the natural number ny; can take one or two. They have FPdimg =
1+ Slir:l%fg, 1+ 25 % and demand FPdim(BY) = 4.1,1.3, but there are no MFC with these
Frobenius-Perron dimensions. Thus, the two candidates are ruled out.

sin -~ sin 1”—5 ’
We conclude

Connected étale algebra A | B4 | rank(B,) | Lagrangian?
1 B 7 ] No '

Table 5: Connected étale algebras in rank seven MFC B ~ psu(2)13

Namely, all the 16 MFCs B ~ psu(2)3’s are completely anisotropic.

2.4 Rank eight
2.4.1 B ~Vecyy.7/00x7/22 = Veci/l2Z X ToricCode
The MFCs have eight simple objects {1, X,Y, Z, T, U, V, W} obeying monoidal products
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1| X | Y |2, T|U|V |W
111\ X |\ Y |Z|T|U |V | W
X 1 y\wiluv|Vv | zZ|T|Y
Y 1 \W\WVI|U | T|Z|X
A 1|1 WIX|Y | T.
T 11Y | X | Z
U 1 WV
V 1| U
w 1

Thus, they have

FPdimg(1) = FPdimp(X) = FPdimg(Y) = FPdimg(Z2)
= FPdimg(T) = FPdimp(U) = FPdimg(V') = FPdimg(W) = 1,
and
FPdim(B) = 8.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dj.
There are eight solutions

(dx,dy,dz,dr,dy,dy,dy) =(—1, -1,1,1,1), (-1, 1,1,1,—1 —1,1),
(— ,1, 1,1,1,— —1),(— ,1,1, —1,1,-1),
(1, — 17 -1),(1,— 11 —1,-1),
(1,1, — 1,1),(1,1,1,1,1,1,1)

Only the last solution gives unitary MFCs. All quantum dimensions have the same categorical
dimension
D*(B) = 8.

In order to count the number of MFCs, let us list up conformal dimensions. Naively, the
MFCs can have two structures Veci/l2Z &Veci/l2Z &Veci/lzz or \/eci}?Z X ToricCode. However,
by computing conformal dimensions, one finds they all have the structure Veci/l%@ToricCode.
(We have already specified this fact in the name.) In order to avoid double-counting, we
choose Veci/l2Z = {1, X} and ToricCode = {1,U,V,W}. Then the other simple objects are
given by

Y=2XeW Z=2XU, T=XV.

We have hy = 1,2 (mod 1) and (hy, hy, hw) = (0,0,1),(0,1,0),(3,0,0),(3,1,2) (mod 1).

Depending on quantum dimensions, we have different symmetrles.
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(dx,dy,dy,dw) = (1,1,1,1). This quantum dimension gives unitary MFCs. Even after our
choice, we still have permutations (UV'), (UW), (VW) of simple objects. Different MFCs are
given by
1 1.1 111 ,3 1. 3111
(hX> hU7 hVa hW) - (17 07 07 5)? (Za 57 57 5)7 (Z_l’ Oa 07 5)7 (17 57 57 5

Including the two signs of categorical dimensions, we have eight unitary MFCs.

) (mod 1).

(dx,dy,dy,dw) = (1,1,—1,—1).  We have smaller symmetry (VW). Thus, different MFCs
are given by

1 1. 11 1111
(thhU7hV7hW)_(1707075)7(175707())7(1757575)7
3 1. 31 3111
. =), (=, = - =, =, = d1).
(4707072)’(4’27070)7(4’2’272) (mo )
With two signs of categorical dimensions, we have 12 MFCs.
(dx,dy,dy,dw) = (—1,1,1,1). Different MFCs are given by
1 1,11 11 .3 1., 3111
hx,hu, hy,hw) = (= =) (=,=,=,=), (= =) (=,=,=,= d1).
(Xa U, Itv, W) (4’07072)7<4727272)7(4707072)7(4727272> (IHO )

There are eight MFCs.

(dx,dy,dy,dw) = (—1,1,—1,—1). Different MFCs are given by

1 1. 11 1111
(thhU7hV7h‘W>_<170707§)7(Z757070>7(17§7§7§)7

3 1. 31 3111

20,0,2), (2, = s 1).

(4707072)a(4a27070)7(4a2a272) (mOd )

There are 12 MFCs.

In total, there are
84+ 12+8+12 =140

MFCs, among which those eight in the first case are unitary. The S-matrices are given by

1 dx dxdw  dxdy  dxdy dy dy dw
dX -1 —dW _dU —dv dde dXdV dXdW
dxdW —dW -1 dW 1 —dxdW —dX dX
J_ dxdy —dy dw -1 dy dx —dxdy —dxdw
dxdy —dy 1 dy -1 —dxdy dx —dx
dy  dxdy —dxdw dx —dxdy 1 —dy —dw
dy dxdy —dx  —dxdy dx —dy 1 -1
dW dxdW dX —dxdW —dX —dW -1 1
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They have additive central charges
c(B) = c(Veci}zZ) + ¢(ToricCode) (mod 8),
where

0 (one h = L&the other h = 0),

— 2

4 (allh=1).

(hx =

(hy = (mod 8)

~— —

1
c(Veci/gZ) = {_1 ¢(ToricCode) = {

Q0 [

We classify connected étale algebras in all 40 MFCs simultaneously.
An ansatz

AZ21Pnx X dnyY &nzZ ®ngT &ngU & nyV & nyW
with n; € N has
FPdimg(A) = 1+ nx + ny + ng + ny +ny + ny + ny.
For this to obey , the natural numbers can take only eight values

(nXa ny,nz,nr,ny, Ny, TLW) :(07 07 07 07 07 07 0)7 (]-7 07 07 07 07 07 0)7 (07 ]-7 07 07 07 07 0)7 (07 07 17 07 07 07 0)7
(0,0,0,1,0,0,0), (0,0,0,0,1,0,0), (0,0,0,0,0,1,0), (0,0,0,0,0,0,1).

The first is nothing but the trivial connected étale algebra A = 1 giving BY ~ By ~ B.
Among the other seven candidates, the second with X cannot be commutative due to our
choice Veci/l2Z = {1, X}. Accordingly, those three with Y, Z, T' cannot be commutative either

because they have h = 1 (mod 1). Thus, we are left with three nontrivial candidates
loU, 1@V, 1aW.

These are 7 /27 algebras by the lemma 1, and they can also be commutative depending on
quantum and conformal dimensions. A Z/2Z algebra is commutative iff the nontrivial simple
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object has (d,h) = (1,0), (—

cuu Zidy <= (dx,dy,dyv,dw, hx,hy, hy, hyw) =

cyy Zidy <= (dx,dy,dv,dw,hx,hy, hy, hw) =

cww 2idy <= (dx,dy,dv,dw,hx, hy, hy, hw) =

Note that not all of these are separable.

1,3) [22]. Thus, the Z/2Z algebras are commutative when

1 1 3 1
1,1,1,1,-,0,0, 1,1,1,1,-,0,0, =
(7 ) ) 747 2)(7 ) ) 747 2)7
1 1 3 1
1,1,-1,-1,-,0,0,-),(1,1,—-1,—-1,-,0,0, =
(77 ) 747 ) ’2)7(7 Y Y 747 ) 72)7
1 1 3 1
-1,1,1,1,-,0,0,-),(-1,1,1,1,-,0,0, =
( Y P 747 7 72)7( 7 ) Y 747 ? 72)7
1 1 3 1
“1,1,-1,-1,2,0,0,2),(=1,1,-1,-1,2,0,0, =
( y Ly ; 74707072)a( y Ly ; 74707072)a
1 1 3 1
1,1,1,1, - —-),(1,1,1,1, = —
( Y ) 7 747070 2) ( ) Y 7 7470707 2)7
1111 111
(1717_17_1 T el o _>7(1717_17_17§5_7_7_)7
427272 4°2°2°2
1 1 3 1
—-1,1,1,1, - -),(=1,1,1,1, - —
( Y b 74002)( ) Y Y 74707072)’
1111 111
<_1717_17_1 Trala _)7(_1717_17_17§7_7_7_)7
4727272 4°2°2°2
(L1,-1,-1,50,0 5, ,1,-1,-1,2, L L 1
) ) ) ’4 2 ) ) ) 74727272’
3 1 3111
1,1,—-1,-1 0,0, 1,1,—-1,—-1, -, -, —, =
(77 7 747 Y 2)(7 Y ) 74727272)7
(“1,1,-1,-1,%.0,0, ), (-1,1,-1,-1, 2 L1 L)
y Ly Y 9 y Ly ; "4797 9790
3 1 3111
-1,1,—-1, -1 0,0,-),(—1,1,—-1,—-1,—-, =, =, =).
( Y 7 ) 74 2)7( Y 7 ) 74727272)
(mod 1 for h)
(2.26)
The obstruction is in quantum dimensions. For

example, let us look at the third commutative algebra of 1 V. If we naively use the formula

(2.24)), a right A-module m = 1@V has dg,(m) = 0, a contradiction,

E This line of reasoning

rules out the second and fourth lines of 1 & V', and all of 1 & W. Therefore, we find three

1Tn view of anyon condensation, this fact leads to the following observation. In this case, 1 and V which are
naively ‘identified” under anyon condensation have different quantum dimensions. While anyon condensation
can ‘identify’ two (or more) simple objects with different conformal dimensions — in this case, the resulting

object is confined —

it may not be allowed to ‘identify’ simple objects with quantum dimensions of different

signs. Since most literature on anyon condensation studies only unitary MFCs, it seems this problem was

unknown.
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n=1ly=ny, nx=

connected étale algebras

1 (all MFCs),
A= 16U (those in (2.26)), (mod 1 for h) (2.27)
1oV (dU7dV7dW)h’UahV7h‘W) = (1717170707%)'

Let us determine the categories of (dyslectic) right A-modules BY, Ba. The nontrivial
connected étale algebras have FPdimp(A) = 2 and demand

FPdim(BY) =2, FPdim(B,4) = 4.
Since the only MFC with FPdim = 2 is Veci/lQZ, we get

BY ~ Veci/l%.
This identification also matches central charges because when the algebras are separable,
we have ¢(ToricCode) = 0 mod 8 and ¢(BY) is determined by hx as we will see. The
category B4 of right A-modules contain this MFC as a subcategory and has FPdim = 4.
There are three candidates, Ising, Vec o7.7/97, and Vecy ;. Here, note that all simple
objects of B has FPdimg = 1 because the free module functor preserves Frobenius-Perron
dimensions . This observation rules out Ising, and we are left with rank four candidates
Vecy 27,4722 V€€ 4z In order to find out the correct category, we search for four-dimensional
NIM-reps. We start from A = 1¢ U. We find a four-dimensional NIM-rep

=Ng, Ny = =nr, Ny =

_ o O O
o= O O

0
0
1
0

o O = O
o O O
— o O O
SO O
o O = O
o O = O
S O O
_ o O O
o~ O O

Denoting a basis of B4 by {mq, mg, m3, my}, we obtain a multiplication table

bj (29 \ my | Mo | T3 | My
LU | my | mo | mg | my
X, A my | M3 | ™o | T .
Y, T ms | Ty | Ty | Ty
Vv, |74 Mo | Ty | Thy | T3

We can identify

m EZ1eU me=2VeW, myZYRT, my=X& I
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They have
d,(m1) =1, dp,(mz) =dp(V), dp,(ms) = ds(X)dp(V), dp,(ms) = dp(X).
One can also obtain these identifications via the free module functor Fly:
Fa(l) 2 1aU = Fo(U), Fa(X)=Z2X@GZ =ZFA(Z), FaY)ZYST =Fu(T), Fa(V)=VoW = FuW).
They obey the Z /27 x Z/2Z monoidal products

XA | M1 | Mo | M3 | My
my | My | Mg | M3 | My

L) my | My | M3
ms mq | Mo
my my

This shows By =~ Vecy j9,7/97-
For the other nontrivial connected étale algebra, just the names of matrices change. For
A=21aeV, we have

n1:14:nv, nxy =

=nr, Ny =Nz, Ny = nNw.

_ o O O
o= O O
o O = O
o O O
O = OO
_ o O O
oS O O
o O = O
o O = O
o O O
_ oo O O
O = OO

It has identifications
mlgl@v, ngXEBT, mg%Y@Z, m4%U@W
They obey the same Z/2x 7 /27 monoidal products

XA | M1 | Mo | M3 | My
my | My | Mo | M3 | My

ma my | My | M3
ms my | Mo
my may

This shows By =~ Vecy 197,797
We conclude
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Connected étale algebra A | Ba | rank(B,) | Lagrangian?

1 B 8 No
L& U for (d,h) in (2.27) | Vecs oz7/22 4 No
1@V for (d,h) in (2.27) | VecZ oz47/27 4 No

Table 6: Connected étale algebras in rank eight MFC B ~ Vec; 12LXL)22x )20 Veci}QZ X
ToricCode

Namely, 16 MFCs B ~ Vecy, 97.7/97x7/27. ~ Veci/lQZ X ToricCode’s in ‘D fail to be com-
pletely anisotropic, while the other 24 with

1111 3111
(andUadV7dW7thhthV7hW) — (17 17 17 17 17 57 57 5)7 (17 17 17 17 217 57 57 5)7
111,500, a1,-1,-1,5 L 1L
y Ly 3 v YD ) "4797 9790
31 3111
1,1,-1,-1,2, = 1,1,-1,-1,2, %, =, =
(7 3 ) 74727070)7(7 ) ) 74727272>7
1111 111
(_15171717_7_7_7_)7(_17171717§7_7_>_)7
4" 2 2 4°2°2°2
(—1,1,-1,-1, 5. 2 0.0y, (-1,1,-1,-1, 2 L 1 Ly
y Ly > vy V) y Ly ) "4 979790
31 3111
1,1,-1,-1,-,-,0,0),(—1,1,—-1,—-1,—, =, =, =
( y Ly ) T4 )7( y Ly ) 74727272)

are completely anisotropic.

2.4.2 B=~Vecy .74z
The MFCs have eight simple objects {1, X,Y, Z, T, U, V, W} obeying monoidal products

|1 X|\Y|Z|T|U |V | W
1V1\X\|\Y|Z|T|U |V | W
X 112y | W |V U |T
Y 11X |V | W|T|U
z 1V | T | W\l V.
T Z | 1] X|Y
U Z Y | X
V Z |1
w A
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(One can identify Veci/l2Z = {1, X}, Vecg,yz = {1, Z,V,W} and Y 2 X@Z, T = XQW,U =
X ®V.) Thus, they have
FPdimg(1) = FPdimg(X) = FPdimgs(Y) = FPdimg(Z)
— FPdimg(T) = FPdimg(U) = FPdimg(V) = FPdimg(W) = 1,
and
FPdim(B) = 8.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dp.
There are four solutions

(dX7dY7dZ7dT)dU7dV7dW) :(_17 _]-7 ]-a _]-7 _]-7 ]-7 1)7 (_17 _17 17 ]-7 ]-7 _]-7 _]->7
(17 1,1, -1, -1, -1, —1), (1, 1,1,1,1,1, 1).

Only the last quantum dimensions give unitary MFCs. All the quantum dimensions have the

same categorical dimension
D*(B) = 8.

All quantum dimensions have the same four conformal dimensiond?]

(h/X7h’Y7hZ7hT7h’UahV7h‘W ___________ 7_7_5_)7

The S-matrices are given by

1 dx dxdz dy dxdw  dxdy dy dw
dx -1 —dy dxdz —dw —dy dxdy  dxdwy
dxdy; —dyz -1 dx —dzdw dy —dxdy —dxdy
J_ dz dxdy dx 1 —dxdw —dxdy —dy —dw
dxdv —dv dV —dxdv +: =) +3 - dX Fi - dX
dv dXdV —dxdv —dv Fi - dX +7 - dX +3 =)
dW dXdW —dxdW —dW +i- dX Fi- dX =) +i

Regardless of quantum dimensions, they have additive central charges

2 (1st h),
0 (2nd h),

c(B) 4 (Budh), (mod 8)
—2 (4th h)

12Naively, one finds 16 consistent conformal dimensions, but the others are equivalent to one of four in the
main text under permutations (XY)(TU) or (XY )(VW) or (XY)(TVUW) of simple objects.
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There are
4(quantum dimensions) x 4(conformal dimensions) x 2(categorical dimensions) = 32

MFCs, among which those eight with the fourth quantum dimensions give unitary MFCs.
We study connected étale algebras in all 32 MFCs simultaneously.
The most general form

AZ1Dnx X dnyY &nzZ ®ngT SngU & nyV & nyW
with n; € N has
FPdimg(A) =14 nx + ny + ngz +nr +ny +ny + nw.
For this to obey , the natural numbers can take only eight values

(nXa ny,nz,nr,ny, Ny, ’I'Lw) :(07 07 Oa Oa 07 07 0)7 <1a 07 07 07 Oa 07 0)7 (07 1a Oa 07 07 07 O)a (07 07 17 Oa 07 07 0)7
(0,0,0,1,0,0,0),(0,0,0,0,1,0,0), (0,0,0,0,0,1,0), (0,0,0,0,0,0,1).

The first is nothing but the trivial connected étale algebra A = 1 giving By ~ B4 ~ B. The
other six candidates except the fourth with Z have nontrivial simple object, and they fail to
be commutative. The fourth candidate 1 @& Z does pass the necessary condition , but
since the simple object Z has (dz, hz) = (1, %) (mod 1 for hy), it has ¢z z = —idy [22]. Thus,
it does not give commutative algebra either.

We conclude

Connected étale algebra A | B4 | rank(B,) | Lagrangian?
1 | B 8 | No '

Table 7: Connected étale algebras in rank eight MFC B ~ Vecj /22X T/4T,

All the 32 MFCs B ~ Vecy 57,7,47's are completely anisotropic.

2.4.3 B~ su(8); ~ Vecy g,
The MFCs have eight simple objects {1, X,Y, Z, T, U, V, W} obeying monoidal products
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SISIESES
<| =N NN

SIRSIFIIN

SIS

S <SRN = <~ ®
e R ESI I RSIRSI A
S NS R L RS SIS

Thus, they have

FPdimg(1) = FPdimg(X) = FPdimg(Y) = FPdimg(Z2)
= FPdimg(T) = FPdimg(U) = FPdims(V) = FPdimg(W) = 1,

and
FPdim(B) = 8.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dp.
There are two solutions

(andedZa dTadU7dV7dW) = (17 _17 _17 _17 _17 17 1)a (1a ]-7 17 17 1a ]-7 1)

Only the second gives unitary MFCs. The two quantum dimensions both have the same four
conformal dimensiond™]

1 1 9 9 11 3 3 11 11 3 3
(thhYahZ7hT7hU7hV7hW) _<O’E71_6’E’1_6’171)7(0’E71_6’E71_67Z7Z)7
5 5 13 13 1 1 7 7 15 15 3 3
———————————— . 1
0% wnwnwr?%wwnwners @4
The S-matrices are given by

1 dx dy dy dp dy dy dw
dx 1 —dy —dy —dr —dy  dy dw
dY _dY :|:€:t7ri/4 ie?wi/él :Fe¥7ri/4 :Fe:tm'/4 Fi +i
- dZ _dZ :I:e$7ri/4 ie:ﬁ:m/4 :Fe:tﬂ'i/él :F€¥7ri/4 +i Fi

dT _dT :Fe$7ri/4 :F€ﬂ:7ri/4 ie:ﬁ:ﬂ'i/él ie?m’/4 +i Fi
dU _dU :Fezlnri/4 q:6$7r2'/4 :l:eiﬂ'i/él :l:eztm'/4 Fi +i
dy dw i - - +i -1 -1

13Naively, one finds eight consistent conformal dimensions, but the others are equivalent to one in the main
text under permutations (YU)(ZT) of simple objects.
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They have additive central charges

)1 (1st&3rd h),
(B) = {—1 (2ndash py. 0Y

There are
2(quantum dimensions) x 4(conformal dimensions) x 2(categorical dimensions) = 16

MFCs, among which those eight with the second quantum dimensions give unitary MFCs.
We classify connected étale algebras in all 16 MFCs simultaneously.
We work with an ansatz

AZ21Pnx X dnyY &nzZ ®ngT SngU & nyV & nyW
with n; € N. It has
FPdimg(A) = 1+ nx + ny + ng + nr + ny + ny + nw.
For this to obey , the natural numbers can take only eight values

(nXu ny,nz,nr,ny, Ny, nW) :(07 07 07 Oa 07 07 0)7 (17 O) 07 07 07 07 0)7 (07 ]-7 07 07 07 07 0)7 (07 07 17 07 07 07 0)7
(0,0,0,1,0,0,0),(0,0,0,0,1,0,0), (0,0,0,0,0,1,0), (0,0,0,0,0,0,1).

The first is nothing but the trivial connected étale algebra A = 1 giving BY ~ B4 ~ B. Those
six with Y, Z, T, U, V, W fail to satisfy the necessary condition , and they are ruled out.
We are left with the second ny =1 or A = 1® X. It is a Z/27Z algebra by the lemma 1.
It turns out that this is connected étale; it is commutative because X has (dx, hx) = (1,0)
(mod 1 for hx), and hence cx x = id; [22]. To check the separability, we identify Ba4.

Since it has FPdimg(A) = 2, it demands

FPdim(BY) =2, FPdim(B,) = 4.

The category BY of dyslectic modules is identified as Veci/lzZ because it is the only MFC with
FPdim = 2. This identification also matches central charges["] The category B4 of right
A-modules should contain the MFC and have FPdim = 4. It turns out that

Ba ~ Vecy 7.

4The Z/2Z MFC has

) 1 (hajon = 1)
1 o Z7/2Z ’
o{Veczjua) = {—1 (e = ).

We will see BY = {1 @& X,V & W}. The nontrivial deconfined particle has hy = i,% = hw, and this
determines the central charge c(BY).
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One of the easiest ways to see this fact is to perform anyon condensation. Under the proce-
dure, we ‘identify’ 1 and X, and hence the pairs (Y,U), (Z,T), and (V, W). Since they obey
7, /A7 monoidal products, we arrive the identiﬁcationﬁ

We conclude

5More rigorously, we should find NIM-reps. Indeed, we found a four-dimensional NIM-rep

n=1ly=ny, ny= =ny, Nz =nr, Ny =nw.

o= OO

0
0
0
1

o O O
= o O O
O~ OO
o O O
OO = O
o O = O
OO O
= o o O
O~ OO

0
1
0
0
Denoting a basis of B4 by {m1,ma, m3, m4}, we obtain a multiplication table

bj &® \ my | e | Th3 | Ty
1, X my | ™o | T3 | Ty
YU | my | m3 | m | mo .
Z, T msz | My | o | Ty
‘/, W Mo | Ty | Thy | T3

In this basis, we can identify
m 10X, me=2VEeW, m3=20T, my=Y oU.
In the category B4 of right A-modules, they have quantum dimensions :
dp,(m1) =1=dp,(m2), dp,(m3)=ds(Y)=dp,(ma).

Furthermore, they obey monoidal products

ma my | g | T3
ms ™o | T
my mo

This shows Ba ~ Vecy 47
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Connected étale algebra A | By | rank(B,) | Lagrangian?
1 B 8 No
1 X Vecy, 7, 4 No

Table 8: Connected étale algebras in rank eight MFC B ~ Vec; /82,

That is, all the 16 MFCs B >~ Vecj g;’s fail to be completely anisotropic.

2.4.4 B ~ Fib X Vec%/QZXZ/2Z
The MFCs have eight simple objects {1, X,Y, Z, T, U, V, W} obeying monoidal products

@1 X|Y | Z T U V w
111X |Y | Z T U V w
X 112]Y V w T U

Y 11X w V U T

A 1 U T w V.
T loW | ZoV | XU | YT
U loW | YT | XoU
V leoW | ZaV
w oW

(One can identify Fib = {1, W}, Vec7 97,707 = {1, X, Y, Z}, and T 2 Y @ WU =2 X ®
W,V = Z @ W.) Thus, they have

FPdimz(1) = FPdimg(X) = FPdimg(Y) = FPdims(Z) = 1,

FPdimg(T) = FPdims(U) = FPdimg(V) = FPdimg(W) = ¢ :=

and
FPdim(B) = 10 + 2V/5 ~ 14.5.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nl-jk dp.
There are eight solutions

(dX,dY,dz,dT,dU,dV7dw) ( ) 17 17 C C C C) ( ) 17 17<_17C_17 _<_17 _<—1)’
( ala —1 _C C C ! _C 1) ( 7_17<7 _C>_C7<)7
(1’ 1a C C C C) ( 17_17C_ >_C_17C_17_§_1)a
(

171 1 C717_C7 7_<71)7(171717C7C7<7<>'
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Only the last quantum dimensions give unitary MFCs. They have categorical dimensions
D*(B) = 10 — 2v/5(~ 5.5), 10+ 2v/5.

In order to list up conformal dimensions without double-counting, we perform case anal-
ysis. (This fixes redundancies in names of simple objects, and hence superficially makes
descriptions asymmetric.)

B~ FibKX Veci/l2Z X Veci/lm. In this case, the Veci/l2Z X Veci/IQZ factor has three classes

depending on quantum dimensions (dx,dy) [23]. Together with dy = ¢, —(™!, we have six
classes.

e (dx,dy,dw) = (1,1,¢). This gives unitary MFCs. Different MFCs are given by con-
formal dimensions

112 113 132 ,133 ,332 ,333

(hx, by, hw) = (171 g)a (A_L’ T g)» (171, g)a <4_L’ 175)7 (171, 5), (Za 175) (mod 1).

(The other conformal dimensions of by = b; ® b; is given by hy = h; + h; mod 1.)
Including two signs of categorical dimensions, we have 12 unitary MFCs.

o (dx,dy,dw) = (1,1,—¢'). Different MFCs are given by

111,114 131 134 331 334

(hx, by, hw) = (171 g)a (A_L’ 1 5)7 (171, g)a <4_L’ 175)7 (1717 g)’ (Z’ 175) (mod 1).

With two signs of categorical dimensions, there are 12 MFCs.

o (dx,dy,dw) = (1,—1,(¢). Different MFCs are given by

112 113 ,132 133 312 313 332 333

(hx,hy, hw) = (17 T g), <Z_1’ T g), (17 T g)a (1_1’ T g)’ (Z’ T 5), <Z’ T 5)7 (Z’ T 5), (Z’ T g)

(mod 1).

Taking two signs of categorical dimensions into account, we get 16 MFCs.
o (dx,dy,dw) = (1,—1,—¢1). Different MFCs are given by

111,114 131 134 311 314 331 /334

(thhY7hW) = (Z:Z)S)a <Z_l’ Za g>7 (1717 g)a <Z_l’ Z?%): (Z?Za 5)5 (Za 175)7 (Za 47 5

With two categorical dimensions, we get 16 MFCs.

e (dx,dy,dw)=(—1,—1,(). Different MFCs are given by

112 113,132 133 332 333
(hx,hy, hw) = (1717 g), <A_1’ T g), (1717 5), <4_l’ Z,g): (1717 5), (Z’ 175) (mod 1).

There are 12 MFCs.
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o (dx,dy,dw) = (—1,—1,—("). Different MFCs are given by
111, 114 131,134 331,33
175G @@ @rs @ TS
There are 12 MFCs.

(hx, by, hw) = ( ) (mod 1).

In total, there are
12412416+ 16+ 12+ 12 =80

MFCs B ~ Fib X Veci/l2Z X Veci/lzz, among which those 12 with quantum dimensions
(dx,dy,dw) = (1,1,() are unitary. The S-matrices are given by

1 dx dy dxdy dydw  dxdw dxdydw dw
dx -1 1 —dx dw —dw  —dxdw  dxdw
dy 1 -1 —dy —dw dw —dydw  dydw
J_ dxdy —dx —dy 1 —dydw —dxdw dw dxdydw
dydW dW —dW —dydW 1 —1 dy —dy
dxdw —dW dW —dxdW -1 1 dX —dX
dxdydw —dxdw —dydw dw dy dx -1 —dxdy
dw dxdw  dydw dxdydw  —dy —dx —dxdy -1

They have additive central charges

c(B) = ¢(Fib) + C(Veci/lm) + C(Veci/l%) (mod 8)

where
2 (hw=3),
c(Fib) = 1;; EZMW/ z g: C(Veci/lQZ) = {1_1 EZZZ Z ;’ (mod 8)
—5 (hw=3).

B ~ FibX ToricCode. In this case, simple objects X,Y, Z can have conformal dimensions

1 1 1 111

(thhY;hZ> = (0707 5)7 (07 570)7 (57070)7 (57 57 5) (mOd 1)'

Thus, we have four classes.
o (dx,dy,dz,dw) = (1,1,1,(). This gives unitary MFCs. Different MFCs are given by

12 13,1112 ,1113
_ -z i VN Gt N 1).
(ththhZ>hW) (0705275>7(0707255)7(2727275)7<2727275) (mOd )

With the two signs of categorical dimensions, there are eight unitary MFCs.
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o (dx,dy,dz,dw) = (1,1,1,—¢™'). Different MFCs are given by

11 14 1111 111414
- - - S N e T G 1).
(ththh'ZahW) (0705275>7(0707255)7(2727275)7<2727275) (mOd )
Including the two signs of categorical dimensions, we have eight MFCs.
o (dx,dy,dz,dw) = (1,—1,—1,(). Different MFCs are given by
1 2 1 3. .1 2.1 3.1 112 ,1113
b, by, b, hw) = (0,0, =, = Y (5,0,0,2),(2,0,0,2), (5,5, =, 5 (5,2, 5, 2 1).
(X) Y, 7, W) (ana275)7(()’07275)7(270’()75)7(27070a5)7(2727275)a(2a27275) (mOd )
There are 12 MFCs.
o (dx,dy,dz,dw) = (1,—1,—1,—¢"1). Different MFCs are given by
11 14 1 1. 1 4 1111 111414
b, by, bz, b ) = (0,0, =, = Y (2,0,0,2),(,0,0,2), (2, 5, =0 =), (52, =, 2 d1).
(X7 Y, ItZ, W) (Oa07275)7<0707275)7(2707075)7(2707075)7(2727275)7(2a2)275) (mo )

There are 12 MFCs.

In total, there are
8+8+12+12=40

MFCs B ~ FibXToricCode, among which those eight with the quantum dimensions (dx, dy, dz, dw) =
(1,1,1,¢) are unitary. The S-matrices are given by

1 dX dy dZ dydW dxdw dzdw dW
dx 1 —dy —dz; —dydw dw —dzdw dxdw
dy —dy 1 -1 dw —dydw —dw dydw
J_ dy —dy -1 1 —dw  —dzdwy dw dzdw
dydy —dydw dw —dw -1 dy 1 —dy
dxdw dW —dydW —dde dy -1 dZ —dX
dzdw —dzdw  —dw dw 1 dy -1 —dyz
dw dxdw  dydw  dzdwy —dy —dx —dy -1

They have additive central charges

¢(B) = ¢(Fib) 4 ¢(ToricCode) (mod 8)

where
s (w=3),
_2 — 4 =1 =

c(Fib) = ¢ ,° (o g)’ ¢(ToricCode) = 0 (oneh 12&the other b =0), (mod 8).
-2 (hw=2).
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Including both B ~ Fib X Veci}QZ X Veci/l2Z and B ~ Fib X ToricCode, we have
80 440 = 120

MFCs with fusion ring K (FibXVecy 7.7 57). Among them, 12 from the first and eight from
the second MFCs are unitary, 20 in total.

Having listed MFCs, we can classify connected étale algebras in them. We work with an
ansatz

A=21dnxX enyY &nyzZ &nyT & nylU &nyV &nyW
with n; € N. It has

FPdimg(A) =1+ nx +ny + nz + {(ny +ny +ny +nw).
For this to obey ([2.14)), the natural numbers can take only 26 values

(nx,ny,nz,nr,ny,ny,ny) =(0,0,0,0,0,0,0),(1,0,0,0,0,0,0),(2,0,0,0,0,0,0),
(1,1,0,0,0,0,0),(1,0,1,0,0,0,0),(1,0,0,1,0,0,0),
(1,0,0,0,1,0,0),(1,0,0,0,0,1,0),(1,0,0,0,0,0,1),
(0,1,0,0,0,0,0),(0,2,0,0,0,0,0), (0,1,1,0,0,0,0),
(0,1,0,1,0,0,0),(0,1,0,0,1,0,0),(0,1,0,0,0,1,0),
(0,1,0,0,0,0,1),(0,0,1,0,0,0,0),(0,0,2,0,0,0,0),
(0,0,1,1,0,0,0),(0,0,1,0,1,0,0),(0,0,1,0,0,1,0),
(0,0,1,0,0,0,1),(0,0,0,1,0,0,0),(0,0,0,0,1,0,0),
(0,0,0,0,0,1,0),(0,0,0,0,0,0,1).

The first is nothing but the trivial connected étale algebra A = 1 giving B ~ B4 ~ Ba.
Whether the others can be commutative depends on quantum and conformal dimensions.
For B ~ Fib X Veci/lQZ X Veci/l%, X, Y, T U, V,W have nontrivial conformal dimensions,
and candidates with them fail to be commutative. Hence, we are left with candidates with
just Z’s. It has (dz,hz) = (dxdy,hx + hy) (mod 1 for hz). Thus, those with (dz, hz) =

(1,0),(—1,3) (mod 1 for hz) are commutative. More concretely, independent of quantum
and conformal dimensions of W, we have

13 13 11 3 3
> j =(1,1,5,2), (=1, -1, —,2), (1, =1,~,2),(1,-1,2,2)  (mod 1 for h).
Czz Zdl — (andY7hX7h‘Y) (7 7474)7( ’ 7474)7(7 7474>7(7 7474()22(8) od or h)

Therefore, we are left with two additional candidates for connected étale algebras
A=1eZ,1627
The second candidate A = 1@ 2Z has FPdimpg(A) = 3, and in particular demands

545
FPdim(BY) = +9\/_z1.61.
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However, there is no MFC with this Frobenius-Perron dimension. Thus, the candidate is
ruled out. We are left with the first candidate. It is a Z/27Z algebra by the lemma 1. It also
turns out separable. To show this, we identify B4.

It has FPdimp(A) = 2, and demands

FPdim(BY) — +2\/5, FPdim(B4) = 5 + V5.

Since the only MFC with FPdim = %g is a Fibonacci MFC, we arrive

B ~ Fib.

The matching of central charges makes the identification more precise. The Fibonacci cate-
gory has

:i:2 d ib — — -1
c(Fib) = { s (dew B ¢ (mod 4)
The Vec7 977,27 has

2 (Vecz azxz/0m = Veci/gz X Veci/l2Z with hx = hy),

c(vec%/QZXZ/QZ) = { (mod 4)

0 (Vecz onxzjoz =~ Veci/l2Z X Veci/lZZ with hx # hy).

We see the second Veci/l2Z X Veci/lzZ MFCs with different conformal dimensions (mod 1)
trivially match additive central charges, while the first Veci/l2Z X Veci/l2Z with the same

conformal dimensions cannot. Therefore, although (dz,hz) = (—1,1) in (2.28) has trivial
self braiding cz 7 = id;, they do not give connected étale algebras. We conclude

13 13
A2 1®7Z is connected étale <= (dx,dy,hx,hy) = (1,1, 7 é_l>’ (—1,-1, 7 Z) (mod 1 for h).
(2.29)
The category By of right A-modules should contain this MFC as a subcategory. Together
with the Frobenius-Perron dimension, it is identified ad™]

Ba ~ su(2);.
16 A four-dimensional NIM-rep is given by
01 00 0 01 0 0 0 01
1 0 0 0 0 0 0 1 0 01 0
m=li=nz, nx =g g g (| T Tl g o 1| T W T g 11 of T
0 010 01 10 1 0 0 1

The solution gives identifications

mE2186Z, me=Z2XBY, ms=2ToU my=ZVeW
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For B ~ FibXToricCode, T, U, V, W have nontrivial conformal dimensions, and candidates
with them fail to be commutative. On the other hand, those with just X,Y,Z can have
Cp; p; = id; depending on their quantum and conformal dimensions. From the lists above,

The simple objects mj 4 are deconfined, while ms 3 are confined, i.e., BY = {m1,m4}. In B4, they have
dBA (ml) =1, dBA (m2) = =1, dBA (m3) = iCil’ dBA (m4) = :I:(:il-

Signs in the last quantum dimension are correlated, but those in the third are not. Employing the free module
functor F'4, one obtains monoidal products ® 4:

XA | M1 | Mo ms My
ma mq | Mo ms my
Mo ma my ms
ms my @ my | Mg b mg3
my my D my

This shows the identification.
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independent of hy,, we find

12 13
CX,Xgidl — (dX7dY7dZ7dW7hX7hY7hZahW> <1a1717C 0 O 2 5) (17171a§ O 0 2 5)
11 14
1,1,1 ! 1,1,1 1 i
(7 ) ) C OO 2 5) (7 ) b < 7070 2 5)7
1 2 1 3
1,—-1,-1, 1,—-1,-1,
1 14
1,—1,—-1,—¢*! — ), (1, -1, -1, ¢!
(7 C 0707275)7(7 g 002 5)
13
cyy Zidy <= (dx,dy,dz,dw,hx,hy,hz,hw) = (1,1,1,(,0, 0 ' 5) (1,1,1,¢,0,0, = ') 5)
11 14
1,1,1 ! —. =), (1,1,1 !
(7 Y 9 C OO 2 5) (7 Y ) g 00 2 5)
1112 1113
1,-1,-1,(,=, =, =, =), (1 1,0, =, =, =, =
( §72727275)7(7 472727275)7
1111 1114
1,-1,—-1,—¢t= = = = 1,-1,-1,—-¢C ", =, =, =, =
(7 b b g 72727275)( b C 2727275)7
12 13
czz Zidy <= (dx,dy,dz,dw,hx,hy, hz, hy) = (1, -1, 1<O707§75)7<1 —1,¢,0,0, 5 ' 5)
1112 1113
1,—-1,-1 - = =), (1,-1,-1.(,=, =, =, =
( C727272’5)7(7 ) 7§72727275)’

11 14
1,—1,—-1,—¢t —, =), (1,—1,—1, ! - =
( C 07072 5)( < 0707275)7

11 1 1114
L,—1,-1,—-¢CY =, =2, 9), (1, -1, -1, —¢C 1 =, =, =, 2).
( <2225)( C222’5)

(mod 1 for h)
(2.30)

How about the matching of central charges? We will see the Toric Code MFC has conformal
dimensions (hy, hy, hz) = (0,0, 5) when it admits nontrivial connected étale algebras. Such
MFCs have ¢(ToricCode) = 0 mod 8, and the central charges are trivially matched because
both ¢(B) and ¢(Fib) are determined by the same conformal dimension hyy.

Just as for B ~ Fib&\/eci/lmﬁ\/eci/lm, the candidates with FPdimg = 2 can admit MFCs
BY%, but those with FPdimgs = 3 do not, and are ruled out. Note that not all candidates in
are separable. The same observation as in section leads to

1 (all MFCs),
A= 1@ X (those in (2.30), (mod 1 for h) (2.31)
1eY (andY7dZahX7hYahZ):(171717()’07%)'

In order to figure out B4, we have to find NIM-reps. Here, since NIM-reps do not depend on
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conformal dimensions, we immediately learn|
BY ~ Fib, By =~ su(2)s.
We conclude

Connected étale algebra A | By | rank(B4) | Lagrangian?
1 B 8 No

1 Z for (2.29) su(2)3 4 No

Table 9: Connected étale algebras in rank eight MFC B ~ Fib X Veci/lZZ X Veci/l2Z

and

Connected étale algebra A | By | rank(B,4) | Lagrangian?

1 B 8 No
1& X for (2.31 su(2)s 4 No
1Y for (2.31 su(2)s3 4 No

Table 10: Connected étale algebras in rank eight MFC B ~ Fib X ToricCode

In particular, 64 MFCs B ~ Fib X Veci/lzZ X Veci/lQZ’s not in (2.29), and 24 MFCs B =~

I7Tf one searches for NIM-reps, one realizes just names of matrices change. One finds

01 0 0 0 0 1 0 0 0 0 1

1 0 0 O 0 0 0 1 0 0 1 0
m=la=nx, oy =10 g g [T Ty g g 1| T WT g 11 o W

0 010 01 1 0 1 0 0 1
for A2 14 X, and

01 0 0 0 0 1 0 0 0 0 1

1 0 0 O 0 0 0 1 0 0 1 0
ny=1ly=ny, nx= 000 1|="2 =11 ¢ 0o 1|z =g 1 1 o=

0 0 1 0 01 1 0 1 0 0 1

for A= 1@ Y. They give identifications
m 21X, mEY®Z m3=ETEV, mey=ZUW,

and
m21eY, me=2XeZ ms=ZURV, mys=ZTESW,

respectively.
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Fib X ToricCode’s with

1
(andY>dZadW> th hY7hZ> hW) = (17 17 17 Ca 57

are completely anisotropic.

2.4.5 B~FibXVecy,,

112 1 13

_;§;S?<i’L]’C7§’§’§’§>} 14
Ly gy sh by s
(1, -1, 1,{,?7?,q£5;,(1,1,1,C,§£0;O}51;
R L
(1,—1, 1,—g1,?,2,01,51),(1,—1, 17{17_170’107152
(1,-1,-1,-¢71, 555 5) (1,-1,-1,-¢7, 5555 (modlforh)

The MFCs have eight simple objects {1, X,Y, Z, T, U, V, W} obeying monoidal products

®@ |1 X|Y | Z T U V w
111X |Y | Z T U V w

X 11 21]Y U T w V

Y X |1 V w U T

A X| W V T u .
T leU | XaeT | YW | ZpV
U leU | ZaV | Yol
V XeT | 1aU
w XoT

(One can identify Fib = {1,U}, Vec ,; = {1, X,Y, Z}, and T =2 X @ U,V 2 Z@ U, W =

Y ® U.) Thus, they have

FPdimg(1) = FPdimg(X) = FPdimg(Y) = FPdimg(Z) = 1,

FPdimg(T) = FPdimg(U) = FPdimg(V) = FPdimg(W) = ¢ := ,

and

FPdim(B) = 10 + 2V/5 ~ 14.5.
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Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dp.

There are four solutions

(dX7 dYa dZ7 dT7 dUa dV7 dW) :(1a _1a _1a ga ga _Ca _<)7 (]-7 _]-7 _]-7 _€_17 _C_la g—l’ g—l)’
(]-7 17 17 _C_lv _C_17 _C_la _C_l)u (]-7 17 17 Cv C? C? C)

(Only the last quantum dimensions give unitary MFCs.) They have categorical dimensions

D*(B) =10 — 2v/5(~ 5.5), 10+ 2v/5.
They have eight conformal dimensions.
e dy = (. These have
1111 329 29 .1 1 9 2 21 21
hy, hpe, hg, hy, hy) = (=, =, =, —, =, — — ) (==, = —, =, — —

(thhY7 Zy vy 1o, 10V W) (2 8’8710’5’40,40),(2’87871075740740)7
(3313303 133023 3
2788710757407 4077 2788710757407 40"’
(155 1 39 9)(15592 1 1>
27878710°574074077 2788710757407 40"’
177 1 319 19 .1 7 9 2 11 11
———————————— — d1).
(2 8’8’10’5’40’40)7<2’8’8’10’5’4074O> (mod 1)

e diy = —C~!. These have

111 3 4 37 37,1 1 7 1 13 13

(thhY7hZ7hT7hU7h’V7hW) — (5 §’§,1_0757E7E>7(§’§7§7E’S’E7E)’
(133 3 4 7 7)(133 7 12323)
27878710°574074077 2788710757407 40"’
(155 3 41717)<155 7 13333)
2788710757407 4077 2787 8710° 57407 40"’
177 3 4212 177 71 3 3
____________ el 1
Geywrwn 28y el

The S-matrices are given by

1 dx dy
dx 1 —dy
dy —dy ut}
g _ dZ —dz )
dxdy dxdy —dydy
dy dy dydy
dsz —dsz Fi - dU
dydy —dydy =+i-dy

—dzdy
dzdy

ti-dy

Fi-dy
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They have
c¢(B) = c(Fib) + ¢(Vecz47) (mod 8)

where
2 (hrib = 1), 1 (hzjz = 3),
—2  (hpp = 1) 3 (hgjuz=2)
c(Fib) = 5 P e(Vech ) = 877 (mod 8).
2 (hew = 2), e =3 (hgpz = 2),
-2 (hep =2) 1 (hzpuz = %),
There are

4(quantum dimensions) x 8(conformal dimensions) x 2(categorical dimensions) = 64

MFCs, among which those 16 with the fourth quantum dimensions give unitary MFCs. We
classify connected étale algebras in all 64 MFCs simultaneously.
We work with an ansatz

AZ1Pnx X dnyY &nzZ ®ngT SngU & nyV & nyW
with n; € N. It has
FPdimg(A) =1+ nx +ny + nz + {(nr + ny + ny + nw).

For this to obey (2.14]), exactly the same as the previous example, the natural numbers can
take only 26 values

(nx,ny,nz,nr,ny,ny,nw) =(0,0,0,0,0,0,0),(1,0,0,0,0,0,0),(2,0,0,0,0,0,0),
(1,1,0,0,0,0,0),(1,0,1,0,0,0,0),(1,0,0,1,0,0,0),
(1,0,0,0,1,0,0),(1,0,0,0,0,1,0),(1,0,0,0,0,0,1),
(0,1,0,0,0,0,0),(0,2,0,0,0,0,0),(0,1,1,0,0,0,0),
(0,1,0,1,0,0,0),(0,1,0,0,1,0,0), (0,1,0,0,0, 1,0),
(0,1,0,0,0,0,1),(0,0,1,0,0,0,0), (0,0,2,0,0,0,0),
(0,0,1,1,0,0,0),(0,0,1,0,1,0,0),(0,0,1,0,0,1,0),
(0,0,1,0,0,0,1),(0,0,0,1,0,0,0), (0,0,0,0,1,0,0),
(0,0,0,0,0,1,0),(0,0,0,0,0,0,1).

The first is nothing but the trivial connected étale algebra A = 1 giving B ~ BY ~ Ba.
Those with X’s cannot give commutative algebras because X has (dx,hy) = (1,3) (mod
1 for h) and cx x = —idy [22]. The others also fail to be commutative because nontrivial
simple objects entering them have nontrivial conformal dimensions.
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We conclude

Connected étale algebra A ‘ B ‘ rank(By) ‘ Lagrangian?
1 | B 8 | No '

Table 11: Connected étale algebras in rank eight MFC B ~ Fib X Vecy, /47,

That is, all the 64 MFCs B ~ Fib i Vecj, ;s are completely anisotropic.

2.4.6 B~ Veci/gZ X Fib X Fib
The MFCs have eight simple objects {1, X,Y, Z, T, U, V, W} obeying monoidal products

®|1]X Y Z T U V w

1 11]|X Y Z T U Vv w

X 1 U T Z Y w V

Y leU | W V X®Y ToWw ZaV

Z 1T | XbZ V U W YoV

T 1eT w Yovu UaoW

U 1eU ZeV Trew

V leToUsW | XY D ZaV
w loToUsW

(One can identify Veci/gZ ={LX},Fib={1,T}{1,U},and Y 2 XU, Z=XQT,V =
X@TUW 2T ®U.) Thus, they have

FPdimz(1) = 1 = FPdimg(X), FPdims(Y) = FPdimg(Z) = FPdimg(T) = FPdimg(U) = (,

FPdimg(V) = +2\/5 — FPdimg (W),

and
FPdim(B) = 15 + 5v/5 ~ 26.2.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijkdk.
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There are eight solutions

(dx,dy,dz,dr,dy,dy, dw)

= (-1,¢ ¢ = = 0, (1, ¢, ¢ =
(=1, —¢, ¢ =¢h¢ 1, - )7(1>C7—C_1,—C_l,C,—L—l),
(=1, =¢GN =), (1, ¢ GG =T =1, - 1),

(1—c. CCC—SJF\/_SJFQI)( CCCC3+\/_3+2\/_)

f33\/'

with categorical dimensions
D*(B) =15 —5V5(~ 3.8), 10, 15+ 5V/5.

Only the last quantum dimensions give unitary MFCs.

In order to list up their conformal dimensions without double-counting, we perform case

analysis.
e (dx,dr,dy) = (1,(,¢). This gives unitary MFCs. Different MFCs are given by
1131322 1 4,117 13 2 3 1
— (=, =2 222 - Dy = 222z 0
(hX,hY,hZ,hT,hU,hV,hW) (47 207 20’ 57 57 20’ 5)7 (47 20’ 207 57 5a 47 )7

(1 1717 3 3 9 1
4720°20°5°5720" 5
3 7 3 233

(4’ 20720°5757 4 )’(4’ 20720° 575720 5) (

33 3 22114
4720720°5°5720° 5"
37 7 33191

mod 1).

Including two signs of categorical dimensions, we have 12 unitary MFCs.

o (dx,dr,dy) = (—1,(, (). The sets of conformal dimensions are the same as the previous
case. There are 12 MFCs.
o (dx,dr,dy) = (1,¢,—¢"). Different MFCs are given by

19 132117 3

(hX7 hY)hZ7 hTa hU7 hV’ h‘W) =
1 9 1731 1 4
4720720°575720" 5"
319 3 21 7 3

111324 91

<4’20’20’5’5’20’5>’(4’20’20’5’5’20’5)’
1 1 17 3 4 13 2
420720°5°5720° 5"
311 3 24191

(4’ 20720°5757 20 5)’<47 20°20°575720" 5"

319 7 3111 4
4720720°5°5720° 5"

With two signs of categorical dimensions, there are 16 MFCs.
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o (dx,dr,dy) = (—1,¢,—C¢™'). The sets of conformal dimensions are the same as the
previous case. There are 16 MFCs.

o (dx,dr,dy) = (1,—¢', —¢7Y). Different MFCs are given by

(thahY7hZ7hT7hU7h'VahW) - ( _____________ 70)7
L1 44173)(3191911 3 92
4'20°20°5°5°20°57'4°20°20° 5’ 5 20’
31119143 3111144 7 3
————————————— d1).
G w5y Twwssas Medl)
There are 12 MFCs.

o (dx,dr,dy) = (—=1,—C¢', —(7'). The sets of conformal dimensions are the same as the
previous case, and there are 12 MFCs.

The S-matrices are given by

1 dX dde dxdT dT dU dXdeU deU
dx -1 —dy —drp dxdr dxdy  —dpdy dxdpdy
dxdy —dy 1 —dpdy  dxdrdy  —dx dp —dxdrp
J_ dxdrp —dp —dpdy 1 —dx  dxdpdy dy —dxdy
dp dxdyr dxdrdy  —dx -1 dprdy  —dxdy —dy
dy dxdy —dx  dxdrdy  drdy -1 —dxdrp —drp
dXdeU _deU dT dU —dde —d)(dT -1 dX
drdy  dxdpdy —dxdr —dxdy  —dy —drp dx 1

They have additive central charges

c(B) = C(Veci/lQZ) + ¢(Fib) + ¢(Fib) (mod 8)

where
% (hT,U = %)7
B 1 (hx = 1) . —2  (hry=13)
1 ) s 9
c(Vecyy;) = {_1 (hy = %)' ,  ¢(Fib) = 15_45 (hoys = §)7 (mod 8)
ESTRN—
There are

2x1242x164+2x 12 =280

MFCs, among which those 12 with the last quantum dimensions are unitary. We classify
connected étale algebras in all 80 MFCs simultaneously.
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An ansatz

A%1@nXX@nyY@nzZGanTT@nUU@nVV@nWW

with n; € N has

, 3+
FPdlmB(A) = 1+nX+C(ny+nZ+nT+nU)+

5 (TLV + nw)

For this to obey ([2.14]), the natural numbers can take only 31 values

(nX7 ny,nz,nr, Ny, Ny, nW)

The first is nothing but the trivial connected étale algebra A = 1 giving BY ~ B4 ~ B. Next,
those with X’s cannot be commutative because the simple object has (dx,hx) = (£1, 1)
(mod 1/2 for h) and cx x = =i -id; [22]. Thirdly, the simple objects Y, Z, T, U,V have
nontrivial conformal dimensions, and candidates with them are ruled out. Thus, we are left
with those with just W’s. Concretely, the only nontrivial candidate isny =lor A= 1o W.
When Ay = 0 mod 1, it can be commutative. Indeed, it is known [10] to be a commutative
algebra in Fib X Fib. It further turns out to be separable. To show this point, we identify

Ba.

(0,0,0,0,0,0,0),(1,0,0,0,0,0,0),(2,0,0,0,0,0,0),
(3,0,0,0,0,0,0),(4,0,0,0,0,0,0),(2,1,0,0,0,0,0),
(2,0,1,0,0,0,0),(2,0,0,1,0,0,0),(2,0,0,0,1,0,0),
(1,1,0,0,0,0,0),(1,0,1,0,0,0,0),(1,0,0,1,0,0,0),
(1,0,0,0,1,0,0),(1,0,0,0,0,1,0),(1,0,0,0,0,0,1),
(0,1,0,0,0,0,0),(0,2,0,0,0,0,0), (0,1,1,0,0,0,0),
(0,1,0,1,0,0,0),(0,1,0,0,1,0,0),(0,0,1,0,0,0,0),
(0,0,2,0,0,0,0),(0,0,1,1,0,0,0), (0,0,1,0,1,0,0),
(0,0,0,1,0,0,0),(0,0,0,2,0,0,0), (0,0,0,1,1,0,0),
(0,0,0,0,1,0,0),(0,0,0,0,2,0,0),(0,0,0,0,0,1,0),
(0,0,0,0,0,0,1).

It has FPdimp(A) = %5, and demands

FPdim(BY) =2, FPdim(B4) =5+ V/5.

Calculating b; ® A, we find simple objects

oW, XeV, YeZaV, ToUoW.
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This suggests B4 has rank four. Indeed, we find a four-dimensional NIM-rep

010 0 0010
1000 0001

m=lu nx=1fg o0 1| ™=|1 00 1| "
0010 0110

0001 0110 100 1

foo 10 1001 fo 110

"=l 1t ol T ™ T i o002 ™ T o1 20

1001 0120 100 2

This gives identifications
mE1EW, my=XBpV, m3=YDZBV, muy=ToUDW.

The first two have FPdimg, = 1, and form BY ~ Veci/lgz. This also matches central charges
because ¢(Fib X Fib) = 0 (mod 8) when hy = 0 (mod 1), and hx = hy gives the conformal
dimension of my € BY. One can identify B4 by working out the monoidal products:

@A | My | Mo ms My
my | My | My mg3 my
may my my msg
ms my @ my | mg b ms3
my my D my
We get
Ba ~ su(2)s.

Since this is semisimple, A is separable, hence étale:
2 3 1 4, 14
A=l W (dTadehTuhU> = (C7C7575>7(_C 7_< 7575)‘ (mOd 1 for h’) (232)
We conclude

Connected étale algebra A | By | rank(B4) | Lagrangian?
1 B 8 No

1@ W for ‘D su(2)s3 4 No

Table 12: Connected étale algebras in rank eight MFC B ~ Veci/lzZ X Fib X Fib

Namely, those 16 in (2.32)) fail to be completely anisotropic, while the other 64 MFCs B ~
Veci/l2Z X Fib X Fib’s are completely anisotropic.
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2.4.7 B~ 50(9),
The MFCs have eight simple objects {1, X,Y, Z, T, U, V, W} obeying monoidal products

leYoZoTaoU | XY ZeT U

® X Y A T U V w
1 X Y A T U V w
X 1 Y Z T U w V
Y 1o XaoU Teou Z®T Yoz VoW VoWw
Z leXoZ YoU YorT VoeWw VoW
T le XY ZoU VoW VeoWw
U leXaT VoW VoW
%

w

leYoZaoToU

Thus, they have

FPdimz(1) = 1 = FPdimg(X), FPdims(Y) = FPdimg(Z) = FPdimg(T) = FPdimg(U) = 2,

FPdimg(V) = FPdimg(W) = 3,

and
FPdim(B) = 36.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dy,.
There are two (nonzero) solutions

(an dY7 dZa dT7 dU7 dVa dW) = (]-7 27 27 2a 27 _37 _3>7 (]-7 27 27 2a 27 37 3)

Only the second gives unitary MFCs. They both have the same categorical dimension

D?*(B) = 36,
and four conformal dimensiond™|
1 7 4 1 1 741 3
hx,hy,hz, hr, hy, hy, hy) = Z20.-.20.Z= 0L 2=
(X: Y, vz, v, Ly, 1ty W) (0797()’9797072)7(()’9)0797974’4))
2 5 8 1 2 58 1 3
0,2,0,2,2,0,2),(0,2,0,2,2,=,2 d1
(797 79797 72)7( 797 79797474) (mo )

18Naively, one finds 24 conformal dimensions, but the other 20 are given by permutations (Y7TU) and
(VW). Thus, different MFCs are labeled by the four conformal dimensions in the main text.
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The S-matrices are given by

1 dx dy dy dr dy dy dw
dX dX dy dZ dT dU —dv —dW
dy dy s -2 s & 0 0
~ dy dz -2 4 -2 -2 0 0

§= dr dr s -2 § s 0 0
dy dy " -2 s & 0 0
dy —dy 0 0 0 0 —dy dw
dy —dw 0 0 0 0 dw —dw

with

52481111, s’ = 4cos —, T
18 9 9
10

or their permutations (ss's”). They have additive central charges
¢(B) =0 (mod 8).
There are
2(quantum dimensions) x 4(conformal dimensions) x 2(categorical dimensions) = 16

MFCs, among which those eight with the second quantum dimensions are unitary. We classify
connected étale algebras in all 16 MFCs simultaneously.
An ansatz

A=1dnx X dnyY &nzZ &nrT &ngU &nyV &nywW
with n; € N has
FPdimg(A) =1+ nx + 2(ny + nz + ne +ny) + 3(ny + nw).

For this to obey , the natural numbers can take only 56 values. The sets contain one
with all n;’s be zero. It is nothing but the trivial connected étale algebra A = 1 giving
BY% ~ B4 ~ B. Next, let us study candidates with nontrivial simple object(s). We can rule
out those with Y, T, U, W because they have nontrivial conformal dimensions and fail to meet
the necessary condition (2.17). Thus, we are left with candidates with just X, Z, V. Note
that {1, X, Z} form symmetric pre-modular fusion subcategory Rep(S3).

Solving by setting ny, ny, ny, nw to zero, we get 16 sets

(nx,nz,ny) = (0,0,0),(1,0,0),(2,0,0),(3,0,0),
(4,0,0),(5,0,0),(3,1,0),(2,1,0),
(2,0,1),(1,1,0),(1,2,0),(1,0,1),
(0,2,0),(0,1,1),(0,1,0),(0,0,1).
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Some of these are ruled out by studying Frobenius-Perron dimensions. The three candidates
(nX7 ng, nV) = (37 07 0)7 (17 17 0)7 (07 07 1)

have FPdimg = 4 and demand FPdim(B%) = 3¢. However, there is no MFC with such
Frobenius-Perron dimensions. Thus, the three candidates are ruled out. Similarly, four
candidates

(nx, nz, nv) = (4, 0, O), (2, 1, 0), (O, 2, 0), (1, 0, 1)

36

5c- Thus, we are left with nine

are ruled out because there is no MFC with FPdim =
candidates

(nx,nz,ny) = (0,0,0),(1,0,0),(2,0,0), (5,0,0),(3,1,0), (2,0, 1),(1,2,0), (0,1,1),(0, 1,0).
The first gives A = 1, and we already found this above. Among the other eight, from the
lemma 1, we know three with (nx,nz,ny) = (1,0,0),(1,2,0),(0,1,0) or AZ 10X, 16X D
27,1 @ Z are commutative algebras because they are so in A € Rep(S3) C so0(9), for all

conformal dimensions. It turns out all of these are also separable, hence étale. Let us check
this point one after another by identifying B4.

A=1& X. Since it has FPdimp(A) = 2, it demands

FPdim(B%) =9, FPdim(B,) = 18.
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In view of anyon condensation, we ‘identify’ 1, X, hence V,W. The other Y, Z, T U ‘split’

into two each. This suggests B4 have rank 10. Indeed, we find a 10-dimensional NIM-rep

)

000110O0O0O0G®O

01 1000O0O0O0O

ny = 1l

O OO O OO O oA
— O OO +H O o oo
OO — O O O —H O O O
OO — O O O O — O O
— o O OO oo - O
SO~ O O OO oo
S OO —H O O o oo
S oo oo —HA - OO
OO DO O H OO HO
OO H—-H OO OO OO

I

N

N
OO OO OO OO
SO —=H H O OO o OO
— O O - O O O oo
OO H O H OO OO
S oo O —H O O O
OO OO HO OO
OO o oo H O H O
O OO o o oo —H O
OO o O o oo - OO
— O O OO O OO

I

P~

N

<

N

Y

1111111110

[l loleolololalaela
— O OO oo —H O oo
— O OO HO O OO
DO OO H OO O H O
SO OoO—H OO o —H OO
O —H O O OO —H O OO
SO —H OO H OO oo
O —H O — O O O O OO
SO —H O H O O o OO
O OO OO OO —HA— O
[ .
S z
I
oo ocoocoocoocoocoocooN A A A A A A A~ A
DO OO A ODODO OO0 OO0 oo oo
D OO 1T OO O OO0 oo oo
—n O O DD DD DO OO oo o oo oo
—n O OO DD DO Do oo oo oo oo
DO A DD DODDODDODHODO DO o0o o0 oo
O O DD DO Do oo oo oo
OO DO DD I 1T OO DD Do oo oo o oo
OO DO 1T OO T OO Do oo oo oo
O OO OO " H OO OO oo oo oo
[ I
&~ -~
< <

The solution gives identifications

mio =VaeW.

%’U%m%

msg

ngm'ﬁ

me

gzgm57

= ms, my

=Y

ma = 1@X, mo

They have quantum dimensions ([2.24])

= £3.

dp, (m1o)

’79)7

dg,(m;)=1(j=1,2,..
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Furthermore, they obey monoidal products

9
m; ®a Mg = mig = myg@am; (j=1,2,...,9), mig®am = @mj-
j=1

This shows
Bg ~ VeC%/gza By ~TY(Z/9Z).
The identification also matches central charges. See section [2.5.1] Since TY(Z/9Z) is

semisimple, A is separable.

A=16 X ®2Z. It has FPdimg(A) = 6, and demands
FPdim(BY) =1, FPdim(B,) = 6.

We can identify BY ~ Vectc. This matches central charges. Calculating b; ® A, we find
candidate simple objects of B,y

leX®2Z, YeToU VoW

with Frobenius-Perron dimensions one. Logically, the latter two can have coefficients, but the
possibilities are ruled out.ﬂ In view of anyon condensation, the second and the third simple
objects can ‘split’ into two and three, respectively. In order to match the Frobenius-Perron
dimension, they should ‘split.” Thus, we search for six-dimensional NIM-reps. Indeed, we

9Here is a proof.

First, the third simple object should have coefficient one. Since it always appears in the form 3(V & W)
in b; ® A, one can have 3(Va@ W), or Ve W,2(V & W) as simple object(s). The first possibility contributes
32 to FPdim(B4), and it exceeds six. The latter contributes 12 + 22, and together with other simple objects,
the contributions exceed six. Thus, the coefficient of V& W should be one.

Second, the second simple object should also have coefficient one. It can have coefficient two. Then, the
three simple objects match Frobenius-Perron dimension 12 + 22 + 12 = 6. Furthermore, we find a three-
dimensional NIM-rep

01 0 2 00 0 0 3
nlzlgznx, ny =nr =ny = 2 1 0 5 Ny = 0 2 0 s ny = 0 0 6 =Nnw
0 0 2 0 0 2 1 10

with the identifications. However, working out the monoidal products ® 4, we find the putative fusion ring
is not isomorphic to any of rank three fusion categories. In particular, there is no fusion category with
mao ®4 m3g = 2mg. Thus, the second simple object should also have coefficient one.
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find a solution

011000
1 01 000
1 100 00
ny = lg = ny, ny=nr=n=1|g 0001 1|
000101
000110
20 0000 000111
020000 000111
10 0 2 0 0 0 000111
"=looo2o00"™ |t 11000f "™
000020 111000
000 O0O0 2 1 11 000

This gives identifications
m 216X D22, me=YSTHU=Zm3, mg=Ems=Zmg=V D W.
In B4, they have quantum dimensions
dy=dy=ds=1, dy=ds;=dsg==+l.

The result tells us B4 should have rank six. Let us try to figure out B4.

As all simple objects have Frobenius-Perron dimensions one, it should be multiplicity-
free. Thus, the fusion ring would be either FR$? or FR$* %l We can also work out monoidal
product ® 4, but the free module functor cannot fix it uniquely. What we can fix is

mi@am; = m; EmRamy (j=1,2,...,6), ma®@amy = mz, ma®@amz = my = mzRamg,  Maz@amz = my.
Namely, {m1, my, m3} form the Z/37Z fusion ring. We also learn

(mo ®m3) ®a (Mg & ms®mg) = Fu(Y V)
=Fy(VeW)
= 2(my & ms O mg) = (my & ms O mg) @a (Mo G mg),
(M4 & ms & mg) @a (Mg B ms Bmg) = F4(VRV)
~F,leYeZaeTaU)
> 3(my ® ma B ms3).

When my ®4 mg = ms ®4ms = mg @4 mg = mq, using consistency and associativity, we get
two fusion rings

20We follow the notation of AnyonWiki [16]. A symbol FR!" denotes a fusion ring with rank r and n
non-self-dual simple objects. The subscript ¢ labels different fusion rings with the same (r, n).
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or

depending on, say, m4 ®4 ms. Note that the non-commutativity appears automatically as a
consequence of consistency and associativity. These are isomorphic to the fusion ring FR?’2
On the other hand, when my ® 4 my = mq, ms @4 ms = ma, mg ® 4 Mg = Mg, consistency and
associativity give a unique fusion ring

QA | My | Mo | M3 | My | M5 | Mg
myp | My | Mo | Ty | My | My | Mg
mo mg | My | Me | My | M5
mg Mo | M5 | Me | My
My my | M3 | Ma
ms mg | Ty
Mg msg

or

respectively.
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Note that the commutativity also appears automatically as a consequence of consistency and
associativity. This is isomorphic to the fusion ring FR?’4 (Since my 5 ¢ enter symmetrically,
the other monoidal products are given by permutations of simple objects.) Therefore, we
find

By ~ C(FR%?) or C(FR).

(It is unsatisfactory that we cannot fix B4 uniquely. However, since the two have the same
ranks, the ambiguity does not affect our physical applications.) Since this is semisimple, A
is separable, hence étale.

A=1@Z. It has FPdimg(A) = 3, and demands
FPdim(BY) =4, FPdim(B,) = 12.

Matching of additive central charges, Frobenius-Perron dimensions, and the invariance of
topological twists only allow
BY, ~ Veci/lm > Veci/lm (hv, hw) = (3, 1), (mod 1)
ToricCode (hv, hw) = (0, 3).

The category B4 of right A-modules has additional simple objects. A natural scenario has two
more simple objects with Frobenius-Perron dimensions two so that 1+1+1+1+422+4+22 = 12.
Indeed, we find a six-dimensional NIM-rep

010000 001000
100000 001000

e e |00 L0000 g — |1 L0000
) 000100]|" 000111}
000001 000100
000010 000100
110000 000110 000101
110000 000101 000110
002000 000211 000211
"=Z1ooo0200" "™ 112000 ™ T112000
000011 101000 011000
000011 011000 101000

22The identification with the notation in AnyonWiki [16] is given by

~ ~ ~ N4

mi =1, meg =5 m3=6, mg=2 ms=3, mg=A4.
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The solution gives identifications
ml%l@Z, ngX@Z, m3§Y@T@U7 m4§V@VV, m5§V, mﬁ%W

In view of anyon condensation, mj 256 are deconfined, and form BY. The other two simple
objects ms 4 are confined. In By, they have quantum dimensions

dBA<TTL1> =1= dBA(mQ), dBA(TTL3> = 2, dBA(m4) = :l:2, dBA(mg,) =41 = dBA(mﬁ).

Working out the monoidal products ® 4, we find

KA | M1 | Mo ms3 My ms | Mg
myp | My | My ms3 My ms | Mg
mao my ms My Me | M5
ms m1@m2@m3 m4@m5@m6 my | My .
my mq D mo @ ms3 | T3 | M3
ms my | Mo
meg my

The fusion ring is isomorphic to FRS’O This in particular implies 1 & Z is separable, and
étale.

Now, we are left with (nx,nz,ny) = (2,0,0),(5,0,0),(3,1,0),(2,0,1),(0,1,1). We study
these in turn. It turns out only the last, A= 1& Z @&V, is connected étale.

A=1@2X. It has FPdimg(A) = 3, and demands
FPdim(BY) =4, FPdim(B,) = 12.
Calculating b; ® A, we find candidate simple objects of Ba:
1e2X, 20X, 3Y, 3Z, 3T, 30U, V, W.

(The putative B4 may also have V @& W, but our discussion below does not depend on the
presence/absence.) In a putative B4, they have Frobenius-Perron dimensions

L1002, 2, 2, 2 1, 1,

23The identification of simple objects with the notation in AnyonWiki is given by
mp =1, me=4, m3=6, ms=H ms=2, mg=3,

or its permutation (23).
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respectively. In order to match additive central charges and Frobenius-Perron dimensions,
BY should consist of {142X,2® X, V, W}. The four additional objects contribute 4 x 2% = 16
to FPdim(B4), and exceeds 12" Thus, the candidate is ruled out.

A=1@5X. It has FPdimg(A) = 6, and demands
FPdim(BY%) =1, FPdim(B,) = 6.
Computing b; ® A, we find candidate simple objects of B4 with the smallest Frobenius-Perron
dimensions:
1e5X, b X, 3Y, 37, 3T, 3U, VoW,
They have Frobenius-Perron dimensions
L, 1, 1, 1, 1, 1, 1, ...,

respectively. Again, their contributions to the Frobenius-Perron dimension exceed six, and
the candidate is ruled out.

A= 193X ® Z. It has FPdimg(A) = 6, and demands
FPdim(BY) =1, FPdim(B,4) = 6.
Calculating b; ® A, we find candidate simple objects of By:
1e3XaeZ, 3e6XeZ YaeToeU 3Y, 31, 3U,

Note that there should exist candidate simple objects made of V,W. They have Frobenius-
Perron dimensions

Lo 1 1L 11
respectively. Again, their contributions to Frobenius-Perron dimension exceed six, and the
candidate is ruled out.

c

A=21®2X @ V. It has FPdimg(A) = 6, and demands
FPdim(BY%) =1, FPdim(B,) = 6.
With the free module functor Fj4(b;) = b; ® A, we find candidate simple objects of By:
12XV, 20 XW, 3Y, 3Z, 3T, 3U, VaeW,

There should exist more simple object, but they do not affect the following discussion. They
have Frobenius-Perron dimensions

L, 1, 1, 1, 1, 1, 1, ...,

respectively. Their contributions to FPdim(B,4) exceed six, and the candidate is ruled out.

240ne may wonder why it is not allowed to pick just two candidate simple objects from those four with
Frobenius-Perron dimensions two. This can match Frobenius-Perron dimensions, but one finds the actions
bj ® — cannot be closed.
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A1 Za®V. It has FPdimg(A) = 6, and demands
FPdim(BY) =1, FPdim(B,4) = 6.
Computing b; ® A, we find candidate simple objects of Ba:
leZaV, XeZeW, YoeTaUaVaeW
They have Frobenius-Perron dimensions

1, 1, 2

) ) )

respectively. Their contributions to FPdim(B,4) matches, 12 + 12 + 22 = 6. This suggests B
has rank three. Indeed, we find a three-dimensional NIM-rep

010 0 01

TL1:13, nx = 1 00 s Ny =Ny =Ny = 0 01 s
001 (1 11
1 10 1 01 011
Ng = 1 10 s ny = 011 s nw = 1 01
0 0 2 11 2 11 2

The solution gives identifications
m =162V, me=E2XeZeW, ma=YaeTaoUasVaeW.

Computing their quantum dimensions (2.24), we find the candidate can be separable only
when B is unitary. Then, the right A-modules have quantum dimensions

dBA(ml) =1= dBA(mg), dBA(WL3> = 2.

Working out the monoidal products ® 4, we find

@4 | M1 | M2 ms
my | M1 | M2 mg
my my mg
msa my B mo D mg

We can identify B4 ~ Rep(S3). Since Rep(.S3) is semisimple, A is separable.

Here, a careful reader would notice that we have not shown commutativity of the can-
didate. For V' to give commutative algebras, we need to limit our MFCs to those with the
first and third conformal dimensions. Then, since these are conformal dimensions of C(By, 2)
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or its conjugate, the commutativity can in principle be proven using the F- and R-symbols
obtained in [39], and computing multiplication morphism p. However, without these com-
putations, we can conclude this should be connected étale from the lemma 2. We have
already seen 1 @ Z gives so(9)y — ToricCode (for the first and third conformal dimensions).
The latter MFC is known [23] to have two (for unitary ToricCode) or one (for non-unitary
ToricCode) nontrivial connected étale algebra(s). This implies, for unitary ToricCode, there
are two inequivalent operations

ToricCode — Vectc.

Therefore, for B ~ s0(9), which admits unitary BY =~ ToricCode, there should exist two
inequivalent operations
50(9)y — Vectc.

We have already found one nontrivial connected étale algebra, A = 1 & X & 27, giving
one such operationﬁ From our considerations so far, the only candidate which could give
another operationis A = 14 Z & V. Thus, we learn the candidate is connected étale. Indeed,
this matches known results in C(By, 2)@ On the other hand, when A = 1 ® Z gives non-
unitary BY ~ ToricCode, the Toric Code MFC admits [23] only one nontrivial connected
étale algebra. Thus, A = 1@ Z &V cannot be connected étale. This conclusion is consistent
with our result above that the candidate is not separable in non-unitary so(9)s. We found a
connected étale algebra

1
A=1 LBV (dv, dW7 hv, hw) = (3, 3, 07 5) (mod 1 for h) (233)

We conclude

Connected étale algebra A Ba rank(B,4) | Lagrangian?
1 B 8 No
1®X TY(Z/9Z) 10 No
10X 27 C(FR%?) or C(FRS$™) 6 Yes
1eZ C(FRY?) 6 No
1e ZaV for (2.33) Rep(S3) 3 Yes

Table 13: Connected étale algebras in rank eight MFC B ~ s0(9)2

All the 16 MFCs B ~ s0(9)2’s fail to be completely anisotropic.

25Note that
leX)o(le2)~1eX o227

26We thank Terry Gannon for teaching this fact to us.
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2.4.8 B~ Rep(D(D3))
The MFCs have eight simple objects {1, X,Y, Z, T, U, V, W} obeying monoidal products

® X Y A T U Vv w

1 X Y A T U Vv w

X 1 Y Z T U w V

Y loXaY ToeU ZoU ZaT VoWw Vow

Z le XaZ YU YT VeWw Voew

T leXeT YoZ VoWw VoWw

U leXaeU Ve Voew

Vv leYeoZeToU | XY ZbT U

w leYeZoToU
Thus, they have
FPdimg(1) = 1 = FPdimg(X), FPdimg(Y) = FPdimg(Z) = FPdimg(T) = FPdimg(U) = 2,

FPdimg(V) = 3 = FPdimg(W),

and
FPdim(B) = 36.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dy,.
There are two (nonzero) solutions

(dx,dy,dz,dp,dy,dy,dw) = (1,2,2,2,2,-3,-3),(1,2,2,2,2,3,3)
with the same categorical dimension
D?*(B) = 36.

They both have the same four conformal dimensionsg®’|

12 1 1213
I, hy s hag, b b, B, o) = =20, - S gne
(X; Y, ez, v, Ly, 1oy, W) (070 3 3 2)( 73737474)7
1122 1 112213
S 220,902 22222 1).
(Oa3737373a072)7(07373a3a37474) (mOd)

2"Naively, one finds 72 consistent conformal dimensions, but the others give the same MFCs with the one
in the main text under permutations of simple objects (Y Z), (YT),(YU),(ZT),(ZU),(TU),(VW).
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They have S-matrices

1 1 2 2 2 2 dy dw
1 1 2 2 2 2 —dy —dw
2 2 s s -2 -2 0 0
3 2 2 s s =2 =2 0 0
2 2 -2 -2 -2 4 0 0
2 2 -2 =2 4 =2 0 0
d —dy 0 0 0 0 #£3 F3
dy —dyw 0 0 0 0 =F3 +£3
with
n ) (4,—2) (1st and 2nd h),
(55) =1 (22.4) (3rd and 4th 1)
They have additive central charges
o(B) = {o (1st&2nd h), (mod 8).
4 (3rd&4th h).

There are
2(quantum dimensions) x 4(conformal dimensions) x 2(categorical dimensions) = 16

MFCs, among which those eight with the second quantum dimensions are unitary. We classify
connected étale algebras in all 16 MFCs simultaneously.
An ansatz

AZ21Dnx X dnyY &nzZ ®ngT SngU & nyV & nyW
with n; € N has
FPdimg(A) = 1+ nx + 2(ny + nz + nr + ny) + 3(ny + nw).

For this to obey , the natural numbers can take only 56 values just as in the previous
example. The sets contain the one with all n;’s be zero. It is the trivial connected étale
algebra A = 1 giving BY ~ B4 ~ B. Other candidates with T, U, W have nontrivial conformal
dimensions, and they fail to be commutative. Thus, we are left with candidates with just
X,Y,Z V. Note that {1, X, Y} {1,X,Z} form Rep(S3) C Rep(D(Ds3)). Apart from the

trivial one, there are 24 candidates

(nx,ny.nz,ny) = (1,0,0,0), (0,1,0,0), (0,0, 1,0), (0,0,0,1),
(2,0,0,0),(1,1,0,0),(1,0,1,0),(1,0,0,1),
(0,2,0,0),(0,1,1,0),(0,1,0,1), (0,0,2,0),
(0,0,1,1),(3,0,0,0),(2,1,0,0), (2,0,1,0),
(2,0,0,1),(1,2,0,0),(1,1,1,0), (1,0,2,0),
(4,0,0,0),(3,1,0,0),(3,0,1,0), (5,0,0,0).
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Some of these are ruled out by studying Frobenius-Perron dimensions. The four candidates
<nX7 ny,Ngz, nV) = (07 07 07 1)7 (17 17 OJ 0)7 (17 07 17 O)? (37 07 07 O)

have FPdimg = 4 and demand FPdim(BY%) = 4. However, there is no MFC with such

Frobenius-Perron dimension. Thus, the candidates are ruled out. Similarly, seven candidates

(annY7n27nV) = (170707 1)7 (07 17 170)7 (0727070)7 (07 07270)7 (27 17070)7 (2707 170)7 (4707070)

are ruled out because there is no MFC B9 with Frobenius-Perron dimension FPdim(B%) = 32.

Thus, we are left with 13 nontrivial candidates

(nXa ny,nz, TLV) = (]-a 07 07 0)7 (Oa ]-7 07 0)7 (Oa Oa ]-7 0)7 (27 Oa 07 0)7 (07 1a Oa ]-)7 (07 07 1a 1)7 (27 07 Oa ]-)a
(1,2,0,0),(1,1,1,0),(1,0,2,0),(3,1,0,0), (3,0,1,0), (5,0,0,0).

Thanks to the lemma 1, we know five of them (ny,ny,nz,ny) = (1,0,0,0),(0,1,0,0),
(0,0,1,0),(1,2,0,0),(1,0,2,0) or A 2 1 X, 1Y, 102,106 X ®2Y,1® X & 27 are
commutative algebras (for certain conformal dimensions) because they are so in (symmetric)
braided fusion subcategory Rep(S3) C B [22]. Let us see whether they are separable or not
by identifying B4. As a result, we find all of them are separable, hence étale (for certain
conformal dimensions).

A=1® X. The simple object X has (dx,hx) = (1,0) (mod 1 for hx), and it has trivial
braiding cx x = id; [22]. Thus it is a commutative algebra for all four conformal dimensions.

Furthermore, it turns out separable, hence étale. Let us check this point by identifying B 4.
Since it has FPdimpg(A) = 2, it demands

FPdim(B%) =9, FPdim(B,) = 18.

Employing the matching of central charges (2.12)) and the invariance of topological twists
(2.20)), we identify
B ~ Vec%/gZ X Vec%/g,z. (2.34)

(See section 2.5.2]) What is the category By of right A-modules? We find
Ba~ TY(Z/3Z x Z./3Z). (2.35)

One of the easiest ways to find this fact is to perform anyon condensation. It ‘identifies’ 1, X,
and hence V, W. The resulting 1 X and V& W have Frobenius-Perron dimensions one, three
in B4. The other simple objects Y, Z, T, U split into two each. They all have Frobenius-Perron
dimensions one in By4. In total, we have nine invertible simple objects forming Z/3 x Z/3
MFC , and one additional non-invertible simple object with FPdimp, = 3. The fusion

68



category is identified with a Z/3Z x 7Z/37Z Tambara-Yamagami category 2.35.@ Since

28More rigorously, we should find NIM-reps. Indeed, we find four 10-dimensional solutions. One of them

is given by

)

)

S OO O OO OO AN OO oo oo
OO 1O O 10000 "Moo o OO
OH OO OO 1000 HOOOOoOOoOOoO o O
O 1 O OO OO 100 OO OO OO OO
OO 10000 O 10 OO0 000 o oo
S OO OO0 OO0 OO 10O OoOO0o
S OO O 100000 OO HOOOoOo
OO DO OO 1T OO 10 OO OoOoOo O O OO
OO OO OO A HOO OO —HO OO OO
OO O A 1O OO OO0 o - — O

I I .

. . I
S OO OO OO OO N OO o oo o oo™ A+ A A A A~~~ O
SO OO OO A OO0 OH OO A ODODODODODODDODODO OO0 o
SO OO "I 1O OO0 OO A1 OO0 OO0 oo H
S OO T OO OO —HO HOODOO1OODOO OO0 O OO H
OO OO —H OO 1 OO HOOODODO—H OO OO0 o
OO O OO 1O 1 OO OO OO OO0 1O OO oOooOoo o
SO OO OO —HO—HO OO OO ODO 10O OO0 Oo oo H
N O OO OO OO0 OO0 HOOOHTOO OO0 OoOOoO oo H
—H O O OO0 OO0 HOOO—HO OO ocoocoocoH
O H OO DO DODODODD OO A HODODODODOD DO ocoocoocoH

I I I
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=
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The NIM-rep gives identifications

mw%V@W

= U = my,

= mr, Mg

=T

me

= ms,

TTL4§Z

gygm?ﬂ

ml%l@X, mo

(The other three solutions give the same identifications.) They have

= +3.

dBA (mlo)

- 9),

dBA(mj) =1 (]:1727

Working out the monoidal products ® 4, we find

mio ®a mig = mj,

9),

m10®Amj (j:1,2,

~)

= myo

m; @4 Mo

9
j=1

showing ([2.35)).
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TY(Z/3Z x Z/3Z) is a fusion category, it is semisimple. Therefore, A is separable, and étale.
A= 1@Y. For the first and second conformal dimensions, 1Y gives commutative algebra.
What is left is to check its separability. It has FPdimg(A) = 3, and demands
FPdim(BY) =4, FPdim(B,) = 12.
Computing b; ® A, we find candidate simple objects of Ba:
leY, XoY ZoeToU VoW, V, W
with some multiplicities. In B4, they have Frobenius-Perron dimensions
1, 1, 2, 2, 1, 1,

respectively. The invariance of topological twists, matching of central charges, and Frobenius-
Perron dimensions demand

ToricCode (hv, hw)
Vecy jy;, B Vecy 1y, (hy, hw)

(mod 1)

I
/N
= “CD

B%={1@Y,X@Y,MW}:{

INSCENT L
~— —

The two additional simple objects give correct Frobenius-Perron dimensions for them to
match FPdim(B4) = 12. Indeed, we find four six-dimensional NIM-reps. One of them is
given by

010000 110000

100000 110000

, loo1000 loo2000

M=t W= A 001000 ™ Tloooz200]|

000001 000011

000010 000011
001000 0007110 000101
001000 000101 000110
111000 000211 000211
Nz=MrTEW =00 0011 1 ™ T it 20000 ™ Tl112000
000100 101000 011000
0007100 011000 101000

The solution gives the identifications
ml%l@Y, mg%X@Y, mg%Z@TEBU, m4§V@VV, m52V, mG%W

(The other three solutions give the same identifications.) In B4, they have quantum dimen-
sions

dBA (ml) = dBA(mQ) = dBA (m3) =1, dBA(m4) =12, dBA (m5) =+1= dBA (m6)7
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where signs are correlated. Working out the monoidal product ® 4, we find

KA | M1 | M2 ms my ms | Mg
miy | My | Mo ms my ms | Mg
mao my msg My Mg | Ms
ms mpEmedmg | mg@msDmg | My | My .
My my P meDms | m3 | m3
ms my | o
meg my

Just as in the previous MFC, the category By of right A-modules is isomorphic to a fusion
category C(FRS’O). Thus, 1 @Y is separable, hence étale.

A=1@ Z. Since the ambient category B ~ Rep(D(Dj3)) is invariant under the change of
names Y <> Z, our previous analysis implies A = 1 @ Z is a connected étale algebra for the
first and second conformal dimensions. It gives B4 ~ C(FRJ").

A= 10X ®2Y. For the first and second conformal dimensions, the algebra is commutative.
Furthermore, it turns out separable, hence étale. So as to check this point, we identify By,.
Calculating b; ® A, we find candidate simple objects:

le X2y, ZoTaoU VoW,

with Frobenius-Perron dimensions

respectively. Logically, the latter two can have coefficients, but the possibilities are ruled
outﬁ For them to saturate FPdim(B,4) = 6, the second and third should ‘split’ into two and
three, respectively. Therefore, we search for six-dimensional NIM-reps. Indeed, we find four

29The proof is the same as in the footnote
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solutions. One of them is given by

200000 011000
020000 101000
W li—ne a0 02000 Lo_|t1ro000f_
L= 6= X 0000711 4 00007171 T
000101 000101
000110 000110
011000 000111
101000 000111
_fr1ro000 o001y
v 000200 Y 111000 W
000020 111000
00000 2 111000

The NIM-rep gives identifications
M EZ1EXB2Y, myZEZPTHOU=Zm3, ma=Ems=Zmg =V HW.
(The other three solutions give the same identifications.) They have
dp,(m1) = dp,(m2) = dp,(m3) =1, dp,(m4) = dp,(ms) = dp,(mg) = £1.

The result tells us By should have rank six. Since Fj4(b) ®4 Fa(b') are the same as in
13X @27 € s50(9),, we immediately learn B4 ~ C(FR%?) or C(FR$"). Since these are
semisimple, A is separable, hence étale.

AZ14 X@2Z. The symmetry Y <+ Z and the previous analysis imply A =2 16 X ¢ 27
is a connected étale algebra for the first and second conformal dimensions. It gives By =~
C(FRS?) or C(FR%*).

Now, we are left with eight candidates
(nXa ny,nz, TLV) - (27 07 07 0)7 (OJ ]-7 07 1)7 (07 07 17 1)7 (27 OJ 07 1)7 (17 ]-7 ]-7 0)7 (37 17 07 O>7 (37 07 ]-7 0)7 (57 07 07 O)

or A= 192X, 1eY @V, 102V, 102XV, 16 XY B Z, 103X Y, 103X Z, 145X,
We study these in turn. It turns out that all but two fail to be étale.

A=1@2X. It has FPdimg(A) = 3, and demands

FPdim(BY) =4, FPdim(B,) = 12.
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Calculating b; ® A, we find candidate simple objects of By:
1e2X, 2 X, 3Y, 37, 3T, 3U, V, W,
They have Frobenius-Perron dimensions
L1, 2 2 2 2 1, 1, ...,

respectively. In order to match Frobenius-Perron dimensions, BY should consist of {1 &
2X,2@® X,V,W}. The four additional candidate simple objects contribute 4 x 2% = 16 to
Frobenius-Perron dimension, and exceeds 12. Thus, the candidate 1 & 2X is ruled out.

A=1aY @ V. For the first and third conformal dimensions, V' has hy = 0 (mod 1), and
the candidate can be commutative. Taking Y into account, we learn this candidate can be
commutative only for the first conformal dimension. It has FPdimg(A) = 6, and demands

FPdim(BY) =1, FPdim(B,4) = 6.
Computing b; ® A, we find candidate simple objects:
leYaV, XeYaW, ZeaTaUaVaeW.
They have Frobenius-Perron dimensions
1, 1, 2

respectively. Their contributions to FPdim(B4) match, 12+ 12+ 22 = 6. The only possibility
for the category of dyslectic (right) A-modules is

BY ~ Vectc.

This identification also matches central charges. For B4, the analysis above suggests it has
rank three. Indeed, we find a three-dimensional NIM-rep

010 110
n =13, nx=\11 0 0], ny=1(1 1 0],
0 01 0 0 2
0 0 1 1 01 011
Ng =N =Ny = 0 0 1 s 011 nw = 1 01
1 11 (1 1 2 1 1 2

The solution gives identifications

M E1eYaV, mEXaYaeW, m2ZoTaUoVaoWw
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By computing quantum dimensions, we find the candidate can be separable only when dy =
3 = dw. Then, the right A-modules have

dBA(m1> =1= dBA(mQ), dBA(WLg) = 2.

Working out the monoidal products, we find

@A | M1 | Mo mg3
myp | My | M2 msg
UP: my g
ms mq ) mo D ms

We can identify
B4 ~ Rep(S3).

Since Rep(Ss3) is semisimple, A is separable.

We still need to show commutativity. However, since F- and R-symbols of the MFCs
are unknown (to the best of our knowledge), we take the indirect path through the lemma
2. We have already found A 2 1@ Y, 1 ¢ Z are connected étale, giving BY ~ Vecy /2LXT)2
The MFCs further admit connected étale algebras A’ € BY giving (BY)Y% ~ Vectc. More
precisely, for the first conformal dimensions, we get

BY ~ ToricCode,

and it admits one (when ToricCode is non-unitary) or two (when ToricCode is unitary)
connected étale algebra(s). (Taking both A = 1@ Y,1® Z into account, we have two or four
operations Rep(D(D3)) — Vectc, respectively.) One such operation Rep(D(Ds3)) — Vectc
isgiven by AZ 10X D2Y or A2 164 X ® 27 we found above. These exist regardless
of quantum dimensions, and we can identify them as connected étale algebras giving the
composition

Rep(D(D3)) — non-unitary ToricCode — Vectc.

When A =2 1@ Y,1 & Z give unitary ToricCode, i.e., dy = 3 = dy, we need two more
connected étale algebras. The only possibility is this and its symmetric partner. Therefore,
we conclude the candidate A = 1@ Z @V is connected étale for the first conformal dimension.
It gives

Rep(D(D3)) — Vectc.

We found
AZ1oY eV (dy =3 =dy&lst h). (2.36)
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A=1®ZdV. The symmetry Y <+ Z and the previous analysis imply this candidate is
connected étale

giving

BY ~ Vecte, Ba =~ Rep(Ss).

AZ 162X V. For the first and third conformal dimensions, this can be commutative.
It has FPdimp(A) = 6, and demands

FPdim(BY) =1, FPdim(B,4) = 6.
With the free module functor F4(b;) = b; ® A, we find candidate simple objects
le2XeV, 2 XeW, 3Y, 37 3T, 3U, VaeW, ...,

with additional simple objects which do not affect our discussion below. In By, they have
Frobenius-Perron dimensions

L, 1, 1, 1, 1, 1, 1, ...

respectively. Their contributions to FPdim(B,4) exceed six, and the candidate is ruled out.

AZ1oXdY @& Z. It has FPdimg(A) = 6, and demands
FPdim(BY) =1, FPdim(B,4) = 6.
Computing b; ® A, we find candidate simple objects
leXeYadZ 1eXa2y 1eXae2Z YeTeU ZoeToeU VaeW,
with Frobenius-Perron dimensions
1, 1, 1, 1, 1, 1,

respectively. Their contributions to Frobenius-Perron dimension match. We proceed to
search for a rank six fusion category. Employing the free module functor, one can work out
monoidal product ®4. As a result, we find

m; ®@ame =me=mg®am; (j=1,2,...,5).

We conclude 1 & X @Y & Z cannot be étale. The reason is as follows. If it were étale, B4
should be a fusion category. As all simple objects m; have FPdimg,(m;) = 1, the fusion
ring should be multiplicity-free and listed in [14] or AnyonWiki. However, there is no fusion
category with such monoidal product, a contradiction. Thus, the candidate is ruled out.
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AZ1®3X @Y. It has FPdimg(A) = 6, and demands
FPdim(BY) =1, FPdim(B4) =6

as in the previous candidate. Calculating b; ® A, we find candidate simple objects (assuming
the smallest possible Frobenius-Perron dimensions)

193X Y, 3eXaY, 1eX®2Y, 3Y, Z&eToeU, 3Z, 3T, 3U, 2V, 2W,
with Frobenius-Perron dimensions
i, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...,

respectively. Their contributions to Frobenius-Perron dimension exceed six, and the candi-
date is ruled out.

A= 1®d3X @ Z. Symmetry (YZ) of our ambient category B ~ Rep(D(Ds3)) and the
previous analysis rule out the candidate.

A= 15X, It has FPdimg(A) = 6, and demands
FPdim(BY%) =1, FPdim(B,) = 6.

Computing b;®A, we find candidate simple objects (assuming the smallest possible Frobenius-
Perron dimensions)

15X, bepX, 3Y, 37 3T, 3U, 2V, VoW, 2W,
with Frobenius-Perron dimensions
L 1 1, 1, 1, 1, 1, 1, 1,

respectively. Their contributions to Frobenius-Perron dimension exceed six, and the candi-
date is ruled out.

We conclude

Connected étale algebra A Ba rank(B,4) | Lagrangian?
1 B 8 No
16X TY(Z/3Z x 7./37) 10 No
1®Y for 1st&2nd h C(FRS) 6 No
1@ Z for 1st&2nd h C(FRS) 6 No
1® X @®2Y for 1st&2nd h | C(FRY?) or C(FR™) 6 Yes
1® X @27 for 1st&2nd h | C(FRY?) or C(FR$?) 6 Yes
leY @V for (2.36 Rep(Ss) 3 Yes
leZaV for (2.37 Rep(S3) 3 Yes

Table 14: Connected étale algebras in rank eight MFC B ~ Rep(D(Ds3))
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All the 16 MFCs B ~ Rep(D(Ds3))’s fail to be completely anisotropic. It may be useful to
summarize these results in a “cascade” of conformal embeddings:

Rep(D(D3))

A219Y
1st&2nd h

A1 Z
1st&2nd h

ToricCode ] Veci /o7 X VecZ /2Z ToricCode . VecZ /2 X VecZ / zz Voc% o Vec% .
(hy, hw) = (0, 3) (hy, hw) (hv, hw) = (0, 3) (hv hw) = (3,3) ’ ’
dv =3= dVV dv =-3= (]u dv =3 = dVL dv =-3= dw
1st h Ist h 2nd h st h Ist A 2nd £ 1st&2nd h
Vectc Vectc Vectc Vectc Vectc Vectc Vectc

Figure 1: “Cascades” of conformal embeddings

Let us see the consistency of our results.

3rd and 4th conformal dimensions. For these conformal dimensions, the only connected
étale algebra is A = 1@ X. Correspondingly, the only path is Rep(D(D3)) — Vecy, /a7 X

Vec;, saz- Since the resulting MFC has central charge (“anomaly”) different from Vectc, it
cannot descend to Vectc and the path terminates there.

2nd conformal dimension. For the second conformal dimensions, there are two additional
paths given by A= 1@ Y,1® Z. The compositions of the two operations
Rep(D(Ds)) — Vec%/gZ X Vecz/?)z, Rep(D(Ds)) — VecZ/2Z X VecZ/2Z
give two inequivalent paths
Rep(D(D3)) — Vec%/?,Z X Vec%/?)Z — Vectc.

This is consistent with the result that Vecy, /37, & Vec, /3z With such conformal dimensions ad-

mits two connected étale algebras. (See section [2.5.2) The other paths via Vec, Joz. X Vec, Joz.
also lead to Vectc because the MFC admits a Lagrangian algebra. The two inequivalent
compositions

Rep(D(D3)) — Veci/l2Z X Veci/l2Z — Vectc
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are given by two additional connected étale algebras A= 1 X G2Y, 10 X & 27 @

1st conformal dimension. For the first conformal dimensions, we still have A = 1 ®
X 1aY, 102,10 X P2Y,14 X ¢ 27, and the story about the path

Rep(D(Ds)) — Vec%/gZ X Vec%/BZ — Vectc

is the same as the last case. However, a difference appears in the other paths. For non-unitary
Rep(D(Ds)) with the first conformal dimensions, A = 1®Y, 1& 7 lead to ToricCode. It admits
one Lagrangian algebra giving ToricCode — Vectc. The two inequivalent compositions

Rep(D(D3)) — ToricCode — Vecte

are given by A= 16 X &2Y,1® X &2Z. On the other hand, for a unitary Rep(D(Ds)),
AZ10Y,1d Z lead to ToricCode with two Lagrangian algebras. The other inequivalent
paths are given by additional connected étale algebras A= 1Y @V, 1®Y @& V. In total,
there are four inequivalent paths

Rep(D(D3)) — ToricCode — Vectc

given by four Lagrangian algebras A= 1o X o2, 16 X @22, 1Y BV, 1620V,

2.49 B~su(2);
The MFCs have eight simple objects {1, X,Y, Z, T, U, V, W} obeying monoidal products

®|1]X Y Z T U V 44

1 X Y A T U V w

X 1 Z Y U T w V

Y 1T | XU YoVv ZeW TeV U W

Z 1T ZoW YoVu U W TeV

T loToV | XU W YeToV ZoUaoW
U leToV ZoUaoW YeTaoV
V loYoeTeaoV | XeZaoUasW
w leYoeT eV

30Note that
leY)e(leX)21leoXa2Y, (1e2)e(leX)21eoX @27
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(One can identify Veci/l2Z ={1, X} psu2); ={L,Y, T, V},and Z = XV, U= XQT, W =
X ® V.) Thus, they have

sin 2%
FPdimg(1) = 1 = FPdimg(X), FPdimg(Y) = —2% = FPdimg(Z),

sin =

9

sin 3¢ sin 4x
FPdimB( ) = — ?r = FPdimB(U), FPdimB(V) = — g = FPdimB(W),

Sin 9 Sin 9

and 9
2 sin 9

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nl-jk dj.
There are six (nonzero) solutions

sin g sin % sin %” sin %’r sin %” sin %’r
(ddeY7dZ7dT7dU7dV7dW) = <_17 _00817 COSLj_COSl7 COSLJ COSL’ _COSL)7
18 18 18 18 18 18
fa T T 37T s 3 2T s 2T
(.- sing  sing  sinsE sincg sin G osin g )
? ) T ) T T T /9
COS{g COS{g COS{g  COS{g COS{g COS7g
( ] sin %r sin %r sin %” sin %’r sin % sin g )
—hH T 57 ? 5w 5w 5w 5w 5w /)
COS 7g COS g COSTg  COSTg  COS g COS I3
(1 sin %’r sin %r sin %” sin %’r sin g sin g )
T 5w 5w’ 57 ? Br 5w 5w/
COS 7g  COS{g COS g COS Ig oS 13 oS 13
s 21 s 27 3T s 3T s 4m s 4m
(-1 sin gt sin g sin g sin g sin ‘g sin g )
Y e m T ) T e T ) T A
sin § sing  sin g sing  sin g sin §
(1 sin%’T sin%7T sin%7T sin%’r sin%r sin%)
P R R R R S R ¥
sing  sing sing sing  sing  sing
with categorical dimensions
9 9 9
2
D*(B) = (~4.6), ————(~10.9)
2 cos? 5 " 2cos? ‘:{—g " 2sin? 3 ’

respectively. Only the last quantum dimensions give unitary MFCs. They each have four
conformal dimensions

(thhY7hZ7hTahU7hV7hW)
11 7 8 5 2 11 1 2 11 1 13 1 7 3 1 1 8 23 2 5 3 2 5 1 31 1 1
(4’3’1279’36’3712)’(4’3712’9’36’3’12)’(4’3’12’9’36’3’12)’(4’3’12’9’36’3’12) (1St&2nd)’
1 7 5 29 2 11 1 2 11 4 25 1 7 31 1 5 11 2 5 32 5 4 7 1 1
3’12’9’36’3’12)’(4’3’12’9’36’3’12)7(4’3’1279’36’3712)7(4’371279’36’3712) (3rd&4th)’
17 217 2 11y (12117 1 1 7y (31 1 23 2 5\ (325 7191 1
3’12’9’36’3’12>’(4’3’12’9’36’3’12)’(4’3’12’9’36’3’12)’(4’3’12’9’36’3’12) (5th&6th)

-3
Ne)

(mod 1)



The S-matrices are given by

1 dx dy dxdy dp dxdr dy dxdy

dx —1 dxdy —dy dxdr —dr dxdy —dy
dy dxdy —dy —dxdy dr dxdr —1 —dx
J_ dxdy —dy —dxdy dy dxdr —dr —dx 1
dr dxdr dr dxdr 0 0 —dr —dxdr
dxdr —dr dxdr —dr 0 0 —dxdr dr
dy  dxdy —1 —dx —dr —dxdr dy dxdy
dxdy —dy —dx 1 —dxdr dr dxdy —dy
There are

6(quantum dimensions) x 4(conformal dimensions) x 2(categorical dimensions) = 48

MFCs, among which those eight with the last quantum dimensions give unitary MFCs. We
classify connected étale algebras in all 48 MFCs simultaneously.
We work with an ansatz

AZ1Pnx X dnyY &nzZ ®ngT SngU & nyV & nyW

with n; € N. It has

) sin %’r sin 3T sin %r
FPdlmB(A) = 1+7’Lx—|— — (ny+nz)+ . (nT+nU)—|— — (nv—l—nw)
S1n 9 S1n 9 mn 9

For this to obey , the natural numbers can take only 43 values. The sets contain the one

with all n;’s be zero. This is the trivial connected étale algebra A = 1 giving BY ~ B4 ~ B.

The other 42 candidates contain nontrivial simple object(s) b; 2 1. They all fail to be

commutative because the nontrivial simple objects have nontrivial conformal dimensions.
We conclude

Connected étale algebra A | B4 | rank(B,) | Lagrangian?
1 | B 8 | No '

Table 15: Connected étale algebras in rank eight MFC B ~ su(2)7
All the 48 MFCs B ~ su(2)7’s are completely anisotropic.

2.4.10 B~ FibX Fib X Fib
The MFCs have eight simple objects {1, X,Y, Z, T, U, V, W} obeying monoidal products
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® X Y A T U Vv w

1 X Y A T U Vv w

X 1o X Vv T ZeT w YoV UsWwW

Y 1eY U w ZoU XoV Teow

A 1®Z7 XoeT YoU w VeWw

T leXeoZoT VoW UeoWw YeUaVaeW

U leYoZaoU Tow XoToVaeWw

Vv le XYV ZoToUW

w leXoYoZoToUdVOW

(One can identify Fib = {1, X}, {1, Y}, {1,Z}, and T = X @ Z, U 2 YR Z,V 2 XQY, W =
X ®Y ® Z.) Thus, they have
FPdims(1) = 1, FPdimg(X) = FPdims(Y) = FPdimg(Z) = C,

FPdimg(T) = FPdimg(U) = FPdimg(V) = > +2\/—, FPdimg(W) = 2+ V/5,

and

FPdim(B) = 25 + 10V/5 ~ 47 4.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dp.
There are eight solutions

(dX7 dY7 dZ7 dT7 dU7 dV7 dW)

L N N S R Ry
<—<—1,<,—<—1,%5,—1,—1,4—1),@,—4—1 —C —173_2\/5,—176‘1),
<—<*1,<,<,—1,3”5—1 - Y g,

(€.6—¢t-1,-1, 28 gy <<<<3+[3+2f3+2f +VB).

Only the last quantum dimensions give unitary MFCs. The first, second to fourth, fifth to
seventh, and the eighth have categorical dimensions

25 — 5v/5 25 + 55
T\/_(s 6.9), %f(z 18.1), 25+ 10V5,

D*(B) = 25 — 10v/5(=~ 2.6),
respectively.
In order to list up their conformal dimensions without double-counting, we perform case
analysis. Depending on quantum dimensions ¢, —(~! of Fibonacci objects, we have four
classes.
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e (dx,dy,dz) = ((,(, ). This class gives unitary MFCs. Different MFCs are given by
2224441 ,223 4 2>

hoc, By By by s by ) = (2, 2,2, 2 2 22 2220022

(X; Y, IZ, 1T, 1Ly, 10V, W) (5757575757575)7<575757 ) 7575
222020, (2222222 . (mod 1
<5a5757075a075)7(5757575a57575) (mo )

233 1 3 3331114
Including the two signs of categorical dimensions, we have eight unitary MFCs.
o (dx,dy,dz) = ((,(,—¢'). Different MFCs are given by

With two categorical dimensions, there are 12 MFCs.

o (dx,dy,dz) = (¢,—C¢™t,—¢™1). Different MFCs are given by

There are 12 MFCs.

o (dx,dy,dz) = (=t —(¢t, —¢™1). Different MFCs are given by

1112223 114 21
hixs by hig b b by ) = (=0 =0 =0 20 2,202 o 20,0,2, 2
<X7 Y, IZ, 1T, 1Ly, 10V, W) ( )7(5757570707575>7
4 3 4. 44433 3 2
20,2,0,2),(2,2 22222 . (mod 1
757 75a 75)7(57575a5a57575) (mo )

There are eight MFCs.

The S-matrices are given by

1 dx dy dy dxdyz dydy dxdy dxdydy

dx —1 dxdy dxdyz —dy; dxdydy; —dy —dydy

dy d)(dy -1 dde d)(dydz _dZ —dX —d)(dz

J_ dz dxdz dydy -1 —dy —dy  dxdydy; —dxdy
dxdz —dz dxdydy; —dgz 1 —dxdy —dydyg dy
dydy dxdydy; —dyz —dy —dxdy 1 —dxdy dx
dxdy —dy —dx dxdydy —dydy; —dxdy 1 dy
dxdydz —dde —dxdz —dxdy dy dX dZ -1
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They have additive central charge
¢(B) = ¢(Fib) + ¢(Fib) + ¢(Fib) (mod 8)

where
% (hFib = %)a
. -2 (hFib = é)a
c(Fib) = 1_45 (o — g) (mod 8)
5 i 5/
1 (= 2).
There are

8+124124+8 =40

MFCs, among which those eight in the first class are unitary. We classify connected étale
algebras in all 40 MFCs simultaneously.
An ansatz

A=1dnx X dnyY &nzZ & nrT &ngU & nyV &nywW

with n; € N has

3 5
FPdimg(A) =1+ {(nx + ny + nz) + + (np+ny +ny)+ (2+ \/5)nW

2
For this to obey , the natural numbers can take only 60 values. It contains the one with
all n;’s be zero. It is the trivial connected étale algebra A = 1 giving BY ~ B4 ~ B. Those
with X,Y, Z cannot be commutative because they have nontrivial conformal dimensions.
Setting nx = ny = ny = 0, apart from the trivial one A = 1, we get 10 sets

(nTu ny, Ny, nW) = (17 07 07 0)7 <07 17 07 0)7 (07 07 17 0)7 (07 07 OJ 1)7 (27 07 07 O)?
(1,1,0,0), (1,0,1,0), (0,2,0,0), (0,1,1,0), (0,0,2,0).

Some of them are ruled out due to their Frobenius-Perron dimensions. The six candi-
dates (nr, ny, ny,nw) = (2,0,0,0),(1,1,0,0),(1,0,1,0),(0,2,0,0),(0,1,1,0), (0,0,2,0) have
FPdimg = 4 + /5, and demands FPdim(BY) ~ 1.2. However, there is no MFC with such
Frobenius-Perron dimension. Thus, the six candidates are ruled out. Also, a candidate
(nr,ny,ny,nw) = (0,0,0,1) or A = 1@ W is ruled out because there is no MFC with
FPdim(BY) ~ 1.7. Thus, we are left with three candidates

(nTu ny,ny, TLW) - (17 07 07 0)7 (07 ]-7 07 0)7 (07 07 ]-7 0)

They all have FPdimg(A4) = 222 and demands

2 Y

1
FPdim(BY) — +2\/5, FPdim(B,) = 5+T5\/5
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As we recalled in section[2.4.6] these are commutative algebras when A = 0 mod 1 [10]. What
is left is to check separability of them. In order to judge this point, we identify B4. We start
from A=10T.

The Frobenius-Perron dimensions only allow

BY% ~ Fib, By ~ Fib X Fib.

This in particular suggests B4 has rank four. Indeed, we find a four-dimensional NIM-rep

0100 0010
o frvroo)_ 0 _foo o0
L= X 0001 Z Y 1010}

0011 0101
1100 0001 0011

1200 oo 11| o012

"=l o011 ™ T o101 T™ "™TI1 111
00 1 2 1111 121 2

The solution gives identifications
ml’él@T, mg’EX@Z@T, mggYG}VV, m4§U@V@W

For the candidate to be commutative, we need hy = 0 mod 1. This happens when dx = d.
Then, the right A-modules have

dg,(mi) =1, dp,(mg) =dx, dg,(ms)=dy, dp,(m4)=dxdy.

For MFCs with hp = 0 mod 1, m; 3 are deconfined. They obey the monoidal products & 4:

Ra | My Mo ms3 My

my | My ma ms3 my

ma my & me my msz b my

ms my D ms Mo D My

My mi B mo D ms D My

We see
BY = {m,m3} ~Fib, Ba = {my,ma, ms, my} ~ Fib X Fib.
The identification also matches central charges because two Fib generated by X, Z have

opposite central charges, and both ¢(B) and ¢(BY) are determined by hy. The identification
of B4 shows A is separable (hence étale) because Fib X Fib is semisimple:

14

A=1 eT (andZ7hX7hZ) = (Ca ga %7 %)7 (_€_17 _C_ '57 g) (mOd 1 for h) (238)
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How about the other two candidates A =2 1@ U, 1®V? Since T, U,V enter symmetrically,
we immediately learn they give connected étale algebras:

A=Z10U (dy,dz,hy, hy) =

Agl@v (dX,dY,hX,hY):

We conclude

(¢, C ) (¢,

_ 4, 1 4
(C7C7573)7(_C _C 17575)

Connected étale algebra A Ba

—C_l l
5 (mod 1 for h)  (2.39)

1T for (2.38
13U for (2.39
1@V for (2.39

1

B
Fib X Fib
Fib X Fib
Fib X Fib

rank(B4) | Lagrangian?
8 No
4 No
4 No
4 No

Table 16: Connected étale algebras in rank eight MFC B ~ Fib X Fib X Fib

Namely, those 16 MFCs B ~ FibXFibX Fib’s in (2.382.39) fail to be completely anisotropic,
while the other 24 are completely anisotropic.

2.4.11 B~ FibXpsu(2);

The MFCs have eight simple objects {1, X,Y, Z, T, U, V, W} obeying monoidal products

® X Y A T U Vv w

1 X Y Z T U Vv w

X 1o X U v w YoU ZaV TeWw

Y 1oz YoT ZoT XoV UoW VoW

A lezZeT YeoZoeT U W XaoVeWw UaoVaoeW

T 1Yo ZT Vow UsVaoW XoUsVaoW

U loXeZaV YoToeUoW ZoToVoeWw

Vv loXoZeToVoW YoZoToUVOW

w loeXeYoZoeToU VoW

(One can identify Fib = {1, X}, psu(2); = {1,Y, Z, T}, and U =2 X @Y,V 2 X @ Z, W =
X ®T.) Thus, they have

FPdimg(1) =

47
sin
sin T’

FPdimp(T) =

©

o i B
I, FPdimg(X)—¢, FPdims(Y) =29 FPdims(Z) = 09
Sin 9 S1n 9
sin & sin 3% sin 4r
FPdimg(U) = (—2, FPdimp(V) =(—2, FPdimg(W)=(—2
S1n 9 1mn 9 Sin +



and

FPdim

45 4+ 9vH
(B) = +—2‘[ ~ 69.6.
8sin” §

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dy,.

There are six (nonzero) solutions

s s

sin Z sin T sin T sin = sin Z
_ —1 9 3 9 -1 9 1 3 -1 -
(andyadZadTvdU?dVadW>_(_C ) T T T WvC = _g +C
COS{g  COS g oS 1g oS 1g oS g
( - cos{g sing CoS g . _4COS g - sin % e
’ sin%’”sin%’” sin%’” sin%’” in%7r7
: s : s : s : s : s : s
(C_smg _ sing _sing  sing _<51 3 _Csmg)
" cosE' cos X’ cosE’ “cosE’ “cosZ’ cos =77
18 18 18 18 18 18
(C cosl”—8 sin% cosl”—8 CCOS% sin% ¢ CCOS%)
s . y . 9 - . y R 9 . 9 - . )
sm%7r sm%7r sm%7r sm%r si %" sm%7T
( -1 sin%’T sin%7T sin%7T _1sin%7T C_lsin%’r _1sin%”)
’sin%’sing’sin%’ sin%’ sin%7 sin § ’
s 2 s 3 s 4m s 2 s 3T s 4m
( sin F sin 5 sin 5 Csm 5 .Sin =g Csm 5 )
YT e m Y s m ) e m oS T o aooST xS T b
sing - sing  sing sin § sin § sin §
with categorical dimensions
( 45—9V5 [~
Soos? T (~ 3.2) (1st),
45-9V5 (
45095 (~ 8.4)  (3rd)
Dz(B) — 8cos? 7 )
T 4549v5 (o
Ssinﬂl(w 19.7) (4th),
9
45-9/5 /
8sin? Z (N 266) (5th)7
45495
\ 8sin? g (Gth)’
respectively. Each of them has four conformal dimensions:
(thh'YahZathh'UahV7hW)
((L,1,828 4 13y (L2 1 113 14 8y (4 182 2 3L 7y (4211 1 41 2y (]q)
5732973515745215/2\52 3297 3> 157452 15/2 \52 329> 3> 157 45> 15/2 \57 3 9 3> 157 45’ 15 )
(L1528 31 13y (12411329 8y 4152 216 7) (4241 1 11 2) (9
5737973°15745215/7\5732973>15°45215/2\57 3297 3> 157 45> 15/2 \57 3 9> 3> 157 45’ 15 )
(2,182 1113 1y 22 1 1 1 23 11y 3 182 1422 4) (3211 4 32 14y (3.
— ) \573°923 15457 15/7 \5737 6232157 457 15/7 \57 37 97 37 157 457 15/7 \57 37 97 37 157 45" 15 J
(2,152 11 43 1y2 2 41 1 38 11y 3 152 14 7 4) (3241 4 2 11y (4
57329737 15745215/2\57 329737157452 15/2 \57 329> 3> 157 45> 15/7 \57 3> 9> 3> 157 45’ 15 J
(L2 711344 8y (1 1228 19 13) (427 1 1 2 2y4 1222 L 1) (50)
57329737 15745215/2\57 329735157452 15/2 \57 329> 3> 157 45> 15/2 \57 32 9> 3> 157 45’ 15 J
(2,27 1 1 8 11y (212321128 1y3 271 4 17 14y (3122 1437 4) (G
\\5°37973515745>15/>\57 329> 32157 45> 15/2 \57 359537 157 45> 15/ \57 35 97 37 157 457 15 :

0]
D

s
1Sln§

s
COS 18

s
1COSl—

),

8
2
9

),

sin

(mod 1)



The S-matrices are given by

1 dx dy dz dr dxdy  dxdz dxdr
dx —1 dxdy  dxdy dxdr —dy —dy —dr
dy dxdy —dr dz —1 —dxdr dxdz —dx
3J_ dz dxdy dz 0 —dy dxdy 0 —dxdz
dr dxdr -1 —dy dy —dxy —dxdz dxdy
dxdy —dy —dxdr dxdz —dx dr —dy 1
dxdz; —dz dxdyz 0 —dxdy; —dy 0 dz
dxdr —dr —dx —dxdz dxdy 1 dy —dy
There are

6(quantum dimensions) x 4(conformal dimensions) x 2(categorical dimensions) = 48

MFCs, among which those eight with the sixth quantum dimensions are unitary. We classify
connected étale algebras in all 48 MFCs simultaneously.
An ansatz

AZ 1P nx X dnyY &nzZ ®ngT SngU & nyV & nyW

with n; € N has

) sin %” sin %’r sin %’T i %’r i %” sin %r
FPdimg(A) = 1+(nx+——ny +—nz+—nr+(——ny+{——ny +{—nw.
sin § sin § sin § in g sin § in §

For this to obey , the natural numbers can take only 54 values. The sets contain
the one with all n,’s zero. This corresponds to the trivial connected étale algebra A = 1
giving BY ~ B4 ~ B. The other 53 candidates fail to be commutative because they contain
nontrivial simple objects with nontrivial conformal dimensions.

We conclude

Connected étale algebra A | B4 | rank(B,) | Lagrangian?
1 | B 8 | No '

Table 17: Connected étale algebras in rank eight MFC B ~ Fib X psu(2)7
All the 48 MFCs B ~ Fib X psu(2);’s are completely anisotropic.

2.4.12 B~ psu(2);;
The MFCs have eight simple objects {1, X,Y, Z, T, U, V, W} obeying monoidal products
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& X Y Z T U 4 w

1 X Y Z T U |4 w

X oY | XaZ YoT ZoU ToV UeWw VeWw

Y leYeT | XoZoU YoToV ZoUoW ToVeWw UsVaoW

Z loYoeToV | XeoZoUoW YoToVoW ZoUoVaoW ToUoVoW

T loYoeToVelW XezZoUpVaeW YoToUaoVoW ZoTeoUsVaeW

U loYoToUsVoW XoZoToUdVoW YeoZoToUoVoW

|4 leYoZoToUsVaoW XeoYoZoToUd VoW
w loXoYoZeoToUsVeW

Thus, they have

FPdimg(1) = 1,

FPdimp(T) =

and

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d;

in DT

Sin 17
. T
Sin 17

FPdimg(X)

FPdim(B) =

There are eight solutions

(dX7 dYa dZ7 dT7 dU? dV7 dW) - (_

i T
Sin 17

s 2T
S1n 17
. T b)
Sin 17
i, 67
Sin 17

P
S1n 17

)

sin

48in® =

T

17

FPdimg(Y)

17

17

17

~ 125.

s 2T i 67T
S1n S1n 17

3T

S111 17

17
T

Sin 17

17

9.

sin

sin =

sin =

3

17

FPdimg(Z) =

=2k

5m 47

S1n 17 Sin 17

COSs
3

34
(Sln 17
3w

T )

Ea
34

COS
4

S1n 17

L )
34
61

17

COSs COS

sin sin

E
34

COS

T

17 S1n

T )

34
81

17

sin

- o ™
COS 34 COS 34
It & 5T

17 17

COS 31
14 DT
_ S11 17

3
COS 34

ey T
S1n 17

3
COSs 34

7T

17

COS

sin sl

3

34
n 4

17

3
COSs 34

sin

COS 5
2

17

3 3
COS 34

sin

34

sin 8¢

17

sin 4¢

. T
S1n 17
81

sin

. T
S1n 17

L NijFdy.

),
),

3

17

( 5 ?

COS 34

(Sin%r

sin 2¢

17

5w’
COS 31

5
COSs 34

3T

S 17 sin

COS o1

5
34
8w

17 Sin

an

17

cos &’

3

5m
1 COSs 34

sin =

17 Sin

T
COS 34
8w

_Sln1—7

7

COS 51

34
sin 2%

17

T
COS 34
sin

COS

us

17

sin

)
I’ cos

34
3T

17 Sin

T

34
i

17

Y

T

34
sin %%

COS

17
i 2T
Sin 17

17

57r)’

34

( 9 )

COS 34

( sin?—;r

9
COS 34

8w

sSin 17

9m
COS 34

s b
Sin 77 1

COS 51

9m >’
34 COS

sin 2—7; sin

9

34
il

17

?

COS
61
e )’
COS 34
9m 9
COS 31

COS 34

s Am
Sin 7

sin

),

T

17

117>
COS 34

s A4Am
B Sin 17

117>

COS —

34
6m

S11 17

COS —

117>

34
8

_ S111 17

117>
COS 34

sin

Vs

7

34

sin

)
cos U

117>
COS 34
3T

Slnﬁ B

51

17

),

COS —

34

sin =

17

( COSIB%7T

sin 2 sin

( 17

) 137

COS —

34
3

17

sin 4T sin

) 137
COS 34

5T

17 17

COS —

sin

137>
34
67

17 S111

Vs

17

COS —

Y Y
1377 g 137

34 34
81

sin

17
sinl’sinl’sinl’sinl’sinl’sinl’sinl)

17

17

88

17 17

17

17

17

),

137

COS —

34



with categorical dimensions

17 17 17 17
D*B) = 55 (=43), 5 (R46), (=53, ——(=6.7),
4 cos 31 4 cos e 4 cos o1 4 o
17 17 17 17
4005291(% 94), 4COSQH—W(% 15.3), 4005213—”(% 32.6), 4sin? &=’
34 34 34 17
respectively. They have two conformal dimensions each:
((£,16 13 14 2 11 Ty (11 1 4 3 15 6 10} (1g)
T i i e 1w\ 1 1 1 10 10 17 ’
1 14 5 8 6 16 4y (16 3 12 9 11 1 13
G miwmmmmnh (i) (2nd),
4 5 3 15 7 13 16 13 12 14 2 10 4 1
G o (i ios &rd),
(8,106 18 14 9 15y (9 T 1 4 3 8 2) (4
(h h h h h h h ): < 172 172 172 172 172 172 17/ \172 172 177 177 177 177 17 ) (mod 1)
X0 T 025 T TR0 TRV 0W (3,8,15 7 1 14 12y (14 9 2 10 16 3 5) (5¢})
i i i e )\ T 1 10 10 17 g
2 11 10 16 12 15 8y (15 6 7 1 5 2 9
(5 1 1 7 10 12015 ) (599 150 790 790 190 790 77) (6th),
7 13 1 5 8 10 11 10 4 16 12 9 7 6
(e mmmmohnmm i) (th),
5 2 8 6 13 12 3 12 15 9 11 4 5 14
(e mmth (G mimims ) (8th).

dy dy dw dr dx -1 —dp —dy

There are
8(quantum dimensions) x 2(conformal dimensions) x 2(categorical dimensions) = 32

MFCs, among which those four with the eighth quantum dimensions are unitary. We classify
connected étale algebras in all 32 MFCs simultaneously.
An ansatz

A=1dnxX dnyY &nzZ & nrT &ngU & nyV &nwW

with n; € N has

2w 3 4 s 5T 61 Ve 8w
SN S1n == SIN — Sin —= Sin — Sin - Sin =
: 1 1 1 1 1 1 1
FPdlmB(A> =1+ . ;nX‘i‘ . ;nY‘i‘ . TZTLZ—F 5 ;nT—F . :nU—F . :nv—i‘ . ;nW
Sin 17 S1n 17 S1n 17 S1n 17 S1n 17 S1n 17 S11 17



For this to obey (2.14]), the natural numbers can take only 55 values. The sets contain
the one with all n;’s zero. This corresponds to the trivial connected étale algebra A = 1
giving BY ~ B4 ~ B. The other 54 candidates fail to be commutative because they contain
nontrivial simple objects with nontrivial conformal dimensions.

We conclude

Connected étale algebra A | B4 | rank(B,) | Lagrangian?
1 | B 8 | No '

Table 18: Connected étale algebras in rank eight MFC B ~ psu(2)15

All the 32 MFCs B ~ psu(2);5’s are completely anisotropic.

2.5 Rank nine

2.5.1 B~ su(9); ~ Vec%/gZ
The MFCs have nine simple objects {1, X, Y, Z, S, T,U,V, W} obeying monoidal products
1/ X|Y | Z | S

11X |Y
Y |1

Z | S
T |V
X | W | U
Vil

w

A PSIES N RIS

NN RS

S| <SS v N < e = ®
N S| RIN] x| 0 S = <
sl e S I R LS NS

(One can identify Vec%/32 ={1,X,Y}.) Thus, they have
FPdims(1) = FPdimg(X) = FPdimg(Y) = FPdims(Z) = FPdims(S)
— FPdimg(T) = FPdims(U) = FPdimg(V) = FPdims(W) = 1,

and
FPdim(B) = 9.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dp.
The only solution is

(andedZ7dS7dTa dedV7dW) = (17 1a 17 17 17 1’ 17 1)
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with categorical dimension

D*(B) = 9.
Thus, all MFCs are unitary. They have twoﬂ conformal dimensions
117744 8 82255
h 7h 7hah7h7h)h’ 7h = Ouoa_)_7_7_7_a_70707_7_a_)_7_7_ mod 1).
(s by bz, hs b hos by hav) = 0,0,5, 50505551 0.0.5.5. 50505 9) )
The S-matrices are given by
1 dx dy dy ds dr dy dy dw
dy 1 1 pT2mi/3  k2mif3  F2mi/3  A2mif3  E2mif3 F2mi/3
dy 1 1 pT2mi/3 T[S E2mi/3 F2mif3 F2mif3  42mif3
dy eFmi/3  E[3 EAmi)9  FATI[9  Fmi/9  E2mi)9  _Fwi/9  _pEmi)9
g — dg *2mi/3 T3 FAW9 A9 Emi)9  FW[9  _odmif9  _ oFwi9
dp  eF2mi/3 oEWi[3 Fomi[9  EMi/9  _oEmif9  _ Fwif9  FAmif9  Edmi/9
dy eE2mi/3  Fm[3 ok2mi/9 o F2mi/9  _Fwil9  _oEmi9  okAmi/9 o Fdmi/9
dV 6:|:27m'/3 642271'1'/3 _62F7ri/9 _e:|:7ri/9 62F47ri/9 6:|:4E7m'/9 6:1:271'1'/9 e:i:27ri/9

dW 6:|:27m'/3 6i27ri/3 _eirri/Q _e:FTri/Q 6i4ﬂ'i/9 €:F4m'/9 6i27ri/9 6:F27ri/9

(All signs are correlated. In other words, one S-matrix is given by choosing upper signs, and
the other is its complex conjugate.) They have additive central charges

¢(B) =0 (mod 8).
There are
1(quantum dimension) x 2(conformal dimensions) x 2(categorical dimensions) = 4

MFCs, which are all unitary. We classify connected étale algebras in them.
We work with an ansatz

A2 1P nx X dnyY &nzZ ®ngS EnyT & ngU & nyV & nyW
with n; € N. It has
FPdimg(A) = 14+ nx +ny + ngz +ng +nr +ny +ny + ny.

For this to obey , the natural numbers can take only 45 values. The sets contain the
one with all n;’s be zero. It corresponds to the trivial connected étale algebra A = 1 giving
BY ~Ba~B.

The candidates with simple object(s) Z,S,T,U,V,W fail to be commutative because
they have nontrivial conformal dimensions. Thus, we are left with nontrivial candidates with

31 Naively, one finds six consistent conformal dimensions. However, the other four are related to one of the
two in the main text by permutations (XY )(ZUW STV of simple objects.
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simple objects X, Y. Since any étale algebra A € B is self-dual A* = A [9], the only candidate
is
AZ10X Y.

In fact, this is a commutative algebra; the braidings were computed in [22], and it was found
they are trivial. Thanks to the lemma 1, A € Vec, /37 C Vec, Joz 18 & commutative algebra. It
also turns out separable, hence étale. Let us check this point. The algebra has FPdimg = 3,
and demands

FPdim(BY%) =1, FPdim(B,) = 3.
One identifies BY ~ Vectc. This identification also matches central charges. The category
B4 of right A-modules is identified as
B, ~ Vecy, /32

To find this, we search for NIM-reps. Since there is no fusion category with Frobenius-Perron
dimension three up to rank two, we start from three-dimensional NIM-reps. Indeed, we find
a three-dimensional NIM-rep

0 0 1 010
nm=nx=ny=13, nzg=nr=ny =110 0], ng=ng=ny=[(0 0 1
010 1 00

Denoting a basis of B4 by {my, ma, m3}, we get a multiplication table

b @\ | my | my | ms
1,X,Y my | Ty | T3
Z,T,W msz | My | Mo .
S, U,V Mo | M3 | Ty

In this basis, we can identify
m=1eXaY, m=SeUaV, mg=ZeT oW
In B4, they have quantum dimensions
dp,(m1) = dp,(mz) = dp,(ms) = 1,

and obey the Z/37Z monoidal products
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This shows B4 is a fusion category. Thus, A is separable, showing the fact.

We conclude

Connected étale algebra A | By | rank(B,) | Lagrangian?
1 B 9 No
le XY Vec, /32 3 Yes

Table 19: Connected étale algebras in rank nine MFC B ~ Vec% /9%

All the four MFCs B ~ Vec;, soz’s fail to be completely anisotropic.

2.5.2 B~ Vecy .7/

The MFCs have nine simple objects {1, X, Y, Z, S, T,U,V, W} obeying monoidal products

|1 X | Y| Z2]|S|T|U |V |W
11X\ y|zZ2,|s|T7T|U |V |W
X Y| 1| T |V|W|S|U| Z
Y X\ w\y\v |z |V |S|T
A S|1|V|Y |X|U
S | X |W | T|Y "
T vil1|Y S
U T | Z | X
V Wil
w V

(Wehave X* =Y, Z7* = 5, T* =2 U,V* = W. One can identify Vec%/?)Z ={1,T,U},{1,V,IWV},
and X XU QWY =2TRV,Z=2U®V,S=T®W.) Thus, they have

FPdimz(1) = FPdimg(X) = FPdimg(Y) = FPdims(Z) = FPdimg(S)
= FPdimg(T) = FPdimg(U) = FPdims(V) = FPdimg(W) = 1,

and

FPdim(B) = 9.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Ni]‘k dy..

There is only one solution

(andY7dZ7dS>dT7 dedV7dW) = (
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with categorical dimension

D*(B) = 9.
Thus, all MFCs are unitary. They have two conformal dimensionslﬂ

1122 11112222
hx,hy,hz, hs, hr, hy, hy, hy) = (0,0,0,0,=, =, =, =), (=,=, =, =, =, =, =, — d1).
( Xy Iy, Itz 1Lg s Iey 1Ly, 16V W) ( y Uy Uy >3737373)7(37373a373737373) (mo )

The S-matrices are given by

1 dx dy dxdyy dy dy dy dyy dxdy dy
dx e:FQm/S e:i:27rz/3 62F2m/3dW 6:|:27rz/3dv e:l:27rz/3dW e:FQm/SdV dxdy
dY e:l:27rz/3 621:27rz/3 €:|:27rz/3dW 62F27rz/3dv 6:':27”/3dw e:l:27rz/3dv dydv
dxdy €F2i/3dy,  eX2mi/3q,,  FImi/3FMI[S komi/3EImI/3  A2mi/SFIWI[3  Fomi/3E2mi[3  okami/3q
S=|dyay et2miBg, T, Ermi/sami/s Fami/sFami/3  Fawi/3amif3  E2mi/3Fmi/3 F2mif3

dydy €2 3dy,  eF2mi/3y, R2mI/3FINI[3 o F2mi[3k2mi[3  Fomi/3F2mi/3  oA2mi/dE2mif3  E2mif3

dXdV 62F27ri/3dv 6:&27ri/3dv e:|:27ri/3:|:27ri/3 e:|:27ri/3:F27ri/3 e:|:27ri/3:|:27ri/3 62F27ri/3:!:27ri/3 621127ri/3dX
dV dXdV dydv 6:i:27rz/3dX e:FQm/SdY €:|:27r7,/3dy e:FQm/SdX 6:':27”/3
dW dXdW dydW 6:F27rz/3dX e:|:27rz/3dY e:|227r7,/3dy e:l:Qm/SdX e:l:2m/3

They have additive central charges
c(B) = C(VGC%/?)Z) + c(Vecé/gz) (mod 8)
where

2 (hz/:az =

(mod 8)
=2 (hgsz =

WIN Wl
— ~——

c(Vec%/?)Z) = {

There are
I(quantum dimension) x 2(conformal dimensions) x 2(categorical dimensions) = 4

MFCs, and all of them are unitary. We classify connected étale algebras in them.
An ansatz

AZ1EnxX dnyY &ngZ dngS dnrT & ngU dnyV @ nyW
with n; € N has
FPdimg(A) = 14+ nx +ny + nz +ngs + ny +ny +ny + ny.

For this to obey ([2.14)), the natural numbers can take only 45 values just as in the previous
example. The sets contain the one with all n;’s be zero. It is the trivial connected étale

32Naively, one finds 18 consistent conformal dimensions, but the other 16 are equivalent to one of the two
in the main text under permutations of simple objects.
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algebra A = 1 giving BY ~ B4 ~ B. The others contain nontrivial simple object(s). Those
30 with T, U, V, W fail to be commutative because they have nontrivial conformal dimensions.
Together with the self-duality [9] of étale algebras A* = A, we are left with two nontrivial
candidates

A1 XaY, 16268

Since {1, X, Y} or {1, Z, S} form Z/37Z pre-modular fusion subcategories, they were studied
in [22]. As aresult, the candidates fail to be commutative for the second conformal dimension,
while they are commutative for the first conformal dimension.

Let us check their separability by identifying B4. Since the commutative algebras have
FPdimp(A) = 3, they demand

FPdim(BY%) =1, FPdim(B,) = 3.
The MFC BY is identified as
BY ~ Vectc.

This identification also matches central charges. The category B4 of right A-modules is
identified as
B, ~ Vec, /32

To show this, we search for NIM-reps. We start from A = 1 & X &Y. We find a three-
dimensional NIM-rep

0 0 1 010
nm=nx=ny=13, nzg=nr=ny =110 0], ng=ng=ny=|[(0 0 1
010 1 00

Denoting a basis of B4 by {my, ma, m3}, we obtain a multiplication table

bj & \ ‘ mq ‘ mo ‘ ms
1, X, Y myp | Mo | M3
Z, T, w ms | My | M2 .
S, U, V Mo | M3 | Ty

In this basis, we can identify

They have
dBA (ml) = dBA (m2> = dBA (m3) =1
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Similarly, for the other commutative algebra A = 1@ Z @ S, just names of matrices change.
We find a three-dimensional NIM-rep

001 010
7’L1:nZ:nS:13, Nx =Nr =Ny = 1 00 s Ny =Ny = nNw = 0 0 1
010 1 00

We obtain identifications
They both obey the Z/37Z monoidal products

XA | M1 | Mo | M3
my | My | My | M3

This shows B4 ~ Vecy, /32 for the two commutative algebras. Since By is semisimple, this
means the A’s are separable, hence étale.
We conclude

Connected étale algebra A | By | rank(B,) | Lagrangian?

1 B 9 No
1®& X @Y for the 1st h Vec%/gZ 3 Yes
1 Z & S for the 1st h Vec%/gZ 3 Yes

Table 20: Connected étale algebras in rank nine MFC B ~ Vecy, /3ZXZ/3T.

That is, two MFCs B ~ Vecy j37.7/37’s with the second conformal dimensions are completely
anisotropic, while the other two are not.

2.5.3 B~ Vec%/?)Z X Ising
The MFCs have nine simple objects {1, X,Y, Z, S, T,U,V, W} obeying monoidal products
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|1 X|Y|Z|5|T U V w
1|11/ X | Y| Z|S|T U V w
X 11T S|Z|Y U V w
Y Z|1|X|S V w U
Z Y| T|X w U V
S Y |1 w U V
T A V w U
U 1o X |\ YT | Z®S
V ZeS | 1eX
w YorT

(One can identify Vecyq;, = {1,Y, Z},Ising = {1, X, U}, and S = X @ Z, T = X Y,V =
YU, W =Z®U.) Thus, they have

FPdimg(1) = FPdimg(X) = FPdimg(Y) = FPdimg(Z) = FPdimg(S) = FPdimg(T) = 1,
FPdimg(U) = FPdimg(V) = FPdimg(W) = V2,

and
FPdim(B) = 12.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dp.
There are two (nonzero) solutions

(an dY7dZ7d57dT7dU7dV7dW) = (]-7 17 17 ]-7 ]-7 _\/57 _\/_7 _\/5)7 (17 ]-a ]-) 17 17 \/57 \/57 \/5)

with categorical dimension

D?*(B) = 12.
Only the second quantum dimension gives unitary MFCs. They both have the same 16
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conformal dimensions

11155 1 1919 ,1 1155 3 25 25
hy, by, by, hs, hy, by hy hw) = (2, =, =, 2, 2, —, — e T e =
(Xa Y, ez, ILS, Ity Ly, 1Ly, W) (2?3737676716748 48)7(273737676716748748)7
(1115553131)(1115573737)
27373767671674874877°273737676" 16" 487 48"
(1115594343>(111551111>
273737676716 48°4877°27373767 67 16" 487 48"
(111551377)(11155151313)
27373767671674874877°27373767 67 16" 487 48"
(1221113535>(1221134141)
273737676716 48°4877°2737376767 16" 487 48"
(1221154747)(12211755)
27373767671674874877°2737376767 16" 487 48"
(1221191111)(12211111717)
273737676716°48°4877°273737676" 16" 487 48"
12211132323, ,1221115 29 29
(_7_7_7_7_7_7_7_>7(_7_7_7_7_7_7_7_) ( od 1)
233661648 48 2336 6 16 48 48
The S-matrices are given by
1 dx dy dy dxdy dxdy dy dy dy dzdy
dx 1 dxdy dxdz dy dy —dy —dy —dy
dy dxdy e:|:27ri/3 e:l:27ri/3 e:|:27rz'/3dX €:|:27ri/3dX deU e:F27ri/3dU ethTri/BdU
dy dxdy e:|:27ri/3 e:|:27ri/3 e:F27ri/3dX e:|:27ri/3dX dzdy e:|:27ri/3dU 6:1:27ri/3dU
§: dXdZ dZ e:|:27ri/3dX eq:27ri/3dX 62F27ri/3 e:|:27ri/3 _dZdU _e:|:2m‘/3dU _e:F27ri/3dU
dxdy dy ¥y eE2m/3 oT2mi/3 o T2mi/3 Cdydy —eF2mBG,  — 23,
dy —dy dy-dy; dzdy —dzdy —dydy 0 0 0
deU _dY 6:1:27ri/3dU €i27ri/3dU _€i2m'/3dU _6:F27ri/3dU 0 0 0
dZdU _dZ ei2m’/3dU eq:27ri/3dU _6:|:2m'/3dU _6i27ri/3dU 0 0 0

(All signs are correlated. In other words, one S-matrix is given by choosing upper signs, and

the other is its complex conj

ugate.) There are

2(quantum dimensions) x 16(conformal dimensions) x 2(categorical dimensions) = 64

MFCs, among which those 32 with the second quantum dimensions are unitary. We classify

connected étale algebras in all 64 MFCs simultaneously.

An ansatz

AZ21Pnx X dnyY & nzZ dngS ®nrl ®ngU & nyV & nyW

with n; € N has

FPdlmB(A) =1l+nx+ny+ng+ng+nr+ \/5(71[[ +ny + nw)
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For this to obey ([2.14), the natural numbers can take only 39 values. The sets contain the one
with all n;’s be zero. It is the trivial connected étale algebra A 2 1 giving BY ~ B, ~ B. The
other 38 candidates contain nontrivial simple object(s) with nontrivial conformal dimensions,
and they all fail to be commutative. (Those with just X’s do satisfy the necessary condition
(2.17), but it has cx x = —id; [22] and fail to be commutative.)

We conclude

Connected étale algebra A | B4 | rank(B,) | Lagrangian?
1 ' B 9 | No ‘

Table 21: Connected étale algebras in rank nine MFC B ~ Vec% /32 X Ising

All the 64 MFCs B ~ Vec;, /37 M Ising’s are completely anisotropic.

2.5.4 B ~Ising X Ising
The MFCs have nine simple objects {1, X, Y, Z, S, T,U,V,W} obeying monoidal products
11X |Y

11X |Y
11 Z
1

W

w
w
TeoU
SeoV
SeV
A ToU
leXaoYaZ

=] <N N

Dt < <|n|®n
SIS | AsiEsiis
=

DI =|e| < n <<
~<

Dl=|golNNS

X|Y®oZ
1o X

—_

= <N v N[ < < =@

(One can identify Ising = {1, X, T},{1,Z,S},and Y 2 X Q@ Z, U2 ZQT, V=X S W =
S ®T.) Thus, they have

FPdimg(1) = FPdimg(X) = FPdimg(Y) = FPdimg(Z) = 1,
FPdims(S) =FPdimg(T) = FPdimg(U) = FPdimg(V) = v2, FPdimg(W) = 2,

and
FPdim(B) = 16.
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Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 2221 Nijk dp.
There are four (nonzero) solutions

(dX7 dY: dZ7 dSa dT7 dU7 dV7 dW) = (17 17 ]-7 _\/57 _\/57 _\/57 _\/57 2)7 (]-7 17 17 _\/57 \/57 \/57 _\/_7 _2>7
(17 1a ]-7 \/Ea _\/57 _\/§a \/_7 _2)7 (1a ]-7 17 \/57 \/§a \/57 \/57 2)

with categorical dimension

D?*(B) = 16.

Only the last quantum dimension gives unitary MFCs. They have many conformal dimen-
sions. In order to avoid double-counting, we perform case analysis.
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(dg,dr) = (v/2,v/2). These give unitary MFCs. Different MFCs are labeled by 20 conformal
dimensions™

1 111 9 91,1 11 3 11 9 1

(hx,hy,hz, hs, hr, hy, hy, hy) = (2,075 ' 16’ 16’ 16’ 16’ g) (2,075 ' 16’ 16° 16" 16" é_l)

1 11 5139 3 ,1 11 7 15 9 1

505167616168 2% 16 16 16 1672

(1 0 11 9 1 9 5) (1 0 1 1 11 3 9 3)
2772716716167 16’8727 727167 16" 16’ 16" 4
1 11135 97 ,1 1115 7 9

50517616168 2% 16 16 16 167

1 13 3 1113 ,1 13 5 13 111

G058 %2166 16 162

1 13 7 15115 1 1 3 11 3 11 7

(2’ 727167167167 16’ 8)’( 7727167167167 16’ 8>

1 1 3 13 5 11 1 1 3 15 7 111

G936 616" %% 1616 16 168"

1 15 5 13135 ,1 1 5 7 1513 3

<2’0’2 16716 167 16’ 8>’(2’ 727167167 167 16’ 4>

1 15 13 5 131,11 15 15 7 131

W%EEEE@%%EEEE?

1 1.7 7 15157 1 7 15 7 15 3

(2,0, =, —, —, —, —, = )7( 0, -, — — —. — = ) (mod 1).

2772716°16716°16°8"7 2" 727167 16" 16" 16’ 8

Including the two signs of categorical dimensions, we have 40 unitary MFCs.

(ds,dp) = (v/2,—+/2). In this case, we have smaller symmetries; just exchange of orders
in two outer and inner pairs, (hg, hy), (hr, hy). Different MFCs are given by 32 conformal

33Naively, one has 64 conformal dimensions, but two conformal dimensions related by permutations
(SV),(TU),(XZ)(STVU),(XZ)(SUVT) give the same MFC. By studying some examples, one finds con-
formal dimensions are determined by two pairs (hg, hv), (hr, hy). In the 64 sets, one conformal dimension
(hs, hr, hy, hy) appears in eight different orders. The number eight is given by

8 = 2(1st pair in/outside) x 2(order within 1st pair) x 2(order within 2nd pair).

If two combinations give the same hy, they give the same MFC. Then, the 20 conformal dimensions are
given by 10 pairs

r 9,1 9 1 9,3 11, ,1 9,5 13, ,1 9,7 15 ,3 11,3 11

(Eyﬁ)(ﬁ’ﬁ)’(ﬁ,TG)(TG’E)’(TG’176)(%7176)7(176’E)(E7T6)7(T67T6)(E,E)7
3 11,5 13 3 11,7 15 5 13,5 13 5 13,7 15 7 15,7 15
(Evﬁ)(ﬁvE)a(ﬁﬂ176)(176’176%(1763176)(%7176)7(1767E)(Evﬁ)v(ﬁvﬁ)(ﬁa%)v

each pair giving two different Ay ’s and hence two different MFCs.
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dimensions

(th hYa hZ7 h57 h’Ta hU7 hV7 hW)

(1 11 1
2’
1 11 5 13 9 3

(5:0% 16616 16' 8

1 11 9 1 9 5

9 91

1 11 3 11 9 1

727167167167 16’ 8) <2’O’2 1616716 16’ 4)

1 11 7 15 9 1

2’0’2 167167167 16° 2"
1 11 11 3 9 3

<2’0’2 167167167 16’ 8>’(2’0’2 16°16 16" 16’ 4)

1 11 13 5 97

(5:0% 76616 16’ 8"

1 13 1 9 111

1 1115 7 9

2’0’2 16”16 16 16’
1 1 3 3 11 11 3

(2’0’2 1671616 16’ 4> (2’ "27167 16716716 8"

1 1 3 5 13 111

(5:05 7676 16" 16’ 2"

1 13 9 1 11 3

(5:0% 16616 16" 2"

1 13 13 5 11
(5,0,2, —, = — = 0

1 1 3 7 1511 5

2'772716° 16716716’ 8"’
1 1 3 11 3 11 7

277727167167 16716’ 8"’

1 1 3 15 7 111

27727167167 16" 16’ %(2’0’2 1616716 16’ 8>

1 15 1 9 13 3

(5.5 7661616’ 8

1 15 5 13 135

1 1 5 3 11 13 1

2’0’2 1616167 16" 2"
1 1 5 7 15 13 3

<2’0’2 167167167 16’ 8>’(2’0’2 16" 16" 16" 16’ 4)

1 15 9 1 137

(3:0% 16616 16’ 8"

1 1 5 13 5 131

(5051616 16" 168

1 1 7 1 9 151

(5:05 7676 16" 16’ 2"

1 1 7 5 13 15 3

(5:0% 161616 16" 2"

1 1.7 9 1 15

1 1 5 11 3 13

2’0’2 16”16 16 16’
1 1 5 15 7 131

27772716716 167167 4"
1 1 7 3 11 155

277727167167 16716’ 8"’
1 1.7 7 15157

27772716716 16716’ 8"

1 1 7 11 3 151

(2’0’2 16”16 167 16’ O%(2’0’2 1616716 16’ 8)

1 1 7 13 5 151

(5:0% 167616 16" 2"

1 0 1 7 15 7 15 3
27772716716 16716’ 8

With two signs of categorical dimensions, there are 64 MFCs.

(d57 dT) = (_\/57 _\/5)

In this case, symmetries are the same as (dg,dr) =

Thus, the same 20 conformal dimensions give 40 MFCs.

Therefore, there are

40 + 64 + 40 = 144
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MFCs, among which those 40 in the first case are unitary. The S-matrices are given by

1 dX dxdz dZ ds dT dsz dxds dsdT

dx 1 dy dxdy; dxdg —dp —dzdr ds —dgdr

dxdy dz 1 dx —dxds —dzdr —drp —dg dsdr

N dy dxdy dx 1 —dg dzdr dr —dxdg —dgdr
S = dg dxds —dxds —dg 0 dsdr —dgdr 0 0
dp —dpr —dzdyr dzdy  dgdr 0 0 —dgdrp 0
dzdy —dzdp —drp dp —dgdr 0 0 dsdr 0
dxdg ds —dg —dxdg 0 —dgdr dgdr 0 0
dsdr —dgdr dsdp —dgdr 0 0 0 0 0

They have additive central charges
c(B) = c(Ising) + ¢(Ising) (mod 8)

where

N~ N[UT DWW N

¢(Ising) = < (mod 8)

e N N N S S

N NW N N~

TN TN N N N N N
>
9
S
|
515 5lE Sl Sl Sl gl Sle )=

~—

-
In order to classify connected étale algebras, we set an ansatz
A1 nx X DnyY & ngZ &ngS ®nrT & ngU & nyV @ nyW
with n; € N. It has
FPdimp(A) =1+ nx +ny +nyz + \/§(n5 +nr +ny +ny) + 2ny.

For this to obey , the natural numbers can take only 50 values. The sets contain
the one with all the n;’s be zero. It is the trivial connected étale algebra A = 1 giving
B% ~ Ba ~ B. All other candidates with nontrivial simple objects except Y or W fail to
be commutative because they have nontrivial conformal dimensions. Thus, we are left with
nontrivial candidates just with Y, W. Setting nx,nz,ng, nr, ny, ny to zero, apart from the
trivial one, we find five natural numbers

(nY> nW) = (17 O)a (Oa 1)7 (27 0)7 (L 1), (37 0)'
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Some of them are ruled out by studying Frobenius-Perron dimensions. The two candidates
(ny,nw) = (0,1),(2,0) have FPdimg(A) = 3, and demands FPdim(B%) = 1, but there is
no MFC with such Frobenius-Perron dimension. Thus, the two candidates are ruled out.
Therefore, we are left with three candidates

(nYa nW) = (L 0)7 (17 1)7 (3’ O)

We study these one after another.

A=1a@Y. Thisis a Z/2Z algebra, and it is also commutative because it has (dy, hy) =
(1,0) (mod 1 for hy) and cyy = idy [22]. It further turns out separable (hence étale). Let
us check this point by identifying B4.

First, FPdimpg(A) = 2 demands

FPdim(BY%) =4, FPdim(B,) = 8.
The MFC BY is identified as

Veci/l% X Veci/l2Z (hw =222 withn € N (mod 1)),
B ~ { ToricCode (hw =0 (mod 1)), (2.40)
Vecy 4z (hw = 22 withn € N (mod 1)).

This can be seen in two ways. First, let us perform anyon condensation. This ‘identifies’ 1,Y,
and hence pairs (X, Z), (S,V),(T,U), and W splits into two. Since S and V' have different
conformal dimensions, the resulting simple object in B, is confined. Similarly, the simple
object from T, U is confined. The simple object coming from X, Z is deconfined, and is an
object of BY with conformal dimension % Finally, W splits into two invertible simple objects
with conformal dimensions hy mod 1. Thus, if hy = § (mod 1) with an odd natural number
n, the four simple objects form Z/47Z MFC, while if hy = § (mod 1) with an even natural
number n, the four simple objects form Z/27Z x Z/2Z MFC. More precisely, if hy = % (mod
1) with n = 1,3, it is Veci}QZ X Veci/lgz, and if hy = 7 (mod 1) with n = 0,2, then it is
ToricCode. This gives the identifications.

Another way to see the identification is to compute the (additive) central charge ¢(B).
The Ising MFC has central charge 2”2—“ (mod 8) with an integer n = —4,—3,...,3. Let us
denote the central charges of the two factors %, %, respectively. Then, the Deligne
tensor product Ising X Ising has (additive) central charge

c¢(B)=n1+ny+1 (mod 8).
Therefore, the MFC BY has (additive) central charge

C(Bg): 0 (n1+n2€2Z+1),‘ (mod?)
1 (nl—l—ngGQZ).

104



An MFC with FPdim = 4 and this (additive) central charge is either Z/27Z x 7Z/27Z MFC or
Z/AZ MFC, respectively[] (One may naively think Ising MFCs also match the Frobenius-
Perron dimensions, but they are ruled out because they cannot match the additive central
charges.) More precise matching is given as follows.

Even ¢(B). When n;+ny € 2Z+ 1, the ambient category has even additive central charge.
It is matched as follows:

0 (BY~ Veci/l2Z X Veci}QZ with hm # hy, or ToricCode with (hy, hy, h,) = (%, 0,0)),
(B) = 2 (Veci/gZ X Veci/gZ with h, = 7 = hy),

4 (ToricCode with (hy, hy, h,) = (% ),

6 (Vecy,, oz ™ Vecy, Jog With hy =4 = hy).

Odd ¢(B). When n; + ny € 27Z, the central charge of the ambient category can only be
matched by Z/4Z MFCs:

VGC%MZ with hZ/4Z =

c(B) = (mod 8)

— — —

00|=J Co|Ut ol Col

(
(
(Vec a7 With hzjuz =
(

J Ot W =

VGC%MZ with hZ/4Z =

Together with the invariance of topological twist (2.20), we can uniquely identify BY.
Having specified the category BY of dyslectic right A-modules, let us next figure out the
category By of right A-modules. In view of anyon condensation, it has two more simple

34They have additive central charges

h
C(Veci/l2Z X Veci/lm) =42  (hg=7=hy), (modSs)
3
s=h
1

¢(ToricCode) = {2

= O
o
S~—"

(hmv hya hZ) = (

or

c(Vec%/M) =
-1

o0l~1 00\01 oo\oo oo\»—A

respectively. Here, conformal dimensions mean those of two nontrivial simple objects in two factors of Z/2Z
MFC (hg, hy), those of three nontrivial simple objects (ToricCode), or those of Z/4Z simple objects (Z/4Z
MFC).
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objects with Frobenius-Perron dimensions v/2. Thus, we learn
FPdim(B4) =8, rank(B4) = 6.

With this information, we search for six-dimensional NIM-reps. Indeed, we find a solution

01 0O0O0O0 0 01 00O
10 0000 001 00O
001 00O 1 100 00
m=le=ny, =1l 901 907" "T|g9001 1|7
0 00 0O 1 000 10O
000 O0T10O0 000 10O
000100 0 00 011
000100 0 00 011
— 0 00 011 . — 000200
T 110000 U0 002 0000
001 00O 1 1.0 0 00
001 00O 1 1.0 000
The NIM-rep gives a multiplication table
b; ® \ mq ma ms my ms mg
1, Y mq mo ms my msy meg
X, Z mo my ms my meg ms
S, %4 ms ms my1 D me | M5 D Mg my my
T, U my my ms @ mg | M1 D Mo ms ms
|74 ms @ mg | ms O mg 2my 2ms mi @ my | M1 B mo

From this, we can identify
m Z1eY, me=2XDZ m3=ZSPV, my=ZT AU, ms=W = myg.
In B4, they have quantum dimensions
dg,(m1) =1=dg,(m2), dg,(m3)= +1/2, dp,(my) = +1/2, dp,(ms) = £1 = dg, (mg).

Working out the monoidal products ® 4, we find
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®a | M1 | My mg my ms | Mg
ma mq | Mo ms my ms | g
mo my ms my Mg | Ms
ms mp @ me | Ms D mg | My | My
my mi D mo | T3 | T3
ms my | ma
meg my

for BY ~ Vec3 j7/07 (i-e., hw =0, 1,5, § mod 1), and

XA | My | M2 ms My ms | Mg
my | My | Mo ms my ms | Mg
mo mi ms my Mg | Ty
ms my @ me | MsDmg | My | My
My my P my | M3 | M3
ms mg | Ty
meg ma

for BY =~ Vecy ,y (ie., hw = £, 2,2 T mod 1). These give identiﬁcation
5.~ C(FRY?)  (¢(B) = 0 mod 2),
271 C(FRSY)  (¢(B) =1 mod 2).

This shows B, is semisimple, hence A is separable and étale.

A=1aY e W. When hyy = 0 (mod 1), W can give commutative algebra. It has
FPdimp(A) = 4, and demands

FPdim(BY%) =1, FPdim(B,) = 4.
Computing b; ® A, we find candidate simple objects
leYoW, XeZeW, SeTaeUasV.

35The identification with the notation in AnyonWiki is given by
my =1, mo=4, m3=5 mys=6, ms=2, me=3,
or its permutations (56), (23), and
mp =21, mo=2, mg=5h myg=E6, ms=3 mg=4,

or its permutations (34), (56), respectively.
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They have Frobenius-Perron dimensions
L V2,

and their contributions to FPdim(B4) match, 12+ 12 + V2° = 4. This suggests B4 have rank
three. Indeed, we find a three-dimensional NIM-rep

1

Y

ny=1l3=ny, nx=

)
o = =
[ RS
)

10 0 01
0 0)=ngz, ng=nr=ng=ny=|(0 0 1|, ny=
01 110

The solution gives identifications

By computing quantum dimensions (2.24]), we find the candidate can be separable only when
ds = dp. Then, in B4, they have

dBA(ml) =1= dBA(m2)7 dBA(m3> = j:\/i‘

Working out the monoidal products ® 4, we find

@4 | M1 | Mo ms3
myp | My | Mo ms3
YD’ my g
ms my D mo
We arrive the identification
B, ~ Ising.

Since this is semisimple, A is separable and étale. We foundﬁ

AZ1®Y ®W (dg,dp, hs, hr) =(vV2,V/2, — ! 15) (V2,vV2, — 5 13)

16’ 167 16" 16 y 15 (mod1for k)
(~V2. V2.5 36 (V2. V2 3. 7).

(2.41)

36The existence of the Lagrangian algebra can also be understood from the lemma 3 because when hy = 0
(mod 1), our ambient MFC is a Drinfeld center B ~ Z(Ising).
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A=1@3Y. It has FPdimg(A) = 4, and demands
FPdim(BY) =1, FPdim(B,) = 4.

Calculating b; ® A, we find candidate simple objects (assuming the smallest Frobenius-Perron
dimensions)

1e3Y, X&3Z, 3@Y, 3XaeZ Se3V, Te3U 3IeU, 3SeV, 2W.
In a putative B4, they have Frobenius-Perron dimensions
L1101, V2, V2 V2 V2L

Their contributions to FPdim(B,4) exceed four, and the candidate is ruled out.
We conclude

Connected étale algebra A Ba rank(B,4) | Lagrangian?
1 B 9 No
FRY’ =0
oY c( é()) (c(B) = 0), mod 2 6 No
C(FRy") (e(B) =1).
1eY & W for ‘D Ising 3 Yes

Table 22: Connected étale algebras in rank nine MFC B =~ Ising X Ising

All the 144 MFCs B ~ Ising X Ising’s fail to be completely anisotropic.
Let us comment on the consistency of our results. The nontrivial connected étale algebra

leads to the category of dyslelctic right A-modules, Vecy 7, Veci}QZXlVeci}QZ (with hy, = hy),
or ToricCode with (hg, hy,h.) = (3,2,2) or (hy, hy, h.) = (3,0,0). The first three are
completely anisotropic, and the “cascades” of conformal embeddings terminate there. On
the other hand, for the last BY, it can admit nontrivial connected étale algebras. More

precisely, the number of additional nontrivial connected étale algebras are given by

0 (dw,hw)=(-2,0),
2 (dw, hw) = (2,0).

The additional connected étale algebras lead to Vecte. One of the two paths is given by
composition with itself, 1 & Y. The other path

Ising X Ising — Vectc

is given by the additional connected étale algebra 1 &Y @ W. This appears exactly when

(dw,hw) = (2,0) See .
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2.5.5 B~ Vec%/gZ X psu(2)s
The MFCs have nine simple objects {1, X, Y, Z, S, T,U,V,W} obeying monoidal products

®|1] XY A S T U V w
111X |Y A S T U V w

X Y |1 T Z S V w U

Y X S T A w U V

Z leU | YW | XV ZoU ToV SeWw
S XV | 1aU SeWw ZoU ToV
T YoWw TreV SeW ZoU
U leZoU | XoToV | YOSoW
V YoSoW | 1eZoU
w XeToV

(One can identify Vec%/gZ ={1L, X, Y} psu(2); ={1,Z,U},and SZYRZT=XQZV =
X@UW =Y ®U.) Thus, they have

FPdimg(1) = FPdimg(X) = FPdimg(Y) = 1, FPdimg(Z) = FPdimg(S) = FPdimg(T) =

in ST
FPdimg(U) = FPdimg(V) = FPdimg (W) = 2121; ,
7
and
, 21
FPdim(B) = ——— ~ 27.9.
Sin 7

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nl-jk dp.
There are three solutions

sin % sin % sin % sin 27” sin 27” sin 27“
(andYadZ7dSadT7dU>dV7dW):(1717 B o Ea o R 1)7
COS{; COS{; COS{; COS{; COS{;  COS{;
(1 ] sin 37” sin 37“ sin 37“ sin% sin% sin% )
y 4y T 30 370 3 3w 3 3w/
COS Ty  COSTy  COSTy COSTy COSTy COSTh
SinZ® sin%E sinZE sin2f sin 3T gin 3
(1,1 7 7 7 7 7 7 )
P R R R R R B
sinz  sinZ  sinZ sinZ sinZ sinZ
with categorical dimensions
21 21 21
DQ(B) = (= 5.5), —— (=~ 8.6), ——,
4 cos 11 4 cos a 4 sin =
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respectively. They have four conformal dimensions each:

(hX7 h’Y; hZJ hS7 hT7 h‘U? hV7 hW)

1 1 3 16 16 1 10 10\ (1 1 4 19 19 6 4 4
<3’377721’2177721721)7(3737772172177?21721>7(373=772172177721’21>’(3737772172177’21721)
_ 1 1 2 13 13 3 16 16\ (1 1 5 1 1 4 19 19y (2 2 2 20 20 3 2 2 225 8 8 4 5 5
- <§7§777ﬁ7ﬁ>7’ﬁ’ﬁ)’(3>3’7721>2177’21’21)7( _______ )7( )
(lllmm§ii)(ll§ii2§§)( _______ _)( _______ _)
373772210210 7221221/°\33 7221221272212 21/°\32 3272212 21> 72212 21/°\3>32 72215217 72 217 21

The S-matrices are given by

1 dx dy dy dydyz dxdyz dy dxdy dydy
dX E:1:27rz'/3 e:t27ri/3 dX dZ e:l:27ri/3dZ eq:27rz'/3dz dX dU eq:27ri/3dU €:t2m'/3dU
dY e:t27ri/3 6:1:27”'/3 deZ e:FQm’/BdZ e:i:27rz‘/3dZ deU e:|:27ri/3dU e:FQm'/BdU
B dz dxdyz dydy —dy —dydy —dxdy 1 dx dy
S = deZ e:l:27ri/3dz eq:27ri/3dZ _deU _e:F27ri/3dU _eﬂ:2wi/3dU dY e:&:27ri/3 e:|:27ri/3
dXdZ e:F27ri/3dZ eiZm‘/SdZ _dXdU _ei2m‘/3dU _eq:27ri/3dU dX 6:1:271-1'/3 ei2m’/3
dy dxdy dydy 1 dy dx —dy —dxdy —dydy
dXdU 6$2ﬂi/3dU 6jz27m'/3dU dX 6i2m’/3 6$2m'/3 _dX dZ _eﬂFQwi/SdZ _€i2m'/3dz
deU 6i2m’/3dU 61F27m'/3dU dY 612771’/3 6i2m’/3 _deZ _ei2m'/3dz _€$2m'/3dz

(All signs are correlated. In other words, one S-matrix is given by choosing upper signs, and
the other is its complex conjugate.) There are

3(quantum dimensions) x 4(conformal dimensions) x 2(categorical dimensions) = 24

MFCs, among which those eight with the third quantum dimensions give unitary MFCs. We
classify connected étale algebras in all 24 MFCs simultaneously.
An ansatz

AZ1Onx X DnyY &ngZ dngS dnrT & ngU & nyV @ nyW

with n; € N has

1y 2T t 3T

. Sln7 Sln7
FPdimg(A) =1+ nx +ny + - (ngz +ng+nr) + —=(ny + ny +nw).

7 7

For this to obey , the natural number can take only 66 values. The sets contain the
one with all n;’s be zero. It is the trivial connected étale algebra A = 1 giving BY ~ By ~ B.
The other 65 sets contain simple object(s) with nontrivial conformal dimensions, and they
all fail to be commutative.

We conclude
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Connected étale algebra A ‘ B4 ‘ rank(B4) ‘ Lagrangian?
1 ' B 9 | No ‘

Table 23: Connected étale algebras in rank nine MFC B ~ Vec;, /32 X psu(2)s

All the 24 MFCs B ~ Vec;, /a7 X psu(2)s’s are completely anisotropic.

2.5.6 B ~Ising X psu(2)s
The MFCs have nine simple objects {1, X, Y, Z, S, T,U,V,W} obeying monoidal products

® X Y Z S T U V w

1 X Y A S T U V w

X 1 Y S A U T V w

Y 1o X V V w w Z®S8 ToU

Z 1T | XU ZeT SeU YW VeWw

S 1eT SeoU Z®T YoWw VeWw

T leZaeT | XaSaU Vew YeVoWw

U leZaeT Ve YeVoWw

V leXaeTaoU ZoSeTaoU

w 1o XdZS0TOU

(One can identify Ising = {1, X, Y}, psu(2); = {1,Z, T}, and S =X @ Z,U=ZXQT,V =
Y®Z W =Y ®T.) Thus, they have

o
3

FPdims(1) = 1 = FPdims(X), FPdims(Y) =2, FPdims(Z) = ——L = FPdimg(S),
Sin =
7
. sin 37” ) ) sin 27” ) sin 37”
FPdimg(T) = —L= = FPdimg(U), FPdimg(V) = v2—2L, FPdimg(W) = v2—L,
S1n 7 S1n d Sin 7
and .
FPdim(B) = —— ~ 37.2.
S1n 7

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dj.
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There are six (nonzero) solutions

sin% sm% sin 27“ sin%’r \/§sin§ V2 sin 27”
(dX7dYadZ7d57dT7dU7dV7dW):<17_\/§7 Ea) l’_ l7_ 17_ Ea Ea
COS{; COS{; COS{;  COS7{; CoS 77 COS 7;
2

P T A T : o 21 T s 21
1 \/§ Sin 7 Sin 7T Sin 7 Sin = \/§sm 7 \/58111 -
( ) )

),

T T 7 T ) T s ? s ?
COS {; COS{; COS{;  COS{; COS7{; oS 17
/5 5 . sin¥ sinZ sinZ 2sin¥  V2sinZ
(1,- 27_C083—W7_COS3—W’COS3—7T’COS3—W’ cos 3™ ' cos 3T
14 14 14 14 14 14
/5 5 2 sin® sinZ sinZ V2sin% 2sinZ
(1 2’_0053—“’_0053—“’cos3—”’cos3—“’_ cos3T 7 cos 3 )
14 14 14 14 14 14
\/— sin%r sin277r sin?’77r 5111377r \/55111277r \/55111377r
(17_ 27-7r7~7r7-7r7'7r’_ - T y T )7
Sin - Sin - Sin - Sin - Sin - COS 7
V3 si]n277r sim%7r sin%7r 5111377r \/§s1n27“ \/§sin?’77T
(1’ 27 s ) s ) T T ) T 1) T
sinZ  sinZ sinZ sinZ sin Z cos 7
with categorical dimensions
7 7 7
DQ(B) =——(=74), ——(=11.5)
* ) * ) . )
cos? T cos? 31’—2 sin? z
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respectively for each pair. Each pair has 16 conformal dimensions

(

(%71_167%’%?%7%7%7%)’(%7%7%?1_147g?%?%?%)?
G lBli i diiiiss s,
TR N A T O g )
GBS ) GBS 55D, st
o o g o o o | G B B G 8 4 T o, od 1)
GELHLEE S GELL LB D, Ge
(%7%7%’%7%7%7%7%)7(%7%7%?%7%7%7%7%)7
(Gl e ). G 5 2 A B ). (thiconh)
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The S-matrices are given by

1 dx dy dz dxdz dp dxdr  dydz;  dydr
dx 1 —dy dxdyz dy dxdr dp —dydy —dydr
dy —dy 0 dydy; —dydy dydr —dydrp 0 0
" dZ dXdZ dde —dT —d)(dT 1 dX —dydT dy
S=|dxdz dg —dydz —dxdr —dp dx 1 dydr  —dy
dp dxdr  dydr 1 dx —dy; —dxdy dy —dydy
dxdr dp —dydyp dx 1 —dxdy; —dgz —dy dydy
dydy; —dydy 0 —dydy dydrp dy —dy 0 0
dydp —dydyp 0 dy —dy —dydy dydy 0 0

There are
6(quantum dimensions) x 16(conformal dimensions) x 2(categorical dimensions) = 192

MFCs, among which those 32 with the sixth quantum dimensions are unitary. We classify
connected étale algebras in all 192 MFCs simultaneously.
An ansatz

A2 1D nx X dnyY &nzZ ®ngS &nyT & ngU & nyV & nyW

with n; € N has

. sin 27” in 37” 27” sin 37”
FPdlmB(A> = 1—{—nx—|—\/§ny+ —— (nz+n5')+ T (nT+nU)+\/§ NG ny + \/_ NG
S1n 7 sin Z 7 ? ?

For this to obey , the natural number can take only 75 values. The sets contain the
one with all n;’s be zero. It is the trivial connected étale algebra A = 1 giving BY ~ B ~ B.
The other 74 candidates contain nontrivial simple object(s) b; 2 1 with nontrivial conformal
dimensions. Thus, they all fail to be commutative.

We conclude

Connected étale algebra A ‘ B ‘ rank(B4) ‘ Lagrangian?
1 ' B 9 | No ‘

Table 24: Connected étale algebras in rank nine MFC B ~ Ising X psu(2)5

All the 192 MFCs B ~ Ising X psu(2)5’s are completely anisotropic.
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2.5.7 B~so(ll),
The MFCs have nine simple objects {1, X, Y, Z, S, T,U,V,W} obeying monoidal products

& X Y Z S T U V w

1 X Y Z S T U Vv w

X 1 Y Z S T U w Vv

Y lo XU ToU SeT ASI) Y& Z VoW Vow

Z 1o X@S ZoU YoT Y®S Ve VoW

S le XY YoU ZeT VeWw VeWw

T leXaZ SoU Ve VoW

U leXaeT VeWw VeWw

V loYoZoSoToU | XoYoZaSaeTaU
w leYozZoSoToU

Thus, they have

FPdimg(Y) =FPdimg(Z) = FPdimg(S) = FPdimg(T) = FPdimg(U) = 2,
FPdimg(V) =V11 = FPdimg(W),

and
FPdim(B) = 44.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dp.
There are two (nonzero) solutions

(dX7 dYa dZ) dSa dT7 dU) dV7 dW) = (1) 27 27 2a 2) 27 —V1 5 _\/ﬁ)7 (17 27 27 27 27 27 \/ﬁv \/ﬁ)
with the same categorical dimension
D?*(B) = 44.
They have four conformal dimensiong’'|
(hX7 hY7 hZ7 hSa hT7 hUa hV7 hW) = (O _______

0. — — — — —_ - Z 0, —, —, —, —, —,—, = d1).
( 711711711711’117878)’( ) (mo )

37Naively one finds 40 consistent conformal dimensions, however, the other 36 are equivalent to one of the
four in the main text under permutations (VW) or (Y ZUST) of simple objects.
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The S-matrices are given by

1 dx dy dz ds dpr dy dy dw
dx dx dy dz ds dpr dy —dy —dw

dy dy S1 SS9 S3 S4 Sp 0 0
_ dZ dZ S9 S5 S4 51 S3 0 0
S = ds ds S3 S4 S92 S5 51 0 0
dr dr S4 81 S5 S3 So 0 0

dU dU S S3 S1 S  S4 0 0
dV —dv 0 0 0 0 0 :|:dV :FdW
dW —dW 0 0 0 0 0 :FdW ﬂ:dw

with
3 T 2T T Y

51:4sin§, 52:—4cosﬁ, 33:4cosﬁ, 34:—4sin—2, 55:—4smﬁ.

They have additive central charges

o(B) = {2 (1st&2nd h), (mod 8)

—2  (3rd&4th h).

There are
2(quantum dimensions) x 4(conformal dimensions) x 2(categorical dimensions) = 16

MFCs, among which those eight with the second quantum dimensions are unitary. We classify
connected étale algebras in all 16 MFCs simultaneously.
An ansatz

AZ1Onx X DnyY &ngZ dngS ®nrT & ngU S nyV @ nyW

with n; € N has

FPdlmB(A> =14+nx+ 2(ny +ngz +ng+nr+ TLU> + Vv 11(71\/ + nw)

For this to obey , the natural numbers can take only 72 values. The sets contain
the one with all n;’s be zero. It is the trivial connected étale algebra giving BY ~ B, ~ B.
Other 32 candidates without X all fail to be commutative because nontrivial simple object(s)
entering them have nontrivial conformal dimensions. Thus, we are left with five nontrivial
candidates with nx = 1,2,3,4,5. Since X has (dx,hx) = (1,0) (mod 1 for hy), it has
cxx = idy [22], and can give commutative algebras. An obstruction is the Frobenius-
Perron dimensions. The Frobenius-Perron dimensions 2, 3,4, 5,6 of the candidates demand
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FPdim(B%) = 11,4, 4, 32, 4, but there are no MFCs with such Frobenius-Perron dimensions

for all of them but the first. Therefore, the only nontrivial candidate is
A=1a X.

This is just a Z/27 algebra, and it is commutative. It further turns out separable. Let us
check this point by identifying B 4.
Its Frobenius-Perron dimension FPdim = 2 demands

FPdim(BY) = 11, FPdim(B,) = 22.

It turns out
BY ~ Vecy )z, Ba~TY(Z/11Z).

This identification also matches central charges because

(h'X7hY7h’thth'I%hS’ah’TahUyh'Vah‘/V):<i 253 3 5 9 4 L)v

11> 11> 117117117117 117 117 11° 11

__ (10 7 2 7 8 8 6 2 7 10
(hx,hy,hz,hq,hr,hs, hr, hu, hv, hw) = (17, 17 110 110 11> 10 100 110 110 11)-

2
c(Vecé/HZ) = {_2 (mod 8)

One of the easiest ways to see the identifications is to perform anyon condensation. Since
we ‘identify’ 1 and X, V and W are also identified. The other simple objects ‘split’ into
two each. Since V and W have different conformal dimensions, they are confined. Thus,
the category of dyslectic right A-modules consists of 11 invertible simple objects, and it is
identified as a Z/11Z MFC. In the category By of right A-modules, V' & W has Frobenius-
Perron dimension v/11. Thus, the category is identified as a Z/11Z Tambara-Yamagami
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category TY(Z/11Z)F¥ Since TY(Z/11Z) is semisimple, A is separable and étale. Note that

38 More rigorously, we should search for NIM-reps. Indeed, we find a 12-dimensional NIM-rep

Y

DO DO DD DO OO OO N
S —H O OO O OO o OO
SO —H OO H O OO O OO
SO 1 OO0 OO —+HO O OO
(=R s B er el e Jen e B Bl S =l el en)
S OO O OO OO o O
SO OO —HOOOOoO —~H OO
— OO OO+ O OO o OO
— O OO OO —HOO O OO
SO oo o000 H A OO
SO OO OO —HO O H O
SO0 4+ O O OO o oo

I

N

<
SO OO OO OO0 O ON
SO —HO—H OO OO o oo
S —H O 0O OO OO o oo
SO HOADODDODDO OO
S OO —HOH O OO O OO
S OO oo HOOHA O OO
SO OODDODOODO —H—H OO OO
S oo oo oco0oo HOo O
S OO oo OO —HO OO
— O OO OO OoOOoO o O
— OO OO OO oo —HOOo
S = = O O OO OO o OO

I

>~

<

<

IS

ny = lqo

g

I
cocoococococooocococoN A A A A~~~ — - O
oo o0 o0 o0 HOoOOoOOHOoOO OO oo oo oc oo o H
o000 00O H OO0 HODO OO0 oo oo oo H
OO 00000000 @O0 oo o000 oA
O 00O~ 0000000 Do oo oo oo o H
OO0 H OO0 OO HOoOODO OO oo oo oc oo o H
O 0O 0000000 HDO OO0 O oo oo oo H
O~ 0000000000 OO0 o000 o
oo H o000 o0 000 Do oo oococooH
O 00O 1T 00100000 OO oo oo oo oo H
OO0 o0 O HH OO0 Do oo oo ocooH
oo oo oo o0 H OO0 Qoo oo ococo o H

Il I

S g
DO OO OO ODODODOON OCDOOOOoOCOoOo o oo o oo
OO O 1O OO 1O OO mHODDODODDODODOoODOo —HO OO
OO0 1000 A0 HO OO A0 0o oo
O 1 OO0 0D ODODO0OOHOO DO 1O OO O
OO 1T OO0 0D OO0 HO OO0 OoOO OO OO
—nH O OO ODODODDODODODDODOOD DO 100 OO0 oo
S OO OO0 OO OO0 DO HODOOoOO HOOO
OO0 A0 000100 ©OCOHOOOHO OO oo
OO OO HOOOODOHO ©O©O-H OO OO OO oo
OO OO OO —HOHOOOODO @O —HODO 100000 OO
OO OO OO 10O HOOODO OO —HOOOOoO oo oo
OO OO OO A 1O OO OO oo oo oco—A—AO

Il I

0 =)

N <

The NIM-rep gives identifications

my = Z = ms,

mao S ms,

m1%1€9X,

m12§VEBW.

gUg?ﬂ/lla

mio

ngmQa

= mr, mg

=S

me

.,m11 have quantum dimensions

Since my, mao, ..

) — +1’

dB(mj

dp(A)

dBA (mJ)
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this example also has
rank(B4) > rank(B).

We conclude

Connected étale algebra A | Ba | rank(B,) | Lagrangian?
1 B 9 No
16X TY(Z/11Z) 12 No

Table 25: Connected étale algebras in rank nine MFC B ~ so(11),
All the 16 MFCs B ~ so(11)2’s fail to be completely anisotropic.

2.5.8 B~ su(2)s
The MFCs have nine simple objects {1, X, Y, Z, S, T,U,V,W} obeying monoidal products

®|1]|X Y Z S T U V w

1 ]1]X Y Z S T U V w

X 1 Z Y T S V U W

Y leT | XS ZoV YoU Tow SeoWwW UV

Z 1eT YaoU ZoV SeW ToWw UeV

S leTeW | XeoSeW ZoUaV YoUadV SeT oW

T leToW YoUadV ZoUaV SeT oW

U leSeoToW | XeSeToW YeoZoUdV
V loSeToWwW YoZoUdV
14 leXeSeoToW

Thus, they have

5) 5) 3 5
FPdimg(1) = 1 = FPdims(X), FPdims(Y) = +2f —FPdims(Z), FPdimgs(S) = +2f — FPdimg(T),
FPdimg(U) = \/5 + 25 = FPdimg(V), FPdimg(W) =1+ V5,
and conformal dimensions (%, 1—91, %, 1—51, %) or its conjugate, BY is identified as a Z/11Z MFC. The non-

invertible simple object mi2 has dg, (mi12) = £v/11 and obeys monoidal products

11
m; @4 M2 = M1z E Mg @4 My (] = 1,2,...,11), Mo Q4 Mo = @mj.
Jj=1

This shows Ba ~ TY(Z/11Z).
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and
FPdim(B) = 30 + 10v/5 ~ 52.4.

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 22:1 Nijk dy,.
There are four (nonzero) solutions

(andY>dZadS>dT7dUadV7dW) - (L _\/5 _2\/57 _\/5 _2\/37 k _2\/37 ’ _2\/3’ \/5 - 2\/57 \/5 - 2\/57 1- \/5)7

(1, \/5 _2\/3, \/5 _2\/3, 3 _2\/3, 3 _2\/3, —\/5—2v5,—\/5—2V5,1 —V5),

(1, —\/5 +2\/5, —\/5 +2*/3, 3+2\/5, 5 +2\/5, V5425, /51 2v5,1 4+ VB),

(1’\/5+2\/5’\/5+2\/5’3+2\/373+2¢5’\/5+2\/5’ \/5+2\/g71+\/g),

with categorical dimensions

D?*(B) = 30 — 10v/5(~ 7.6), 30 + 10V/5,

respectively for each pair. They have four conformal dimensiong®|

1 2122151 9 293315 4
(thhY7h27hSahT7hU7hV7hW):(O _____ )7(0 = _7_7_7_)7

(e - ), (0,5 T T E ) (mod 1)

32311373 7T 21447 32

)
3 17 37 4 4

0, —, —, -, =, =, =, = 0, —,—
(0, 40°40°575° 8 8’ 5)’( 740740°575°87 8’5

39Naively, one finds eight consistent conformal dimensions, but the other four are equivalent to one in the
main text under permutations (Y Z)(UV) of simple objects.
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for the last two quantum dimensions. The S-matrices are given by

1 dx dy dg ds dr dy dy dw
dx dx —dy —dz dg dp —dy —dy dwy
dy —dy :th :FdU —dU dU :]:dy :de 0
dZ _dZ :FdU j:dU _dU dU :de :i:dy 0
ds dg¢ —dy —dy 1 1 dy dy —dw
dp dr dy dy 1 1 —dy —dy —dw
dU —dU +dy :de dy —dy :|:dU :FdU 0
dV —dV :de :tdy dy —dY :FdU ﬂ:dU 0

©n
I

They have additive central charges

4 d

= | 1 t e

5 ( St&3 h)a (]st&ZI'd quantum dim nsions)
—é (2[Id&4th h),

BI=Y (2 (1saed b, (mod )

5

—12 (2nd&4th h).

(3rd&4th quantum dimensions)

There are
4(quantum dimensions) x 4(conformal dimensions) x 2(categorical dimensions) = 32

MFCs, among which those eight with the fourth quantum dimensions are unitary. We classify
connected étale algebras in all 32 MFCs simultaneously.
An ansatz

A1 nx X DnyY &ngZ &ngS ®nrT & ngU & nyV @ nyW

with n; € N has

5 5 3 5
FPdimg(A) = 14+nx+ +2\/_(ny+nz)+ +2\/_(n5+nT)—|—\/ 5+ 2\/5(nU—|—nV)+(1+\/5)nW.

For this to obey , the natural numbers can take only 85 values. The sets contain
the one with all n;’s be zero. It is the trivial connected étale algebra A = 1 giving
BY ~ Bs ~ B. Other candidates without X contain simple object(s) with nontrivial
conformal dimensions, and fail to be commutative. Thus, we are left with candidates
1® nxX with ny = 1,2,3,4,5,6. Since X has (dx,hx) = (1,0), it has trivial braiding
cx.x =idy [22], and the candidates can be commutative. The obstruction is the Frobenius-

Perron dimensions. The Frobenius-Perron dimensions 2, 3,4, 5,6, 7 of the candidates demand

FPdim(B)) = 15535 30£10V5 30+10V5 30410¥5 2041095 2041095 bt there is no MFC with
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such Frobenius-Perron dimensions for ny > 1. Therefore, the only candidate is A = 1 & X.
This is indeed a commutative Z/27Z algebra, and it turns out separable. To see this, we
identify Ba.
Its Frobenius-Perron dimension demands
15455

FPdim(BY) = TR FPdim(B,4) = 15 + 5V/5.

From the Frobenius-Perron dimension, the MFC BY is identified as
B ~ Fib X Fib.

This can also be seen via anyon condensation. Condensation of A =2 1 ® X ‘identifies’ a
pair (1, X), and hence (Y, Z),(S,T), (U,V), and it ‘splits’ W into two simple objects. Since
Y and Z have different conformal dimensions, the resulting simple object in B4 is confined.
Similarly for the simple object descending from U, V. Thus, the deconfined phase BY consists

of four simple objects with quantum dimensions 1, 3i2‘/5, 112\/57 1i2‘/5. This is identified as
Fib X Fib where two Fibonacci objects have the same quantum and conformal dimensions.
The identification also matches central charges. To describe the matching more precisely, let
us denote two Fibonacci objects x,y. The central charges are matched as

:i:%l (dW>hW7dx7dy>hx>hfy) = (1 - \/gaj:%a 1_2\/57 %gaiéai:l)?

:i:% (dW’ hW’ dﬂc’ dy’ hm’ hy) = (1 + \/37 i%? 1+2\/g7 %57 i%? :i:g)7

N ot

(mod 1 for h)

(B) = c(B%) = {

where signs are correlated. The category B4 of right A-modules have two more simple objects

with quantum dimensions +1/ %5 and /5 £ 2v/5. Such a rank six fusion category is not

listed in the AnyonWiki, but we can figure out their properties.
More rigorously, we should find NIM-reps. Indeed, we find a six-dimensional solution

010000 001000
101000 010100
et 0T OLTOO_ o fL0 101 1)
L= 26— X Y 001011 Z, S 010200 o
000100 001001
000100 001010
000100 0000171
001011 000200
_|o10200(_ 002011
"Elr o201 1™ ™Tlo2020 0|
010100 101010
010100 101001
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This gives a multiplication table

bj X \ mq mao ms my ms meg
]., X my mao ms my ms me
Y, Z ma mi @ ms mo @ my ms @ ms B mg my my
S, T ms Mo B My mi1 @ ms D ms D mg Mo B 2my ms B meg ms B ms
U,V my ms D ms D mg m2€92m4 m1@2m3@m5@m6 Mo D My ma @D My
W | ms®mg 2my 2ms @© ms D mg 2mo @ 2my my D mg @ ms | my B mzdmg

We obtain identifications

ml%l@X, mQ’EY@Z, mg%SGBT, m4%U@V, m5%’W§m6.
They have
dw

dBA(ml) = 17 dBA (mQ) = dY’ dBA (m3) = dSa dBA (m4) = dU7 ddBA (m5) = 5 = dBA (mﬁ)
They obey monoidal products

KA | My my ms my ms me

my | My Mo ms my ms me

msa m1 ® ms ma B My m3 @ ms D mg My my

ms mi1 D ms P ms B mg ma D 2my ms D mg | ms D ms .

My m1D2ms P ms P mg | Mo DMy | My P my

ms mi D ms ms

Mg my D mg

Note that the fusion ring has multiplicity two. Thus, it is natural that the ring is not listed
in [T4] and AnyonWiki. Luckily, however, we know this is a fusion category as follows. Let us
choose the specific su(2)s MFC describing su(2)s WZW model. (The MFC is also denoted
as C(A1,8).) It is known [6] that C(A;,8) has two connected étale algebras, 1,1 @ X. The
second thus gives a fusion category C(Aj,8)4. The fusion category corresponds to the Dg
Dynkin diagram. The correspondence especially implies rank(C(A;,8)4) = 6. Therefore, we
learn the fusion ring with multiplicity two gives rank six fusion category. Let us collectively
denote the fusion categories with the fusion ring as C(Ds).

We now relax the assumption on conformal dimensions and consider all su(2)s MFCs.
Our analysis above showed A =2 1@ X is a connected commutative algebra giving a fusion
category B4 ~ C(Dg). Since C(Dg) is semisimple, 1 @ X is separable, hence étale.

We conclude
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Connected étale algebra A ‘ Ba ‘ rank(B,) ‘ Lagrangian?
1 No

oM
©

Table 26: Connected étale algebras in rank nine MFC B ~ su(2)g
All the 32 MFCs B ~ su(2)s’s fail to be completely anisotropic.

2.5.9 B~ psu(2); X psu(2)s
The MFCs have nine simple objects {1, X, Y, Z,S,T,U,V, W} obeying monoidal products

® X Y Z S T U V w

1 X Y Z S T U v w

X 1®8 T \%4 XoS YoU ToU ZoW VoW

Y 1o 7 Y®Z U XoV SeWw ToV UoW

Z loYoZ w ToV UeW XoToV SeUoW

S leXaS ToU YoToU VoW ZoVoW

T leZeSeoW XeoSeVeW YoZoUdOW ToUsVoOW

U 1o XeZpSaoVaoW ToUsVeW YoZoToUdVOW

Vv loeYoZoSaoUaoW XoSeToUdVaoW

w leXeYaZeSeToUs VoW

(One can identify psu(2); = {1, X, 5},{1,Y, Z},and T = XY, U = YRS,V =XZ W =
Z ® S.) Thus, they have

. 2_7-‘- . 3_7-r
FPdims(1) = 1, FPdims(X) = — L = FPdims(Y), FPdims(Z) = —L = FPdimg(S),
sin = sin =
) sin 27” 2 ] sin 27“ sin 37” ) ) sin 37”
FPdimgp(T) = | ——= ) , FPdimp(U) = —F5—" = FPdimg(V), FPdimg(W)=|—% ) ,
sin 7 sin® T sin Z
and 19
16sin” Z

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = 2221 Nijk dp.
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There are nine solutions

(de dY7 dZ; dS7 dTJ dU7 dV7 dW)

. . . . . 2 . . . . . 2
( sin % sin % sin 27“ sin 27” sin % sin % sin 27” sin % sin 27” sin 27” )
cos & cos 5’ cos &’ cos{g  \cosig ) cos? L’ cos? L cos % ) 77
( sin 37” sin % sin 27” sin % sin % sin? % 1 sin % sin 27” )
PSNNET S T aog I 3w g 3T’ a 3w g I 3m /)
COs 9} COS{;  COS{; COST}  COSY COS;COS ) COS 7 COS 1]
( sin % sin 37” sin % sin 27” sin % sin? % sin % sin 27” )
T g 3T 310 aog 7 e 3T ) 3 3m0 g 3w /7
COS{; COSTj COS{j  COS{;  COSY) COS {7 COS {7 COS 77 COS 17
. . . . . 2 . . . . . 2
( sin 37” sin 37” sin % sin % sin 37” sin % sin 37” sin % sin ?% sin % )
T o083 o8 3T ong 3T 7 agg 3T 3r ) 0T 23w 0 23m 3 | )
Cosyj  COS{] COSYy COSTy \COSTy cos® 17 cos? 7 cos 17
( sin % sin 27” sin 37” sin 27” sin % sin 27” sin? 27” ] sin 27” sin 37”)
cosﬁ’sin§7sin§7 cosﬁ’cosﬁsin%7 cosﬁsin%7 ’ cos {7 sin 7 ’
(Sin 27” sin % sin 27” sin 37“ sin 27” sin % sin? 27" sin 27“ sin 3—7” )
: T ) T - T 7 : T : s T ) - s T ) s T s ?
S1n 7 COS 14 COS 14 Sin - Sin - COS 14 Sin 7 COS 14 Sin - COS 14
( sin 37” sin 27” sin 37“ sin % sin 3—7” sin 27“ sin? 37” sin 37” )
- 3 Gin T e T’ 3w 3m g T T 3w oo 3m /)
cos{y SinZ  sinZ  cos ] cos {7 sin % cos 77 sin 2 cos 1]
(Sin 27” sin 37” sin % sin 37” sin 3—7” sin 27” sin? 37” sin 37” )
s y ) ) . y N y N ) 4y )
sin % cos ?{—Z Cos 31’—2 sin % Cos ?1’—1 sin % cos ?{—Z sin % cos ?1’—1
27 27 3T s 3w co2m N 2 s 2 L. 3 s 2w i 3 <31\ 2
(sm > sin<F sin < sin 7 sin < sin < sin < sin <F sin < sin = )
. E ) . E ) . E ) . E ] . E ) . 2 E ) . 2 E ) . E
sinZ ' sinZ  sinZ sinZ sin 7 sin” Z sin® Z sin Z

with categorical dimensions

( 49 ~
16 cos? {3 <N 34)

Lst),
oo e (R 5.3)

(
- (2nd&3rd),
19 (g
D2<B) _ 160034%’( 8.2) (4th),
oz r s (= 17.1)  (5th&6th),
(7th&Sth),
(

17 Sin %
4 (= 26.6)
9th),

2 37 (12
16 cos 17 sin

~lA

49
\ 16 sin? %

respectively. Since the two quantum dimensions giving the same categorical dimension are
equivalent under permutations (XY)(ZS)(UV) of simple objects, we choose the first quan-
tum dimensions from each pair and fix the order of two factors to remove redundancies. They
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have conformal dimensions

(hX7 h'Ya hZa hS7 hTa hU7 hVa h’W)

((4 3 1 6 2 5 4 46 61 3 35 3 3116 4 4 2
(77?7777707?7?70)7(77?777?777?7777)7(7777?7?7?577?77) <1St)7
5 3141 6 5 546 42143 231356 3 4 2 46 36 12
(77?777?77707?77)7(?777?777777777?)7(77?777?77777777)7(?777?777?70777?) (2nd)7
2 5 4 3 16 55443 221 2 233 4556
_<(7)77777707?)770)7(?777?)777777777)7(777777?7777)777) (4th)7 (mod 1)
T (2,821 205 8) (46263856 1) (3151421 6)(41565024) (50
Ty sy sy ms g s \gs oy ms s s g ms s oy g h \ge o oy 7y oy Y 7 7 )
26 231245 215 3 3 4 1y (5 6 2 4 4 3 6y (5 1 546 5 3 2
(77?777777a?777?)7(?777?777?77707?)7<77777a?777?7077>7(?77a777a?7?7?7?) <7th)a
6 1 5 2 3 4 1 155 26 6 3 6 6 2 2 5 11 4
\(77?777?70777?70)7(?7?777?77777777)7(77777777?777777) <9th)

The S-matrices are given by

1 dx dy dy ds dxdy  dyds dxdz  dzdg
dx —dg dxdy  dxdyz 1 —dydg dy —dzdg dy
dy dxdy —dy 1 dyds —dxdyz —dzds dx ds
B dz dxdz 1 —dy dzdgs dx ds —dxdy —dydg
S = ds 1 dydg dydg —dx dy —dxdy dz —dxdy
dxdy —dyds —dxdy dx dy dzdg —dy —dg 1
dydg dy —dzdg ds —dxdy —dy dxdy 1 —dx
dxdy; —dgzdg dx —dxdy dy —dg 1 dydg —dy
dzds dZ ds —dyds —dxdz 1 —dX —dy dxdy

They have additive central charges

e(B) = e(psu(2)s) + c(psu(2)s) (mod 8)

where
.
% (hx,Y,hS,Z) = (%7 %)a (dXY dsz) _ (sing _sin%ﬁ)
—2 (hxy,hsz) = (3,9), T cosyy’  cosSyg”
2 (hxrihsz) = () ¥ g
2 _ 7 X, Y, IS 7 77 ) d d _ (_sin 7,\. sin a d8
“Apoul2)) —2  (hxy,hsz)=(2,7), (dxy,dg.z) = COS%’COS%)’ (mod 8)
_g (hX,Y;hS,Z) = (%7 g)a (dXY dSZ) _ (Sin277r sin37”)
Y s nmT ) sinX /J°
\ 8 (hxy, hsz) = (£,2), stz sy

Taking the two signs of categorical dimensions, each class of quantum dimensions has 6, 8,6, 8,8, 6
MFCs, respectively. Therefore, there are

6+8+6+8+8+6=42

MFCs, among which those six with the ninth quantum dimensions are unitary. We classify
connected étale algebras in all 42 MFCs simultaneously.
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An ansatz
AZ1dnx X dnyY &ngZ dngS dnrT & ngU S nyV @ nyW

with n; € N has

s 2T s 3w s 2T s 2w i 3 < 3m 2
sin 2% S sin 2% sin 2% sin 2T sin 2%
FPdimg(A) = 1+—L (nx+ny)+—=(nz+ng)+| —% | np+——5—L — T (np+ny)+ | —=% | nw.
Sin 7 Sin 7 1mn 7 Sin 7 1mn -

For this to obey , the natural numbers can take only 110 values. The sets contain the
one with all n;’s be zero. It is the trivial connected étale algebra A = 1 giving BY ~ B4 ~ Ba.
Other candidates with X, Y, Z, S contain nontrivial simple object(s) with nontrivial conformal
dimensions, and they all fail to be commutative. We are left with just T, U, V, W . Setting
nx,ny,Nz,ng to zero, apart from the trivial one, we find 11 sets

(nTanUanV7nW) = (1707070)7 (07 17070)7 (0707 170)7 (07 0707 1)7
(2,0,0,0),(1,1,0,0),(1,0,1,0),(1,0,0,1),
(0,2,0,0), (0,1,1,0), (0,0,2,0).

All but the eighth are ruled out because they demand
FPdim(BY%) ~ 4.8, 3.4, 3.4, 2.3, 1.5, 1.3, 1.3, 1, 1.04, 1.04, 1.04,

respectively. There is no MFC with these Frobenius-Perron dimensions except FPdim(BY) =

1. Thus, we are only left with
A=1oToW.

This candidate can be commutative only for the first, fourth, and ninth quantum dimensions
and the first conformal dimensions in each quantum dimension. Namely, when the two factors
have the same quantum dimensions and opposite conformal dimensions. In other words, when
the ambient MFC is a Drinfeld center, B ~ Z(psu(2)s). In this case, from the lemma 3, we
know there exists a Lagrangian algebra. From our analysis above, the only candidate is
A=21aT & W. Therefore, we learn it is connected étale without any computation. In order
to see the consistency, let us identify the category of right A-modules.
Its Frobenius-Perron dimension FPdimp(A) = ——5= requires

in2 &
4 sin 7

FPdim(BY%) =1, FPdim(B,) = -72

4 sin

T
The only possible category of dyslectic right A-modules is the trivial MFC

BY ~ Vectc.
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This identification also matches central charges because the Drinfeld center has additive
central charge zero.
So as to identify B4, we follow our routine method. Calculating b; ® A, we find simple
objects:
leToeW, XeYoeUagVaeW, ZeSeTaeUsVoeW.

They have Frobenius-Perron dimensions

sin & sin 37”

sin 7

7
. T 9
S1n -

respectively, and their contributions to FPdim(B,4) match as it should be. This suggests 54
have rank three. Indeed, we find a three-dimensional NIM-rep

0
1| =ny,
1

1

1

2

1 111
2| = =Ny, Nw = 1 2 2
2 2 2 3

1
n1:13, nxy = 0

1

1 01 0
nr=1[02 1], 1
11 2 1

The solution gives identifications

O = O
—_ o O
)

1
1 =ng,
1

mi =E10TeW, m=EXaoYaoUdVOW, m3=Z2ZoSeToUDV OW.

In B4, they have quantum dimensions

s 27
(1 sy _shp ) (1st quantum dimension),

) cos ﬁ ) cos 1’;
(ds,(m1),dp,(ms),ds,(m3)) = 1 (1, _bm—gi, bm;fl) (4th quantum dimension), .
COS 14 CF)S 14
(1, Ssllr;;> Ssm ) (9th quantum dimension).

These are nothing but the quantum dimensions of psu(2)s. Furthermore, working out the
monoidal products, we find

Ra | My ma ms

mq mq Mo ms

mo my D ms mo b mg
ms my @ mo EB ms

This also shows B4 ~ psu(2)s. Therefore, we found a connected étale algebra

A=1aTaoW (Ist or 4th or 9th quantum dimensions with 1st h’s). (2.42)
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We conclude

Connected étale algebra A | By | rank(B,) | Lagrangian?
1 B 9 No
1T oW for 1} psu(2)s 3 Yes

Table 27: Connected étale algebras in rank nine MFC B ~ psu(2)5 X psu(2)s

Namely, those six in (2.42)) fail to be completely anisotropic, while the other 36 MFCs
B ~ psu(2)s5 X psu(2)s’s are completely anisotropic.

2.5.10 B~ psu(2)ir

The MFCs have nine simple objects {1, X, Y, Z, S, T,U,V,W} obeying monoidal products

® |1 X Y A S T U \%4 w
1|1 X Y VA S T U \%4 W
X 1eY X®Z Yas zZaeT SeU TeV U W Vew
Y leYa S XeZaoT YeSeoU ZeTaoV SeUaoW TeoVeW UeVeaeW
Z laYoSoU XoZoTaoV YoSoUoW ZeToVeWw SeUsVaeWw TeUasVoW
S loYaSaoUaW XeoZoeTeaVeW YeSeoUaVaeWw ZoToUasVeW SeTeUasVaeW
T laYeSoUdVaoW XeoZeToUdVaeW YeSeTaoUasVaeW ZeoSeTeUsVaoW
Y loYaSoToUasVaeW | XeZaoSoToUaVaeW YoZoSoTaoUaVaoW
|4 oY ZeSaToUsVaeW XoYoZoSeoToUs VoW
W leXoYoZoSeToUd VoW
Thus, they have
. i sin % i sin ?—g i sin A{—g . sin ‘:{—g
FPdimg(1) =1, FPdimg(X)=—>, FPdimg(Y)=—->, FPdimg(Z)=—, FPdimp(S)=—=,
sin 7 sin 7 sin 75 sin 74
. sin %r . sin % . sin %r . sin %
FPdimg(T) = —, FPdimg(U) = —+, FPdimg(V)=—=, FPdimp(W)=—>,
S1n 19 S1n 19 S1n 19 S1n 19
and
. 19
T
Sin 19

Their quantum dimensions d;’s are solutions of the same multiplication rules d;d; = Zzzl Ni]‘k dy,.
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There are nine solutions

(dX7 dY7 dZ7 dSu dT; dU? dV7 dW)

B Sinlﬂ—9 sin% sin% sin%r sin?{—g sin%r sin% sini’—g)
_(COS?ZF—S,_COS%?_COS%’COS3—7;’COS§—8’_COS3—7T8’_COS§—87COS% ’
(_sinz—g,_sinz—g’ sinz—; sin?—g’_sin?—g7 sinl’r—9 | sing—g7_sinz—g)’
cos% (:053—;r cos% cos:;—g COS?:;—g Cosg—ér cos:,)—;r Cos3—g
(sin?—g’_sin?—g,_sin?—g?_sin?{—g’ sin‘i—g7 sin?—g’ sin§7_sinz—g)’
cosg—g cosg—g cosg—gr cos%r cosg—;r cosg—gr 0053—78r cos:,)—78T
(_Sini—g’ sin 75 , sin?—g’_sinf—g’ sin%) sin‘i—’gr’_sini—’gr7 sini—g)’
COSE—g cosg—’g cosg—gr cosg—;r cos;—gT cosg—;r cos3—78r cos%
singl’—g S.in%r sin% _sin?—g _sini—’gT _sin?l’—;r Sin% sin%)
(cosg—g’cosg—g’_cosg—g’ cos 3’ cos3E’  cos 3 cos 35 cos 55
(— sin%r ’ sin% — sin%r — sinl’r—9 7 sin% — sin(‘i—g , sin?—g — Sin;? )
(:08131—87T 0081;—8” (:08131—87T (:05131—83T (:03131—87T (:05131—83T (:08131—53T COS o
(sin?—g | sin?—g | sini—’gT | sin‘i—’gT | sinl’r—9 - sin% - sinfl’—g - sinig )
cosl?f’—g7r cos.l:f’—igr cosl:,f’—gr cosl;'—gr (:oslg’T:r coslg'—gr COS% COoS =&
Sin% sin%r S.in%r sin?—g S.in%r sin%r S.in%r S.inl’r—9 )
(_coslé’—g’cos%’_cos%’cos%’_cos%’coslé’—g’_coslé’—g’coslé’—g ’
(sin?—gysin?—g S.in%r sin‘?—g’sin?—g’sini—g’sin%’sin?—g)
sin 757 sin 75 " sin 757 sin 75 " sin 757 sin 75 7 sin 757 sin 75
with categorical dimensions
(b= (2 48)  (Ist),
400152%(z 5.1) (2nd),
e (5T) (3d),
4colsg%(m 6.8)  (4th),
D*(B) = 46022%@ 8.8)  (5th),
400331;7;(% 12.6) (6th),
rotr (% 210) (Tth),
4CO;31§J(z 45.1) (8th),
L 4=si1112 15 (gth)’
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respectively. They have two conformal dimensions each:

~

(2,18 10 16 17 13 4 9y (17 1 9 3 2 6 15 10) (1g)
197 197 197 197 197 197 19> 19/2 \197 197 19 19 197 197 197 19 ’
(816 11 10 13 1 12 8y (13 3 8 9 6 18 T 1y (9,4)
197197 197 197 197 197 19> 19/2 \197 197 197 19 197 197 197 19 g
(2,5 7 1510 1118 12y (10 14 12 4 9 8 1 T) (3.4
197197197 197 197 197 19> 19/2 \197 197 197 197 197 197 197 19 ,
(3,76 2 14 4 1013y (14 12 13 17 5 15 9 6) (4]
197197 197 197 197 197 19 19/> \197 197 19 19 197 197 197 19 ’
_ 1 9 5 8 18 16 2 14\ (18 10 14 11 1 3 17 5
(h/X;hY7hZ7h/SahT7hU7hV7hW) - (1_971_971_97E:EvﬁaEﬁl_g)a(l_gal_g71_971_9>1_971_9,ﬁ,ﬁ) (5th), (mod 1)
(3,8 15 5 16 10 6 4y (16 11 4 14 3 9 13 15) (Gt
197197 197 197 197 197 19> 19/2 \197 197 197 19 197 197 197 19 ’
(1,6 16 18 12 17 14 3y (12 13 3 1 7 2 5 16) (7¢])
197197 197 197 197 197 19> 19/2 \197 197 197 19 197 197 197 19 ’
(£,15 2 1 11 14 16 17y (11 4 17 12 8 5 3 2) (g}
19° 197197 197 197 197 19> 19/> \197 197 197 19 197 197 19 19 g
(417 1 1315 7 8 18y (15 2 18 6 4 12 1l 1) (g¢))
(\197 197 197 197 197 197 197 19/7 {197 197 197 197 197 197 197 19 :
The S-matrices are given by
1 dxy dy dz ds dr dy dy  dw
dx —dy dr —-dy dw —dy ds —dy 1
dy dr dw dy dy 1 —dx —ds —dy
B dz —dy dy —dy -1 ds —dw dr —dx
S=1ds dw dzy -1 —dr —dy —dy dx dy
dr —dy 1 ds —dy dx dzy —dw dy
dy ds —dxy —dw —dy dy dy 1 —drp
dy —dy —ds dr dx —dw 1 dy —dy
dy 1 —dy —dx dy dy —dr —dy dg
There are
9(quantum dimensions) x 2(conformal dimensions) x 2(categorical dimensions) = 36
MFCs, among which those four with the ninth quantum dimensions are unitary. We classify
connected étale algebras in all 36 MFCs simultaneously.
An ansatz
AZ21Pnx X dnyY & nzZ dngS ®nrl ®ngU & nyV & nyW
with n; € N has
i 2m i 3w i Am i DT i 61 i I i 8T i 91
. sin <& sin <& sin 7% sin 2% sin 2% sin & sin <% sin =%
FPdimg(A) = 1+—Lny+—Yny+—Bn 4 —Bpgp—Bppp By, Bp, 41y,
sin 75 sin 75 sin 75 sin 75 sin 75 sin 75 sin 75 sin 75

For this to obey (2.14]), the natural numbers can take only 107 values. The sets contain the
one with all n;’s be zero. It is the trivial connected étale algebra A = 1 giving By ~ By ~
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B. The other 106 candidates contain nontrivial simple object(s) with nontrivial conformal
dimensions, and they all fail to be commutative.
We conclude

Connected étale algebra A | B4 | rank(B,) | Lagrangian?
i B 9 | No

Table 28: Connected étale algebras in rank nine MFC B ~ psu(2)17

All the 36 MFCs B ~ psu(2)17’s are completely anisotropic.

3 Physical applications

Our classification results have physical implications in constraining renormalization group
(RG) flows. Concretely, in massive RG flows, they constrain ground state degeneracies
(GSDs) and prove spontaneous symmetry breaking (SSB). In this section, we discuss the
physical applications.

3.1 Theorems

Let C be a fusion category. Two-dimensional gapped phases with C symmetry stand in
bijection with C-module categories [40, 41]

{2d C-symmetric gapped phases} = {C-module categories M}. (3.1)

The correspondence in particular implies GSD of a C-symmetric gapped phase in the LHS is
equal to rank(M) of a C-module category in the RHS:

GSD = rank(M).
This leads to constraints on GSDs:

Theorem. Let B be a multiplicity-free modular fusion category up to rank nine and
A € B a connected étale algebra. Two-dimensional B-symmetric gapped phases described by
indecomposable B4 ’s have



for rank seven,

({4,8} (B =~ Vecy, p7.7./92x7,/92, = Veci/l2Z X ToricCode (16 with (2.27))),
{8} (B >~ Vecy jo7x7./22x7/97 = Veci}QZ X ToricCode (the other 24)),
{8} (B ~ Vecs oz z42.)

{4,8} (B ~ su(8)1),

{4,8} (B~FibX Veci/l2Z X Veci/l2Z (16 with (2.29))),

{8} (B~FibKX Veci/lQZ X Veci/lzZ (the other 64)),

{4,8} (B ~ Fib K ToricCode (16 with (2.31]))),

{8} (B ~ Fib X ToricCode (the other 24)),

{8} (B >~ Fib X Vecy 47),

{4,8} (B = Vecy 1, K Fib K Fib (16 with (2.32))),
GSD € 1 {8} (B =~ Vecy, ,, K Fib K Fib (the other 64)),

{3,6,8,10} (B =~ s0(9)2 (four with (2.33))),

{6,8,10} (B ~ 50(9)s (the other 12)),

(3,6,8,10} (B~ Rep(D(Ds)) (two with (2.36]2.37)),

{6,8,10} (B ~ Rep(D(Ds3)) (the other six with 1st&2nd h)),

(8,10} (B = Rep(D(Ds)) (eight with 3rd&dth h)),

{8} (B =~ su(2)7),

(4,8} (B ~ Fib K Fib K Fib (16 with (2.38]2.39))),

{8} (B ~ Fib ¥ Fib K Fib (the other 24)),

{8} (B ~ Fib K psu(2)7),

({8} (B =~ psu(2)15)
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for rank eight, and

({39}
{3,9}
{9}
{9}

(B
(B >~ Vecy 377,37 (two with 1st h)),
(B >~ Vecy 3747,/37 (two with 2nd h)),
(B ~ Vec%/32 X Ising),
{3,6,9} (B =~ Ising W Ising (eight with (2.41)))),
{6,9} (B ~ Ising X Ising (the other 136)),
GSD € { {9} (B ~ Vec%/gZ X psu(2)s),
{9} (B ~ Ising X psu(2)s),
{9,121 (
{6,9r
3,97
{9} (
or

B ~ psu(2)s X psu(2)s5 (six with (2.42))),

for rank nine.

As demonstrated [23] for general MFC (without assumption on multiplicity), we see all
of them are spontaneously broken. Here, we have the

Definition. [21] Let C be a fusion category and M a (left) C-module category describing
a C-symmetric gapped phase. A symmetry ¢ € C is called spontaneously broken if Im € M
such that c>m 2 m. We also say C is spontaneously broken if there exists a spontaneously
broken object ¢ € C. A categorical symmetry C is preserved (i.e., not spontaneously broken)
if all objects act trivially.

With the definition, one can show a

Lemma 3. [2I] Let C be a fusion category and M be an indecomposable (left) C-module
category. Then, rank(M) > 1 implies SSB of C (i.e., C is spontaneously broken.)

Therefore, we obtain a
Corollary. Let B be a nontrivial (i.e., rank(B) > 1) multiplicity-free modular fusion cat-

egory up to rank nine and A € B a connected étale algebra. In two-dimensional B-symmetric
gapped phases described by indecomposable B4 ’s, B symmetries are spontaneously broken.
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Remark. As noted in [21], commutativity of an algebra seems too strong; numerical
computation suggests an existence of B-symmetric gapped phase described by B4 with non-
commutative connected separable algebra.

3.2 Examples

In this section, we discuss concrete examples and predict GSDs. Since unitary cases are
relatively well-understood, we study less-understood non-unitary examples.

Pick a non-unitary minimal mode[™| M(p,2p + 1) with p > 2 as an ultraviolet (UV)
theory. It was proved [43] that its relevant ¢5;-deformation preserves rank (p — 1) modular
fusion subcategory formed by symmetry operators {£ 1, L1 9,..., L1 p-1}. If the relevant de-
formation triggers massless renormalization group (RG) flow, it is known [44], [45] [46), [47, [48]
that the infrared (IR) theory is another non-unitary minimal model M(p,2p — 1). Its
further relevant ¢, o-deformation also preserves [43] rank (p — 1) modular fusion subcat-
egory {L£41,L31,...,L9p 31}, and IR theory can be another non-unitary minimal model
M(p — 1,2p — 1). However, massless RG flows typically require fine-tuning. Therefore,
generic relevant deformations are expected to trigger massive RG flows. The IR theories are
B-symmetric gapped phases with modular B, and we can apply our classification results.
Below, we study massive RG flows triggered by relevant deformations of the non-unitary
minimal models.

M (8,15) + ¢15. The relevant deformation preserves rank seven MFC B with simple objects
{L11,L51,...,L431}. They form B ~ psu(2),3 with identifications

X=Lign, Y=Ly, Z=Ling, U=Ls,, V=L, WL

They have the first (non-unitary) quantum dimensions. Their conformal dimensions

82 1 6 20 17

h hs1,h hs1,hg1,h71) =(—,—,11, -, —, —
( 13,1, 143,15, 011,15, 1t5,1, 1491, 7,1) (57157 757 37 5

)

match our first conformal dimensions mod 1. Having specified the symmetry, we immediately
learn from our results that the massive RG flow described by B4 has GSD = 7 and B
symmetry is spontaneously broken.

M(8,17) + ¢51. The relevant deformation preserves rank seven MFC B with simple objects
{£11,L12,...,L17}. They form B ~ su(2)s with identifications

X=Lig, Y=Ly, Z=2Lig, U=SLis, V=L, WL,

40We basically follow the notations of [42].
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They have the third (non-unitary) quantum dimensions. Their conformal dimensions

45 35 515 43 13 207
(h1,77h1,27hl,ﬁah1,57h1,3)h1,4) — (_ e el . )

match our first conformal dimensions mod 1. With this knowledge on symmetry, our classi-
fication result immediately implies that the massive RG flow described by B4 has GSD =7
and B symmetry is spontaneously broken.

M(9,17) 4+ ¢12. The relevant deformation preserves rank eight MFC B with simple objects
{L11,L51,...,L151}. They form B ~ psu(2),5; with identifications

X=2Lisn, Y=Ly, Z=Lizy, T=Ls1, UZLyg, V=L, WEZELy,.

They have the first (non-unitary) quantum dimensions. Their conformal dimensions

385 1 276 20 185 57 112

his1,hs1, his1, hs1, 111, hr1,hot) = (A, —, —= —=, —, —=, —

( 15,1, 163,15, 1013,1, 1t5,1, 011,15, 1071, 9,1) ( 17 ) 17’ 17 ) 177 17 9 17’ 17 )
match our second conformal dimensions mod 1. Given the symmetry, we immediately learn
the massive RG flow described by B4 has GSD = 8 and B symmetry is spontaneously broken.

M(9,19) 4+ ¢51. The relevant deformation preserves rank eight MFC B with simple objects
{L11,L12,...,L18}. They form B ~ su(2); with identifications

X=Lig, YELi7z, Z=2Liy, T=Lig, U=Lig, V=L, WELi

They have the fifth (non-unitary) quantum dimensions. Their conformal dimensions

119 67 13 29 575 32 77
h = (===, —, =, —
(h1,8ah1,77h1,27 1,37h‘1,67h’1,57h'1,4) ( 4 ) 3 ) 127 9 3 36 ’ 3 ) 12)
match our third conformal dimensions mod 1. Having specified the symmetry, we find the
massive RG flow described by B4 has GSD = 8 and B symmetry is spontaneously broken.

M (10,19) + ¢15. The relevant deformation preserves rank nine MFC B with simple objects
{L11,L31,...,L171}. They form B ~ psu(2);7 with identifications

X=Ligg, Y=Ly, Z=2Lisg, S=Lsy, T=Lizn, ULy, VELyg, WLy

They have the first (non-unitary) quantum dimensions. Their conformal dimensions

568 1 427 22 306 63 205 124
(h17,1a h3,17 h1571a h5,17 h13,17 h7,17 h11,17 hg,l) - (1_97 Ea Ev E) 1_97 1_9a Ea E)
match our second conformal dimensions mod 1. With the symmetry, we immediately learn
the massive RG flow described by B4 has GSD = 9 and B symmetry is spontaneously broken.
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M (10,21) + ¢51. The relevant deformation preserves rank nine MFC B with simple objects
{L11,L12,...,L19}. They form B ~ su(2)s with identifications

X=Ly, Y=L Z=2Lig, S=ELig, T=Liz, U=ZLiy, VELg, WL

They have the third (non-unitary) quantum dimensions. Their conformal dimensions

43 1183 111 16 51 127 53
hig,h12,h18,h17,h13,h14,h16,015) =38, —, —, —, —, —, —, —
( 1,9, 11,2, 1618, 161,7, 141,35, 1614, 1t1,6, 1,5) ( 7407 40 ) 5 ) 57 8’ ] ’ 5)
match our first conformal dimensions mod 1. With the symmetry, we find the massive RG
flow described by B4 has GSD € {6,9} and B symmetry is spontaneously broken.
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