
MLQAOA: Graph Learning Accelerated Hybrid Quantum-Classical

Multilevel QAOA

Bao Bach
Computer and Information Sciences
Quantum Science and Engineering

University of Delaware
Newark DE, USA
baobach@udel.edu

Jose Falla
Physics and Astronomy
University of Delaware

Newark DE, USA
jfalla@udel.edu

Ilya Safro
Computer and Information Sciences

Physics and Astronomy
University of Delaware

Newark DE, USA
isafro@udel.edu

May 2, 2024

Abstract

Learning the problem structure at multiple levels of coarseness to inform the decomposition-based
hybrid quantum-classical combinatorial optimization solvers is a promising approach to scaling up varia-
tional approaches. We introduce a multilevel algorithm reinforced with the spectral graph representation
learning-based accelerator to tackle large-scale graph maximum cut instances and fused with several
versions of the quantum approximate optimization algorithm (QAOA) and QAOA-inspired algorithms.
The graph representation learning model utilizes the idea of QAOA variational parameters concentration
and substantially improves the performance of QAOA. We demonstrate the potential of using multilevel
QAOA and representation learning-based approaches on very large graphs by achieving high-quality so-
lutions in a much faster time.
Reproducibility: Our source code and results are available at https://github.com/bachbao/MLQAOA

1 Introduction

A general strategy for tackling many large-scale computational science problems on various hardware ar-
chitectures, including fundamental combinatorial optimization problems on graphs, is the use of multilevel
algorithms (also known as multiscale, multiresolution, and multigrid methods) [1]. The multilevel approach
starts by coarsening the problem to create a series (also known as a hierarchy) of progressively simpler, re-
lated problems at coarser levels, which are more feasible for the currently available hardware. This strategy
is particularly useful in quantum computing where the number of qubits is limited as well as their overall
quantum circuit fidelity, depth, and qubit connectivity. As a result, the hybrid quantum-classical algorithm
developers put a lot of effort into making the circuit more compact. In particular, this is highly relevant to
variational quantum algorithms [2] (e.g., many versions of the variational quantum eigensolver and quantum
approximate optimization algorithm) when the same or slightly updated quantum circuit is reparametrized
at each iteration and executed many times.

1

ar
X

iv
:2

40
4.

14
39

9v
3

 [
qu

an
t-

ph
]

 3
0

A
pr

 2
02

4

https://github.com/bachbao/MLQAOA

The motto of the multilevel algorithms is “Think globally but act locally”. At each coarse level i, the
best-found solution serves as an initialization for the next finer solution at level i− 1. This initialization is
enhanced through what is commonly referred to as “local processing” (also known as a refinement), a cost-
effective series of fast steps that involve only a few variables at a time but collectively revisit all variables of
that level multiple times. This method fits well with quantum computers, as it allows for solving parts of
the problem within the constraints of limited qubit numbers.

In the classical domain, typical examples of such local processing include several iterations of classical
relaxation methods like Gauss-Seidel or Jacobi relaxations when solving systems of equations, a few Monte
Carlo passes in statistical physics simulations, or Kernighan-Lin or Fiduccia–Mattheyses search for opti-
mization on graphs [1]. In the quantum context, such multilevel framework was explored for the graph
partitioning, clustering, and the maxcut problems. In both cases, the main local processing component was
the quantum approximate optimization algorithm (QAOA). While these multilevel frameworks played their
role and allowed increasing the instance graph size, the overall running time was suffering from the variational
loop slowness. In this paper, we introduce graph representation learning-based hybrid quantum-classical mul-
tilevel QAOA and quantum-inspired recursive optimization frameworks that break the performance barrier
and improve the overall solution quality.

The QAOA [3] stands out as a promising candidate, offering the potential to achieve a speedup to certain
combinatorial problems or classes of instances. However, the current landscape of quantum computers,
characterized by the NISQ (Noisy Intermediate-Scale Quantum) era, poses various challenges [4]. Large-scale
implementation of QAOA remains impractical [5] due to physical limitations inherent in current quantum
devices, such as constraints related to connectivity and noise. These hardware limitations present significant
obstacles to realizing the full potential of QAOA in real-world applications. Taking into consideration the
constraints and limitations of current quantum hardware, the hybrid architecture of QAOA emerges as one
of the most promising approaches to mitigate the impact of hardware constraints by incorporating classical
counterparts [2].
Our contribution We introduce a scalable hybrid quantum-classical multilevel scheme integrated with
two QAOA-inspired solvers and accelerated by the graph representation learning for fast parametrization of
QAOA [6]. This scheme allows scalability for fast small-scale QAOA solvers by decomposing the original
problem across the different scales of coarseness into sub-problems and constructing the global solution from
the sub-problem solutions. This resolves the huge time complexity that was a significant barrier in previous
hybrid quantum-classical decomposition-based algorithms [7–9] and makes them comparable even to purely
classical algorithms.

Specifically, our work focuses on addressing the maximum cut (MAXCUT) problem on large-scale graphs
using the graph representation learning-based parameter transferability for QAOA [6] and quantum-informed
recursive optimization [10] as accelerators. These methods enhance the execution time of the sub-problem
solver, resulting in an overall speed-up of the multilevel scheme with two orders of magnitude compared
with [7–9] approaches on mid-scale graphs and way more on larger that (to the best of our knowledge) no
hybrid quantum-classical approach was able to tackle in a reasonable computational time. Our approach
not only yields faster runtimes but also improves the performance of multilevel QAOA (it was impossible
to run other QAOA-based methods due to the slow performance and/or huge memory requirements). To
validate our approach, we evaluate it on diverse sets of graphs, including real-world problems like social
networks, optimization instances, graphs that are hard for MAXCUT, and those that are particularly hard
for the Goemans-Williamson MAXCUT approximation [11–14]. Even in the QAOA simulation mode, our
experimental results demonstrate competitive quality compared to the MAXCUT dedicated state-of-the-art
classical solvers, with comparable runtime.

2

2 Preliminaries and Notations

2.1 QAOA and MAXCUT

Quantum approximate optimization algorithm (QAOA) [3] is a hybrid quantum algorithm focusing on com-
binatorial optimization problems. The quantum heuristic algorithm aims to produce an approximation of the
problem’s solution by alternating between cost-function-based Hamiltonian and mixing Hamiltonian. The
QAOA variational loop consists of p parameterized layers of alternating unitary operators and a classical
optimizer. The role of the optimizer is to find the best set of parameters that minimize the cost function of
the problem.

Given a combinatorial optimization problem with a cost function f(x) where x ∈ {0, 1}n, QAOA alternat-
ingly apply unitaries drawn from two Hamiltonian families, cost-function-based unitary UP (γ) = e−iγHf and
mixing unitary UM (β) = e−iβHB parametrized by γ = {γi} and β = {βi}, 1 ≤ i ≤ p, respectively. Hamilto-
nian Hf is a cost function-based Hamiltonian where the information of cost function f(x) is embedded while
Hamiltonian HB is a fixed mixing Hamiltonian. With Hf as the observable, QAOA prepares the quantum
state expressed in (1) and performs optimization concerning the expectation value ⟨Hf ⟩ = ⟨γ, β|Hf |γ, β⟩.

|γ, β⟩ = UM (βp)UP (γp) . . . UM (β1)UP (γ1) |+⟩⊗n
(1)

The MAXCUT problem on a graph is the first QAOA demonstration [3] and the algorithm’s most common
benchmark. This problem is NP-complete [15]. The problem involves finding a cut that splits the graph
nodes into two disjoint parts V1 and V2 such that the weighted sum of edges ij connecting two parts is
maximized. The MaxCut problem is often formulated as a quadratic unconstrained binary optimization
problem (QUBO) by assigning a binary value xi to every node based on its part. Given a graph G(V,E,w)
where V is the set of nodes, E is the set of edges and w is the edge weighting function, the MAXCUT
problem is defined in (2).

max
x∈{−1,1}n

∑
ij∈E

wij
(1− xixj)

2
(2)

For this QUBO problem, the Hamiltonian can be constructed by applying the mapping xi 7→ 1
2 (1 − Zi),

where Z is the Pauli operator Z.

2.2 Multilevel Methods

The multilevel methods for optimization on graphs are inspired by the multigrid methods that were originally
devised to tackle boundary value problems in spatial domains [1]. Choosing a set of grids makes these
problems discrete and consists of algebraic equations associated with the grid points. The essence of the
multigrid method lies in iteratively increasing the grid point spacing, transforming the original problem into
coarser versions, and leveraging solutions from these coarser problems to aid in finding the final solution.
The theory behind this scheme is based on two observations. First, the standard iterative methods have
smoothing properties, this means they are effective at relaxing oscillatory components of error while leaving
smooth components unchanged. Second, the smooth modes on a fine grid look less smooth on a coarse
grid. Those observations imply that incorporating coarse grids during computation can make the smooth
components of error of the finest grid look more oscillatory and be eliminated by the relaxation of the
iterative method. The idea of such elimination and some ways of constructing the coarse problems were
inherited from the multilevel methods.

Nowadays, multigrid-inspired multilevel methods are applied to a broader spectrum of problems regardless
of their connection with physical grids. A broader organizational framework has emerged, replacing the
concept of a coarse grid with a more generalized notion known as the multilevel method [1]. The approach
proved itself to be useful in the (hyper)graph context where the multilevel method utilizes the graph structure
to curtail large-scale graphs into their coarser representations. Examples of problems successfully tackled by
multilevel methods include graph partitioning [16], visualization [17], linear ordering [18], and generation [19].

3

While there are several types of the coarsening-uncoarsening schedules in multilevel methods (e.g., V-,
W-, or FMG cycles [1]), in this work we use the simplest V−cycle to eliminate additional advantages of the
classical computing in the hybrid framework. In this setting, we generate a hierarchy of next coarser graphs

{Gl = (Vl, El, wl)}Ll=0, (3)

where l is the index of level, G0 is the original large-scale graph, and GL is the coarsest smallest graph.
The coarsening consists of (1) relaxation-based grouping pairs of nodes based on the recently introduced
maximization version [9] of the algebraic distance for graph coarsening [20], and (2) edge weight accumulation.

After the hierarchy is created, the MAXCUT at the coarsest level is solved and the solution is gradually
uncoarsened all the way up to the finest level. At each step of the uncoarsening, the lth level solution is
initialized by that from level l + 1 and further refined by various QAOA approaches. In the end, the final
solution of the original problem is obtained.

2.3 Graph Representation Learning

Graph representation learning techniques have shown great promise in addressing graph analytic tasks, such
as node classification, link prediction, and community detection by transforming graph features (nodes,
edges, edge weights, etc.) into non-linear, low-dimensional, dense, continuous, and highly informative vector
spaces [21]. In these low-dimensional graph representations, if two graph instances possess common structural
features, they exhibit closeness with respect to some distance function, such as a Euclidean distance function.
In this work, this idea is utilized for the scalable transferability of QAOA parameters.

Of these graph representation techniques, some involve node-level embedding at various scales (micro-
scopic, mesoscopic, and macroscopic node embedding), while others (that are relevant to this work) involve
whole graph embedding. Whole graph embedding techniques, as previously mentioned, are useful when
analyzing whole networks [22–25], particularly when trying to determine the structural similarity between
graphs.

Methods for graph representation learning can be grouped into a few categories. Among these categories,
a classic family of methods involves graph kernels, with examples including the Weisfeiler-Lehman [26],
random walk [27], shortest path [28], and deep graph [29] kernels. Another family of methods involves
graph embedding for learning vector representation of graphs, with examples including Graph2Vec [25],
which uses the Weisfeiler-Lehman kernel to extract rooted subgraph features to obtain the embeddings; also,
GL2Vec [30], which is an extension of Graph2Vec that includes line graphs to account for edge features.
More recently, an approach to graph representation learning involves graph neural networks, which employ
machine learning methods, with some examples including GCN [31], SGCN [32], GIN [33], and Causal
GraphSAGE [34], to name a few. Finally, there is a family of methods that use information from the graph’s
Laplacian matrix and its eigenvalues to generate embeddings, such as SF [35], NetLSD [36], and FGSD [37].
Our method belongs to the latter type of method.

3 Related works

3.1 QAOA-based Approaches

At the heart of this algorithm lies the utilization of QAOA to optimize sub-problem graphs, which refines the
final solution on the finest graph. Hence, the quality of the QAOA solution serves as a benchmark for our
refinement performance. In this study, we employ vanilla QAOA with three layers, bypassing the exhaustive
optimization process by incorporating graph learning techniques for parameter transferability [6, 38]. This
approach is one of many attempts to enhance the performance of QAOA, some noticeable attempts include
using warm-start for good initialization [39], noise-directed adaptive mapping for a higher-quality solution
based on previous step result [40], finding the best QAOA ansatz architecture for the given Hamiltonian
with bayesian optimization [41] and the connection between underlying symmetry of the objective function
and QAOA [42].

4

3.2 Hybrid Quantum-Classical Algorithms For Large Graphs

Quantum algorithms like the Quantum Approximate Optimization Algorithm (QAOA) hold significant
promise in addressing complex graph problems. However, their efficacy is hindered by the current limi-
tations of quantum hardware, which often suffer from noise and architectural constraints. Consequently,
to overcome these limitations and scale up the application of quantum algorithms such as QAOA to tackle
larger graph instances, researchers explore strategies to downscale the original problems into manageable
subproblems. The first attempts to utilize multilevel methods in a hybrid quantum-classical setting, [8, 9]
introduced the coarsening-uncoarsening approach and solved multiple small graphs at each level to enhance
the final solution of the original larger graph problem. This work extended the single-level decomposition-
based approaches [7]. However, already with the subproblem graph size of 22 nodes, the solvers were too
slow due to the parametrization in variational loops. This scalability issue is addressed in this work.

In a similar vein, [43] employs the graph decomposition technique to scale down the original graph to a
manageable size, producing a high-quality approximation of the final solution from the simplified problem. In
addition to the down-scaling approach, the divide-and-conquer method stands out as another candidate. As
exemplified by [44], the work demonstrates the potential of tackling divided subgraphs in parallel and then
merging these solutions to derive the final solution. This approach is comparable to the two-level scheme if
viewed as a multilevel algorithm.

From the circuit cutting, [45] creates a hybrid scalable approach CutQC to distributing big quantum
circuits that can be run on smaller quantum processing units (QPU), this allows breaking the limit of
classical simulation and achieving a larger quantum circuit evaluation. Similarly, [46] introduces SuperSim
which uses Clifford-based circuit cutting. By isolating (cutting) the Clifford circuit within the big non-clifford
circuit, the approach leads to the utilization of Clifford simulation that greatly reduces runtime.

3.3 Graph Learning For Parameter Transferability

The task of finding good QAOA parameters is challenging in general. For example, determining whether the
optimized solution corresponds to a local or a global minimum in the energy landscape, or due to encountering
barren plateaus [47, 48]. Furthermore, while the QAOA solution improves as the depth of the circuit is
increased, it only does so marginally at the cost of increasing the computational complexity of optimizing the
variational parameters [49]. For this reason, acceleration of optimal parameter search for a given QAOA depth
p is a key in demonstrating quantum advantage. Examples of optimal parameter search acceleration include
warm- and multi-start optimization [39,50], problem decomposition [7], instance structure analysis [42], and
multigrid inspired parameter learning [51]. In particular, optimal QAOA parameter transferability has shown
great promise in circumventing the problem of finding good QAOA parameters [38,52]. Based on structural
graph features, successful parameter transferability can be achieved between a donor graph and an acceptor
graph, with a very small reduction in the approximation ratio.

4 Our methods

The multilevel MAXCUT QAOA approach, as introduced in [9], encounters a significant challenge stemming
from the substantial computational overhead incurred in refining numerous sub-problem graphs by slow
variational loops. In some cases, this issue leads to inefficiencies even when compared to general-purpose
global solvers such as Gurobi [53]. To address this limitation, we leverage the potential of graph learning
techniques for QAOA parameter transferability, as outlined in [6] and the use of single and second correlations
to simplify the sub-problem graph [54]. Our proposed method (MLQAOA) introduces a reinforcement for
this multilevel scheme. By using a graph learning model tailored to the weighted graphs at each level
or quantum-informed recursive optimization, the model then effectively approximates high-quality ansatz
parameters, generating high-quality solutions for the sub-problems. Figure 1 demonstrates our method.

5

Figure 1: MLQAOA scheme using V -cycle. The original graph is iteratively coarsened in the Coarsening
Phase. The coarsest graph is solved using a classical solver. Building upon this solution, the Uncoarsening
Phase leverages the previous level solution through interpolation and performs refinement by solving sub-
problem graphs.

4.1 Coarsening Phase

At each level of coarseness (i.e., at each Gl in (3)), the coarsening phase is started by constructing a d-
dimensional unit sphere with every node from the graph Gl embedded and further relaxed in. This is
essential for establishing a distance metric between nodes for multilevel algorithms, as discussed in [55].
Every node is initially placed in a random position on the surface of the sphere or d-dimensional hypercube
embedded in the sphere. Denote pti as the position of node i at iteration t. For example, for the initial
hypercube embedding ∀i ∈ Vl, p0i ← rand[−1, 1]d.

Following the initialization, several node-wise correction iterations are applied to maximize within the
sphere the total weighted distance between each node and its neighbors:

∀i ∈ Vl, pt+1
i ← max

∑
j∈N(i)

wij

∥∥pti − ptj∥∥2. (4)

Here, N(i) represents the set of neighbors of node i, and wij is the weight of the edge ij. This iterative
scheme continues until convergence is achieved.

Subsequently, by leveraging the embedding, the nodes are paired for further coarsening using a K-D
tree. A fast search within the K-D tree facilitates pairing the node with its nearest unpaired neighbor. This
search finalizes the formation of the new coarse graph by contracting every paired node in the matching and
creating the coase nodes for Vl+1. Algorithm 1 describes the coarsening scheme. This process is repeated
until the desired coarsest graph size is achieved. Finally, by grouping into pairs of nodes at each level, the
original graph is broken into approximately log |V0| number of increasingly coarse graphs.

4.2 Uncoarsening Phase

The uncoarsening phase starts with the coarsest graph GL obtained in the last coarsening step. The number
of nodes in GL is based on the sub-problem size that is defined by the user. The solution to the problem

6

Algorithm 1 Coarsening

Require: Graph at level l, Gl = (Vl, El, wl)
1: Al ← Adjacency matrix of Gl

2: Initialize embedding of Gl into sphere
3: E← Apply iterations of (4) ▷ Vl is embedded into sphere
4: matched← ∅; pairs← ∅
5: for i ∈ Vl do ▷ Pair node with nearest neighbor in E
6: if i /∈ matched then
7: j ← E-nearest not matched neighbor of i
8: matched← matched ∪ {i, j}
9: pairs← pairs ∪ (i, j)

10: end if
11: end for
12: ▷ Now each pair is a node in Vl+1 and |Vl+1| = |pairs|
13: P ← 0|Vl+1|×|Vl| ▷ Initialize multilevel restriction operator. For details see [55].
14: q ← 0 ▷ Initialize iterator over coarse nodes
15: for (i, j) ∈ pairs do ▷ Construct coarse graph
16: Pq,i ← 1; Pq,j ← 1
17: q ← q + 1
18: end for
19: Al+1 ← PTAlP ▷ This is the algebraic multigrid formulation to create the coarse graph with

weighted edges that are accumulated from the fine level. In general, algebraic multigrid is not restricted
to having only two fine nodes to form a coarse node. For details see [55].

20: return Gl+1 obtained from Al+1

of the coarsest graph is found through state-of-the-art classical solver MQLib employing the BURER2002
heuristic [56] or extensively optimized QAOA. Usually, the larger |VL| could be, the better it affects the final
results.

Building upon the initial solution of GL, the uncoarsening phase progresses towards a finer level through
linear interpolation from the previous coarser level solution. This interpolation is a surjective mapping
F : Vl+1 → Vl (i.e., mapping of a fine node to its aggregating coarse node), and the initial solution at the
fine level is initialized by ∀i ∈ Vl+1, xi = xF (i). This yields an initial approximation for further refinement.

The refinement scheme begins with the computation of the gain of every node. This gain is then used to
estimate the impact of each node on the final energy at the current level and update the MAXCUT objective.
This gain is efficiently tracked by updating it based on the edges that enter or leave the cut.

∀i ∈ Vl, gain(i)←
∑

j∈N(i)

wij(−1)2xixj−xi−xj (5)

During the refinement stage, sub-problems are iteratively generated and solved to improve the final solution.
In each iteration, n random nodes are sampled and ranked by their gains, and K nodes with the highest
gain are then used to construct the sub-problem graph. This construction involves creating a graph with
two super-nodes, along with the selected nodes. Each super-node aggregates the nodes not chosen for the
sub-problem, and weighted edges are added between the super-nodes and chosen nodes.

Given the sub-problem graph, a sub-problem graph solver scheme must be devised. In this work, instead
of using exhaustive learning on vanilla QAOA, we study how the graph learning for parameter transferability
for QAOA with depth p = 3 [6] and quantum-informed recursive optimization algorithm [10] works as a sub-
problem solver. This investigation follows the spirit of the classical multilevel algorithm. By leveraging an
excellent efficient, small-scale problem solver, the multilevel approach enables the scalability of the problem
solver with good approximation.

After the relaxation, if the sub-problem solution enhances the objective function, the solution and ob-

7

jective are updated. The iteration counter is reset whenever there is an improvement. To prevent excessive
iterations, a restriction is set: if three consecutive iterations do not yield improvement or if there have been a
total of ten iterations, the algorithm accepts the current solution and proceeds to the next level. Algorithm
2 outlines the process.

Algorithm 2 Refinement

Require: Graph Gl(Vl, El), Subproblem graph size K, Initial solution from previous level Sl+1

1: G← compute gain for all nodes as in Eq. (5)
2: maxIter, count← 0
3: O ← compute objective inherited from Sl+1

4: while count < 3 and maxIter < 10 do
5: if count = 0 then
6: n← |Vl|
7: else
8: n← max(0.3|Vl|, 2K)
9: end if

10: subset← K highest gain nodes from randomly sampled n nodes from Vl
11: P ← constructMAXCUTSubproblem(subset)
12: Solve P and compute new objective Onew

13: Update G
14: maxIter ← maxIter + 1
15: if Onew ≥ O then
16: O ← Onew

17: Sl ← new solution derived from Onew

18: count← 0
19: else
20: count← count+ 1
21: end if
22: end while
23: return Sl

4.3 Graph Representation Using Spectral Learning For Parameter Transfer-
ability On Weighted Graphs

We begin the graph representation by defining the Laplacian matrix:

L = D −A, (6)

where D is the degree matrix and A the adjacency matrix. Denoting the vector w = (w1, ..., wn) as the
weights for each node (1, ..., n), D = diag(d), where d = Aw. The Laplacian is a symmetric, positive
semi-definite matrix. Observing that,

∀v ∈ Rn, vTLv =
∑
i<j

Aij(vj − vi)2 (7)

the spectral theorem yields:
L = UΛUT , (8)

where Λ = diag(λ1, ..., λn) is the diagonal matrix of eigenvalues of L, with 0 = λ1 < λ2 ≤ ... ≤ λn, and
U = (u1, ..., un) is the matrix of corresponding eigenvectors, with UTU = I.

For our graph representation model, we consider the following normalized version of the Laplacian,
referred to as the weighted Laplacian:

LW =W− 1
2LW

1
2 , (9)

8

whereW = diag(w). Once again, this is a symmetric, positive semi-definite matrix, and the spectral theorem
yields:

LW = Û Λ̂ÛT , (10)

where Λ̂ = diag(λ̂1, ..., λ̂n) is the diagonal matrix of the eigenvalues of LW , with 0 = λ̂1 < λ̂2 ≤ ... ≤ λ̂n,
and Û = (û1, ..., ûn) is the matrix of corresponding eigenvectors, with ÛT Û = I.

To determine the similarity between two graph instances, we compute the Euclidean distance between
the first non-trivial û2 (second) eigenvector1 of the weighted Laplacian matrix 10 of each of the graphs. The
reason for this is that the first non-trivial eigenvector of a graph’s Laplacian contains information about the
graph’s connectivity, and therefore, its structure. We are interested in determining graph similarity based
on structure since our previous work has shown that structural similarity is a key feature in determining
successful parameter transferability between two graph instances [38].

The construction of the model for parameter transferability begins by generating a corpus of 22-node
graphs. This corpus of graphs contains ∼ 5, 000 various types of graphs, including random graphs with
weight distributions ranging from w ∈ [0,m ∗ 5) with m ∈ (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). Additionally, the corpus
includes graphs that are structurally similar to those found in our multi-level approach. Each of the corpus
’graphs’ optimal parameters is optimized on 20 independent multi-starts. For the 20 multi-starts, the best
solution to the expectation value of the cost Hamiltonian ⟨Hf ⟩ = ⟨γ, β|Hf |γ, β⟩ is taken as the graph’s

optimal solution, and the optimal parameters (γ⃗, β⃗) are stored2. The circuit used for graph optimization is
constructed as per Section 2.1 using Cirq [57], and the quantum-classical optimization loop is performed with
a COBYLA solver for 300 iterations, or until convergence. In the end, the model consists of an N×n matrix,
where N is the number of graphs in the corpus, and n is the number of nodes, with each row corresponding
to the first non-trivial eigenvector of each graph in the corpus.

4.4 Quantum-Informed Recursive Optimization Algorithm

QAOA is a local algorithm, a characteristic that has been demonstrated to constrain its overall performance.
To address this problem, recursive QAOA [54] introduced non-local updates by iteratively eliminating vari-
ables using the single and double correlation information between them. This iterative process systematically
prunes variables from the original optimization problem while creating new connections between previously
distant pairs of nodes. The change in graph structure introduces a non-local effect that counteracts the in-
herent locality of QAOA. Based on this foundation, Quantum-Informed Recursive Optimization Algorithm
(QIRO) [10] emerges as a family of approaches that leverages quantum information to derive the potential
classical problem-specific reduction, thus recursively simplifying the original problem.

The framework of QIRO is shown in algorithm 3, where the original problem undergoes successive simplifi-
cation until reaching a desired size. This reduction process exploits single and double correlations concerning
a low-energy quantum state (lines 6, 7) and a problem-specific simplification rule (line 9). In this study, we
adopt the simplification rule for the MAXCUT problem from [54], where the rule is defined with the use
of correlation matrix M . Initially, we find the edge (i, j) ∈ Eit exhibiting the largest magnitude of Mij .

Subsequently, we treat Ẑi and Ẑj as correlated if Mij > 0 and anti-correlated if Mij < 0. By assigning

Ẑj = sgn(Mi,j)Zi, we effectively eliminate variable Zj from our Hamiltonian, resulting a new Hamiltonian
depending on only |V |− 1 variable or a graph G with |V |− 1 nodes. We remark on the possibility that there
may exist a better simplification strategy for the MAXCUT problem that we are not aware of.

To ensure RQAOA-inspired QIRO maintains a competitive runtime, we employ QAOA with a single
layer, as the single and double correlation can be efficiently calculated [58].

1Since we are working with connected graphs, the first eigenvector of the Laplacian is trivial.
2For a depth of p = 3, there are 3 optimal γ and 3 optimal β parameters.

9

Algorithm 3 General scheme of QIRO algorithm

Require: Graph G0(V0, E0)
Require: Smallest problem size s
1: l← 0
2: S ← ∅
3: while |Vl| > s do
4: Prepare low-energy quantum state |ψ⟩
5: M ← 0|Vl|×|Vl|

6: ∀i ∈ Vl, Mii ← ⟨ψ| Ẑi |ψ⟩
7: ∀(i, j) ∈ El, Mij ← ⟨ψ| ẐiẐj |ψ⟩
8: l← l + 1
9: Gl(Vl, El), S ← Simplification(Gl−1, M , S)

10: end while
11: S ← Classical Solver(Gl)
12: return S

5 Computational Results

Our source code and results are available at https://github.com/bachbao/MLQAOA. To evaluate the per-
formance and scalability of MLQAOA alongside the proposed sub-problem graph solvers, we conducted
numerical simulations using large instance graphs sourced from diverse datasets. We present a detailed out-
line of our experimental setup, including hyperparameter configurations for MLQAOA and both sub-problem
solvers, namely, Graph Learning Parameter Transfer and RQAOA-inspired QIRO. Subsequently, we offer a
comprehensive comparison between our approach and classical solvers, focusing on approximation ratio and
runtime metrics.

The configuration for MLQAOA sub-problem solvers is as follows: The sub-problem graph size, denoted
by K, is set to 20. For parameter transferring using graph learning on weighted graphs, the QAOA entails a
22-qubit circuit, comprising 20 chosen nodes and 2 supernodes, with 3 layers. For RQAOA-inspired QIRO,
the smallest size problem is 10. The simulations are executed on the ibmq qasm simulator with 10240
sampling shots.

We simulate our method on three different graph instance sets: (1) the well-known public MAXCUT
dataset Gset [11], (2) the Karloff graphs [12] and (3) larger graphs sourced from SuiteSparse Matrix Col-
lection [13] and the Network Repository [14]. The selection of these graphs is based on their widespread
use in MAXCUT problems, their diversity in size, degree distributions, and edge weights, and their chal-
lenging nature, as demonstrated by their effectiveness as benchmarks for existing solvers. Especially, the
Karloff collection contains challenging graphs for the Goemans-Williamson MAXCUT algorithm [59], the
polynomial-time approximation algorithm.

In all results, we use either the approximation ratio (best known or optimal solution vs those by our
algorithms) or the best objective cut as performance metrics to compare our proposed scheme with other
solvers. Specifically, given graph G and MAXCUT problem, the best objective cut achieved by method A
is denoted as CA while the optimal cut (if known) is denoted as C∗. The approximation ratio of method A
is defined as rA = CA

C∗ . As finding the optimal cut for large graphs is not always possible, we primarily use
the approximation ratio metric for graphs with known optimal cuts.

Gset graphs Table 1 shows a comparison between the proposed reinforced schemes MLQAOA and exhaus-
tive learning multilevel MAXCUT QAOA [9] with respect to the optimal solution. In the first column, we
show the details of graphs (number of vertices and edges) used from the Gset dataset. In the second, third,
and fourth columns, the approximation ratio of each method is recorded with the form: average approxi-
mation ratio / best approximation ratio. The final column shows the optimal cut (best objective value) for
the MAXCUT problem for specific graphs. We observe that MLQAOA outperforms the exhaustive learning

10

https://github.com/bachbao/MLQAOA

multilevel MAXCUT QAOA with a much shorter runtime. The running times of Graph Learning MLQAOA
and RQAOA-QIRO MLQAOA are comparable (Fig. 3), so while the quality of the latter is better, the gap
with the former is not very significant.

Karloff graphs We analyze the performance of MLQAOA against the Goemans-Williamson MAXCUT
algorithm for the Karloff graphs in Table 2. The first column gives the details of Karloff graphs (number of
vertices and edges), while the second column shows the average and best cuts from the Goemans-Williamson
algorithm. The third and fourth columns demonstrate our average and best approximation ratio and the
last column shows the optimal cut. The MLQAOA demonstrates competitive performance against the
Goemans-Williamson algorithm for this type of graph, reaching the optimal cut in many cases.

To provide a detailed insight into the performance of MLQAO on Gset dataset and Karloff dataset, figure
2 shows the boxplot of the graph learning MLQAOA and RQAOA-inspired QIRO MLQAOA. The boxes are
drawn from the 25% percentile to the 75% percentile with a horizontal line drawn in the middle to denote the
median. The x-axis represents the graph instances and the y-axis represents the approximation ratio. The
RQAOA-inspired QIRO MLQAOA exhibits more consistent performance with less variance and achieves a
slightly higher approximation ratio in most cases compared to graph-learning MLQAOA.

Gset continued We further compare our method with the QAOA-in-QAOA approach [44] for solving
more graphs from the Gset dataset in table 3. Our method demonstrates comparable performance with
classical solvers like a dualscaling SDP solver (DSDP) [60] or a physics-inspired graph neural network (PI-
GNN) method [61], outperforming the QAOA-in-QAOA approach but yielding worse results than breakout
local search (BLS) [62]. These three graphs are separated from the previous graphs from Gset due to the
unavailability of the QAOA-in-QAOA code.

Larger graphs Finally, to demonstrate the robustness of our method, we sample 25 graphs from the
SuiteSparse Matrix Collection [13] and the Network Repository [14] and present their results in Table
4. These graphs span different domains, sizes, and degrees, providing a comprehensive overview of our
algorithm’s performance compared to a systematic implementation of MAXCUT and QUBO heuristics in
MQLib [63]. Among the classical heuristics, we choose the best performing to the MAXCUT problem includ-
ing “BURER2002” [64] (the best heuristic evaluated by different metrics from [63]), “DUARTE2005” [65],
“GLOVER2010” [66] and “DESOUSA2013” [67]. The reinforcement of MLQAOA gives a comparable result
with classical solvers, especially for huge graphs as shown in table 4. This holds a promise for hybrid-
quantum algorithms to address other quadratic unconstrained binary optimization problems (QUBO) such
as Maximum independent set or max-k satisfiability.

To conclude the experiments and numerical simulation, Figure 3 illustrates the runtime of our reinforced
method for various graph sizes. This log-scale graph highlights the scalability and potential of our method
when executed on quantum hardware. The execution time shown here is from simulation and can be
significantly reduced when implemented on quantum devices.

6 Discussion

The main goal successfully achieved in this work was to break the variational quantum algorithm complexity
barriers to tackle large-scale combinatorial optimization instances without losing the solution quality. As one
can see from the results both Graph Learning MLQAOA and RQAOA-QIRO MLQAOA are highly scalable,
and pretty similar to each other in terms of the solution quality (while RQAOA-QIRO MLQAOA is usually
slightly better). They both often reach optimality (if it is known for the comparison) and are identical to the
MAXCUT dedicated top heuristics. It is important to mention that no optimization of hyperparameters in
this work has been done and it is clear that these results could be further improved. At the same time, we
note that no comparison with generic solvers (such as Gurobi) has been presented because they are either
way slower than MLQAOA or exhibit low quality. Below we discuss several important lessons learned and
obstacles we encountered during this work.

11

Table 1: Gset graphs approximation ratio between three different methods: exhaustive learning MLQAOA,
graph-learning MLQAOA, and RQAOA-inspired QIRO MLQAOA. The approximation ratio is recorded
over 20 runs. The exhaustive MLQAOA [9] has not been executed multiple times due to the incomparable
slowness.

G(|V |, |E|) MLQAOA [9]
MLQAOA
Graph-Learning

MLQAOA
RQAOA-QIRO

Optimal Cut

G1(800, 19716) -/0.984 0.976/0.985 0.989/0.993 11624
G2(800, 19716) -/0.984 0.978/0.984 0.989/0.993 11620
G3(800, 19716) -/0.982 0.978/0.986 0.990/0.995 11622
G4(800, 19716) -/0.978 0.980/0.988 0.990/0.994 11646
G5(800, 19716) -/0.983 0.979/0.989 0.989/0.994 11631

Table 2: Karloff graphs approximation ratio between three different methods: Goemans-Williamson MAX
CUT algorithm, graph learning MLQAOA, and RQAOA-inspired QIRO MLQAOA. The approximation ratio
is recorded over 20 runs

Classical Quantum approach

G(|V |, |E|) GW [59]
MLQAOA
Graph-Learning

MLQAOA
RQAOA-QIRO

Optimal Cut

K(252, 3150) 0.881/0.925 0.984/1.0 0.997/1.0 2520
K(252, 12600) 0.940/0.941 0.981/0.997 0.997/1.0 7560
K(924, 16632) 0.879/0.913 0.991/1.0 0.994/1.0 13860
K(924, 103950) 0.912/0.922 0.988/0.999 0.995/1.0 69300
K(3432, 84084) 0.879/0.937 0.992/1.0 0.989/1.0 72072
K(3432, 756756) 0.897/0.927 0.969/1.0 0.968/1.0 540540

Figure 2: Approximation ratio of graph learning MLQAOA RQAOA-inspired QIRO MLQAOA on Gset and
Karloff graph. The whisker lines are drawn up (down) to the largest (lowest) observed data point from the
dataset that falls within the 1.5 interquartile range (IQR) value from the upper (lower) quartile. The upper
(lower) notated approximation ratio of each box indicates the highest (lowest) approximation ratio over 20
run

Graph representation learning One unexpected result was a relatively low quality of the graph repre-
sentation learning based on the Weisfeiler-Leman (W-L) graph isomorphism test (e.g., graph2vec algorithm)

12

Table 3: Extended Gset graphs approximation ratio between different quantum and classical methods, in-
cluding graph-learning MLQAOA, RQAOA-inspired QIRO MLQAOA, and QAOA-in-QAOA. The best ap-
proximation ratio for both classical and quantum algorithms is recorded. The best results in their categories
are in bold.

Quantum approach Classical approach

Graph |V | |E| MLQAOA
Graph Learning

MLQAOA
RQAOA-QIRO

QAOA2

p = 1
QAOA2

p = 4
DSDP [60] PI GNN [61] BLS [62]

G14 800 4694 2994 3026 2593 2596 2922 3026 3064
G15 800 4694 2977 3026 2596 2579 2938 2990 3050
G22 2000 19990 13122 13174 10664 10559 12960 13181 13359

Figure 3: Average run time in seconds of graph learning MLQAOA and RQAOA-inspired QIRO MLQAOA
on graphs from table 4 over 20 runs. The x−axis and y−axis are logarithmic scales with x-axis denoted the
runtime and y−axis denoted the size of the graph calculated by |V |+ |E|.

in comparison to the spectral learning technique. In the previous work [6], the QAOA parameter transfer-
ability based on the W-L test was more successful on the unweighted graphs than anything else. Although
we observe the high quality and scalability of the spectral representation learning transferability, more in-
vestigation is required to build a weighted graph transferability model.

Coarsening scheme The current multilevel scheme was significantly simplified to understand the quantum-
based refinement effects. However, similar to many multilevel solvers for graphs, this can be improved.
Introducing advanced algebraic multigrid coarsening [1, 16] opens an opportunity to preserve the spectral
properties of the original problem at all levels of coarseness much better. As a result, potentially fewer
refinement steps are anticipated.

RQAOA-QIRO Using the idea of recursive QAOA for simplification rule leads to the QIRO scheme
demonstrating excellent performance on MAXCUT. The QIRO was chosen as a baseline because it was
consistently outperforming its competitors on small-scale graphs. However, similar to many other methods

13

Table 4: Best objective cut of graph-learning MLQAOA (MLQAOA GL) and RQAOA-inspired QIRO
(MLQAOA QIRO) compared with classical heuristic algorithm “BURER2002” [64], “DUARTE2005” [65],
“GLOVER2010” [66] and “DESOUSA2013” [67]. The graphs are drawn from SuiteSparse Matrix Collec-
tion [13] and the Network Repository [14].

Quantum approaches Classical approaches

Graph |V | |E| MLQAOA
GL

MLQAOA
QIRO

BURER02 DUARTE05 GLOVER10 DESOUSA13

soc-buzznet 101,163 2,763,066 2,069,342 2,070,569 2,071,445 2,071,612 2,071,427 1,390,645

c-72 84,064 395,811 311,299 311,623 296,238 303,000 289,878 158,740

c-71 76,638 468,096 390,832 391,333 391,007 390,937 360,192 198,915

soc-slashdot 70,068 358,647 277,664 278,124 277,675 278,445 276,640 182,254

c-68 64,810 315,408 250,405 250,547 242,676 245,123 233,846 127,692

dixmaanl 60,000 179,999 96,299 96,659 99,555 98,281 89,411 61,713

soc-brightkite 56,739 212,945 149,739 150,183 149,328 151,057 145,405 108,795

copter2 55,476 407,714 218,486 219,595 225,982 222,862 213,634 178,894

c-64 51,035 384,438 328,421 328,471 328,475 328,475 326,302 169,408

3dtube 45,330 1,629,474 1,033,982 1,044,174 1,065,693 1,066,489 1,066,489 797,620

c-62 41,731 300,537 258,698 258,805 258,759 258,802 245,026 132,373

c-59 41,282 260,909 219,481 219,618 218,368 219,193 216,117 112,342

shock-9 36,476 71,290 66,702 69,168 69,772 68,717 64,780 37,034

big dual 30,269 44,929 41,658 41,933 43,280 42,489 39,801 23,551

rajat10 30,202 80,202 38,776 38,989 39,847 39,316 36,028 26,223

aug2dc 30,200 40,000 38,221 38,407 39,805 38,670 31,920 21,080

soc-epinions 26,588 100,120 68,934 69,282 69,496 69,850 67,541 51,705

dtoc 24,993 34,986 33,915 34,070 34,590 33,951 32,454 18,497

rajat09 24,482 64,982 31,514 31,588 32,334 31,874 29,136 21,305

aug3d 24,300 34,992 34,784 34,785 34,992 33,866 27,590 18,462

biplane-9 21,701 42,038 39,740 39,892 41,373 40,660 41,120 22,129

rajat08 19,362 51,362 24,913 24,972 25,581 25,183 23,228 16,968

ex3sta1 16,782 34,7890 180,530 181,141 183,535 183,141 180,975 168,116

rajat07 14,842 39,342 19,078 19,144 19,575 19,303 17,749 13,115

rajat06 10,922 28,922 14,034 14,083 14,418 14,211 13,203 9732

with the goal of creating a more compact circuit, this method encounters scalability challenges in terms of
both time and space complexity when applied to large instance graphs. An interesting observation emerges
regarding the RQAOA-QIRO approach, the approach produces consistent results for large graphs, indicating
its tendency to converge to local optima. Conversely, the graph learning approach yields more fluctuated
results with a higher degree of randomness, leading to a better chance of escaping local points and heading
toward global minimum. On average, the difference between graph learning MLQAOA and RQAOA-QIRO
MLQAOA is only 0.7% on the set of larger graphs, i.e., they are both highly competitive.

Acknowledgment

This work was supported with funding from the Defense Advanced Research Projects Agency (DARPA)
under the ONISQ program.

References

[1] Achi Brandt and Dorit Ron. Multigrid solvers and multilevel optimization strategies. Multilevel opti-
mization in VLSICAD, pages 1–69, 2003.

14

[2] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jar-
rod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. Variational quantum
algorithms. Nature Reviews Physics, 3(9):625–644, August 2021.

[3] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm.
arXiv preprint arXiv:1411.4028, 2014.

[4] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand,
Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim,
Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy intermediate-scale quantum algorithms. Reviews
of Modern Physics, 94(1), February 2022.

[5] Gian Giacomo Guerreschi and A. Y. Matsuura. Qaoa for max-cut requires hundreds of qubits for
quantum speed-up. Scientific Reports, 9:6903, 2019.

[6] Jose Falla, Quinn Langfitt, Yuri Alexeev, and Ilya Safro. Graph representation learning for parameter
transferability in quantum approximate optimization algorithm. arXiv preprint arXiv:2401.06655, 2024.

[7] Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Christian FA Negre, Ilya Safro, Susan M Mniszewski,
and Yuri Alexeev. A hybrid approach for solving optimization problems on small quantum computers.
Computer, 52(6):18–26, 2019.

[8] Hayato Ushijima-Mwesigwa, Ruslan Shaydulin, Christian FA Negre, Susan M Mniszewski, Yuri Alexeev,
and Ilya Safro. Multilevel combinatorial optimization across quantum architectures. ACM Transactions
on Quantum Computing, 2(1):1–29, 2021.

[9] Anthony Angone, Xiaoyuan Liu, Ruslan Shaydulin, and Ilya Safro. Hybrid quantum-classical multilevel
approach for maximum cuts on graphs. In 2023 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–7. IEEE, 2023.

[10] Jernej Rudi Finžgar, Aron Kerschbaumer, Martin JA Schuetz, Christian B Mendl, and Helmut G
Katzgraber. Quantum-informed recursive optimization algorithms. arXiv preprint arXiv:2308.13607,
2023.

[11] Yuan Ye. Gset - a suite-style benchmark for graph processing systems. https://web.stanford.edu/

~yyye/yyye/Gset/, 2003.

[12] Howard Karloff. How good is the Goemans-Williamson MAX CUT algorithm? In Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, page 427–434, 1996.

[13] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM Transactions
on Mathematical Software (TOMS), 38(1):1–25, 2011.

[14] Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph analytics and
visualization. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), Mar. 2015.

[15] Michael R Garey, David S Johnson, and Larry Stockmeyer. Some simplified np-complete problems. In
Proceedings of the sixth annual ACM symposium on Theory of computing, pages 47–63, 1974.

[16] Ilya Safro, Peter Sanders, and Christian Schulz. Advanced coarsening schemes for graph partitioning.
In International Symposium on Experimental Algorithms, pages 369–380. Springer, 2012.

[17] Yifan Hu and Lei Shi. Visualizing large graphs. Wiley Interdisciplinary Reviews: Computational
Statistics, 7(2):115–136, 2015.

[18] Ilya Safro, Dorit Ron, and Achi Brandt. Graph minimum linear arrangement by multilevel weighted
edge contractions. Journal of Algorithms, 60(1):24–41, 2006.

15

https://web.stanford.edu/~yyye/yyye/Gset/
https://web.stanford.edu/~yyye/yyye/Gset/

[19] Varsha Chauhan, Alexander Gutfraind, and Ilya Safro. Multiscale planar graph generation. Applied
Network Science, 4:1–28, 2019.

[20] Jie Chen and Ilya Safro. Algebraic distance on graphs. SIAM Journal on Scientific Computing,
33(6):3468–3490, 2011.

[21] Hongyun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. A Comprehensive Survey of Graph
Embedding: Problems, Techniques, and Applications. IEEE Transactions on Knowledge and Data
Engineering, 30(9):1616–1637, September 2018.

[22] Lili Wang, Chenghan Huang, Weicheng Ma, Xinyuan Cao, and Soroush Vosoughi. Graph Embedding
via Diffusion-Wavelets-Based Node Feature Distribution Characterization. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management, pages 3478–3482. ACM,
October 2021.

[23] Chen Cai and Yusu Wang. A simple yet effective baseline for non-attributed graph classification, May
2022. arXiv:1811.03508 [cs, stat].

[24] Alexis Galland and Marc Lelarge. Invariant embedding for graph classification. In ICML 2019 Workshop
on Learning and Reasoning with Graph-Structured Data, 2019.

[25] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning Distributed Representations of Graphs, July 2017.
arXiv:1707.05005 [cs].

[26] Nino Shervashidze. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 2011.

[27] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Bernhard Schölkopf and Manfred K. Warmuth, editors, Learning Theory and Kernel
Machines, pages 129–143, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[28] K.M. Borgwardt and H. Kriegel. Shortest-Path Kernels on Graphs. In Fifth IEEE International Con-
ference on Data Mining (ICDM’05), pages 74–81, Houston, TX, USA, 2005. IEEE.

[29] Pinar Yanardag and S.V.N. Vishwanathan. Deep Graph Kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1365–1374, Sydney
NSW Australia, August 2015. ACM.

[30] Hong Chen and Hisashi Koga. Gl2vec: Graph embedding enriched by line graphs with edge features.
In Tom Gedeon, Kok Wai Wong, and Minho Lee, editors, Neural Information Processing, pages 3–14,
Cham, 2019. Springer International Publishing.

[31] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[32] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
ing graph convolutional networks. In International conference on machine learning, pages 6861–6871.
PMLR, 2019.

[33] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

[34] Tao Zhang, Hao-Ran Shan, and Max Little. Causal graphsage: A robust graph method for classification
based on causal sampling. Pattern Recognition, 128:108696, 08 2022.

[35] N De Lara and E Pineau. A simple baseline algorithm for graph classification. arXiv preprint
arXiv:1810.09155, pages 1–7, 2018.

16

[36] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander Bronstein, and Emmanuel Müller.
Netlsd: Hearing the shape of a graph. In Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD ’18, page 2347–2356, New York, NY, USA, 2018.
Association for Computing Machinery.

[37] Saurabh Verma and Zhi-Li Zhang. Hunt for the unique, stable, sparse and fast feature learning on graphs.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[38] Alexey Galda, Eesh Gupta, Jose Falla, Xiaoyuan Liu, Danylo Lykov, Yuri Alexeev, and Ilya Safro.
Similarity-based parameter transferability in the quantum approximate optimization algorithm. Fron-
tiers in Quantum Science and Technology, 2, 2023.

[39] Daniel J. Egger, Jakub Mareček, and Stefan Woerner. Warm-starting quantum optimization. Quantum,
5:479, June 2021.

[40] Filip B Maciejewski, Jacob Biamonte, Stuart Hadfield, and Davide Venturelli. Improving quantum
approximate optimization by noise-directed adaptive remapping. arXiv preprint arXiv:2404.01412,
2024.

[41] Trong Duong, Sang T Truong, Minh Pham, Bao Bach, and June-Koo Rhee. Quantum neural architecture
search with quantum circuits metric and bayesian optimization. In ICML 2022 2nd AI for Science
Workshop, 2022.

[42] Ruslan Shaydulin, Stuart Hadfield, Tad Hogg, and Ilya Safro. Classical symmetries and the quantum
approximate optimization algorithm. Quantum Information Processing, 20(11):359, 2021.

[43] Moises Ponce, Rebekah Herrman, Phillip C Lotshaw, Sarah Powers, George Siopsis, Travis Humble, and
James Ostrowski. Graph decomposition techniques for solving combinatorial optimization problems with
variational quantum algorithms. arXiv preprint arXiv:2306.00494, 2023.

[44] Zeqiao Zhou, Yuxuan Du, Xinmei Tian, and Dacheng Tao. Qaoa-in-qaoa: Solving large-scale maxcut
problems on small quantum machines. Phys. Rev. Appl., 19:024027, Feb 2023.

[45] Wei Tang and Margaret Martonosi. Cutting quantum circuits to run on quantum and classical platforms.
arXiv preprint arXiv:2205.05836, 2022.

[46] Kaitlin N. Smith, Michael A. Perlin, Pranav Gokhale, Paige Frederick, David Owusu-Antwi, Richard
Rines, Victory Omole, and Frederic Chong. Clifford-based circuit cutting for quantum simulation. In
Proceedings of the 50th Annual International Symposium on Computer Architecture, ISCA ’23, New
York, NY, USA, 2023. Association for Computing Machinery.

[47] Eric R. Anschuetz and Bobak T. Kiani. Beyond Barren Plateaus: Quantum Variational Algorithms Are
Swamped With Traps. Nature Communications, 13(1), 2022.

[48] Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and Patrick J.
Coles. Noise-induced barren plateaus in variational quantum algorithms. Nature Communications,
12(1):6961, November 2021.

[49] Ruslan Shaydulin and Yuri Alexeev. Evaluating quantum approximate optimization algorithm: A case
study. In 2019 tenth international green and sustainable computing conference (IGSC), pages 1–6. IEEE,
2019.

[50] Ruslan Shaydulin, Ilya Safro, and Jeffrey Larson. Multistart methods for quantum approximate opti-
mization. In 2019 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–8. IEEE,
2019.

17

[51] Christo Meriwether Keller, Stephan Eidenbenz, Andreas Bärtschi, Daniel O’Malley, John Golden, and
Satyajayant Misra. Hierarchical multigrid ansatz for variational quantum algorithms. arXiv preprint
arXiv:2312.15048, 2023.

[52] Alexey Galda, Xiaoyuan Liu, Danylo Lykov, Yuri Alexeev, and Ilya Safro. Transferability of opti-
mal qaoa parameters between random graphs. In 2021 IEEE International Conference on Quantum
Computing and Engineering (QCE), pages 171–180. IEEE, 2021.

[53] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.

[54] Sergey Bravyi, Alexander Kliesch, Robert Koenig, and Eugene Tang. Obstacles to variational quantum
optimization from symmetry protection. Physical Review Letters, 125(26), December 2020.

[55] Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation-based coarsening and multiscale graph organization.
Multiscale Modeling & Simulation, 9(1):407–423, 2011.

[56] Iain Dunning, Swati Gupta, and John Silberholz. What works best when? a systematic evaluation of
heuristics for max-cut and qubo. INFORMS Journal on Computing, 30(3), 2018.

[57] Cirq Developers. Cirq. version v0, 12, 2021.

[58] Asier Ozaeta, Wim van Dam, and Peter L McMahon. Expectation values from the single-layer quantum
approximate optimization algorithm on ising problems. Quantum Science and Technology, 7(4):045036,
2022.

[59] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, nov 1995.

[60] Steven J. Benson, Yinyu Ye, and Xiong Zhang. Solving large-scale sparse semidefinite programs for
combinatorial optimization. SIAM Journal on Optimization, 10(2):443–461, 2000.

[61] Martin J. A. Schuetz, J. Kyle Brubaker, and Helmut G. Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

[62] Una Benlic and Jin-Kao Hao. Breakout local search for the max-cutproblem. Engineering Applications
of Artificial Intelligence, 26(3):1162–1173, 2013.

[63] Iain Dunning, Swati Gupta, and John Silberholz. What works best when? a systematic evaluation of
heuristics for max-cut and QUBO. INFORMS Journal on Computing, 30(3), 2018.

[64] Samuel Burer, Renato Monteiro, and Yin Zhang. Rank-two relaxation heuristics for max-cut and other
binary quadratic programs. SIAM Journal on Optimization, 12, 07 2001.

[65] Abraham Duarte, Angel Sanchez, Felipe Fernández, and Raúl Cabido. A low-level hybridization between
memetic algorithm and vns for the max-cut problem. pages 999–1006, 06 2005.

[66] Fred Glover, Zhipeng Lü, and Jin-Kao Hao. Diversification-driven tabu search for unconstrained binary
quadratic problems. 4OR, 8:239–253, 2010.

[67] Samuel de Sousa, Yll Haxhimusa, and Walter G. Kropatsch. Estimation of distribution algorithm for
the max-cut problem. In Graph-Based Representations in Pattern Recognition, pages 244–253, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

18

	Introduction
	Preliminaries and Notations
	QAOA and MAXCUT
	Multilevel Methods
	Graph Representation Learning

	Related works
	QAOA-based Approaches
	Hybrid Quantum-Classical Algorithms For Large Graphs
	Graph Learning For Parameter Transferability

	Our methods
	Coarsening Phase
	Uncoarsening Phase
	Graph Representation Using Spectral Learning For Parameter Transferability On Weighted Graphs
	Quantum-Informed Recursive Optimization Algorithm

	Computational Results
	Discussion

